JP6684020B2 - 固体酸化物形燃料電池システム - Google Patents

固体酸化物形燃料電池システム Download PDF

Info

Publication number
JP6684020B2
JP6684020B2 JP2016029072A JP2016029072A JP6684020B2 JP 6684020 B2 JP6684020 B2 JP 6684020B2 JP 2016029072 A JP2016029072 A JP 2016029072A JP 2016029072 A JP2016029072 A JP 2016029072A JP 6684020 B2 JP6684020 B2 JP 6684020B2
Authority
JP
Japan
Prior art keywords
fuel
hydrogen
gas
hydrogen storage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016029072A
Other languages
English (en)
Other versions
JP2016201355A (ja
Inventor
将和 依田
将和 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2016201355A publication Critical patent/JP2016201355A/ja
Application granted granted Critical
Publication of JP6684020B2 publication Critical patent/JP6684020B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料ガス及び酸化材ガスの酸化及び還元により発電する燃料電池セルを備えた固体酸化物形燃料電池システムに関する。
固体酸化物形燃料電池システムにおける燃料電池セルは、酸化物イオンを伝導する固体電解質膜を備え、この固体電解質膜の片側に燃料ガスを酸化する燃料極が設けられ、その他側に酸化材ガスを還元する酸素極が設けられている。固体電解質膜の材料としては、一般的に、イットリアを置換固溶させたジルコニアが用いられており、600〜1000℃の高温で燃料ガス(例えば、天然ガス、都市ガスなど)中の水素、一酸化炭素、炭化水素と酸化材ガス(例えば、空気)中の酸素との電気化学反応により発電が行われる。
燃料極の材料としては、ニッケルと電解質材料などからなるサーメットなどが用いられている。このサーメットを用いた場合、ニッケルの粒子サイズにもよるが、350〜400℃以上の温度状態において酸化雰囲気に曝されると、サーメット中のニッケルが酸化ニッケルに酸化し、高温になるほどこの酸化反応は速度が大きくなる。
また、酸素極の材料としては、ランタンマンガナイト系酸化物、ランタンコバルタイト系酸化物、ランタンフェライト系酸化物などが用いられている。酸素極に用いられるこれらの材料は、500℃以上の高温状態で還元雰囲気に曝されると、速やかに還元されて膨張し、クラックや剥離が発生し性能が急速的に低下する。
この固体酸化物形燃料電池システムでは、燃料極、電解質膜及び酸素極が同室(即ち、電池ハウジング)内に設置され、燃料電池セル(燃料電池セルスタック)の劣化を抑制するためには、燃料極及び酸素極の近傍を適切な温度状態に管理すること、燃料極を還元雰囲気状態に制御すること、また酸素極を酸化雰囲気状態に制御することが必要不可欠であるが、燃料ガス、酸化材ガス(例えば、空気)の逆流により酸化還元を伴う破損は急速な劣化を生じ、燃料電池セル(燃料電池セルスタック)の性能低下を引き起こす原因となっている。
特に、緊急停止時においては、燃料ガス及び酸化材ガスの供給が停止した状態となるために、燃料極に使用されるニッケルの酸化が起りやすくなる。このニッケルの酸化を防止するために、酸化材ガス(例えば、空気)が入り込まないように電池ハウジングの気密性を高めることが従来から取り組まれている。また、他の方法として、緊急停止時に、燃料極側に還元性ガスを酸素極側に酸化材ガスをパージガスとして供給することで、燃料極(例えば、ニッケルサーメット)及び/又は酸素極の寸法変化による燃料電池セルの割れなどを抑制することが知られている(例えば、特許文献1参照)。このパージガスを供給するシステムでは、例えば、燃料電池セルに関連して高圧ボンベラックが設けられ、この高圧ボンベラックから燃料極側に還元性ガス(例えば、窒素-水素混合ガスなど)が供給され、酸素極側に酸化材ガス(例えば、空気)が供給されるように構成されている。
しかし、パージガスを供給する技術は、中大型の固体酸化物形燃料電池システムには適用することができるが、小型の固体酸化物形燃料電池システム(特に、家庭用コージェネレーションシステムに用いる燃料電池システム)では、このような技術の採用は、製造コスト、メンテナンスコストなどが高くなり、また設置スペースが大きくなり、高圧ガスの保管という法規制の面からも難しくなる。
そこで、燃料電池セルの燃料極に耐酸化性の良好な材料を採用することも提案されている(例えば、特許文献2参照)。また、燃料ガス供給流路に第1遮断弁を、酸化材供給ガス流路に第2遮断弁を、また排気ガス排気流路に第3遮断弁を配設した燃料電池システムが提案されている(例えば、特許文献3参照)。この燃料電池システムでは、緊急停止時に、第1〜第3遮断弁が遮断状態に保持され、第1遮断弁によって燃料ガス供給流路が遮断され、第2遮断弁によって酸化材供給ガス流路が遮断され、また第3遮断弁によって排気ガス排出流路が遮断され、このように遮断した状態で第1〜第3遮断弁により遮断された空間における空燃比が、理論空燃比以上で且つ第1〜第3遮断弁による遮断前よりも低い空燃比になるようにすることによって、緊急停止時の燃料極の酸化を抑制している。
更に、燃料供給流路(具体的には、燃料ポンプの上流側)に供給遮断弁を設けるとともに、この供給遮断弁と燃料ポンプとの間に、燃料ガスを吸着するための燃料ガス吸着材を充填した吸着器を配設した燃料電池システムが提案されている(例えば、特許文献4参照)。この燃料電池システムでは、緊急停止時に供給遮断弁が閉状態となって燃料ガス供給流路が遮断された後に燃料ポンプ及び水ポンプが作動され、このように制御することによって、燃料ガス吸着材に吸着された燃料ガスが燃料ポンプにより改質器に送給されるとともに、改質用水が水ポンプにより改質器に送給され、従って、緊急停止後においても改質器に燃料ガス及び改質用水が送給されて水蒸気改質が行われ、この改質燃料ガスが送給されることにより、燃料電池セルの燃料極の酸化による劣化を抑えている。
特開平7−235321号公報 特開2005−19261号公報 特開2013−33666号公報 特開2010−27579号公報
