JP6670413B1 - 情報処理装置、情報処理方法及びプログラム - Google Patents

情報処理装置、情報処理方法及びプログラム Download PDF

Info

Publication number
JP6670413B1
JP6670413B1 JP2019117207A JP2019117207A JP6670413B1 JP 6670413 B1 JP6670413 B1 JP 6670413B1 JP 2019117207 A JP2019117207 A JP 2019117207A JP 2019117207 A JP2019117207 A JP 2019117207A JP 6670413 B1 JP6670413 B1 JP 6670413B1
Authority
JP
Japan
Prior art keywords
user
degree
function
brain function
index value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019117207A
Other languages
English (en)
Other versions
JP2021003180A (ja
Inventor
弘彦 倉恒
弘彦 倉恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FATIGUE SCIENCE LABORATORY INC.
Original Assignee
FATIGUE SCIENCE LABORATORY INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FATIGUE SCIENCE LABORATORY INC. filed Critical FATIGUE SCIENCE LABORATORY INC.
Priority to JP2019117207A priority Critical patent/JP6670413B1/ja
Priority to PCT/JP2019/050617 priority patent/WO2020261613A1/ja
Priority to CN201980092257.5A priority patent/CN113438926A/zh
Application granted granted Critical
Publication of JP6670413B1 publication Critical patent/JP6670413B1/ja
Publication of JP2021003180A publication Critical patent/JP2021003180A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Business, Economics & Management (AREA)
  • Educational Technology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】自律神経指標に基づいてユーザの脳機能の状態を評価することが可能な技術を提供すること。【解決手段】自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報を格納する記憶部と、測定対象のユーザの自律神経指標値を取得する取得部と、取得部で取得されたユーザの自律神経指標値と脳機能情報とを比較して、ユーザの脳機能の働きの程度を判定する判定部と、判定部で判定された、ユーザの脳機能の働きの程度に関する情報を出力する出力部と、を有する情報処理装置を提供する。【選択図】図3

