JP6663601B2 - Backfill structure of galvanic anode and method for producing the same - Google Patents

Backfill structure of galvanic anode and method for producing the same Download PDF

Info

Publication number
JP6663601B2
JP6663601B2 JP2016070692A JP2016070692A JP6663601B2 JP 6663601 B2 JP6663601 B2 JP 6663601B2 JP 2016070692 A JP2016070692 A JP 2016070692A JP 2016070692 A JP2016070692 A JP 2016070692A JP 6663601 B2 JP6663601 B2 JP 6663601B2
Authority
JP
Japan
Prior art keywords
anode
electrolyte solution
backfill
retaining member
galvanic anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016070692A
Other languages
Japanese (ja)
Other versions
JP2017181363A (en
Inventor
知繁 鴨谷
知繁 鴨谷
浩司 石井
浩司 石井
Original Assignee
株式会社ピーエス三菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーエス三菱 filed Critical 株式会社ピーエス三菱
Priority to JP2016070692A priority Critical patent/JP6663601B2/en
Publication of JP2017181363A publication Critical patent/JP2017181363A/en
Application granted granted Critical
Publication of JP6663601B2 publication Critical patent/JP6663601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、電気防食に使用される流電陽極のバックフィル構造及びその生成方法に関する。   The present invention relates to a backfill structure of a galvanic anode used for cathodic protection and a method for producing the same.

鉄筋コンクリート造の構造物においては、コンクリートの中性化、コンクリートの材料に含まれる塩分、外部からの飛来塩分や凍結防止材等の影響(塩害)によって内部鉄筋が腐食し、コンクリートの劣化を招く場合がある。   In the case of reinforced concrete structures, the internal reinforcing steel is corroded due to the neutralization of the concrete, the salt content of the concrete material, the salt coming from outside, the effect of antifreezing materials, etc. (salt damage), leading to deterioration of the concrete. There is.

そこで、このような鉄筋の腐食対策には、鉄筋に比べて酸化還元電位の低い亜鉛、アルミニウム等からなる流電陽極をコンクリート面又はコンクリート内部に設置するとともに、この流電陽極と鉄筋等の内部鋼材とを電気的に接続し、流電陽極と内部鋼材との間に電位差を生じさせ、内部鋼材に防食電流を供給することで内部鋼材の腐食を防止・抑制するようにした腐食抑制構造が知られている(例えば、特許文献1を参照)。   Therefore, in order to prevent such corrosion of reinforcing steel, a galvanic anode made of zinc, aluminum, etc., which has a lower oxidation-reduction potential than a reinforcing steel, is installed on the concrete surface or inside the concrete, and the galvanic anode and the inside of the reinforcing steel are used. A corrosion suppression structure that electrically connects steel and generates a potential difference between the galvanic anode and the internal steel, and supplies anticorrosion current to the internal steel to prevent and control corrosion of the internal steel It is known (see, for example, Patent Document 1).

また、この種の腐食抑制構造では、多孔質材からなる保液部材に電解質溶液を含浸させてなるバックフィルを備え、このバックフィルで流電陽極を囲み、流電陽極とコンクリートとの隙間を埋めるとともに、電解質溶液によって流電陽極の電極電位を安定化させ、流電陽極の局部的溶解を防止するようにしたものも知られている(例えば、特許文献1を参照)。   In addition, this type of corrosion suppression structure includes a backfill formed by impregnating a liquid retaining member made of a porous material with an electrolyte solution, surrounds the galvanic anode with the backfill, and fills a gap between the galvanic anode and concrete. There is also known a method in which the electrode potential of the galvanic anode is stabilized by an electrolyte solution to prevent local dissolution of the galvanic anode (for example, see Patent Document 1).

この腐食抑制構造では、亜鉛原子等の陽極原子が電解質溶液中のNaイオン(又はLiイオン)一つと、OHイオン4つと錯イオンを形成し、電解質溶液に溶出することにより、陽極の電極電位を安定化させている。   In this corrosion suppression structure, an anode atom such as a zinc atom forms a complex ion with one Na ion (or Li ion) and four OH ions in the electrolyte solution and elutes into the electrolyte solution, thereby increasing the electrode potential of the anode. Has stabilized.