しかしながら、特許文献2の技術にように、燃料電池セルの燃料極に耐酸化性材料を用いたとしても、緊急停止時に燃料ガスの供給を停止すると、燃料極側に酸化材ガスが逆流するおそれがあるために、燃料極の酸化による劣化を充分に抑制することができない。また、特許文献3の技術のように、第1〜第3遮断弁を配設するシステムにおいては、外部からの酸化材ガス(空気)の逆流を遮断して酸素極の酸化を防止することが可能となるが、第1〜第3遮断弁を必要とし、またこれら遮断弁を所要の通りに作動制御しなければならず、そのためにシステムの構成及びその制御が複雑になる問題がある。更に、特許文献4の技術のように、緊急停止後に燃料ポンプと水ポンプとを作動させて燃料ガス吸着材に吸着された燃料ガスと改質用水とを改質器に送給するシステムでは、停電時などのように電源供給が絶たれたときには、燃料ポンプ及び水ポンプを作動させて改質燃料ガスを燃料電池セルの燃料極に送給することができず、この燃料極の酸化による劣化を抑えることができない。
本発明の目的は、緊急停止時におけるセルスタックの燃料極の酸化による劣化を抑制することができる固体酸化物形燃料電池システムを提供することである。
本発明の請求項1に記載の固体酸化物形燃料電池システムは、固体電解質膜、前記固体電解質膜の片側に配設された燃料極及び前記固体電解質膜の他側に配設された酸素極を備えた燃料電池セルと、改質用水を気化する気化器と、燃料ガスを改質用水を用いて水蒸気改質する改質器とを備え、前記燃料電池セル、前記気化器及び前記改質器が高温空間を規定する電池ハウジング内に収容され、前記改質器にて水蒸気改質された改質燃料ガスが改質燃料ガス送給流路を通して前記燃料電池セルの前記燃料極に供給され、酸化材ガスが酸化材ガス供給流路を通して前記燃料電池セルの前記酸素極に供給される固体酸化物形燃料電池システムであって、
前記改質燃料ガス送給流路には、水素吸蔵材が収容された水素吸蔵器が設けられ、前記水素吸蔵器は、前記電池ハウジング内に収容された前記気化器、前記改質器又は前記酸化材ガス余熱器に関連して設けられており、
発電運転時に、前記気化器、前記改質器又は前記酸化材ガス余熱器からの熱を受け、前記水素吸蔵材が吸蔵温度に保たれて改質燃料ガスに含まれた水素を吸蔵し、また緊急停止時に、前記水素吸蔵材の温度が前記吸蔵温度から一時的に上昇することによって、前記水素吸蔵材に吸蔵された水素が放出され、前記水素吸蔵材から放出された水素が前記改質燃料ガス送給流路を通して前記燃料電池セルの前記燃料極に送給されることを特徴とする。
また、本発明の請求項2に記載の固体酸化物形燃料電池システムでは、前記水素吸蔵器は、前記気化器の内側に、或いは前記気化器の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記気化器における改質用水の気化によって前記吸蔵温度に維持されて改質燃料ガス中の水素を吸蔵し、緊急停止時に改質用水の供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする。
また、本発明の請求項3に記載の固体酸化物形燃料電池システムでは、前記水素吸蔵器は、前記改質器の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記改質器における水蒸気改質によって前記収蔵温度に維持されて改質燃料ガス中の水素を吸蔵し、緊急停止時に燃料ガス及び改質用水の供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする。
また、本発明の請求項4に記載の固体酸化物形燃料電池システムでは、前記酸化材ガス供給流路には、前記燃料電池セルから排出される排気ガスと酸化材ガスとの間で熱交換を行う酸化材ガス余熱器が配設され、前記水素吸蔵器は、前記酸化材ガス余熱器の内側に、或いは前記酸化材ガス余熱器の外側に又はその下流側における前記酸化材ガス供給流路の下流側部の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記酸化材ガス余熱器における酸化材ガスと排気ガスとの熱交換によって前記吸蔵温度に維持されて改質燃料ガス中の水素を吸蔵し、緊急停止時に酸化材ガスの供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする。
また、本発明の請求項5に記載の固体酸化物形燃料電池システムは、固体電解質膜、前記固体電解質膜の片側に配設された燃料極及び前記固体電解質膜の他側に配設された酸素極を備えた燃料電池セルと、前記燃料電池セルの前記燃料極に燃料ガスを供給する燃料ガス供給流路と、前記燃料電池セルの前記酸素極に酸化材ガスを供給する酸化材ガス供給流路と、前記燃料ガス供給流路に配設された燃料ガス余熱器と、前記酸化材供給流路に配設された酸化材ガス余熱器と、を備え、前記燃料電池セルが高温空間を規定する電池ハウジング内に収容された固体酸化物形燃料電池システムであって、
前記燃料ガス余熱器及び前記酸化材ガス余熱器は前記電池ハウジングの前記高温空間に収容され、また前記燃料ガス供給流路には、水素吸蔵材が収容された水素吸蔵器が設けられ、前記水素吸蔵器が前記燃料ガス余熱器又は前記酸化材ガス余熱器に関連して設けられており、
発電運転時に、前記水素吸蔵器が前記燃料ガス余熱器又は前記酸化材ガス余熱器からの熱を受け、前記水素吸蔵材が吸蔵温度に維持されて燃料ガスに含まれた水素を吸蔵し、また緊急停止時に、前記水素吸蔵材の温度が前記吸蔵温度から一時的に上昇することによって、前記水素吸蔵材に吸蔵された水素が放出され、前記水素吸蔵材から放出された水素が前記燃料ガス供給流路を通して前記燃料電池セルの前記燃料極に送給されることを特徴とする。
また、本発明の請求項6に記載の固体酸化物形燃料電池システムでは、前記燃料ガス余熱器は前記電池ハウジング内に収容され、前記水素吸蔵器は、前記燃料ガス余熱器の内側に、或いは前記燃料ガス余熱器の外側に又はその下流側における前記燃料ガス供給流路の下流側部の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記燃料ガス余熱器における燃料ガスと排気ガスとの熱交換によって前記吸蔵温度に維持されて燃料ガス中の水素を吸蔵し、緊急停止時に燃料ガスの供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする。
また、本発明の請求項7に記載の固体酸化物形燃料電池システムでは、前記酸化材ガス余熱器は前記電池ハウジング内に収容され、前記水素吸蔵器は、前記酸化材ガス余熱器の内側に、或いは前記酸化材ガス余熱器の外側に又はその下流側における前記酸化材ガス供給流路の下流側部の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記酸化材ガス余熱器における酸化材ガスと排気ガスとの熱交換によって前記吸蔵温度に維持されて燃料ガス中の水素を吸蔵し、緊急停止時に酸化材ガスの供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする。
