JP6678448B2 - 基板洗浄方法および基板洗浄装置 - Google Patents

基板洗浄方法および基板洗浄装置 Download PDF

Info

Publication number
JP6678448B2
JP6678448B2 JP2015249333A JP2015249333A JP6678448B2 JP 6678448 B2 JP6678448 B2 JP 6678448B2 JP 2015249333 A JP2015249333 A JP 2015249333A JP 2015249333 A JP2015249333 A JP 2015249333A JP 6678448 B2 JP6678448 B2 JP 6678448B2
Authority
JP
Japan
Prior art keywords
substrate
water
main surface
gas
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015249333A
Other languages
English (en)
Other versions
JP2017117860A (ja
Inventor
悠太 佐々木
悠太 佐々木
宮 勝彦
勝彦 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015249333A priority Critical patent/JP6678448B2/ja
Publication of JP2017117860A publication Critical patent/JP2017117860A/ja
Application granted granted Critical
Publication of JP6678448B2 publication Critical patent/JP6678448B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

この発明は、一方主面にパターンを有する基板の他方主面を洗浄する基板洗浄方法および装置に関するものである。なお、当該基板には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板などが含まれる。
半導体装置や液晶表示装置などの電子部品の製造工程においては、基板の表面に成膜やエッチングなどの処理を繰り返し施して微細パターンを形成する工程が含まれる。ここで、当該基板の裏面にパーティクルが付着していると、これがフォトリソグラフィ工程におけるデフォーカス要因となり、所望の微細パターンを形成するのが難しくなる。また、裏面にパーティクルが付着した基板によってクロスコンタミネーションが発生することもある。さらに、基板搬送時には基板の裏面を真空吸着や静電吸着することが多く、その過程で基板の裏面にチャック痕が付着してしまうことがある。そこで、これらの問題を解決するために、基板を洗浄する技術が数多く提案されている。例えば特許文献1に記載の装置は、基板の表面に対して洗浄液に超音波を付与した超音波印加液を供給するとともに、裏面に対して溶存気体濃度を増加させた洗浄液を供給する。これにより、基板の表面および裏面が同時に洗浄される。
特開2004−335525号公報
ところで、上記特許文献1に記載の装置では、基板の表面に形成されたパターンに対してダメージが与えられるのを防止するために溶存ガス濃度を低下させた洗浄液が用いられている。しかしながら、基板面積が大きくなると、雰囲気中のガスが基板表面に供給した洗浄液に溶け込み、キャビテーションが生じることでパターン倒壊が防げなくなる。
この発明は上記課題に鑑みなされたものであり、基板の一方主面に形成されたパターンに対してダメージを与えることなく、基板の他方主面を洗浄することができる基板洗浄技術を提供することを目的とする。
この発明の第1の態様は、一方主面にパターンを有する基板の他方主面を洗浄する基板洗浄方法であって、イオン性気体を水に溶解したイオン性気体溶解水の液膜で一方主面を覆う第1工程と、一方主面が液膜に覆われた状態で、処理液に超音波を印加した超音波印加液を他方主面へ供給して、他方主面を超音波で発生するキャビテーションにより洗浄する第2工程と、を備え、第1工程は、水を脱気して脱気水を生成する脱気工程と、脱気水にイオン性気体を溶解させてイオン性気体溶解水を生成する溶解工程とを有することを特徴としている。
また、この発明の第2の態様は、一方主面にパターンを有する基板の他方主面を洗浄する基板洗浄方法であって、イオン性気体を水に溶解したイオン性気体溶解水の液膜で一方主面を覆う第1工程と、一方主面が液膜に覆われた状態で、処理液に超音波を印加した超音波印加液を他方主面へ供給して、他方主面を超音波で発生するキャビテーションにより洗浄する第2工程と、一方主面が液膜に覆われている間、液膜の周囲をイオン性気体と同じまたは異なる種類のイオン性気体の雰囲気にする第3工程と、を備えることを特徴としている。
また、この発明の第3の態様は、基板洗浄装置であって、基板の両主面のうちパターンを有する一方主面に対し、イオン性気体を水に溶解したイオン性気体溶解水を供給して液膜を形成する溶解水供給部と、一方主面が液膜に覆われた基板の他方主面に対し、処理液に超音波を印加した超音波印加液を供給して他方主面を超音波で発生するキャビテーションにより洗浄する超音波印加液供給部と、を備え、溶解水供給部は、水を脱気して脱気水を生成する脱気部と、脱気部により生成された脱気水にイオン性気体を溶解させてイオン性気体溶解水を生成する溶解部とを有することを特徴としている。