Description

本発明は、情報処理装置、情報処理方法及びプログラムに関する。
自律神経には、主に起きているとき及び緊張しているときに働く交感神経と、主に寝ているとき及びリラックスしているときに働く副交感神経とがあり、両者がバランスを取りながら機能し、生理的機能を調節していることが知られている。特許文献1には、自律神経の働きを用いてユーザの疲労を測定する技術が開示されている。
特開2010−201113号公報
このように、自律神経機能を解析することで、ユーザの疲労を測定することが可能であるが、もし、自律神経機能を解析することで疲労以外の状態についても測定することができれば、ユーザは、自身の状態をより客観的に把握することが可能になると考えられる。
そこで、本発明は、自律神経指標に基づいてユーザの脳機能の状態を評価することが可能な技術を提供することを目的とする。
本発明の一態様に係る情報処理装置は、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報を格納する記憶部と、測定対象のユーザの自律神経指標値を取得する取得部と、取得部で取得されたユーザの自律神経指標値と脳機能情報とを比較して、ユーザの脳機能の働きの程度を判定する判定部と、判定部で判定された、ユーザの脳機能の働きの程度に関する情報を出力する出力部と、を有する。
本発明によれば、自律神経指標に基づいてユーザの脳機能の状態を評価することが可能な技術を提供することができる。
本実施形態に係る情報処理システムの構成例を示す図である。 生体情報取得装置の一例を示す図である。 評価装置が行う処理手順の一例を示すフローチャートである。 かな拾い試験で出される問題の一例を示す図である。 内容理解度を調べる試験の一例を示す図である。 実験結果を説明するための図である。 実験結果を説明するための図である。 実験結果を説明するための図である。 実験結果を説明するための図である。 実験結果を説明するための図である。 実験結果を説明するための図である。
添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
<システム構成>
図1は、本実施形態に係る情報処理システム100の構成例を示す図である。本実施形態に係る情報処理システム100は、入力装置110と、生体情報取得装置120と、判定装置130と、出力装置140とを有する。
入力装置110は、ユーザに関するデータを入力するための装置であり、例えば、キーボードやタッチパネル上の入力インタフェースなどにより構成される。ユーザは、入力装置110を用いて、年齢、氏名、住所及び性別などを入力することができる。
生体情報取得装置120は、ユーザの生体情報データを収集するための装置である。ここでユーザの生体情報データとは、好適には、心拍データまたは脈拍データもしくは加速度脈波データを意味する。なお、入力装置110と生体情報取得装置120は一体であってもよい。すなわち、生体情報取得装置120は、入力装置110としての機能を有していてもよい。
図2は、生体情報取得装置120の一例を示す図である。生体情報取得装置120は、図2に示すように、超軽量ワイヤレス生体センサーであってもよい。より具体的には、測定対象のユーザの身体に取り付ける電極とワイヤレス送信機とを備えており、測定されたユーザの生体情報を、ワイヤレス送信機を通じて判定装置130に送信する装置であってもよい。その他、市販の心電計や脈拍計を生体情報取得装置120として利用してもよい。図1に戻り説明を続ける。
判定装置130は、生体情報取得装置120で収集されたユーザの生体情報データから得られる、ユーザの自律神経の働きを示す自律神経指標値に基づいて、ユーザの脳機能の働きを判定するための装置である。判定装置130は、ユーザが操作する端末であり、スマートフォン、タブレット端末、携帯電話機、パーソナルコンピュータ(PC)、ノートPC、携帯情報端末(PDA)、家庭用ゲーム機器、ユーザの脳機能の働きを判定するための専用の装置など、通信機能を備えた端末であればあらゆる情報処理装置を用いることができる。また、判定装置130は、1又は複数の物理的なサーバ等から構成される情報処理装置であって、ハイパーバイザー(hypervisor)上で動作する仮想的なサーバを用いて構成される情報処理装置であってもよいし、クラウドサーバを用いて構成される情報処理装置であってもよい。
判定装置130は、自律神経指標値と脳機能の働きの程度(脳機能の働きの度合いと称してもよい)との関係を表す脳機能情報を保持しており、ユーザの自律神経指標値と脳機能情報とを比較することで、ユーザの脳機能の働きの程度を判定する。ユーザの脳機能の働きの程度とは、例えば、ユーザの理解力が落ちているか又は高い状態であるか、記憶力が落ちているか又は良好であるか、及び/又は、注意力が落ちているか又は良好であるか等を含む。
出力装置140は、判定装置130によって判定されたユーザの脳機能の働きの程度に関する判定結果を出力するための装置である。出力される情報としては、判定結果の詳細をレポート形式で出力してもよいし、判定結果に加えて(又は代えて)、ユーザの自律神経指標値とユーザの脳機能の働きの程度に関する情報とを出力してもよい。出力装置140は、判定装置130に内蔵又は接続されたディスプレイなどの表示装置であってもよいし、判定装置130に接続されたプリンタなどの印刷出力装置であってもよい。
<機能ブロック構成>
図1に示すように、判定装置130は、算出部11と、取得部12と、判定部13と、出力部14と、記憶部21とを含む。記憶部21は、判定装置130が備える記憶装置20を用いて実現することができる。また、算出部11と、取得部12と、判定部13と、出力部14とは、判定装置130のプロセッサ10が、記憶装置20に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD−ROM等の記憶媒体であってもよい。