更に、本発明の請求項8に記載の固体酸化物形燃料電池システムでは、前記水素吸蔵材は、パラジウム、ジルコニウム・ニッケルの合金、マグネシウム・ニッケル・クロムの複合合金、ジルコニウム・マンガン・鉄の複合合金及びジルコニウム・マンガン・銅の複合合金のいずれか又はこれらの2種以上から形成されることを特徴とする。
本発明の請求項1に記載の固体酸化物形燃料電池システムによれば、改質器にて燃料ガスを水蒸気改質して燃料電池セルの燃料極に送給する改質燃料ガス送給流路に水素吸蔵器が設けられ、この水素吸蔵器に水素吸蔵材が収容されているので、システムの発電運転時には、この水素吸蔵材が改質燃料ガスに含まれた水素を吸蔵し、またシステムの緊急停止時には、水素吸蔵材の温度が一時的に上昇することによって、水素吸蔵材に吸蔵された水素が放出され、水素吸蔵材から放出された水素が改質燃料ガス送給流路を通して燃料電池セルの燃料極に送給される。従って、緊急停止時に燃料ポンプ及び水ポンプなどが停止した状態においても、水素吸蔵材からの水素が燃料電池セルの燃料極に送給され、この燃料極側が還元状態に保たれ、燃料極の酸化による劣化を抑えることができる。
また、水素吸蔵器が電池ハウジング内に収容された気化器、改質器又は酸化材ガス余熱器に関連して設けられているので、発電運転時に水素吸蔵器が気化器、改質器又は酸化材ガス余熱器からの熱を受けて水素吸蔵材が吸蔵温度に保たれて改質燃料ガスに含まれる水素を吸蔵し、また緊急停止時に水素蔵材の温度がこの吸蔵温度から一時的に上昇するので、水素吸蔵材に吸蔵された水素が放出される。
また、本発明の請求項2に記載の固体酸化物形燃料電池システムによれば、水素吸蔵器が気化器の外側に接触乃至近接して(又は気化器内に)配設されるので、システムの発電運転時には、この気化器における改質用水の気化(換言すると、気化に伴う吸熱作用)によって、水素吸蔵材が吸蔵温度に維持され、改質燃料ガス中の水素を所要の通りに吸蔵することができる。また、システムの緊急停止時には、改質用水の供給停止により気化器における水蒸気気化が行われず、これによって、水素吸蔵材の温度が吸蔵温度から一時的に上昇し、この温度上昇によって、吸蔵された水素が水素吸蔵材から放出され、この放出された水素を燃料電池セルの燃料極に送給することができる。
また、本発明の請求項3に記載の固体酸化物形燃料電池システムによれば、水素吸蔵器が改質器の外側に接触乃至近接して配設されるので、システムの発電運転時には、この改質器における燃料ガスの水蒸気改質(換言すると、水蒸気改質に伴う吸熱作用)によって、水素吸蔵材が吸蔵温度に維持され、改質燃料ガス中の水素を所要の通りに吸蔵することができる。また、システムの緊急停止時には、燃料ガス及び改質用水の供給停止により改質器における燃料ガスの水蒸気改質が行われず、これによって、水素吸蔵材の温度が吸蔵温度から一時的に上昇し、この温度上昇によって、吸蔵された水素が水素吸蔵材から放出され、このようにしても水素吸蔵材からの水素を燃料電池セルの燃料極に送給することができる。
また、本発明の請求項4に記載の固体酸化物形燃料電池システムによれば、水素吸蔵器が酸化材ガス供給流路に配設された酸化材ガス余熱器の外側に又はその下流側における酸化材ガス供給流路の下流側部の外側に接触乃至近接して(又は酸化材ガス余熱器内に)配設されるので、システムの発電運転時には、この酸化材ガス余熱器における燃料電池セルからの排気ガスと酸化材ガスとの熱交換(換言すると、熱交換に伴う温度低下)によって、水素吸蔵材が吸蔵温度に維持され、改質燃料ガス中の水素を所要の通りに吸蔵することができる。また、システムの緊急停止時には、酸化材ガスの供給停止により酸化材ガス余熱器における酸化材ガスとの熱交換が行われず、これによって、水素吸蔵材の温度が吸蔵温度から一時的に上昇し、この温度上昇によって、吸蔵された水素が水素吸蔵材から放出され、このようにしても放出された水素を燃料電池セルの燃料極に送給することができる。
また、本発明の請求項5に記載の固体酸化物形燃料電池システムによれば、燃料ガス供給流路に水素吸蔵器が設けられ、この水素吸蔵器に水素吸蔵材が収容されているので、システムの発電運転時には、この水素吸蔵材が燃料ガスを吸蔵し、またシステムの緊急停止時には、水素吸蔵材の温度が一時的に上昇することによって、水素吸蔵材に吸蔵された燃料ガスが放出され、従って、燃料ガス(例えば、水素ガス)を直接的に燃料電池セルに供給する形態のものにおいても同様の効果が達成される。
また、水素吸蔵器が電池ハウジングの高温空間に収容された燃料ガス余熱器又は酸化材ガス余熱器に関連して設けられているので、発電運転時に水素吸蔵器が燃料ガス余熱器又は酸化材ガス余熱器からの熱を受けて水素吸蔵材が吸蔵温度に保たれて燃料ガスに含まれた水素を吸蔵し、また緊急停止時に水素蔵材の温度がこの吸蔵温度から一時的に上昇するので、水素吸蔵材に吸蔵された水素が放出される。
また、本発明の請求項6に記載の固体酸化物形燃料電池システムによれば、水素吸蔵器が電池ハウジング内に収容された燃料ガス余熱器の外側に又はその下流側における燃料ガス供給流路の下流側部の外側に接触乃至近接して(又は燃料ガス余熱器内に)配設されるので、システムの発電運転時には、この燃料ガス余熱器における燃料電池セルからの排気ガスと燃料ガスとの熱交換(換言すると、熱交換に伴う温度低下)によって、水素吸蔵材が吸蔵温度に維持されて燃料ガスを吸蔵し、また、システムの緊急停止時には、燃料ガスの供給停止により水素吸蔵材の温度が吸蔵温度から一時的に上昇し、この温度上昇によって、吸蔵された燃料ガスが水素吸蔵材から放出される。
また、本発明の請求項7に記載の固体酸化物形燃料電池システムによれば、水素吸蔵器が電池ハウジング内に収容された酸化材ガス余熱器の外側に又はその下流側における酸化材ガス供給流路の下流側部の外側に接触乃至近接して(又は酸化材ガス余熱器内に)配設されるので、システムの発電運転時には、この酸化材ガス余熱器における燃料電池セルからの排気ガスと酸化材ガスとの熱交換(換言すると、熱交換に伴う温度低下)によって、水素吸蔵材が吸蔵温度に維持されて燃料ガスを吸蔵し、また、システムの緊急停止時には、酸化材ガスの供給停止により水素吸蔵材の温度が吸蔵温度から一時的に上昇し、この温度上昇によって、吸蔵された燃料ガスが水素吸蔵材から放出される。
更に、本発明の請求項8に記載の固体酸化物形燃料電池システムによれば、水素吸蔵材として、パラジウム、ジルコニウム・ニッケルの合金、マグネシウム・ニッケル・クロムの複合合金、ジルコニウム・マンガン・鉄の複合合金及びジルコニウム・マンガン・銅の複合合金のいずれか又はこれらの2種以上から形成することができる。