さらに、この発明の第4の態様は、基板洗浄装置であって、基板の両主面のうちパターンを有する一方主面に対し、イオン性気体を水に溶解したイオン性気体溶解水を供給して液膜を形成する溶解水供給部と、一方主面が液膜に覆われた基板の他方主面に対し、処理液に超音波を印加した超音波印加液を供給して他方主面を超音波で発生するキャビテーションにより洗浄する超音波印加液供給部と、一方主面が液膜に覆われている間、液膜の周囲へイオン性気体と同じまたは異なる種類のイオン性気体を供給する気体供給部と、を備えることを特徴としている。
このように構成された発明では、基板の一方主面にパターンが形成され、他方主面が洗浄対象面となっている。基板の一方主面に対し、イオン性気体溶解水が供給されて液膜が形成される。この液膜は、大きく2つの特徴を有している。すなわち、イオン性気体は、キャビテーションの要因となる酸素や窒素などの非イオン性気体が液膜に溶解するのを抑制する機能を果たす。つまり、液膜中には既にイオン性気体が含まれており、液膜の雰囲気中の非イオン性気体の液膜への溶解を阻止する。また、イオン性気体はキャビテーションの要因とならないという特徴を有している。というのも、キャビテーションが発生するためには気体サイズがある程度以上であることが要件となるが、イオン性気体は液膜中でイオン化して存在しており、個々のイオン性気体のサイズは比較的小さいからである。つまり、そのままではキャビテーションの発生核とならない。また、電離しているため、イオン性気体同士の凝集によって大型サイズに成長することもない。したがって、液膜中でのイオン性気体の存在がキャビテーションの要因とならず、非イオン性気体が液膜に溶け込むのを効果的に抑制する。このように液膜は基板の一方主面側でのキャビテーションの発生を効果的に抑制する。
本発明によれば、イオン性気体溶解水の液膜で基板の一方主面を覆った状態で基板の他方主面を超音波洗浄しているため、基板の一方主面に形成されたパターンに対してダメージを与えることなく、基板の他方主面を洗浄することができる。
本発明にかかる基板洗浄装置の第1実施形態を示す図である。 図1に示す装置の部分平面図である。 図1に示す基板洗浄装置の動作を示すフローチャートである。 液膜の構成とダメージとの関係を調べた実験結果を示すグラフである。 本発明にかかる基板洗浄装置の第2実施形態を示す図である。
図1は本発明にかかる基板洗浄装置の第1実施形態を示す図である。また、図2は図1に示す装置の部分平面図である。この基板洗浄装置1は、図示を省略する処理チャンバ内で基板Wの表面Wfを下方に向けたフェイスダウン状態で基板Wを保持しながら基板Wの裏面Wbに付着しているパーティクルPTなどの不要物を除去する装置である。より具体的には、DIW(脱イオン水:De Ionized Water)や純水(以下、これらを総称して「水」という)に対して脱気処理を施した脱気水にイオン性気体を溶解させてイオン性気体溶解水を作成する。そして、イオン性気体溶解水を基板Wの表面Wfに供給して基板Wの表面Wfをイオン性気体溶解水の液膜LFで覆う。また、脱気水に超音波を印加して超音波印加水を作成するとともに、窒素ガスを飽和レベル程度にまで高めた飽和水を作成する。そして、上記したように基板Wの表面Wfを液膜LFで覆った状態で、超音波印加水および飽和水を基板Wの裏面Wbに供給して超音波洗浄処理を施す。この超音波洗浄処理を実行した後、水で濡れた基板Wをスピン乾燥させる。なお、図1の破線領域に示すように、基板Wの表面Wfにはpoly−Si等からなるデバイスパターンDPが形成されている。
基板洗浄装置1は基板Wを略水平姿勢に保持して回転させるスピンチャック10を備えている。スピンチャック10は、回転支軸11がモータを含むチャック回転機構20の回転支軸に連結されており、チャック回転機構20の駆動により回転軸J(鉛直軸)回りに回転可能となっている。回転支軸11の上端部には、円盤状のスピンベース12が一体的にネジなどの締結部品によって連結されている。したがって、装置全体を制御する制御機構90からの動作指令に応じてチャック回転機構20が作動することによりスピンベース12が回転軸J回りに回転する。また、制御機構90はチャック回転機構20を制御してスピンチャック10の回転数を調節する。
スピンベース12の周縁部付近には、基板Wの周縁部を把持するための複数個のチャックピン13が立設されている。チャックピン13は、円形の基板Wを確実に保持するために複数個設けてあればよく、スピンベース12の周縁部に沿って基板Wの回転中心(回転軸J)に対して等角度間隔で配置されている。なお、本実施形態では、図2に示すように、3つのチャックピン13が設けられている。
チャックピン13のそれぞれは、基板Wの周縁部を下方から支持する基板支持部と、基板支持部に支持された基板Wの外周端面を押圧して基板Wを保持する基板保持部とを備えている。各チャックピン13は、基板保持部が基板Wの外周端面を押圧する押圧状態と、基板保持部が基板Wの外周端面から離れる解放状態との間を切り替え可能に構成されている。