記憶部21は、自律神経指標値と脳機能の働き(例えば、理解力、記憶力、注意力など)の程度との関係を表す脳機能情報を格納する。脳機能情報は、複数の被験者から得られた自律神経指標値と、当該複数の被験者から得られた脳機能の働きを測定するテストの結果と、を統計分析することで生成された情報である。より詳細には、脳機能情報は、多数の被験者から得られた、被験者の脳機能の働きを測定するテストの結果と、当該テスト前後及び当該テスト中に測定された被験者の自律神経指標値と、を統計分析することで生成された、自律神経指標値と脳機能の働きの程度を示す指標値との相関関係を示す情報である。
脳機能情報には、例えば、自律神経指標値がA未満であったらユーザの脳機能の働きの程度を示す指標値は“働きが落ちている”ことを示す指標値であり、自律神経指標値がA以上であったら、ユーザの脳機能の働きの程度を示す指標値は“働きが良好である”こ示す指標値であるといった情報が格納されていてもよい。自律神経指標値の段階及び脳機能の働きの程度を示す指標値の段階は、それぞれ何段階であってもよい。
算出部11は、生体情報取得装置120から取得したユーザの生体情報から、ユーザの自律神経指標値を算出する機能を有する。例えば、算出部11は、ユーザの生体情報データを周波数解析して、周波数領域の低周波数成分からLF値を算出し、高周波数成分からHF値を算出する。LF値は交感神経の働きを示す指標であり、HF値は副交感神経の働きを示す指標であるとされている。
生体情報データは、生体情報取得装置120から判定装置130に随時入力されるものであってもよいし、生体情報取得装置120にて一定期間の生体情報データを取得した後に、まとめて判定装置130に入力されるものであってもよい。
生体情報データからLF値やHF値を得るために周波数解析が行われるが、周波数解析(時間周波数解析)の手法は公知の解析手法を利用可能であり、例えば、最大エントロピー法(MEM法)、高速フーリエ変換法(FFT法)、ウェーブレット法等が挙げられる。これらの中でも、最大エントロピー法を用いるのが好ましい。最大エントロピー法によれば、時間分解能の高い解析を行うことができる。用いられる生体情報データは、心拍(心電図)のR−R間隔(心拍のパターン)や、加速度脈波のa−a間隔である。例えば、心拍(心電図)のR−R間隔を最大エントロピー法(MEM)を用いて周波数領域の低周波数成分(LF:0.04−0.15Hz)と高周波数成分(HF:0.15−0.40Hz)に分離し、低周波数成分及び高周波数成分のパワーの総和をそれぞれLF値及びHF値として算出する。
具体的には、LF値とHF値は、例えば、以下の式により算出することができる。
ここで、LF(t)はLF値、HF(t)はHF値、P(f)はパワースペクトル関数、C(t)は心拍(心電図)のR−R間隔の自己相関関数、tは時間、fは周波数を示す。数3に示すとおり、数式上P(f)は全時間領域で積分するものとしているが、実際は、観測領域で積分すれば足りる。
LF値やHF値の上限及び下限とした周波数は欧州心電図学会で定義されているなど一般に広く使われている数値であるが、LF値及びHF値を分離するための周波数帯はこれに限定されるものではなく、他の周波数帯によってLF値とHF値を定義付けてもよい。また、測定誤差等が許容されることは言うまでもない。なお、市販の自律神経測定器を、生体情報取得装置120として利用してもよい。
また、算出部11は、ユーザのLF値及びHF値から、ユーザの自律神経のバランスを示す「LF/HF値」を算出する機能を有する。「LF/HF値」とは、交感神経と副交感神経のバランスを表す指標であり、LF値をHF値で除算することで求められる。例えばLF/HF値が5.0を超えると、交感神経と副交感神経のバランスが大きく崩れていることを意味する。
また、算出部11は、ユーザの心拍数とLF値とHF値とを用いて、自律神経活動の活動量である「自律神経活動量」を算出する機能を有する。「自律神経活動量」は、ccvTPと呼ばれる、自律神経機能の働きを示す指標を用いて数値で表現される。ccvTPは、TP(トータルパワー)と呼ばれる、LF値とHF値の総和(以下、「LF+HF値」と記載する。)を、LF値及びHF値の測定に用いた時間中の心拍数(より具体的にはR−R間隔の平均)で補正することで算出される値である。ccvTPは、CVRRとも呼ばれる。具体的には、ccvTPは、以下の式により算出することができる。
ここで、RRは、被験者における心拍のR−R間隔(秒)を示す。なお、R−R間隔(秒)=60÷心拍数(回/分)である。
心拍数が高い場合はTPが高い値となることが実験により知られていることから、心拍数の高さに応じて補正されたccvTPを用いることで、被験者の心拍数の高低にかかわらず、自律神経活動量を適切に表現することができる。なお、「LF+HF値」は、年齢とともに数値が減少することが本発明者らによって明らかにされており、ccvTPについても同様である。
以上説明した、LF値、HF値、ccvTP(CVRR)、LF+HF及びLF/HFと、これらの値を対数化した、LogLF、LogHF、LogccvTP(LogCVRR)、Log(LF+HF)及びLog(LF/HF)は、本実施形態における自律神経指標値に含まれていてもよい。
なお、本実施形態は、算出部11が実現する機能を、生体情報取得装置120が行う構成とし、判定装置130には算出部11を備えない構成としてもよい。
取得部12は、算出部11で算出された、測定対象のユーザの自律神経指標値を取得する機能を有する。なお、取得部12は、生体情報取得装置120から測定対象のユーザの生体情報を取得して算出部11に渡す機能を有していてもよい。また、取得部12は、入力画面又は生体情報取得装置120を介して、ユーザの年齢を取得するようにしてもよい。
また、取得部12は、ユーザの生体情報とユーザの年齢とに基づいて算出された、ユーザの自律神経指標値の偏差値を取得するようにしてもよい。自律神経指標値の偏差値については後述する。
判定部13は、ユーザの自律神経指標値と記憶部21に格納される脳機能情報とを比較して、ユーザの脳機能の働きの程度を判定する機能を有する。脳機能情報には、自律神経指標値の範囲と、脳機能の働きの程度に関する情報とが対応づけられており、判定部13は、ユーザの自律神経指標値に対応する脳機能の働きの程度に関する情報を脳機能情報から検索することで、ユーザの脳機能の働きの程度を判定する。