本発明に従う固体酸化物形燃料電池システムの第1の実施形態を示す簡略図。 図1の固体酸化物形燃料電池システムにおける水素吸蔵器及びそれに関連する構成を一部断面で示す断面図。 水素吸蔵材の水素吸蔵量と水素圧力との関係を示す図。 図1の固体酸化物形燃料電池システムにおいて緊急停止したときの時間と温度との関係を示す図。 本発明に従う固体酸化物形燃料電池システムの第2の実施形態を示す簡略図。 本発明に従う固体酸化物形燃料電池システムの第3の実施形態を示す簡略図。
以下、添付図面を参照して、本発明に従う固体酸化物形燃料電池システムの実施形態について説明する。
〔第1の実施形態〕
まず、図1〜図4を参照して、第1の実施形態の固体酸化物形燃料電池システムについて説明する。図1において、図示の固体酸化物形燃料電池システム2は、燃料としての燃料ガス(例えば、天然ガス、都市ガス)を改質するための改質器4と、改質器4にて改質された改質燃料ガス及び酸化材ガスとしての空気の酸化及び還元によって発電を行うセルスタック6とを備えている。セルスタック6は、電気化学反応によって発電を行うための複数の固体酸化物形の燃料電池セルを所定方向に配設して構成されている。セルスタック6(燃料電池セル)は、酸化物イオンを伝導する固体電解質膜8を備え、この固体電解質膜8の片側に燃料極10が設けられ、その他側に酸素極12が設けられている。固体電解質膜8としてはイットリアを置換固溶させたジルコニアなどが用いられ、酸化極10としてはニッケルと電解質材料からなるサーメットなどが用いられ、また酸素極12としてはランタンマンガナイト系酸化物などが用いられる。
セルスタック6の燃料極10側は、改質燃料ガス送給流路14を介して改質器4に接続され、この改質器4は、燃料ガス・水蒸気送給流路16を介して気化器18に接続され、この気化器18は燃料ガス供給流路20を介して燃料ガス供給源22に接続され、燃料ガス供給源22からの燃料ガスが燃料ガス供給流路20を通して気化器18に供給される。燃料ガス供給源22は、例えば埋設管、貯蔵タンクなどから構成される。この燃料ガス供給流路20には、遮断弁24、脱硫器26及び燃料ポンプ28が下流側に向けてこの順に配設されている。遮断弁24は、燃料ガス供給流路20を遮断して燃料ガス供給源22からの燃料ガスの供給を遮断し、脱硫器26は、燃料ガスに含まれている硫黄成分を除去し、燃料ポンプ28は、燃料ガス供給流路22を通して供給される燃料ガスを昇圧して下流側に供給する。
この固体酸化物形燃料電池システム2では、燃料ガスを改質するための水(改質用水)を供給するための水供給源30が水供給流路32を介して気化器18に接続され、この水供給流路32に水ポンプ34が配設されている。水供給源30は、例えば水タンクなどから構成され、水ポンプ34は、水供給源30からの水(改質用水)を水供給流路32を通して気化器18に供給する。
セルスタック6の酸素極12側は、酸化材ガスとしての空気を供給する空気供給流路36(酸化材ガス供給流路を構成する)を介して酸化材ガス供給源としての空気ブロア38に接続され、空気ブロア38からの空気(酸化材ガス)が空気供給流路36を通してセルスタック6の酸素極12側に供給される。この形態では、空気供給流路36に酸化材ガス余熱器としての空気余熱器40が配設され、この空気余熱器40は、空気供給流路36を流れる空気とセルスタック6からの排気ガスとの間で熱交換を行い、この熱交換により加熱された空気が空気供給流路36を通してセルスタック6に供給される。
セルスタック6(即ち、複数の燃料電池セル)の排出側には燃焼器42が配設され、セルスタック6の燃料極10側が燃料ガス排出流路44を介して、またその酸素極12側が酸化材ガス排出流路46を介して燃焼器42に接続されている。セルスタック6の燃料極10側からの燃料排気ガス(残余燃料ガスを含む)は、燃料ガス排出流路44を通して燃焼器42に排出され、またその酸素極12側からの酸化材排気ガス(酸素を含む)は、酸化材ガス排出流路46を通して燃焼器42に排出される。
この燃焼器42は、排気ガス排出流路48を通して大気に開放され、この排気ガス排出流路48に空気余熱器40が設けられ、この空気余熱器40は、空気供給流路36を流れる空気(酸化材ガス)と排気ガス排出流路48を流れる排気ガスとの間で熱交換を行う。
この形態では、改質器4、セルスタック6、気化器18、空気余熱器40及び燃焼器42が電池ハウジング50内に収容されている。電池ハウジング50は、内面が断熱材(図示せず)で覆われた高温空間52を規定し、この高温空間52は、燃焼器42における燃焼による燃焼熱によって高温状態に保たれ、セルスタック6は、例えば600〜1000℃の作動温度状態に保持される。
この固体酸化物形燃料電池システム2の稼働運転は、次のようにして行われる。燃料ガス供給源22からの燃料ガスは、燃料ガス供給流路20を通して気化器18に供給され、また水供給源30からの水(改質用水)は、水供給流路32を通して気化器18に供給される。気化器18においては、水供給流路32からの水は気化されて水蒸気となり、また燃料ガス供給流路20からの燃料ガスは加熱され、加熱された燃料ガス及び水蒸気が燃料ガス・水蒸気送給流路16を通して改質器4に送給される。
改質器4には、水蒸気改質を促進するための改質触媒が充填されており、この改質器4に送給された燃料ガスは水蒸気によって水蒸気改質され、このように水蒸気改質された改質燃料ガスが改質燃料ガス送給流路14を通してセルスタック6(複数の燃料電池セル)の燃料極10側に送給される。また、空気ブロア38(酸化材ガス供給源)からの空気(酸化材ガス)は、空気供給流路36(酸化材ガス供給流路)を通して空気余熱器40(酸化材ガス余熱器)に送給され、この空気余熱器40にて加熱された後に、空気供給流路36を通してセルスタック6の酸素極12側に送給される。
セルスタック6では、その燃料極10側において改質された改質燃料ガスが酸化され、その酸素極12側において酸化材ガス(空気)中の酸素が還元され、燃料極10側の酸化及び酸素極12側の還元による電気化学反応により発電が行われる。セルスタック6の燃料極10側からの反応燃料ガス(燃料排気ガス)は、燃料ガス排出流路44を通して燃焼器42に送給され、またその酸素極12側からの酸化材排気ガスは、酸化材ガス排出流路46を通して燃焼器42に送給される。
燃焼器42では、酸化材排気ガス中の酸素によって燃料排気ガス(それに含まれた燃料ガス)が燃焼され、この燃焼熱を利用して電池ハウジング50内が高温状態に保たれ、これによって、改質器4が所定の改質温度に維持され、気化器18が所定の気化温度に維持される。
燃焼器42からの排気ガスは、排気ガス排出流路48を通して大気に排出され、この排出の際に、空気余熱器40(酸化材ガス余熱器)において空気ブロア38からの空気との間で熱交換が行われる。