スピンベース12に対して基板Wが受渡しされる際には、複数個のチャックピン13を解放状態とし、基板Wに対して洗浄処理を行う際には、複数個のチャックピン13を押圧状態とする。押圧状態とすることによって、複数個のチャックピン13は基板Wの周縁部を把持してその基板Wをスピンベース12から所定間隔を隔てた上方位置で略水平姿勢に保持することができる。これにより、基板Wはその表面(パターン形成面)Wfを下方に向け、裏面Wbを上方に向けた状態、つまりフェイスダウン状態で支持される。このように、本実施形態では、基板Wの表面Wfは、鉛直方向においてスピンチャック10のスピンベース12と所定距離だけ離間しながら対向して配置された状態で、スピンチャック10に保持される。
このように基板Wを保持したスピンチャック10をチャック回転機構20により回転駆動することで基板Wを所定の回転数で回転させる。そして、後で詳述するように3方向から互いに異なる種類の洗浄液を供給して洗浄処理を行う(図1参照)。その1つ目の洗浄液はイオン性気体溶解水IWであり、基板Wの鉛直下方側から基板Wの表面Wfの中央部に供給される。2つ目の洗浄液は飽和水SWであり、基板Wの鉛直上方側から基板Wの裏面Wbの中央部に供給される。3つ目の洗浄液は超音波印加水UWであり、基板Wの径方向外側上方から基板Wの裏面Wbの周縁部に供給される。こうした3つの吐出位置から吐出される洗浄液によって洗浄処理がスピンチャック10に保持された基板Wに対して実行される。
本実施形態では、回転支軸11は中空形状に仕上げられており、イオン性気体溶解水IWを基板Wの表面Wfに向けて供給するための供給管14が回転支軸11の中空部分に挿通されている。この供給管14はスピンベース12の上面まで延び、その端面が基板Wの表面Wfの中央部を臨んでいる。つまり、供給管14の上端部がノズル口141として機能する。また、供給管14の下端部はイオン性気体溶解水IWを生成して供給する供給機構30と接続されている。
供給機構30は、DIW供給源に接続された脱ガス部31と、脱ガス部31および炭酸ガス供給源に接続されたイオン性気体溶解部32と、イオン性気体溶解部32に接続されたイオン性気体溶解水用の流量調節部33と、バルブ34とを有している。脱ガス部31はDIW供給源から送られてくるDIWから気体成分を脱気して脱気水を生成し、イオン性気体溶解部32に送り込む(脱気工程)。このイオン性気体溶解部32は、流入してきた脱気水に対し、炭酸ガス供給源から送られてくる炭酸ガスを溶解させてイオン性気体溶解水IWを生成し、イオン性気体溶解水用流量調節部33に送り込む(溶解工程)。この流量調節部33はマスフローコントローラ(massflowcontroller,MFC)などで構成されており、制御機構90からの流量指令に応じた流量のイオン性気体溶解水IWをノズル口141に向けて流す機能を有している。このため、流量調節されたイオン性気体溶解水IWが供給管14に圧送され、ノズル口141から基板Wの表面Wfの中央部に吐出される。基板Wの表面Wfに着液したイオン性気体溶解水IWは基板Wの表面Wf全体に行き渡り、イオン性気体溶解水IWの液膜LFが形成される。一方、制御機構90からの閉指令に応じてバルブ34が閉じると、供給管14へのイオン性気体溶解水IWの圧送が停止される。その結果、ノズル口141から基板Wの表面Wfの中央部に向けてのイオン性気体溶解水IWの吐出も停止される。なお、上記DIW供給源としては、基板洗浄装置1が設置される工場に装備される用力を用いてもよい。もちろん、基板洗浄装置1内にDIWの貯留タンクを設け、これをDIW供給源として用いてもよい。また、基板洗浄装置1内に二酸化炭素を貯留するガスボンベを配置し、これを炭酸ガス供給源として用いてもよい。
また、本実施形態では、図1に示すように、炭酸ガス供給源から供給される炭酸ガスはスピンベース12と基板Wの表面Wfの間に形成される空間SPに供給可能となっている。すなわち、回転支軸11の内壁面と供給管14の外壁面の隙間は、円筒状のガス供給路15を形成している。このガス供給路15はバルブ16を介して炭酸ガス供給源と接続されている。このため、制御機構90からの開指令に対応してバルブ16が開くと、炭酸ガスが上記空間SPに供給され、イオン性気体溶解水IWの液膜LFの周囲を炭酸ガスの雰囲気とすることができる。一方、制御機構90からの閉指令に応じてバルブ16が閉じると、上記空間SPへの炭酸ガスの圧送が停止される。なお、この実施形態では、後述するようにイオン性気体以外の気体成分、例えば窒素や酸素などが液膜LFに溶解されてキャビテーションの発生核となるのを防止するためにイオン性気体として炭酸ガスを上記空間SPに供給しているが、液膜LFへのイオン性気体の溶解量が飽和量以上であるときには、炭酸ガスの代わりに窒素ガス、空気や他の不活性ガスなどを供給するように構成してもよい。
図1に示すように、ノズル口141の鉛直上方には、洗浄液吐出ノズル41が固定配置されている。この洗浄液吐出ノズル41は、その下方端部に設けられたノズル口411を基板Wの裏面Wbの中央部に対向させて配置されている。また、洗浄液吐出ノズル41の上端部は飽和水供給機構50と接続されている。この飽和水供給機構50は、N2ガス供給源およびDIW供給源に接続された気体濃度調節部51と、気体濃度調節部51に接続された飽和水用流量調節部52と、バルブ53とを有している。気体濃度調節部51はDIW供給源から供給されるDIWに対し、N2ガス供給源から供給される窒素ガスを溶解させてDIW中の気体濃度を飽和レベル程度にまで高める。このように気体濃度調節部51は非イオン性気体の一例となる窒素ガスをリッチに含む飽和水SWを作成する機能を有している。具体的な構成としては例えば特開2004−79990号公報に記載されたものを用いることができる。こうして生成された飽和水SWを気体濃度調節部51は飽和水用流量調節部52に送り込む。