また、陽極に不動態被膜が形成されると防食効果が低下するが、このような陽極の不動態化を抑制するためには、水酸化ナトリウム(NaOH)や水酸化リチウム(LiOH)等の電解質溶液の使用が効果的であることが知られ、また、不動態化抑制においては、電解質溶液のpHが高いこと、例えば亜鉛陽極の場合、pH13.3以上であることが望ましく、さらには、導入初期のpHが高いこと、例えば、13.5〜14.0以上であると陽極の耐久性が向上することも知られている。   Further, when a passivation film is formed on the anode, the anticorrosion effect is reduced. However, in order to suppress such passivation of the anode, an electrolyte such as sodium hydroxide (NaOH) or lithium hydroxide (LiOH) is used. It is known that the use of a solution is effective, and in suppressing passivation, it is desirable that the pH of the electrolyte solution is high, for example, in the case of a zinc anode, the pH is 13.3 or more. It is also known that when the initial pH is high, for example, when it is 13.5 to 14.0 or more, the durability of the anode is improved.

特許3099830号公報Japanese Patent No. 3099830

しかしながら、上述の如き従来の技術では、保液部材に含浸可能な電解質溶液の体積に限りがあるとともに、陽極原子が電解質溶液に溶出するためには錯イオンを形成する必要があり、その際にOHイオンを4つ消費するため、経年的に電解質溶液中のOHイオンが減少し、それに伴い流電陽極の性能が低下するという問題があった。   However, in the conventional techniques as described above, the volume of the electrolyte solution that can be impregnated into the liquid retaining member is limited, and it is necessary to form complex ions in order for the anode atoms to elute into the electrolyte solution. Since four OH ions are consumed, there has been a problem that the OH ions in the electrolyte solution decrease over time, and the performance of the galvanic anode decreases accordingly.

そこで、本発明は、このような従来の問題に鑑み、流電陽極の長寿命化を図ることができる流電陽極のバックフィル構造及びそれに使用するバックフィルの生成方法の提供を目的としてなされたものである。   In view of such a conventional problem, the present invention has been made with the object of providing a backfill structure of a galvanic anode capable of extending the life of the galvanic anode and a method of generating a backfill used therein. Things.

上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、流電陽極を覆う多孔質材料からなる保液部材と、該保液部材に保液させた電解質溶液とを備えている流電陽極のバックフィル構造において、前記保液部材には、前記電解質溶液の溶解度を超える量の粉体状の陽極不動態化抑制材が含有されている流電陽極のバックフィル構造にある。   The feature of the invention according to claim 1 for solving the conventional problem as described above is that a liquid retaining member made of a porous material covering the galvanic anode and an electrolyte solution retained in the liquid retaining member are provided. In the backfill structure of a galvanic anode provided, the liquid retaining member contains a powdery anode passivation suppressing material in an amount exceeding the solubility of the electrolyte solution. It is in.

請求項2に記載の発明の特徴は、請求項1に記載の流電陽極のバックフィル構造に使用するバックフィルの生成方法であって、微細粒子状の多孔質材料に粉体状の陽極不動態化抑制材を加え、それに水を加えて混錬することにより、前記多孔質材に電解質溶液を保液させるとともに、前記電解質溶液の溶解度を超えた分の前記陽極不動態化抑制材を固体の状態で含有させることにある。   A feature of the present invention according to claim 2 is the method for producing a backfill used in the backfill structure of a galvanic anode according to claim 1, wherein the powdery anode material is added to the fine particulate porous material. A passivation inhibitor is added, water is added to the mixture, and the mixture is kneaded to retain the electrolyte solution in the porous material, and the anode passivation inhibitor in excess of the solubility of the electrolyte solution is solidified. In the state described above.