この固体酸化物形燃料電池システム2では、気化器18に関連して、更に次の通りに構成されている。この第1の実施形態では、改質器4からの改質燃料ガスをセルスタック6に送給するための改質燃料ガス送給流路14に、水素吸蔵器62が配設されている。図示の水素吸蔵器62は、箱状の吸蔵器ハウジング64を備え、その流入部66に改質燃料ガス送給流路14の上流側部14aが接続され、その流出部68に改質燃料ガス送給流路14の下流側部14bが接続されている。
吸蔵器ハウジング64内には、例えば、多数の粒状の水素吸蔵材70が収容される。この水素吸蔵材70は、改質燃料ガス中に含まれる水素を吸蔵するものであり、後に説明するように、固体酸化物形燃料電池システム2の発電運転中においては水素を吸蔵し、この燃料電池システム2の緊急停止時においては吸蔵した水素を放出する。
このような水素吸蔵材70としては、パラジウム、ジルコニウム・ニッケルの合金、マグネシウム・ニッケル・クロムの複合合金、ジルコニウム・マンガン・鉄の複合合金及びジルコニウム・マンガン・銅の複合合金などから形成され、これらのいずれかから形成されたものを2種以上混合して用いるようにしてもよい。
この水素吸蔵器62は、気化器18の気化器ハウジング72に接触乃至近接して配設され、このように構成することによって、この気化器18からの熱の影響を受けるようになる。更に説明すると、気化器18における水の気化は周囲の熱を吸収する吸熱反応であり、従って、電池ハウジング50内のセルスタック6及びその近傍の温度が例えば600℃前後であっても、この気化器18又はその周囲の温度は例えば250℃前後に保たれ、固体酸化物形燃料電池システム2の発電運転中はこの温度、即ち吸蔵温度に維持される。この水素吸蔵器62は、例えば250℃前後の吸蔵温度に維持できるときにはこの気化器ハウジング72内に配設するようにしてもよい。
図3は、水素吸蔵材の一例としてのジルコニウム(Zr)・ニッケル(Ni)の合金(ZrNi0.90)の水素吸蔵及び水素放出の曲線を示している。この図3から理解されるように、周囲の水素圧力Pが0.65MPa(例えば、600℃前後でメタン(CH)を水蒸気改質したときの水素圧力Pは約0.65MPa程度となる)で周囲温度が250℃のときの水素吸蔵材70(例えば、ZrNi0.90)の水素吸蔵量は約1.18Wt%となり、燃料電池システム2の発電運転中において、1.18Wt%の水素量が水素吸蔵材70に吸蔵されるようになる。
水素吸蔵材70に吸蔵された水素は、周囲の水素圧力が同じであっても、その周囲温度が上昇すると水素吸蔵量が少なくなり、従って、周囲温度が上昇すると吸蔵された水素が放出されるようになる。例えば、固体酸化物形燃料電池システム2が地震、停電などで緊急停止すると、燃料ポンプ22、水ポンプ30及び空気ブロア38(酸化材ガス供給源)が作動停止するとともに、遮断弁24が遮断状態となり、燃料ガス、水(改質水)及び空気(酸化材ガス)が供給停止される。このような緊急停止状態においては、気化器18での水の気化が行われず(換言すると、気化器18での吸熱作用が行われず)、気化器18の温度が一時的に上昇するようになり、例えば250℃前後の吸蔵温度から例えば325℃前後の温度に上昇するようになり、これに伴い、水素吸蔵器62(即ち、それに収容された水素吸蔵材70)も325℃前後に上昇する。
水素吸蔵材70の温度が例えば250℃前後から例えば325℃前後に上昇すると、図3から理解されるように、水素吸蔵材70(例えば、ZrNi0.90)の水素放出後の吸蔵量は約0.52Wt%となり、250℃の吸蔵曲線(○−○)で示す水素吸蔵量「1.18Wt%」と325℃の放出曲線(▲−▲)で示す水素吸蔵量「0.52Wt%」との差分「0.66Wt%」がこの水素吸蔵材70から放出されることになる。
このようなことから、水素吸蔵器62は、燃料電池システム2の発電運転時には吸蔵温度に維持され且つその緊急停止時にはこの吸蔵温度よりも上昇する個所に配置することが重要であり、この第1の実施形態では、このような個所として気化器18に接触乃至近接する個所に配設されている。
この水素吸蔵器62を備えた固体酸化物形燃料電池システム2では、次のようにしてセルスタック6の燃料極10の劣化が抑制される。図1及び図2とともに図4を参照して、この燃料電池システム2の発電運転中は、図4に実線で示すように、セルスタック6の温度はT3℃(例えば、600℃前後)に維持され、気化器18の温度は水の気化によってT1℃(例えば、約250℃前後)に維持され、これに伴い水素吸蔵器62(水素吸蔵材70)の温度も、図4に破線で示すように、気化器18の温度の影響を受けてほぼ同じT1℃(例えば、約250℃前後)に維持される。
このような発電運転中においては、改質器4にて水蒸気改質された改質燃料ガスは、改質燃料ガス送給流路14(14a、14b)及び水素吸蔵器62を通してセルスタック6の燃料極10側に送給され、この水素吸蔵器62を通して流れる際に、改質燃料ガスに含まれる水素が水素吸蔵材70に吸蔵され、水素を吸蔵した状態が維持される。
このような発電運転中に、例えば時間t1において停電などで燃料電池システム2が緊急停止すると、この緊急停止により、燃料ポンプ22、水ポンプ30及び空気ブロア38が作動停止するとともに、遮断弁24が遮断状態となり、燃料ガス、水(改質水)及び空気(酸化材ガス)の供給が停止する。このように緊急停止すると、気化器18での水の気化が行われず、電池ハウジング52内の高温状態の影響を受けて気化器18及び水素吸蔵器62の温度が図4に破線で示すように一時的にT2℃(約325℃前後)まで上昇するようになる。
このように水素吸蔵器62(水素吸蔵材70)の温度が上昇すると、上述したように、水素吸蔵材70に吸蔵されていた水素が放出され、この放出された水素は、改質燃料ガス送給流路14の下流側部14bを通してセルスタック6の燃料極10側に流れ、このように水素が流れることによって、この燃料極10を還元状態に保ってその酸化を抑えることができる。水素吸蔵材70からの水素の放出は、セルスタック6が所定温度(燃料極10が酸化しなくなる温度、例えば350℃前後)まで低下するまで行われるのが望ましく、この緊急停止から例えば約60分前後経過した時間t2まで行われ、このように構成することによって、緊急停止時におけるセルスタック6の燃料極10の酸化による劣化を抑えることができる。
〔第2の実施形態〕
次に、図5を参照して、本発明に従う固体酸化物形燃料電池システムの第2の実施形態について説明する。尚、この第2の実施形態において、上述した第1の実施形態と実質上同一のものには同一の参照番号を付し、その説明を省略する。
第2の実施形態の固体酸化物形燃料電池システム2Aにおいては、燃焼器に代えて、セルスタック6の上側に燃焼域82が設けられており、この燃焼域82の上方に気化器18及び改質器4が配設されている。このように構成されているので、セルスタック6の燃料極10側から排出された反応燃料ガス(燃料排気ガス)とその酸素極12側から排出された酸化材排気ガスは、この燃焼域82にて燃焼され、この燃焼熱を利用してセルスタック6とともに気化器18及び改質器4が加熱される。また、燃焼域82からの排気ガスは排気ガス排出流路48及び空気余熱器40を通して大気中に排出される。