飽和水用流量調節部52は、流量調節部33と同様にマスフローコントローラなどで構成されており、制御機構90からの流量指令に応じた流量の飽和水SWを洗浄液吐出ノズル41に向けて流す機能を有している。このため、制御機構90からの開指令に対応してバルブ53が開くと、流量調節された飽和水SWが洗浄液吐出ノズル41に圧送され、洗浄液吐出ノズル41のノズル口411から基板Wの裏面Wbの中央部に吐出される。このとき、後で説明するように基板Wを予め回転させておくことで飽和水SWは基板Wの裏面Wb全体に行き渡る。そして、基板Wの裏面Wb上の飽和水SWに、後で説明するように超音波印加水UWに混合させると、その混合領域で飽和水SWへの超音波の印加によって気泡の発生と消滅、つまりキャビテーションが促進され、優れた洗浄効果が得られる。一方、制御機構90からの閉指令に応じてバルブ53が閉じると、洗浄液吐出ノズル41への飽和水SWの圧送が停止される。その結果、洗浄液吐出ノズル41からの基板Wの裏面Wbの中央部に向けての飽和水SWの吐出も停止される。なお、上記N2ガス供給源としては、基板洗浄装置1が設置される工場に装備される用力を用いてもよし、基板洗浄装置1内に窒素ガスを貯留する炭酸ガスボンベを配置し、これをN2ガス供給源として用いてもよい。
超音波印加水UWを基板Wの裏面Wbに供給して優れた効率で超音波洗浄処理を実行するために、図1に示すように、スピンチャック10に保持された基板Wの径方向外側上方に超音波ノズル61が固定配置されている。この超音波ノズル61は、先端部に設けられたノズル口611を基板Wの裏面Wbの周縁部に対向させて配置されている。この超音波ノズル61は、上記ノズル口611以外に、脱気水を導入するための導入口612および振動子613を有している。導入口612は脱気水供給機構70に接続されており、脱気水供給機構70から供給される脱気水を超音波ノズル61の内部に案内する機能を有している。
脱気水供給機構70は、脱ガス部31に接続された脱気水用の流量調節部71と、バルブ72とを有している。流量調節部71は、流量調節部33、52と同様にマスフローコントローラなどで構成されており、制御機構90からの流量指令に応じた流量の脱気水を導入口612に向けて流す機能を有している。このため、制御機構90からの開指令に対応してバルブ72が開くと、流量調節された脱気水が超音波ノズル61に圧送される。そして、制御機構90からの制御信号に基づき発振器63から発振信号が超音波ノズル61内の振動子613に出力されると、振動子613が振動して超音波を発生させる。これによって、超音波が脱気水に印加されて超音波ノズル61で超音波印加水UWが生成され、流量調節部71で調節された流量でノズル口611から基板Wの裏面Wbの周縁部に向けて吐出される。このように本実施形態では、脱気処理を受けたDIWに超音波を印加して超音波印加水UWを生成している。したがって、超音波印加水UW内でのキャビテーションの発生を抑制することができ、超音波印加水UWが基板Wの裏面Wbに供給された飽和水SWと混合されるまでに超音波印加水UW内で超音波が減衰されるのを抑え、上記飽和水SWに対して超音波を効率的に供給することが可能となっている。一方、制御機構90からの閉指令に応じてバルブ72が閉じると、超音波ノズル61への脱気水の圧送が停止され、超音波印加水UWの供給も停止される。その結果、超音波ノズル61からの超音波印加水UWの吐出も停止される。なお、本実施形態では、2つの供給機構30、70で脱ガス部31を兼用しているが、各供給機構30、70で専用の脱ガス部を設けてもよい。
図3は図1に示す基板洗浄装置の動作を示すフローチャートである。処理の開始前には、バルブ16、34、53、72はいずれも閉じられており、スピンチャック10は静止している。そして、制御機構90は予め記憶部(図示省略)に記憶されているプログラムにしたがって装置各部を以下のように制御して基板Wの洗浄処理および乾燥処理を行う。すなわち、基板搬送ロボット(図示省略)により1枚の基板Wが、いわゆるフェイスダウン状態でスピンチャック10に載置されチャックピン13により保持される(ステップS1)。これにより、図1の部分拡大図(破線領域)に示すように、基板Wの表面Wfに設けられたデバイスパターンDPは下向に向いた状態で位置決めされる。
次のステップS2では、バルブ72を開いて脱気水を超音波ノズル61に圧送し、ノズル口611から基板Wの表面Wfの周縁部に向けて吐出する。この段階では、脱気水への超音波印加を行っておらず、上記脱気水をノズル口611から基板Wの裏面Wbに供給する。これと同時に、バルブ34を開いて流量調節部33により調節された流量でイオン性気体溶解水IWを供給管14に圧送し、ノズル口141から基板Wの表面Wfの中央部に向けて吐出する。これによりイオン性気体溶解水IWが基板Wの表面Wfに沿って径方向に広がり、液膜LFを形成する(第1工程)。さらに、この液膜形成と並行して、バルブ16を開いてイオン性気体である炭酸ガスをガス供給路15に圧送し、スピンベース12と基板Wの表面Wfの間の空間SPに供給する(第3工程)。これによって、液膜LFの周囲の雰囲気は炭酸ガスとなり、酸素や窒素などの非イオン性気体が液膜LFに溶解するのを確実に防止することができる。また、雰囲気中の炭酸ガスが液膜LFに溶解したとしても、キャビテーションの発生源とはならない。この点については、後で実験結果とともに詳述する。なお、本実施形態では、イオン性気体溶解水IWの供給は乾燥処理前まで継続される。