また、脳機能情報には、自律神経指標値の範囲と脳機能の働きの程度に関する情報との関係が年齢別に格納されていてもよい。この場合、判定部13は、取得部12で取得されたユーザの自律神経指標値と、ユーザの年齢と、脳機能情報とを比較して、ユーザの脳機能の働きの程度を判定するようにしてもよい。自律神経活動はユーザが年を重ねるごとに衰えていくことから、仮に同一の自律神経状態であったとしても、自律神経指標値はユーザの年齢に応じて変化する。しかしながら、自律神経指標値と脳機能の働きの程度との関係が年齢別に格納された脳機能情報とユーザの自律神経指標値とを比較することで、より正確にユーザの脳機能の働きの程度を判定することが可能になる。
また、脳機能情報には、自律神経指標値の偏差値の範囲と脳機能の働きの程度との関係が格納されていてもよい。この場合、判定部13は、取得部12で取得されたユーザの自律神経指標値の偏差値と、脳機能情報とを比較して、ユーザの脳機能の働きの程度を判定するようにしてもよい。前述の通り、自律神経指標値はユーザの年齢に応じて変化するが、自律神経指標値を偏差値で表現するようにすれば、ユーザの年齢に関わらず同一基準で自律神経の働きを評価することができる。従って、自律神経指標値の偏差値と脳機能の働きの程度との関係が格納された脳機能情報とユーザの自律神経指標値の偏差値とを比較することで、より正確にユーザの脳機能の働きの程度を判定することが可能になる。
なお、自律神経指標値の偏差値は、次に示す方法で算出することができる。まず、年齢の異なる多数の被験者の自律神経指標値から、被験者の年齢ごとの自律神経指標値の平均値と、被験者の年齢ごとの自律神経指標値の標準偏差(σ)を算出し、これらをデータベース化した自律神経指標値分布データを作成する。続いて、偏差値を求めたい被験者の自律神経指標値と、自律神経指標値分布データから、被験者の年齢に対応する自律神経指標値の平均値と標準偏差(σ)を取得する。続いて、「自律神経指標値の偏差値=10×(被験者の自律神経指標値−被験者の年齢に対応する自律神経指標値の平均値)÷被験者の年齢に対応する自律神経指標値の標準偏差(σ)+50」の式を用いて、被験者の自律神経指標値の偏差値を算出する。
出力部14は、判定部13で判定された、ユーザの脳機能の働きの程度に関する情報を出力装置140に出力する機能を有する。
<処理手順>
図3は、判定装置130が行う処理手順の一例を示すフローチャートである。まず、取得部12は、算出部11で算出された、測定対象のユーザの自律神経指標値を取得する(S11)。もし自律神経指標値が自律神経指標値の偏差値以外である場合、取得部12は、入力装置110に入力されたユーザの年齢を取得する。取得部12が取得するユーザの自律神経指標値は、ユーザが所定の作業をこれから行う場合、当該所定の作業を行う前に測定された自律神経指標値であってもよい。
所定の作業とは、どのような作業であってもよいが、例えば、学習、講義の受講、デスクワーク、会議、運転など、理解力、記憶力又は注意力を必要とするような作業を含む。また、取得部12が取得するユーザの自律神経指標値は、ユーザが所定の作業を既に開始している場合、ユーザが所定の作業を行っている間に測定される自律神経指標値であってもよい。
続いて、判定部13は、ユーザの自律神経指標値の値とユーザの年齢とに対応づけられている脳機能の働きの程度に関する情報を、脳機能情報から検索して取得することで、ユーザの脳機能の働きを判定する。判定部13が測定するユーザの脳機能の働きの程度は、脳機能が停滞しているか又は脳機能が活発であるのかの2段階で表現されていてもよいし、更に複数の段階で表現されてもよい。
続いて、出力部14は、判定結果を出力装置24に出力する(S13)。ここで、出力部14は、脳機能の働きの程度に関する情報をそのまま出力するようにしてもよいし、脳機能の働きの程度に関する情報に対応するメッセージを出力するようにしてもよい。例えば、出力部14は、脳機能の働きの程度に関する情報に応じて、「脳の働きが活発なようです。仕事をするなら今です」といったメッセージや、「注意力が低下している可能性がありますので油断しないようにしましょう」といったメッセージを出力することが考えられる。
<実験内容>
次に、同年齢の11人の被験者を対象に、図2に示す生体情報取得装置120を取り付けた状態でかな拾い試験(テスト)を受けてもらうことで、試験実施前後における自律神経指標値を取得し、かな拾い試験の成績と自律神経指標値とを比較する実験を行った。
被験者からの自律神経指標値の取得は、A:閉眼安静時(試験前)、B:開眼安静時(試験前)、C:かな拾い試験の実施時、D:内容確認試験の実施時、E:開眼安静時(試験終了後)のタイミングで行った。また、A〜Eは、それぞれ3分間ずつ測定を行った。
より詳細には、被験者の心拍数や自律神経の数値がある程度安定し、正常にパソコン上にデータが表示されるまで待機させた後、目を閉じて椅子に深く腰かけた状態で3分間生体情報を取得することで、閉眼安静時の自律神経指標値を取得した。次に、被験者が姿勢を変えずに目を開いた状態で3分間生体情報を取得することで、開眼安静時の自律神経機能を取得した。次に、かな拾い試験を開始し、試験中(3分間)の生体情報を取得することで、かな拾い試験時の自律神経指標値を取得した。続いて、かな拾い試験で出された文章の内容理解度を調べる試験を開始し、試験中(3分間)の間、被験者の生体情報を取得した。当該試験終了後、姿勢を変えずに目を開いた状態で3分間生体情報を取得することで、開眼安静時の自律神経指標値を取得した。
かな拾い試験とは、400字程度のひらがなで書かれている簡単な文章の中から、「あ」行の文字(大小どちらも)を見つけ出し、それに時間内(3分間)でできるだけ丸印で囲んでいくという試験である。かな拾い試験で高得点をとるためには注意力を要することから、かな拾い試験で高得点を取ることができるということは、注意力が高い状態にあると言うことができる。