また、水素吸蔵器62Aが空気余熱器40(酸化材ガス余熱器)に関連して設けられている。更に説明すると、水素吸蔵器62A及びこれに収容される水素吸蔵材は、第1の実施形態と実質上同一の構成のものでよく、この水素吸蔵器62Aが空気余熱器40の余熱器ハウジング84に接触乃至近接して配設され、このように配設することによって、この空気余熱器40からの熱の影響を受けるようになる。このように構成した場合においても、空気余熱器40における熱交換は、燃焼域82からの排気ガスの熱を奪う熱交換であり、従って、セルスタック6及びその近傍の温度が例えば600℃前後であっても、この空気余熱器40又はその周囲の温度は、例えば250℃前後に保たれ、このような吸蔵温度状態のときに、改質燃料ガス送給流路14を流れる改質燃料ガス中の水素が水素吸蔵器62A内の水素吸蔵材に吸蔵される。尚、このような吸蔵温度に維持できるときには、この空気余熱器40の下流側における空気供給流路36の下流側部の外側に接触乃至近接して配設するようにしてもよい。また、上述したように気化器18又は空気余熱器40の外側に配設することに代えて、この気化器18又は空気余熱器40(余熱器ハウジング84)内に設けるようにしてもよい。
また、この燃料電池システム2Aが停電などで緊急停止すると、上述したと同様に、燃料ポンプ22、水ポンプ30及び空気ブロア38(酸化材ガス供給源)が作動停止するとともに、遮断弁24が遮断状態となる。このような緊急停止状態においては、空気供給流路36を通しての空気の供給が行われず(換言すると、空気余熱器40での空気との熱交換が行われず)、空気余熱器40の温度が一時的に上昇するようになり、これに伴い、水素吸蔵器62A(即ち、それに収容された水素吸蔵材)も温度上昇するようになる。
従って、このように構成した場合にも、吸蔵温度から一時的に温度上昇することにより、水素吸蔵器62A内の水素吸蔵材に吸蔵された水素が放出され、この放出された水素が改質燃料ガス送給流路14の下流側部14bを通してセルスタック6の燃料極10側に流れ、この燃料極10の酸化を抑えることができる。
例えば、第1の実施形態では水素吸蔵器62を気化器18に関連して設け、また第2の実施形態では、この水素吸蔵器62Aを空気余熱器40(酸化材ガス余熱器)に関連して設けているが、これらの構成に限定されず、この水素吸蔵器62(62A)を改質器4に関連して設けるようにしてもよく、この場合、改質器4の改質器ハウジングに接触乃至近接して水素吸蔵器62を設けることができる。
このように改質器4に関連して設けた場合、水素吸蔵器62(水素吸蔵材70)は、改質器4からの熱の影響を受けるようになる。更に説明すると、改質器4における水蒸気改質は、周囲の熱を吸収する吸熱反応であり、従って、セルスタック6及びその近傍の温度が例えば600℃前後であっても、この改質器4又はその周囲の温度は、例えば250℃前後の吸蔵温度に保たれ、このような吸蔵温度状態のときに、改質燃料ガス送給流路14を流れる改質燃料ガス中の水素が水素吸蔵器62内の水素吸蔵材に吸蔵される。また、燃料電池システム2(2A)が停電などで緊急停止すると、上述したと同様に、燃料ポンプ22、水ポンプ30及び空気ブロア38(酸化材ガス供給源)が作動停止するとともに、遮断弁24が遮断状態となり、燃料ガス供給流路20を通しての燃料ガスの供給及び水供給流路32を通しての供給が行われず(換言すると、改質器4での水蒸気改質が行われず)、改質器4の温度が一時的に上昇するようになる。従って、このように緊急停止した場合、改質器4の温度上昇により、水素吸蔵器62(水素吸蔵材70)も温度上昇し、この温度上昇に伴い、水素吸蔵材70に吸蔵された水素が放出され、この放出された水素がセルスタック6の燃料極10側に流れ、上述した実施形態と同様の作用効果をすることができる。
上述した実施形態では、燃料ガスを水蒸気改質する形態の固体酸化物形燃料電池システム(換言すると、気化器及び改質器を備えた形態のもの)に適用して説明したが、本発明はこのような形態のものに限定されず、燃料ガス(例えば、水素ガス)が直接的にセルスタックの燃料極側に供給される形態のもの(換言すると、気化器及び改質器を備えていない形態のもの)にも同様に適用することができる。
固体酸化物形燃料電池システムの第3の実施形態を示す図6において、この燃料電池システム2Bでは、セルスタック6の燃料極10側に燃料ガスを供給する燃料ガス供給流路20Bは、燃料ガス(水素ガス)を供給する燃料ガス供給源22Bに接続され、この燃料ガス供給流路20Bに遮断弁24及び燃料ポンプ28が配設され、更に燃料ガスを余熱するための燃料ガス余熱器92が設けられる。燃焼器42からの排気ガスを外部に排出する排気ガス排出流路48Bの下流側は2つに分岐され、その一方の第1分岐排出流路94は、燃料ガス余熱器92を通して外部に開放され、その他方の第2分岐排出流路96は、空気余熱器40(酸化材ガス余熱器)を通して外部に開放される。
このように構成されているので、燃料ガス余熱器92においては、燃料ガス供給流路20Bを流れる燃料ガスと排気ガス排出流路48Bの第1分岐排出流路94を流れる排気ガスとの間で熱交換が行われ、熱交換により加温された燃料ガスが燃料ガス供給流路20Bの下流側部100を通してセルスタック6の燃料極10側に供給される。また、空気余熱器40(酸化材ガス余熱器)においては、空気供給流路36を流れる空気(酸化材ガス)と排気ガス排出流路48Bの第2分岐排出流路96を流れる排気ガスとの間で熱交換が行われ、この熱交換により加温された空気が空気供給流路36の下流側部102を通してセルスタック6の酸素極12側に供給される。
この第3の実施形態においては、セルスタック6、燃焼器42、燃料ガス余熱器92及び空気余熱器40が、高温空間52を規定する電池ハウジング50内に収容されている。また、燃料ガス供給流路20B(具体的には、燃料ガス供給流路20Bにおける燃料ガス余熱器92よりも上流側部位)に水素吸蔵器62Bが配設され、この水素吸蔵器62Bに内蔵された水素吸蔵材(図示せず)は、燃料ガス供給流路20Bを流れる燃料ガス(水素ガス)を吸蔵する。
この水素吸蔵器62Bは、図6に示すように、燃料ガス余熱器92の外側に接触乃至近接して配設され、このように配設することによって、燃料ガス余熱器92からの熱の影響を受けるようになる。この場合においても、燃料ガス余熱器92における熱交換は、燃焼器42から第1分岐排出流路94を流れる排気ガスの熱を奪う熱交換であり、セルスタック6及びその近傍の温度が例えば600℃前後であっても、この燃料ガス余熱器92又はその周囲の温度は、例えば250℃前後に保たれる。従って、上述したと同様に、発電運転中においては、水素吸蔵器62Bは吸蔵温度状態に保持され、燃料ガス供給流路20Bを流れる燃料ガス(水素ガス)が水素吸蔵器62B内の水素吸蔵材(図示せず)に吸蔵される。また、燃料電池システムが緊急停止すると、燃料ポンプ28、空気ブロア38(酸化材ガス供給源)が作動停止するとともに、遮断弁24が遮断状態となり、燃料ガス供給流路20Bを通しての燃料ガスの供給が行われず、燃料ガス余熱器92の温度が一時的に上昇するようになり、これに伴い、水素吸蔵器62B(即ち、それに収容された水素吸蔵材)も温度上昇して吸蔵された燃料ガスが放出される。