そして、基板Wの裏面Wbでの脱気水の液膜が形成されるとともに、イオン性気体溶解水IWの液膜LFが表面Wfに形成される(ステップS3で「YES」)と、発振器63から発振信号を振動子613に出力する(ステップS4)。こうして、超音波印加水UWが基板Wの裏面Wbに供給され、超音波印加水UWの液膜が形成される。なお、超音波ノズル61からの脱気水および超音波印加水UWの吐出流量については、脱気水用流量調節部71によって調節可能であり、予め指定された値に設定することができる。また、脱気水の液膜を形成するときの脱気水の流量と、液膜形成後の超音波印加水UWの流量とを異ならせるように制御してもよい。
これに続いて、バルブ53を開いて飽和水SWを洗浄液吐出ノズル41に圧送し、ノズル口411から基板Wの裏面Wbの中央部に向けて吐出する(ステップS5)。このときの飽和水SWは飽和水用流量調節部52によって調節される。また、チャック回転機構20によるスピンチャック10の回転駆動を開始する(ステップS6)。この回転初期では、基板Wの回転中心近傍で飽和水SWと脱気水との混合領域が形成される。そして、当該混合領域で溶存気体(窒素ガス)と超音波とによってキャビテーションが効率的に発生し、混合領域に対応する表面領域からパーティクルPTが効果的に除去される(超音波洗浄処理:第2工程)。
この実施形態では、次のステップS7で回転数を調節して混合領域が形成される位置を基板Wの径方向にシフトさせ、上記のようにして超音波洗浄処理が実行される領域を移動させる。このような回転数の調節による混合領域のシフトはステップS8で「YES」と判定されるまで、つまり基板Wの表面全面に対する洗浄処理を完了するまで繰り返して行われる。なお、図1では、混合領域が基板Wの裏面Wbの周縁部近傍に移動してきたときを模式的に図示している。本実施形態では、超音波洗浄処理を行っている間、飽和水SWおよび超音波印加水UWの吐出流量は一定に維持されている。したがって、混合領域のシフト態様は基板Wの回転数のみで制御されており、回転数パターンを選択することで種々の態様で超音波洗浄処理を行うことができる。例えば、回転数を低速から高速に変更させる低高速パターンでは、混合領域が表面中央部から周縁部に移動しながら基板Wの裏面Wbが洗浄される。また、回転数を高速から低速に変更させる高低速パターンでは、混合領域が周縁部から表面中央部に移動しながら基板Wの裏面Wbが洗浄される。また、低高速パターンおよび高低速パターンを交互に繰り返すことで往復洗浄が実行される。さらに、回転数の変化についても、その変化率を一定に設定してもよいし、表面中央部と周縁部とで異ならせる、例えば表面中央部で比較的大きく、周縁部に進むにしたがって小さくなるように回転数を変化させてもよい。
一方、上記のようにして基板Wの裏面Wbが超音波洗浄処理を受けている間、基板Wの表面Wfに対してイオン性気体溶解水IWが供給され続け、デバイスパターンDPは液膜LFで覆われている。このため、後で実験結果とともに詳述する理由によって、超音波振動が基板Wの表面Wfに伝播してきても液膜LFでキャビテーションは発生せず、デバイスパターンDPへのダメージは生じていない。
こうして、基板Wの裏面Wb全体に対して超音波洗浄処理が実行される(ステップS8で「YES」と判定される)と、発振器63が発振信号の出力を停止し、それに続いてバルブ16、34、53、72を閉じて炭酸ガス、イオン性気体溶解水IW、飽和水SWおよび脱気水の供給を停止して洗浄処理を終了する。また、洗浄処理の完了とともに、基板Wの表面Wfおよび裏面Wbに残る水を除去する乾燥処理を行う。すなわち、スピンチャック10の回転数を上げて基板Wを高速回転させ(ステップS9)、基板Wの表面Wfおよび裏面Wbの液体成分、実質的には水を振り切ることによって基板Wを乾燥させる。なお、別途、窒素気体を吐出するノズルを設け、乾燥処理の実行中に窒素気体を基板Wの表面Wfおよび裏面Wbに吹き付けるように構成してもよく、これによって乾燥した基板Wへのミスト等の付着や酸化を防止することができる。
こうした乾燥処理が終了すると、スピンチャック10の回転を停止する(ステップS10)。そして、基板搬送ロボットが乾燥された基板Wをスピンチャック10から取り出し、別の装置へ搬出することで(ステップS11)、1枚の基板Wに対する洗浄処理が完了する。また上記処理を繰り返すことにより、複数の基板Wを順次処理することができる。
以上のように、この実施形態では、イオン性気体溶解水IWを供給して液膜LFを形成しているため、次のような作用効果が得られる。この液膜LFでは、イオン性気体はイオン化して存在しており、個々のイオン性気体のサイズは比較的小さい。そのため、そのままではキャビテーションの発生核とならない。また、電離によりイオン性気体同士の凝集は起こり難く、大型サイズに成長することも難しい。このようにイオン性気体が液膜LFに含まれているものの、それ自体はキャビテーションの発生源となっていない。また、このように基板Wの表面Wfを覆っている液膜LFに既にイオン性気体が溶解しているため、キャビテーションの発生要因となる酸素や窒素などの非イオン性気体が液膜LFに溶解するのを効果的に抑制することができる。その結果、基板Wの表面Wfに形成されたデバイスパターンDPに対してダメージを与えることなく、基板Wの裏面Wbを超音波洗浄することができる。