本発明に係る流電陽極のバックフィル構造は、上述したように、流電陽極を覆う多孔質材料からなる保液部材と、該保液部材に保液させた電解質溶液とを備えている流電陽極のバックフィル構造において、前記保液部材には、前記電解質溶液の溶解度を超える量の粉体状の陽極不動態化抑制材が含有されていることにより、時間が経過し、電気改質溶液中の水酸化イオンが減少しても、保液部材中に含有された陽極不動態化抑制部材が溶液中に溶出することで水酸化イオンが供給されるので、流電陽極の耐久性を向上させることができる。   As described above, the backfill structure of a galvanic anode according to the present invention includes a liquid retaining member made of a porous material covering the galvanic anode, and an electrolyte solution retained in the liquid retaining member. In the backfill structure of the electroanode, the liquid retaining member contains a powdery anode passivation inhibitor in an amount exceeding the solubility of the electrolyte solution, so that time elapses, and Even if the amount of hydroxide ions in the solution decreases, hydroxide ions are supplied by the elution of the anode passivation suppressing member contained in the liquid retaining member into the solution, so that the durability of the galvanic anode is improved. Can be improved.

また、本発明において、微細粒子状の多孔質材料に粉体状の陽極不動態化抑制材を加え、それに水を加えて混錬することにより、前記多孔質材に電解質溶液を保液させるとともに、前記電解質溶液の溶解度を超えた分の前記陽極不動態化抑制材を固体の状態で含有させることにより、粉体状の陽極不動態化抑制材を保液部材に均等に分散した状態で含有させることができる。   In the present invention, the powdery anode passivation inhibitor is added to the fine-particle porous material, and water is added to the mixture, followed by mixing and kneading, thereby keeping the electrolyte solution in the porous material. By containing the anode passivation inhibitor in a solid state in an amount exceeding the solubility of the electrolyte solution, the powder anode passivation inhibitor is contained in a state of being uniformly dispersed in the liquid retaining member. Can be done.

本発明に係る流電陽極のバックフィル構造を使用した電気腐食抑制方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the electrical corrosion suppression method using the backfill structure of the galvanic anode which concerns on this invention. 同上の試験で本願発明に係るバックフィル構造と従来例とにおける通電時間に対するオフ電位を比較したグラフである。4 is a graph comparing the off-potential with respect to the energizing time in the backfill structure according to the present invention and the conventional example in the same test. 同上の試験で本願発明に係るバックフィル構造と従来例とにおける通電時間に対するオフ電位を比較したグラフである。4 is a graph comparing the off-potential with respect to the energizing time in the backfill structure according to the present invention and the conventional example in the same test.

次に、本発明に係る流電陽極のバックフィル構造の実施態様を図1〜図3に示した実施例に基づいて説明する。   Next, an embodiment of the backfill structure of the galvanic anode according to the present invention will be described based on the embodiment shown in FIGS.

図1は、本発明に係るバックフィル構造を使用した電気腐食抑制方法の一例を示し、コンクリート1内に設置された流電陽極2と鉄筋等の内部鋼材3とを電気的に接続し、流電陽極2と内部鋼材3との電位差を利用して内部鋼材3に防食電流を供給し、内部鋼材3の腐食を抑制するようになっている。   FIG. 1 shows an example of a method for suppressing electric corrosion using a backfill structure according to the present invention, in which a galvanic anode 2 installed in concrete 1 is electrically connected to an internal steel material 3 such as a reinforcing bar. An anticorrosion current is supplied to the internal steel material 3 by utilizing a potential difference between the electroanode 2 and the internal steel material 3 to suppress corrosion of the internal steel material 3.

バックフィル構造4は、流電陽極2を囲む保液部材5と、保液部材5に含浸された電解質溶液とを備え、保液部材5に含浸された電解質溶液が流電陽極2と接していることで、流電陽極2に腐蝕を起こさせるとともに、流電陽極2上に不動態皮膜が生成されるのを抑制するようになっている。   The backfill structure 4 includes a liquid retaining member 5 surrounding the galvanic anode 2 and an electrolyte solution impregnated in the liquid retaining member 5, and the electrolyte solution impregnated in the liquid retaining member 5 contacts the galvanic anode 2. This causes the galvanic anode 2 to corrode and suppresses the formation of a passive film on the galvanic anode 2.