尚、このような吸蔵温度に維持できるときには、この燃料ガス余熱器92の下流側における燃料ガス供給流路20Bの下流側部100の外側に接触乃至近接して配設するようにしてもよく、或いは燃料ガス空気余熱器92の外側に配設することに代えて、この燃料ガス余熱器92内に設けるようにしてもよい。
この第3の実施形態では、水素吸蔵器62Bを燃料ガス余熱器92に関連して設けているが、このような構成に代えて、上述した第2の実施形態と同様に、空気余熱器40(酸化材余熱器)に関連して設けるようにしてもよい。即ち、この水素吸蔵器62Bを空気余熱器40の外側に接触乃至近接して配設するように、又はこの空気余熱器40内に配設するようにしてもよい。或いは、このような構成に代えて、この空気余熱器40の下流側における空気供給流路36の下流側部102の外側に接触乃至近接して配設するようにしてもよく、このように構成しても、燃料ガスとして例えば水素ガスを用いる固体酸化物形燃料電池システムにおいても同様の効果を達成することができる。
2,2A,2B 固体酸化物形燃料電池システム
4 改質器
6 セルスタック
10 燃料極
12 酸素極
14 改質燃料ガス送給流路
18 気化器
40 空気余熱器(酸化材ガス余熱器)
50 電池ハウジング
62,62A,62B 水素吸蔵器
64 吸蔵器ハウジング
70 水素吸蔵材









Claims (8)

  1. 固体電解質膜、前記固体電解質膜の片側に配設された燃料極及び前記固体電解質膜の他側に配設された酸素極を備えた燃料電池セルと、改質用水を気化する気化器と、燃料ガスを改質用水を用いて水蒸気改質する改質器とを備え、前記燃料電池セル、前記気化器及び前記改質器が高温空間を規定する電池ハウジング内に収容され、前記改質器にて水蒸気改質された改質燃料ガスが改質燃料ガス送給流路を通して前記燃料電池セルの前記燃料極に供給され、酸化材ガスが酸化材ガス供給流路を通して前記燃料電池セルの前記酸素極に供給される固体酸化物形燃料電池システムであって、
    前記改質燃料ガス送給流路には、水素吸蔵材が収容された水素吸蔵器が設けられ、前記水素吸蔵器は、前記電池ハウジング内に収容された前記気化器、前記改質器又は前記酸化材ガス余熱器に関連して設けられており、
    発電運転時に、前記気化器、前記改質器又は前記酸化材ガス余熱器からの熱を受け、前記水素吸蔵材が吸蔵温度に保たれて改質燃料ガスに含まれた水素を吸蔵し、また緊急停止時に、前記水素吸蔵材の温度が前記吸蔵温度から一時的に上昇することによって、前記水素吸蔵材に吸蔵された水素が放出され、前記水素吸蔵材から放出された水素が前記改質燃料ガス送給流路を通して前記燃料電池セルの前記燃料極に送給されることを特徴とする固体酸化物形燃料電池システム。
  2. 前記水素吸蔵器は、前記気化器の内側に、或いは前記気化器の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記気化器における改質用水の気化によって前記吸蔵温度に維持されて改質燃料ガス中の水素を吸蔵し、緊急停止時に改質用水の供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする請求項1に記載の固体酸化物形燃料電池システム。
  3. 前記水素吸蔵器は、前記改質器の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記改質器における水蒸気改質によって前記収蔵温度に維持されて改質燃料ガス中の水素を吸蔵し、緊急停止時に燃料ガス及び改質用水の供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする請求項1に記載の固体酸化物形燃料電池システム。
  4. 前記酸化材ガス供給流路には、前記燃料電池セルから排出される排気ガスと酸化材ガスとの間で熱交換を行う酸化材ガス余熱器が配設され、前記水素吸蔵器は、前記酸化材ガス余熱器の内側に、或いは前記酸化材ガス余熱器の外側に又はその下流側における前記酸化材ガス供給流路の下流側部の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記酸化材ガス余熱器における酸化材ガスと排気ガスとの熱交換によって前記吸蔵温度に維持されて改質燃料ガス中の水素を吸蔵し、緊急停止時に酸化材ガスの供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする請求項1に記載の固体酸化物形燃料電池システム。
  5. 固体電解質膜、前記固体電解質膜の片側に配設された燃料極及び前記固体電解質膜の他側に配設された酸素極を備えた燃料電池セルと、前記燃料電池セルの前記燃料極に燃料ガスを供給する燃料ガス供給流路と、前記燃料電池セルの前記酸素極に酸化材ガスを供給する酸化材ガス供給流路と、前記燃料ガス供給流路に配設された燃料ガス余熱器と、前記酸化材供給流路に配設された酸化材ガス余熱器と、を備え、前記燃料電池セルが高温空間を規定する電池ハウジング内に収容された固体酸化物形燃料電池システムであって、
    前記燃料ガス余熱器及び前記酸化材ガス余熱器は前記電池ハウジングの前記高温空間に収容され、また前記燃料ガス供給流路には、水素吸蔵材が収容された水素吸蔵器が設けられ、前記水素吸蔵器が前記燃料ガス余熱器又は前記酸化材ガス余熱器に関連して設けられており、
    発電運転時に、前記水素吸蔵器が前記燃料ガス余熱器又は前記酸化材ガス余熱器からの熱を受け、前記水素吸蔵材が吸蔵温度に維持されて燃料ガスに含まれた水素を吸蔵し、また緊急停止時に、前記水素吸蔵材の温度が前記吸蔵温度から一時的に上昇することによって、前記水素吸蔵材に吸蔵された水素が放出され、前記水素吸蔵材から放出された水素が前記燃料ガス供給流路を通して前記燃料電池セルの前記燃料極に送給されることを特徴とする固体酸化物形燃料電池システム。
  6. 前記燃料ガス余熱器は前記電池ハウジング内に収容され、前記水素吸蔵器は、前記燃料ガス余熱器の内側に、或いは前記燃料ガス余熱器の外側に又はその下流側における前記燃料ガス供給流路の下流側部の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記燃料ガス余熱器における燃料ガスと排気ガスとの熱交換によって前記吸蔵温度に維持されて燃料ガス中の水素を吸蔵し、緊急停止時に燃料ガスの供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする請求項5に記載の固体酸化物形燃料電池システム。