また、上記実施形態では、超音波洗浄を行っている間、スピンベース12と基板Wの表面Wfの間の空間SPを炭酸ガスの雰囲気にしているため、非イオン性気体が液膜LFに溶解するのを効果的に防止している。その結果、液膜LFでのキャビテーションの発生をさらに効果的に抑制してダメージレスで基板Wの裏面Wbを超音波洗浄することができる。
このような作用効果を検証するため、図1に示す基板洗浄装置1において、周波数430kHz、出力50Wの超音波ノズル61を用いるとともにノズル口141から供給する洗浄液および空間SPに供給する気体の組み合わせを変えながら、基板1枚当たりで発生するダメージ数を測定した。その結果をまとめたものが図4である。同図中の「CO2溶解水」は上記実施形態のイオン性気体溶解水IWであり、イオン性気体として炭酸ガスを用いている。また、同図中の括弧書きは空間SPに供給した気体の種類を表しており、空気(air)および炭酸ガス(CO2)のいずれも100[L/min]の流量で供給した。同図からわかるように、イオン性気体溶解水IWを用いることで基板Wに与えるダメージを大幅に低減させることが可能となっている。また、空間SPに供給する気体についても、イオン性気体を用いることでダメージの低減を図ることが可能となっている。
また、図4に示す実験以外にも、イオン性気体や非イオン性気体の液膜LFへの溶解量がダメージに及ぼす影響を検証する実験を行ったところ、次の技術事項が明らかとなった。液膜LFに対する窒素や酸素などの非イオン性気体の気体濃度が0.02ppmを超える場合、液膜LFにイオン性気体を追加的に溶解させたとしても、ダメージの発生を抑制することは困難であった。したがって、上記第1実施形態では、脱ガス部31によってDIW供給源から供給されたDIWを脱気して気体成分を0.02ppm以下に低減して脱気水を生成し、この脱気水を用いてイオン性気体溶解水IWを生成している。したがって、超音波洗浄処理中に液膜LFでキャビテーションが発生するのを防止し、これによってデバイスパターンDPに対するダメージ発生を効果的に防止することが可能となっている。
また、上記実施形態では、イオン性気体溶解水IWで液膜LFを形成することで、液膜LFの雰囲気中の気体成分が液膜LFに溶け込むのを抑制しているが、その抑制効果を発揮するためには、一定量以上の溶解量が必要であると考えられる。そこで、溶解量とダメージとの関係を実験したところ、ダメージを抑制するためには、少なくともイオン性気体を水に対する飽和溶解量(常温)の0.7倍以上、脱気水に溶解させるのが望ましいことがわかった。また、溶解量が増えるにしたがってダメージの発生防止効果は高まり、好ましくは飽和溶解量(常温)の1倍以上に設定するのがより望ましいが、2倍を超えても顕著な効果上昇が認めなれないため、ランニングコストの観点から2倍以下に設定するのが望ましい。
図5は本発明にかかる基板洗浄装置の第2実施形態を示す図である。この第2実施形態が第1実施形態と大きく相違する点は、いわゆるフェイスアップ状態で基板Wを洗浄する点である。つまり、図5に示すように、基板Wは、表面Wfを上方に向けた状態でスピンチャック10に保持される。また、スピンチャック10に保持された基板Wの径方向外側下方に超音波ノズル61が固定配置されている。そして、飽和水SWはノズル口141から基板Wの裏面Wbの中央部に向けて供給されるのに対し、イオン性気体溶解水IWは洗浄液吐出ノズル41のノズル口411から基板Wの表面Wfの中央部に供給される。さらに、空間SPには、窒素ガスが供給されるように構成されている。なお、その他の構成は基本的に第1実施形態と同一であるため、同一構成については同一符号を付して説明を省略する。
このように構成された第2実施形態においても、第1実施形態と同様に、基板Wの表面Wfにイオン性気体溶解水IWの液膜LFを形成して当該表面Wfを覆った状態で裏面Wbを超音波洗浄している。そのため、基板Wの表面Wfに形成されたデバイスパターンDPに対してダメージを与えることなく、基板Wの裏面Wbを超音波洗浄することが可能となっている。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記第1実施形態では、超音波ノズル61を固定配置した状態で超音波洗浄処理を行っているが、超音波ノズル61を基板Wの裏面Wbに沿って水平方向に移動させながら超音波洗浄を行うことが可能である。
また、上記実施形態では、イオン性気体として炭酸ガスを用いているが、それ以外のイオン性気体、つまり水と反応してイオン化し、常温常圧下において気体状態である気体全般をイオン性気体として用いることができる。例えば、炭酸ガスの代わりにアンモニアガスを用いることができる。
また、上記実施形態では、脱気水を本発明の「処理液」として用いており、当該脱気水に対して超音波を印加した超音波印加水を本発明の「超音波印加液」として用いているが、脱気水と異なる液体を「処理液」として用いて超音波印加液を生成してもよい。ただし、超音波ノズル61の耐薬性を考慮すると、上記した脱気水、DIW、純水、ガス溶解水が望ましい。