また、内容理解度を調べる試験とは、かな拾い試験で出題された文章の内容に関する質問を、時間内(3分間)で回答する試験(10点満点)である。内容理解度を調べる試験で高得点をとるためには、かな拾い試験に出題された文章を覚える記憶力や文章に記載された内容を理解する理解力を要することから、内容理解度を調べる試験で高得点を取ることができるということは、記憶力及び/又は理解力が高い状態にあると言うことができる。
図4に、かな拾い試験で出される問題の一例を示す。また、図5に、内容理解度を調べる試験の一例を示す。
<実験結果>
実験により得られた、かな拾い試験の得点又は内容理解度の得点と自律神経指標値との相関関係の有無を図6〜図11に示す。図6〜図11において、上段の数値は相関係数(r値)を示しており、下段の数値は有意確率(p値)を示している。「r値<−0.2又は0.2<r値」かつ「p値<0.05」である場合、“かな拾い試験の得点又は内容理解度の得点”と、“自律神経指標値”と間に相関関係があるとみなすことができる。一方、「r値<−0.2又は0.2<r値」又は「0.05<p値」である場合、“かな拾い試験の得点又は内容理解度の得点”と、“自律神経指標値”と間に相関関係は無いとみなすことができる。図6〜図11において、相関関係があるとみなすことができる組み合わせについては、r値及びp値を点線枠で囲むようにした。
図6は、LogLFとかな拾い試験の得点との相関関係、及び、LogLFと内容確認試験の得点との相関関係を示している。図6に示す実験結果によれば、かな拾い試験の得点が高いほど、開眼安静時(試験前)のLogLFの値が高いという正の相関関係があることが分かる。また、かな拾い試験の得点が高いほど、内容確認試験の実施時のLogLFの値が高いという正の相関関係があることが分かる。また、かな拾い試験の得点が高いほど、開眼安静時(試験終了後)LogLFの値が高いという正の相関関係があることが分かる。
一方、かな拾い試験の得点と閉眼安静時(試験前)のLogLFの値との間、及びかな拾い試験の得点とかな拾い試験の実施時のLogLFの値との間には、相関関係はみられなかった。
また、図6によれば、内容確認試験の得点が高いほど、閉眼安静時(試験前)のLogLFの値が高いという正の相関関係があることが分かる。また、内容確認試験の得点が高いほど、開眼安静時(試験前)のLogLFの値が高いという正の相関関係があることが分かる。また、内容確認試験の得点が高いほど、かな拾い試験の実施時のLogLFの値が高いという正の相関関係があることが分かる。また、内容確認試験の得点が高いほど、内容確認試験実施時のLogLFの値が高いという正の相関関係があることが分かる。また、内容確認試験の得点が高いほど、開眼安静時(試験終了後)LogLFの値が高いという正の相関関係があることが分かる。
図7は、LogHFとかな拾い試験の得点との相関関係、及び、LogLFと内容確認試験の得点との相関関係を示している。図7に示す実験結果によれば、かな拾い試験の得点が高いほど、かな拾い試験の実施時のLogHFの値が低いという負の相関関係があることが分かる。一方、かな拾い試験の得点とその他のLogHFの値との間には、相関関係はみられなかった。また、内容確認試験の得点と、LogHFとの間には相関がみられなかった。
図8は、LogCCVRとかな拾い試験の得点との相関関係、及び、LogCCVRと内容確認試験の得点との相関関係を示している。図8に示す実験結果によれば、内容確認試験の得点が高いほど、かな拾い試験の実施時のLogCCVRの値が低いという負の相関関係があることが分かる。一方、かな拾い試験の得点とLogCCVRの値との間には、相関関係はみられなかった。また、内容確認試験の得点と、かな拾い試験の実施時以外のLogCCVRとの間には相関がみられなかった。
図9は、Log(LF/HF)とかな拾い試験の得点との相関関係、及び、Log(LF/HF)と内容確認試験の得点との相関関係を示している。図9に示す実験結果によれば、かな拾い試験の得点が高いほど、かな拾い試験の実施時のLog(LF/HF)の値が高いという正の相関関係があることが分かる。一方、かな拾い試験の得点とその他のLog(LF/HF)の値との間には、相関関係はみられなかった。また、内容確認試験の得点と、Log(LF/HF)との間には相関がみられなかった。
図10及び図11は、かな拾い試験実施前及び実施中における自律神経指標値の変化と、かな拾い試験の得点又は内容確認試験の得点との間の相関関係の有無を示す図である。
図10におけるLF値の変化は、かな拾い試験の実施時のLF値から閉眼安静時(試験前)のLF値を減算することで得られる変化量(ΔLF)である。図10によれば、かな拾い試験実施前及び実施中におけるLF値の変化と、内容確認試験の得点との間には、正の相関関係があることが分かる。
図11におけるHF値の変化は、かな拾い試験の実施時のHF値から閉眼安静時(試験前)のHF値を減算することで得られる変化量(ΔHF)である。図11によれば、かな拾い試験実施前及び実施中におけるHF値の変化と、内容確認試験の得点との間には、負の相関関係があることが分かる。
<実験結果のまとめ>
(注意力について)
以上説明した実験結果によれば、かな拾い試験の得点と相関関係が高い自律神経指標値は、開眼安静時(試験前)のLogLF、内容確認試験の実施時のLogLF、開眼安静時(試験終了後)LogLF、かな拾い試験の実施時のLogHF、かな拾い試験の実施時のLog(LF/HF)、かな拾い試験の実施時のHF値から閉眼安静時(試験前)のHF値を減算することで得られる変化量(ΔHF)であった。また、前述した通り、かな拾い試験の得点が高いということは、注意力が高い状態にあると言うことができる。
この実験結果を用いることで、判定部13は、脳機能の働きの程度として所定の作業を行う際の注意力の程度を判定する場合、ユーザが所定の作業を行う前(開眼安静時に相当)に測定された交感神経の働きを示す指標(LF又はLogLF)に基づいて、ユーザが所定の作業を行う際の所定の作業に関する注意力の程度を判定することができる。例えば、判定部13は、交感神経の働きを示す指標の値が所定の閾値未満である場合には、注意力が落ちていると判定し、所定の閾値以上である場合には、注意力が高い状態にあると判定するようにしてもよい。また出力部14は、ユーザが所定の作業を行う際の所定の作業に関する注意力の程度に関する情報を出力することができる。