流電陽極2は、鉄筋等の内部鋼材3に対して酸化還元電位が低い亜鉛、アルミニウム等の金属で形成され、リード線6等を介して鉄筋等の内部鋼材3に電気的に接続されるようになっている。   The galvanic anode 2 is formed of a metal such as zinc or aluminum having a low oxidation-reduction potential with respect to the internal steel material 3 such as a reinforcing bar, and is electrically connected to the internal steel material 3 such as a reinforcing bar via a lead wire 6 or the like. It has become.

電解質溶液は、pH13.5以上に調整された水酸化ナトリウム溶液、水酸化リチウム溶液等であって、流電陽極2の不動態化を抑制する効果を有する電解質を水等の溶媒に溶解させた溶液となっている。   The electrolyte solution is a sodium hydroxide solution, a lithium hydroxide solution or the like adjusted to a pH of 13.5 or more, and an electrolyte having an effect of suppressing passivation of the galvanic anode 2 is dissolved in a solvent such as water. It is a solution.

保液部材5は、セメントモルタル、ベントナイト、石膏等の多孔質材によって構成され、間隙に水溶液が含浸保液できるようになっている。   The liquid retaining member 5 is made of a porous material such as cement mortar, bentonite, gypsum, etc., so that the aqueous solution can be impregnated and retained in the gaps.

尚、多孔質材は、上記に挙げた例に限定されず、多孔質で電解質溶液を含浸・保液できるものであればよく、例えば、フェノール連続発砲樹脂等で構成してもよい。   The porous material is not limited to the examples described above, and may be any material that is porous and can impregnate and retain an electrolyte solution, and may be made of, for example, a phenol continuous foaming resin.

また、この保液部材5には、電解質溶液の溶解度を超える量の粉体状(固体)の水酸化ナトリウム、水酸化リチウム等の電解質溶液に使用される電解質と同様の電解質からなる陽極不動態化抑制材7,7...が均等に分散した状態で含有されている。   The liquid retaining member 5 has an anode passivation made of an electrolyte similar to the electrolyte used in the electrolyte solution such as powdery (solid) sodium hydroxide and lithium hydroxide in an amount exceeding the solubility of the electrolyte solution. Are contained in an evenly dispersed state.

このバックフィルを生成するには、所定量の微粒子状の多孔質材に所定量の粉体状の陽極不動態化抑制材7,7...を加え、それに水を加えて混錬することにより、多孔質材が一定の保形性を発揮するとともに、多孔質材料の間隙に保液された水に陽極動態化抑制材7が溶け出して電解質溶液を成し、その溶解度を超えた分の陽極不動態化抑制材7,7...を固体の状態で均等に分散して含有させる。   In order to generate this backfill, a predetermined amount of a powdery anode passivation inhibitor 7, 7,... Is added to a predetermined amount of a particulate porous material, and water is added thereto and kneaded. As a result, the porous material exhibits a certain shape-retaining property, and the anode activating agent 7 dissolves in water retained in the gaps between the porous materials to form an electrolyte solution. Are uniformly dispersed and contained in a solid state.

そして、多孔質材料からなる保液部材を成形し、その状態で養生して多孔質材料を硬化させた後、必要に応じて電解質溶液を含浸させ、電解質濃度及びpHを調整する。   Then, a liquid retaining member made of a porous material is molded, cured in that state, and cured, and then impregnated with an electrolyte solution as necessary to adjust the electrolyte concentration and pH.

このように構成されたバックフィル構造4では、初期段階において保液部材5に電解質溶液の溶解度以上の量の陽極不動態化抑制材7,7...が保液部材5に含有されているので、電解質溶液は、一定以上の電解質が溶解できない状態、即ち、飽和した状態となり、溶解度以上の量の陽極不動態化抑制材7,7...は溶液に溶出することができずに、保液部材5にイオン結晶の状態で保持される。   In the backfill structure 4 configured as described above, the liquid retaining member 5 contains an amount of the anode passivation suppressing materials 7, 7,... Therefore, the electrolyte solution is in a state in which more than a certain amount of electrolyte cannot be dissolved, that is, in a saturated state, and the anode passivation suppressing material 7, 7,... The liquid is held in the liquid retaining member 5 in an ionic crystal state.