また、上記第1実施形態では、イオン性気体溶解水IWに含まれている気体と同じ成分、つまり炭酸ガスを空間SPに供給しているが、これと異なるイオン性気体を空間SPに供給しても第1実施形態と同様の作用効果が得られる。このように基板Wの表面Wfが液膜LFに覆われている間、液膜LFの周囲をイオン性気体と同じまたは異なる種類のイオン性気体の雰囲気にしてもよい(第3工程)。なお、第2実施形態において、例えば特許文献1で用いられている雰囲気遮断板を基板Wの表面Wfの上方に近接配置し、当該表面Wfと雰囲気遮断板との空間にイオン性気体の雰囲気を形成してもよく(第3工程)、これによって第1実施形態と同様の作用効果が得られる。
以上説明したように、上記実施形態においては、基板Wの表面Wfが本発明の「基板の一方主面」に相当し、基板Wの裏面Wbが本発明の「基板の他方主面」に相当している。また、デバイスパターンDPが本発明の「パターン」の一例に相当している。また、供給機構30が本発明の「溶解水供給部」の一例に相当している。また、超音波ノズル61が本発明の「超音波印加液供給部」の一例に相当している。
この発明は、一方主面にパターンを有する基板の他方主面を洗浄する基板洗浄全般に適用することができる。
1…基板洗浄装置
30…供給機構(溶解水供給部)
61…超音波ノズル(超音波印加液供給部)
DP…デバイスパターン
IW…イオン性気体溶解水
LF…液膜
UW…超音波印加水
W…基板
Wf…基板の表面(基板の一方主面)
Wb…基板の裏面(基板の他方主面)

Claims (9)

  1. 一方主面にパターンを有する基板の他方主面を洗浄する基板洗浄方法であって、
    イオン性気体を水に溶解したイオン性気体溶解水の液膜で前記一方主面を覆う第1工程と、
    前記一方主面が前記液膜に覆われた状態で、処理液に超音波を印加した超音波印加液を前記他方主面へ供給して、前記他方主面を前記超音波で発生するキャビテーションにより洗浄する第2工程と、を備え
    前記第1工程は、水を脱気して脱気水を生成する脱気工程と、前記脱気水に前記イオン性気体を溶解させて前記イオン性気体溶解水を生成する溶解工程とを有することを特徴とする基板洗浄方法。
  2. 一方主面にパターンを有する基板の他方主面を洗浄する基板洗浄方法であって、
    イオン性気体を水に溶解したイオン性気体溶解水の液膜で前記一方主面を覆う第1工程と、
    前記一方主面が前記液膜に覆われた状態で、処理液に超音波を印加した超音波印加液を前記他方主面へ供給して、前記他方主面を前記超音波で発生するキャビテーションにより洗浄する第2工程と、
    前記一方主面が前記液膜に覆われている間、前記液膜の周囲を前記イオン性気体と同じまたは異なる種類のイオン性気体の雰囲気にする第3工程と、
    を備えることを特徴とする基板洗浄方法。
  3. 請求項に記載の基板洗浄方法であって、
    前記脱気工程は、水に含まれる気体濃度を0.02ppm以下にする工程である基板洗浄方法。
  4. 請求項1または3に記載の基板洗浄方法であって、
    前記溶解工程は、前記イオン性気体を水に対する飽和溶解量(常温)の0.7倍以上、前記脱気水に溶解させる工程である基板洗浄方法。
  5. 請求項4に記載の基板洗浄方法であって、
    前記溶解工程は、前記飽和溶解量(常温)の1倍以上、2倍以下の前記イオン性気体を前記脱気水に溶解させる工程である基板洗浄方法。
  6. 請求項1ないしのいずれか一項に記載の基板洗浄方法であって、
    水と反応してイオン化し、常温常圧下において気体状態である気体を前記イオン性気体として用いる基板洗浄方法。
  7. 請求項1ないし6のいずれか一項に記載の基板洗浄方法であって、
    前記第1工程は、前記イオン性気体として二酸化炭素を用いる、基板洗浄方法。
  8. 基板の両主面のうちパターンを有する一方主面に対し、イオン性気体を水に溶解したイオン性気体溶解水を供給して液膜を形成する溶解水供給部と、
    前記一方主面が前記液膜に覆われた前記基板の他方主面に対し、処理液に超音波を印加した超音波印加液を供給して前記他方主面を前記超音波で発生するキャビテーションにより洗浄する超音波印加液供給部と、を備え
    前記溶解水供給部は、水を脱気して脱気水を生成する脱気部と、前記脱気部により生成された前記脱気水に前記イオン性気体を溶解させて前記イオン性気体溶解水を生成する溶解部とを有することを特徴とする基板洗浄装置。
  9. 基板の両主面のうちパターンを有する一方主面に対し、イオン性気体を水に溶解したイオン性気体溶解水を供給して液膜を形成する溶解水供給部と、
    前記一方主面が前記液膜に覆われた前記基板の他方主面に対し、処理液に超音波を印加した超音波印加液を供給して前記他方主面を前記超音波で発生するキャビテーションにより洗浄する超音波印加液供給部と、
    前記一方主面が前記液膜に覆われている間、前記液膜の周囲へ前記イオン性気体と同じまたは異なる種類のイオン性気体を供給する気体供給部と、
    を備えることを特徴とする基板洗浄装置。
JP2015249333A 2015-12-22 2015-12-22 基板洗浄方法および基板洗浄装置 Active JP6678448B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015249333A JP6678448B2 (ja) 2015-12-22 2015-12-22 基板洗浄方法および基板洗浄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015249333A JP6678448B2 (ja) 2015-12-22 2015-12-22 基板洗浄方法および基板洗浄装置