また、判定部13は、脳機能の働きの程度として所定の作業を行う際の注意力の程度を判定する場合、ユーザが所定の作業を行っている間(かな拾い試験の実施時に相当)に測定された、副交感神経の働きを示す指標(HF又はLogHF)又は交感神経の働きと副交感神経の働きのバランスを示す指標(LF/HF又はLogLF/HF)に基づいて、ユーザが所定の作業を行う際の所定の作業に関する注意力の程度を判定することができる。例えば判定部13は、副交感神経の働きを示す指標の値又は交感神経の働きと副交感神経の働きのバランスを示す指標が所定の閾値未満である場合には、注意力が落ちていると判定し、所定の閾値以上である場合には、注意力が高い状態にあると判定するようにしてもよい。
また、判定部13は、脳機能の働きの程度として所定の作業を行う際の注意力の程度を判定する場合、ユーザが所定の作業を行っている間(かな拾い試験の実施時に相当)に測定された副交感神経の働きを示す指標と、ユーザが所定の作業を行う前(開眼安静時に相当)に測定された副交感神経の働きを示す指標との変化量(ΔHF又はΔLogHF)に基づいて、ユーザが所定の作業を行う際の所定の作業に関する注意力の程度を判定することができる。例えば、判定部13は、当該変化量が所定の閾値未満である場合には、注意力が落ちていると判定し、所定の閾値以上である場合には、注意力が高い状態にあると判定するようにしてもよい。
(理解力及び/又は記憶力について)
以上説明した実験結果によれば、内容確認試験の得点と相関関係が高い自律神経指標値は、閉眼安静時(試験前)のLogLF、開眼安静時(試験前)のLogLF、かな拾い試験の実施時のLogLF、内容確認試験の実施時のLogLF、開眼安静時(試験終了後)LogLF、かな拾い試験の実施時のLogCVRR、かな拾い試験の実施時のLF値から閉眼安静時(試験前)のLF値を減算することで得られる変化量(ΔLF)であった。また、前述した通り、内容理解度を調べる試験で高得点を取ることができるということは、記憶力及び/又は理解力が高い状態にあると言うことができる。
この実験結果を用いることで、判定部13は、脳機能の働きの程度として所定の作業を行う際の理解力及び/又は記憶力の程度を判定する場合、ユーザが所定の作業を行う前(閉眼安静時又は開眼安静時に相当)又は所定の作業を行っている間(かな拾い試験の実施時又は内容確認試験の実施時に相当)に測定された交感神経の働きを示す指標(LF又はLogLF)に基づいて、ユーザが所定の作業を行う際の所定の作業に関する理解力及び/又は記憶力の程度を判定することができる。また出力部14は、ユーザが所定の作業を行う際の所定の作業に関する理解力及び/又は記憶力の程度に関する情報を出力することができる。例えば、判定部13は、交感神経の働きを示す指標の値が所定の閾値未満である場合には、理解力及び/又は記憶力が落ちていると判定し、所定の閾値以上である場合には、理解力及び/又は記憶力が高い状態にあると判定するようにしてもよい。
また、判定部13は、脳機能の働きの程度として所定の作業を行う際の理解力及び/又は記憶力の程度を判定する場合、ユーザが所定の作業を行っている間(かな拾い試験の実施時に相当)に測定された自律神経活動量を示す指標(CVRR又はLogCVRR)に基づいて、ユーザが所定の作業を行う際の所定の作業に関する理解力及び/又は記憶力の程度を判定することができる。例えば、判定部13は、自律神経活動量の値が所定の閾値未満である場合には、理解力及び/又は記憶力が落ちていると判定し、所定の閾値以上である場合には、理解力及び/又は記憶力が高い状態にあると判定するようにしてもよい。
また、判定部13は、脳機能の働きの程度として所定の作業を行う際の理解力及び/又は記憶力の程度を判定する場合、ユーザが所定の作業を行っている間(かな拾い試験の実施時に相当)に測定された交感神経の働きを示す指標と、ユーザが所定の作業を行う前(閉眼安静時に相当)に測定された副交感神経の働きを示す指標との変化量(ΔLF又はΔLogLF)に基づいて、ユーザが所定の作業を行う際の所定の作業に関する理解力及び/又は記憶力の程度を判定することができる。例えば、判定部13は、当該変化量が所定の閾値未満である場合には、理解力及び/又は記憶力が落ちていると判定し、所定の閾値以上である場合には、理解力及び/又は記憶力が高い状態にあると判定するようにしてもよい。
<変形例>
生体情報取得装置120には、ユーザの生体情報を取得できるものであれば、図2に示す超軽量ワイヤレス生体センサーに限定されない。例えば、ユーザを正面方向から撮影した映像を分析し、顔の表面の色の微細な変化を捉えることで、ユーザの脈拍データを取得することが可能な生体情報取得装置120であってもよい。又は、ユーザの首に取り付けられたセンサを用いて、ユーザの脈拍データを取得することが可能な生体情報取得装置120であってもよい。前者の生体情報取得装置120に本実施形態で説明した技術を適用することで、例えば、ノートパソコン、スマートフォン又はタブレット端末が備える前面カメラを用いて、ノートパソコン、スマートフォン又はタブレット端末を用いて所定の作業を行うユーザの映像を撮影することで、当該ユーザが所定の作業を行う際の理解力、記憶力及び/又は注意力を評価することも可能になる。
<まとめ>
以上説明した実施形態によれば、ユーザの自律神経機能に関する指標を用いてユーザの脳機能の状態を評価することが可能になる。また、ユーザの身体から測定した生体情報を用いてユーザの脳機能の状態を判定することから、ユーザの主観に影響されず、より客観的な判定を行うことが可能になる。
以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
10…プロセッサ、11…算出部、12…取得部、13…判定部、14…出力部、20…記憶装置、21…記憶部、24…出力装置、100…情報処理システム、110…入力装置、120…生体情報取得装置、130…判定装置、140…出力装置