次に、流電陽極2と鉄筋等の内部鋼材3とが電気的に接続されて腐食抑制回路が形成されると、陽極原子がナトリウムイオン等の陽イオン1つ及び水酸化イオン4つと錯イオンを形成して溶液中に溶出し、時間が経過するにつれて電解質溶液中の水酸化イオンが減少していく。   Next, when the galvanic anode 2 and the internal steel material 3 such as a reinforcing bar are electrically connected to form a corrosion suppression circuit, the anode atom becomes one cation such as a sodium ion and four hydroxide ions and a complex ion. Is formed and eluted into the solution, and as time passes, hydroxide ions in the electrolyte solution decrease.

一方、保液部材5には、イオン結晶の状態で陽極不動態化抑制材7,7...が含有されているので、水酸化イオンの減少に伴い陽極不動態化抑制材7,7...が電解質溶液中に溶出し、水酸化イオンが供給され、電解質溶液中の陽極不動態化抑制材濃度が長期的に一定に保たれる。   On the other hand, since the liquid retaining member 5 contains the anode passivation suppressing materials 7, 7,... In the state of ionic crystals, the anode passivation suppressing materials 7, 7,. Are eluted into the electrolyte solution, hydroxide ions are supplied, and the concentration of the anode passivation inhibitor in the electrolyte solution is kept constant for a long time.

尚、図2、図3は、流電陽極2に通電させた際の通電開始からの経過日数と流電陽極(亜鉛)のオフ電及びインスタントオフ電位との関係を比較したグラフである。   FIGS. 2 and 3 are graphs comparing the relationship between the number of days elapsed from the start of energization when the current-carrying anode 2 is energized and the off-current and instant-off potential of the current-carrying anode (zinc).

従来のバックフィル構造を用いた場合では、図3、図4に示すように、通電開始後間もなくオフ電位及びインスタントオフ電位が急激に上昇するのに対し、本願発明に係るバックフィル構造4では、長期間にわたってオフ電位及びインスタントオフ電位の急激な増大が抑えられ、安定した状態を保つことができる。   In the case of using the conventional backfill structure, as shown in FIGS. 3 and 4, the off-potential and the instant-off potential sharply increase shortly after the start of energization, whereas the backfill structure 4 according to the present invention has A rapid increase in the off-potential and the instant-off potential over a long period can be suppressed, and a stable state can be maintained.

尚、上述の実施例では、本発明に係るバックフィル構造をコンクリート構造体の内部鋼材の防食に適用した例について説明したが、内部鋼材は鉄筋に限定されず、例えば、PC鋼線等であってもよく、また、被防食対象の外部に取り付けられる流電陽極用のバックフィルにも適用することができる。   Note that, in the above-described embodiment, an example in which the backfill structure according to the present invention is applied to corrosion prevention of the internal steel material of a concrete structure has been described. However, the internal steel material is not limited to a reinforcing bar, and may be, for example, a PC steel wire or the like. Alternatively, the present invention can be applied to a backfill for a galvanic anode attached to the outside of a target to be protected.

1 コンクリート
2 流電陽極
3 内部鋼材
4 バックフィル構造
5 保液部材
6 リード線
7 陽極不動態化抑制材
DESCRIPTION OF SYMBOLS 1 Concrete 2 Galvanic anode 3 Inner steel material 4 Backfill structure 5 Liquid retention member 6 Lead wire 7 Anode passivation suppressing material

Claims (2)