Publications (2)

Publication Number Publication Date
JP2017117860A JP2017117860A (ja) 2017-06-29
JP6678448B2 true JP6678448B2 (ja) 2020-04-08

Family

ID=59232399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249333A Active JP6678448B2 (ja) 2015-12-22 2015-12-22 基板洗浄方法および基板洗浄装置

Country Status (1)

Country Link
JP (1) JP6678448B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300301A (ja) * 1998-04-27 1999-11-02 Dainippon Screen Mfg Co Ltd 基板洗浄方法及びその装置
JP2000133626A (ja) * 1998-10-26 2000-05-12 Hitachi Ltd 基板洗浄装置
JP2004335525A (ja) * 2003-04-30 2004-11-25 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
KR101110905B1 (ko) * 2003-06-11 2012-02-20 아크리온 테크놀로지즈 인코포레이티드 과포화된 세정 용액을 사용한 메가소닉 세정
JP2008021672A (ja) * 2006-07-10 2008-01-31 Sony Corp ガス過飽和溶液を用いた超音波洗浄方法及び洗浄装置
JP5019370B2 (ja) * 2007-07-12 2012-09-05 ルネサスエレクトロニクス株式会社 基板の洗浄方法および洗浄装置
US7682457B2 (en) * 2007-10-04 2010-03-23 Applied Materials, Inc. Frontside structure damage protected megasonics clean
JP2010153475A (ja) * 2008-12-24 2010-07-08 Sokudo Co Ltd 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
JP2017117860A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
KR101612633B1 (ko) 기판 세정 방법 및 기판 세정 장치
JP4767138B2 (ja) 基板処理装置、液膜凍結方法および基板処理方法
JP5979700B2 (ja) 基板処理方法
US20170301534A1 (en) Substrate liquid processing method, substrate liquid processing apparatus, and computer-readable storage medium that stores substrate liquid processing program
TWI558476B (zh) 基板清潔方法及基板清潔裝置
JP6379400B2 (ja) 基板処理方法および基板処理装置
JP2008047629A (ja) 基板処理装置および基板処理方法
JP4812563B2 (ja) 基板処理方法および基板処理装置
JP2006344907A (ja) 基板処理方法および基板処理装置
WO2015053329A1 (ja) 基板処理方法および基板処理装置
JP5954862B2 (ja) 基板処理装置
JP2010080584A (ja) 基板洗浄方法および基板洗浄装置
JP2008177495A (ja) 基板処理方法および基板処理装置
JP2011077144A (ja) 基板処理装置および基板処理方法
JP2010027816A (ja) 基板処理方法および基板処理装置
JP5911757B2 (ja) 基板処理方法、基板処理装置、および記録媒体
JP2009021409A (ja) 凍結処理装置、凍結処理方法および基板処理装置
JP4695020B2 (ja) 基板処理方法および基板処理装置
JP6678448B2 (ja) 基板洗浄方法および基板洗浄装置
JP4781253B2 (ja) 基板処理装置および基板処理方法
JP2007048814A (ja) 基板保持装置、半導体製造装置及び半導体装置の製造方法
JP6542613B2 (ja) 基板洗浄装置および基板洗浄方法
JP4279008B2 (ja) 基板処理装置および基板処理方法
JP2012212758A (ja) 基板処理方法および基板処理装置
JP6506582B2 (ja) 基板洗浄方法および基板洗浄装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250