Claims (11)

  1. 自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報を格納する記憶部と、
    測定対象のユーザの自律神経指標値を取得する取得部と、
    前記取得部で取得された前記ユーザの自律神経指標値と前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定する判定部と、
    前記判定部で判定された、前記ユーザの脳機能の働きの程度に関する情報を出力する出力部と、
    を有し、
    前記脳機能の働きの程度は、前記ユーザが所定の作業を行う際の理解力及び/又は記憶力の程度であり、
    前記自律神経指標値は、前記ユーザが前記所定の作業を行っている間に測定された、交感神経の働きを示す指標であり、
    前記判定部は、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する理解力及び/又は記憶力の程度を判定し、
    前記出力部は、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する理解力及び/又は記憶力の程度に関する情報を出力する、
    情報処理装置。
  2. 自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報を格納する記憶部と、
    測定対象のユーザの自律神経指標値を取得する取得部と、
    前記取得部で取得された前記ユーザの自律神経指標値と前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定する判定部と、
    前記判定部で判定された、前記ユーザの脳機能の働きの程度に関する情報を出力する出力部と、
    を有し、
    前記脳機能の働きの程度は、前記ユーザが所定の作業を行う際の注意力の程度であり、
    前記自律神経指標値は、前記ユーザが前記所定の作業を行っている間に測定された、副交感神経の働きを示す指標又は交感神経の働きと副交感神経の働きのバランスを示す指標であり、
    前記判定部は、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する注意力の程度を判定し、
    前記出力部は、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する注意力の程度に関する情報を出力する、
    情報処理装置。
  3. 自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報を格納する記憶部と、
    測定対象のユーザの自律神経指標値を取得する取得部と、
    前記取得部で取得された前記ユーザの自律神経指標値と前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定する判定部と、
    前記判定部で判定された、前記ユーザの脳機能の働きの程度に関する情報を出力する出力部と、
    を有し、
    前記脳機能情報は、自律神経指標値の偏差値と脳機能の働きの程度との関係が格納されており、
    前記取得部は、前記ユーザの生体情報と前記ユーザの年齢とに基づいて算出された前記ユーザの自律神経指標値の偏差値を取得し、
    前記判定部は、前記取得部で取得された前記ユーザの自律神経指標値の偏差値と、前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定する、
    情報処理装置。
  4. 前記脳機能情報は、複数の被験者から得られた自律神経指標値と、前記複数の被験者から得られた脳機能の働きを測定するテストの結果と、を統計分析することで生成された情報である、
    請求項1〜3のいずれか一項に記載の情報処理装置。
  5. 前記脳機能情報は、自律神経指標値と脳機能の働きの程度との関係が年齢別に格納されており、
    前記取得部は、前記ユーザの年齢を取得し、
    前記判定部は、前記取得部で取得された前記ユーザの自律神経指標値と、前記ユーザの年齢と、前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定する、
    請求項1〜4のいずれか一項に記載の情報処理装置。
  6. 情報処理装置が行う情報処理方法であって、
    測定対象のユーザの自律神経指標値を取得するステップと、
    前記取得するステップで取得された前記ユーザの自律神経指標値と、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定するステップと、
    前記判定するステップで判定された、前記ユーザの脳機能の働きの程度に関する情報を出力するステップと、を含み、
    前記脳機能の働きの程度は、前記ユーザが所定の作業を行う際の理解力及び/又は記憶力の程度であり、
    前記自律神経指標値は、前記ユーザが前記所定の作業を行っている間に測定された、交感神経の働きを示す指標であり、
    前記判定するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する理解力及び/又は記憶力の程度を判定し、
    前記出力するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する理解力及び/又は記憶力の程度に関する情報を出力する、
    情報処理方法。
  7. 情報処理装置が行う情報処理方法であって、
    測定対象のユーザの自律神経指標値を取得するステップと、
    前記取得するステップで取得された前記ユーザの自律神経指標値と、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定するステップと、
    前記判定するステップで判定された、前記ユーザの脳機能の働きの程度に関する情報を出力するステップと、を含み、
    前記脳機能の働きの程度は、前記ユーザが所定の作業を行う際の注意力の程度であり、
    前記自律神経指標値は、前記ユーザが前記所定の作業を行っている間に測定された、副交感神経の働きを示す指標又は交感神経の働きと副交感神経の働きのバランスを示す指標であり、
    前記判定するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する注意力の程度を判定し、
    前記出力するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する注意力の程度に関する情報を出力する、
    情報処理方法。
  8. 情報処理装置が行う情報処理方法であって、
    測定対象のユーザの自律神経指標値を取得するステップと、
    前記取得するステップで取得された前記ユーザの自律神経指標値と、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定するステップと、
    前記判定するステップで判定された、前記ユーザの脳機能の働きの程度に関する情報を出力するステップと、を含み、
    前記脳機能情報は、自律神経指標値の偏差値と脳機能の働きの程度との関係が格納されており、
    前記取得するステップは、前記ユーザの生体情報と前記ユーザの年齢とに基づいて算出された前記ユーザの自律神経指標値の偏差値を取得し、
    前記判定するステップは、前記取得するステップで取得された前記ユーザの自律神経指標値の偏差値と、前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定する、
    情報処理方法。
  9. コンピュータに、
    測定対象のユーザの自律神経指標値を取得するステップと、
    前記取得するステップで取得された前記ユーザの自律神経指標値と、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定するステップと、
    前記判定するステップで判定された、前記ユーザの脳機能の働きの程度に関する情報を出力するステップと、
    を実行させ、
    前記脳機能の働きの程度は、前記ユーザが所定の作業を行う際の理解力及び/又は記憶力の程度であり、
    前記自律神経指標値は、前記ユーザが前記所定の作業を行っている間に測定された、交感神経の働きを示す指標であり、
    前記判定するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する理解力及び/又は記憶力の程度を判定させ、
    前記出力するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する理解力及び/又は記憶力の程度に関する情報を出力させる、
    プログラム。
  10. コンピュータに、
    測定対象のユーザの自律神経指標値を取得するステップと、
    前記取得するステップで取得された前記ユーザの自律神経指標値と、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定するステップと、
    前記判定するステップで判定された、前記ユーザの脳機能の働きの程度に関する情報を出力するステップと、
    を実行させ、
    前記脳機能の働きの程度は、前記ユーザが所定の作業を行う際の注意力の程度であり、
    前記自律神経指標値は、前記ユーザが前記所定の作業を行っている間に測定された、副交感神経の働きを示す指標又は交感神経の働きと副交感神経の働きのバランスを示す指標であり、
    前記判定するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する注意力の程度を判定させ、
    前記出力するステップは、前記ユーザが前記所定の作業を行う際の前記所定の作業に関する注意力の程度に関する情報を出力させる、
    プログラム。
  11. コンピュータに、
    測定対象のユーザの自律神経指標値を取得するステップと、
    前記取得するステップで取得された前記ユーザの自律神経指標値と、自律神経指標値と脳機能の働きの程度との関係を表す脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定するステップと、
    前記判定するステップで判定された、前記ユーザの脳機能の働きの程度に関する情報を出力するステップと、
    を実行させ、
    前記脳機能情報は、自律神経指標値の偏差値と脳機能の働きの程度との関係が格納されており、
    前記取得するステップは、前記ユーザの生体情報と前記ユーザの年齢とに基づいて算出された前記ユーザの自律神経指標値の偏差値を取得させ、
    前記判定するステップは、前記取得するステップで取得された前記ユーザの自律神経指標値の偏差値と、前記脳機能情報とを比較して、前記ユーザの脳機能の働きの程度を判定させる、
    プログラム。
JP2019117207A 2019-06-25 2019-06-25 情報処理装置、情報処理方法及びプログラム Active JP6670413B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019117207A JP6670413B1 (ja) 2019-06-25 2019-06-25 情報処理装置、情報処理方法及びプログラム
PCT/JP2019/050617 WO2020261613A1 (ja) 2019-06-25 2019-12-24 情報処理装置、情報処理方法及びプログラム
CN201980092257.5A CN113438926A (zh) 2019-06-25 2019-12-24 一种信息处理装置、信息处理方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117207A JP6670413B1 (ja) 2019-06-25 2019-06-25 情報処理装置、情報処理方法及びプログラム