流電陽極を覆う多孔質材料からなる保液部材と、該保液部材に保液させた電解質溶液とを備えている流電陽極のバックフィル構造において、
前記保液部材には、前記電解質溶液の溶解度を超える量の粉体状の陽極不動態化抑制材が含有されていることを特徴とする流電陽極のバックフィル構造。
In the backfill structure of the flowing anode comprising a liquid retaining member made of a porous material covering the galvanic anode and an electrolyte solution retained in the liquid retaining member,
The backfill structure of a galvanic anode, wherein the liquid retaining member contains a powdery anode passivation inhibitor in an amount exceeding the solubility of the electrolyte solution.
請求項1に記載の流電陽極のバックフィル構造に使用するバックフィルの生成方法であって、
微細粒子状の多孔質材料に粉体状の陽極不動態化抑制材を加え、それに水を加えて混錬することにより、前記多孔質材に電解質溶液を保液させるとともに、前記電解質溶液の溶解度を超えた分の前記陽極不動態化抑制材を固体の状態で含有させることを特徴とするバックフィルの生成方法。
A method for generating a backfill used in the backfill structure of the galvano anode according to claim 1,
A powdery anode passivation inhibitor is added to the fine-particled porous material, and water is added thereto and kneaded to keep the electrolyte solution in the porous material and to dissolve the electrolyte solution. A method for producing a backfill, comprising: adding a part of the anode passivation inhibitor in a solid state, the amount of which exceeds the limit.
JP2016070692A 2016-03-31 2016-03-31 Backfill structure of galvanic anode and method for producing the same Active JP6663601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070692A JP6663601B2 (en) 2016-03-31 2016-03-31 Backfill structure of galvanic anode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070692A JP6663601B2 (en) 2016-03-31 2016-03-31 Backfill structure of galvanic anode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017181363A JP2017181363A (en) 2017-10-05
JP6663601B2 true JP6663601B2 (en) 2020-03-13

Family

ID=60004473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070692A Active JP6663601B2 (en) 2016-03-31 2016-03-31 Backfill structure of galvanic anode and method for producing the same

Country Status (1)

Country Link
JP (1) JP6663601B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129262A (en) * 2001-10-23 2003-05-08 Kajima Corp Electric protection part for corrosion prevention of concrete steel material
JP5437045B2 (en) * 2009-12-16 2014-03-12 電気化学工業株式会社 Control method of composite deterioration of reinforced concrete
US20140202879A1 (en) * 2013-01-24 2014-07-24 The Euclid Chemical Company Anode assembly for cathodic protection
JP5941022B2 (en) * 2013-08-20 2016-06-29 株式会社ナカボーテック Reference electrode
JP6117662B2 (en) * 2013-09-19 2017-04-19 積水化成品工業株式会社 Method of cathodic protection for concrete structures
JP6325908B2 (en) * 2014-06-13 2018-05-16 デンカ株式会社 External sacrificial anode material.

Also Published As

Publication number Publication date
JP2017181363A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
DK1861522T3 (en) Processing process for concrete.
US7749362B2 (en) Protection of reinforcement
RU2544330C2 (en) Anti-corrosion protection of steel in concrete
US8337677B2 (en) Sacrificial anode and backfill
JP2002536544A5 (en)
KR101381053B1 (en) Treatment process for concrete
JP6663601B2 (en) Backfill structure of galvanic anode and method for producing the same
JP5869644B2 (en) Method for inhibiting corrosion of reinforcing steel in reinforced concrete structures
US2721172A (en) Consumable metal anodes
JP6681500B1 (en) Backfill for cathodic protection
JP2009197292A (en) Corrosion prevention apparatus of steel structure disposed underwater
BRPI0617969A2 (en) use of an anode and filler to protect steel in reinforced concrete construction and combination of anode and filler
KR100625953B1 (en) Cathodic protection of reinforced concrete with impregnated corrosion inhibitor
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
JP6353733B2 (en) Spacer member having anti-corrosion function for steel in concrete and installation method thereof
JP6049134B2 (en) Method for suppressing hydrogen intrusion into steel
JP2018004283A (en) Reference electrode
LT5645B (en) Plastics etching composition
JP2013057612A (en) Hydrogen occlusion method
JP6595754B2 (en) Metal air battery
WO2015132587A1 (en) Method and apparatus for reinforcement protection
JP2003268577A (en) Electric corrosion prevention structure with shallow- bottomed vessel shape for electrically preventing corrosion of reinforcing bar in reinforced concrete and method of fitting the structure
Pyle et al. The Reaction of Solvated Electrons at Metal Electrolyte Interfaces
US20130118897A1 (en) Sacrificial anode and backfill combination
NL1040129C2 (en) Impressed current anode assembly for reinforced concrete applications.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6663601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350