  7. 前記酸化材ガス余熱器は前記電池ハウジング内に収容され、前記水素吸蔵器は、前記酸化材ガス余熱器の内側に、或いは前記酸化材ガス余熱器の外側に又はその下流側における前記酸化材ガス供給流路の下流側部の外側に接触乃至近接して配設され、前記水素吸蔵器内の前記水素吸蔵材は、発電運転時に前記酸化材ガス余熱器における酸化材ガスと排気ガスとの熱交換によって前記吸蔵温度に維持されて燃料ガス中の水素を吸蔵し、緊急停止時に酸化材ガスの供給停止により前記吸蔵温度から一時的に温度上昇することによって吸蔵した水素を放出することを特徴とする請求項5に記載の固体酸化物形燃料電池システム。
  8. 前記水素吸蔵材は、パラジウム、ジルコニウム・ニッケルの合金、マグネシウム・ニッケル・クロムの複合合金、ジルコニウム・マンガン・鉄の複合合金及びジルコニウム・マンガン・銅の複合合金のいずれか又はこれらの2種以上から形成されることを特徴とする請求項1〜7のいずれかに記載の固体酸化物形燃料電池システム。
JP2016029072A 2015-04-07 2016-02-18 固体酸化物形燃料電池システム Active JP6684020B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015078118 2015-04-07
JP2015078118 2015-04-07

Publications (2)

Publication Number Publication Date
JP2016201355A JP2016201355A (ja) 2016-12-01
JP6684020B2 true JP6684020B2 (ja) 2020-04-22

Family

ID=57424491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029072A Active JP6684020B2 (ja) 2015-04-07 2016-02-18 固体酸化物形燃料電池システム

Country Status (1)

Country Link
JP (1) JP6684020B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102642174B1 (ko) * 2019-01-17 2024-02-28 주식회사 엘지화학 고체산화물 연료 전지 시스템
CN115939445B (zh) * 2023-03-01 2023-05-26 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种高效固体氧化物燃料电池热电联产系统及联产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290874A (ja) * 1985-10-16 1987-04-25 Tokyo Electric Power Co Inc:The 燃料電池における水素貯蔵・供給方法
JP2002329516A (ja) * 2001-04-27 2002-11-15 Honda Motor Co Ltd 燃料電池用水素供給装置
JP2003100326A (ja) * 2001-09-20 2003-04-04 Sekisui Chem Co Ltd 燃料電池発電システム
JP5269447B2 (ja) * 2008-03-14 2013-08-21 Jx日鉱日石エネルギー株式会社 高温型燃料電池システムとその運転方法
JP6094737B2 (ja) * 2012-03-23 2017-03-15 Toto株式会社 固体酸化物型燃料電池
JP2013206857A (ja) * 2012-03-29 2013-10-07 Jx Nippon Oil & Energy Corp 燃料電池システム、及び、燃料電池システムの緊急停止方法

Also Published As

Publication number Publication date
JP2016201355A (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
KR102507658B1 (ko) 연료 전지 시스템 및 그 제어 방법
JP5133165B2 (ja) 燃料電池システム
JP5269447B2 (ja) 高温型燃料電池システムとその運転方法
WO2008035776A1 (fr) Générateur d'hydrogène, procédé de fonctionnement d'un générateur d'hydrogène et système de pile à combustible
US20070065692A1 (en) Purge system for fuel cell
JP2009004346A (ja) 改質器、燃料電池システム、及び改質器の停止方法
JP5609205B2 (ja) 燃料電池システム
JP6684020B2 (ja) 固体酸化物形燃料電池システム
JP2012138186A (ja) 高温作動型燃料電池システム
JP2006351292A (ja) 固体酸化物形燃料電池システム及びその停止方法
US10096851B2 (en) Solid oxide fuel cell system and method of stopping the same
JP2012216372A (ja) 固体酸化物形燃料電池の緊急停止方法
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
JP5985872B2 (ja) 固体酸化物形燃料電池システム
JP5735312B2 (ja) 固体酸化物形燃料電池システム
JP5395168B2 (ja) 水素生成装置および燃料電池システム
JP2015185507A (ja) 燃料電池
JP7355710B2 (ja) 固体酸化物形燃料電池システム
JP2017134964A (ja) 燃料電池システム
JP2015069753A (ja) 固体酸化物形燃料電池システム
JP6034227B2 (ja) 固体酸化物形燃料電池システム
JP5725846B2 (ja) 高温作動型燃料電池システム
JP2017016816A (ja) 燃料電池システム、燃料電池システムの停止方法及び電力生産方法
JP2022513570A (ja) 燃料電池システムの加熱方法および燃料電池システム
JP6399953B2 (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6684020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150