Publications (2)

Publication Number Publication Date
JP6670413B1 true JP6670413B1 (ja) 2020-03-18
JP2021003180A JP2021003180A (ja) 2021-01-14

Family

ID=70000749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117207A Active JP6670413B1 (ja) 2019-06-25 2019-06-25 情報処理装置、情報処理方法及びプログラム

Country Status (3)

Country Link
JP (1) JP6670413B1 (ja)
CN (1) CN113438926A (ja)
WO (1) WO2020261613A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253509A (ja) * 2000-12-28 2002-09-10 Matsushita Electric Works Ltd 脳機能検査方法とその装置、脳機能検査システム、脳機能検査サービス方法及びそのプログラムと装置
JP2005305013A (ja) * 2004-04-26 2005-11-04 Pola Chem Ind Inc 生体刺激療法による効果の鑑別装置
WO2007077867A1 (ja) * 2005-12-28 2007-07-12 National University Corporation Nagoya University 運転行動推定装置、運転支援装置、車両評価システム、ドライバモデル作成装置、及び運転行動判定装置
JP5167156B2 (ja) * 2009-01-19 2013-03-21 株式会社デンソー 生体状態評価装置、生体状態評価システム、プログラム、及び記録媒体
JP5209545B2 (ja) * 2009-03-09 2013-06-12 株式会社デンソー 生体検査装置、プログラム、及び記録媒体
EP3015067B1 (en) * 2013-06-28 2022-08-03 Murata Manufacturing Co., Ltd. Biological state-estimating device
CN105852807A (zh) * 2016-03-25 2016-08-17 中山大学 一种无监督式自主神经功能量化评估方法
JP6550440B2 (ja) * 2017-03-13 2019-07-24 株式会社疲労科学研究所 自律神経評価装置、自律神経評価方法、プログラム及び記録媒体
CN108209902B (zh) * 2017-05-25 2020-09-22 深圳市未来健身科技有限公司 运动员竞技状态评估方法及系统
US20210161482A1 (en) * 2017-07-28 2021-06-03 Sony Corporation Information processing device, information processing method, and computer program
WO2019049529A1 (ja) * 2017-09-05 2019-03-14 コニカミノルタ株式会社 状態監視システムおよび状態監視方法
CN108186034B (zh) * 2018-02-01 2023-04-07 福建工程学院 一种驾驶员疲劳检测装置及工作方法

Also Published As

Publication number Publication date
CN113438926A (zh) 2021-09-24
JP2021003180A (ja) 2021-01-14
WO2020261613A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
US10993651B2 (en) Exercise guidance method and exercise guidance device
EP2698112B1 (en) Real-time stress determination of an individual
JP6191242B2 (ja) 集中度推定装置
JP6122884B2 (ja) 作業覚醒度推定装置、方法およびプログラム
US10325066B2 (en) System for mental health clinical application
CN106256312B (zh) 认知功能障碍评价装置
US10390722B2 (en) Method for quantifying the perceptive faculty of a person
Gunawardhane et al. Non invasive human stress detection using key stroke dynamics and pattern variations
US20190209069A1 (en) Vestibular testing
JP2016163698A (ja) 精神状態判定方法及び精神状態判定プログラム
JP2019030389A (ja) 自律神経状態評価装置、自律神経状態評価システム、自律神経状態評価方法及びプログラム
CN114246589A (zh) 记忆认知能力测评方法及系统
WO2017037487A1 (en) Method for detecting parkinson's disease in a user using data input keyboard of an electronic device
KR20170130207A (ko) 시청각 콘텐츠와 생체신호 분석을 활용한 정신증상 평가 시스템
CN113647950A (zh) 心理情绪检测方法及系统
WO2019189678A1 (ja) 疲労判定装置、疲労判定方法及びプログラム
JP6670413B1 (ja) 情報処理装置、情報処理方法及びプログラム
JP2019072371A (ja) システム及び意思疎通を図るために行うアクションの評価方法
US10799139B2 (en) Method and system for EEG signal processing
WO2021005598A1 (en) Test protocol for detecting significant psychophysiological response
JP2017018420A (ja) 耳鳴患者判別システム、耳鳴患者判別方法および耳鳴患者判別プログラム
JP2017074215A (ja) 脳年齢提示装置
JP3724524B2 (ja) 眼球制御系情報検出装置および眼球制御系の解析方法
CN112515688A (zh) 专注力自动侦测方法和系统
CN110693509A (zh) 一种案件相关性确定方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190826

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250