JP2018004283A - Reference electrode - Google Patents

Reference electrode Download PDF

Info

Publication number
JP2018004283A
JP2018004283A JP2016127087A JP2016127087A JP2018004283A JP 2018004283 A JP2018004283 A JP 2018004283A JP 2016127087 A JP2016127087 A JP 2016127087A JP 2016127087 A JP2016127087 A JP 2016127087A JP 2018004283 A JP2018004283 A JP 2018004283A
Authority
JP
Japan
Prior art keywords
electrode
potential
concrete
reference electrode
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016127087A
Other languages
Japanese (ja)
Other versions
JP6725337B2 (en
Inventor
紀保 望月
Noriyasu Mochizuki
紀保 望月
雅彦 星野
Masahiko Hoshino
雅彦 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP2016127087A priority Critical patent/JP6725337B2/en
Publication of JP2018004283A publication Critical patent/JP2018004283A/en
Application granted granted Critical
Publication of JP6725337B2 publication Critical patent/JP6725337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reference electrode excellent in potential reproducibility and capable of stably obtaining potential for a long period, and moreover, capable of simply manufacturing and handling with a relatively simple structure.SOLUTION: A reference electrode 1 is embedded in concrete and used for measuring potential of a metal in the concrete. The reference electrode 1 includes: an electrode main body 2 configured of at least a top surface layer portion 21 containing a noble metal oxide; and a cement molded product 3 contacting the electrode main body 2 around the electrode main body 2 and arranged to carry out liquid conjunction to the surrounding concrete of the reference electrode 1 when used. The cement molded product 3 contains calcium hydroxide and water retaining material. The water retaining material is one or more kinds selected from a group consisting of pearlite, bentonite and magnesium nitrate.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリート中に埋設された金属、例えば鉄筋コンクリート構造物の鉄筋の腐食を監視する電位測定法に使用可能な埋め込み型照合電極に関する。   The present invention relates to an embedded reference electrode that can be used in a potential measurement method for monitoring corrosion of a metal embedded in concrete, for example, a reinforcing bar of a reinforced concrete structure.

コンクリート構造物中に配設されている鉄製の配管や鉄筋等の鋼材は、表面に不動態皮膜が形成されることによって、本来、腐食から保護されている。ところが、沿岸地域や凍結防止剤が頻繁に使用される地域のような、塩化物イオンが多量に存在する環境下では、鋼材に塩化物イオンが接触して不動態皮膜が部分的に破壊される場合がある。また、コンクリートは、主成分がセメントであることに起因して、本来内部はアルカリ性であるが、外部からの炭酸ガスの侵入によってコンクリートが中性化し、これに接触している鋼材の不動態被膜が部分的に破壊される場合もある。こうして、鋼材における不動態皮膜が破壊された部分からは、鋼材中の鉄が鉄イオンとして溶出し、鋼材の腐食(酸化)を促進させる。また、鋼材に部分的に腐食が生じることによって、鋼材の腐食した領域(アノード部)と腐食していない領域(カソード部)との間に電位差が生じ、アノード部からカソード部へ鋼材中を電子が流れることで腐食電流が発生し、アノード部における鋼材の腐食が更に進行する。このような鋼材の腐食は、鋼材自体の強度を低下させると共に、コンクリート構造物中においては腐食部分の体積の膨張によってコンクリート構造物に亀裂を生じさせ、コンクリートの剥落を生じさせるおそれがあり、大きな社会問題となっている。   Steel materials such as iron pipes and reinforcing bars arranged in concrete structures are originally protected from corrosion by forming a passive film on the surface. However, in environments where a large amount of chloride ions are present, such as coastal areas and areas where anti-freezing agents are frequently used, the passive film is partially destroyed by contact with chloride ions in steel. There is a case. In addition, concrete is essentially alkaline due to the main component of cement, but the neutralization of the concrete due to the intrusion of carbon dioxide from the outside, and the passive film of steel that is in contact with this May be partially destroyed. Thus, iron in the steel material is eluted as iron ions from the portion where the passive film in the steel material is destroyed, and promotes corrosion (oxidation) of the steel material. In addition, due to partial corrosion of the steel material, a potential difference is generated between the corroded region (anode portion) and the non-corroded region (cathode portion) of the steel material, and electrons are passed through the steel material from the anode portion to the cathode portion. As a result, a corrosion current is generated, and the corrosion of the steel material in the anode portion further proceeds. Such corrosion of the steel material reduces the strength of the steel material itself, and in the concrete structure, the expansion of the volume of the corroded part may cause the concrete structure to crack and cause the concrete to peel off. It has become a social problem.

このような鋼材の腐食を防止する方法としては、例えば、コンクリート構造物に陽極を設置し、この陽極からコンクリートを介してこのコンクリート構造物中の鋼材に電流(防食電流)を供給する電気防食法が知られている。電気防食法は、鋼材に対して防食電流を供給することで、アノード部とカソード部との間に生じる電位差を解消し、鋼材の電位を腐食反応が停止する電位に維持して、腐食電流が発生するのを防止する方法である。電気防食法では、効果的な防食効果を得るために、防食対象となる鋼材の電位を測定して管理する方法が一般的である。この電位測定法は、コンクリート構造物中における鋼材の近傍に照合電極(基準電極、参照電極ともいう)を設置し、この照合電極でこの鋼材との電位差を測定するというものである。   As a method for preventing such corrosion of steel materials, for example, an anti-corrosion method in which an anode is installed in a concrete structure, and an electric current (anti-corrosion current) is supplied from the anode to the steel material in the concrete structure through the concrete. It has been known. In the anticorrosion method, by supplying a corrosion-proof current to the steel material, the potential difference generated between the anode part and the cathode part is eliminated, the potential of the steel material is maintained at a potential at which the corrosion reaction stops, and the corrosion current is reduced. This is a method for preventing the occurrence. In the anticorrosion method, in order to obtain an effective anticorrosion effect, a method of measuring and managing the potential of the steel material to be protected is generally used. In this potential measurement method, a verification electrode (also referred to as a reference electrode or a reference electrode) is installed in the vicinity of a steel material in a concrete structure, and a potential difference from the steel material is measured with the verification electrode.

照合電極としては、従来、コンクリート中に埋め込んで設置する埋め込み型照合電極が多く用いられている。埋め込み型照合電極の従来技術に関し、例えば特許文献1には、細線状のチタンワイヤの表面をイリジウム、ルテニウム、ハフニウム、ロジウムからなる群から選ばれた貴金属で被覆してなる照合電極が記載されている。特許文献1記載の照合電極の電位は、pHが一定であれば、貴金属酸化物の酸化還元電位で決定し、その酸化還元電位は計算式(ネルンストの式)によって求めることができるが、実構造物に直接埋設された場合などは、電極周囲の含水率や塩化物イオン濃度の変動などによりpHが変動し、長期にわたる電位の安定性には問題がある。また、電気防食を適用している場合は、この照合電極に防食電流の一部が流出入して(干渉を生じて)照合電極の電位が変動するので、得られる鋼材の測定電位が正確でないという問題がある。   Conventionally, as the verification electrode, an embedded type verification electrode embedded in concrete and used is often used. For example, Patent Document 1 discloses a reference electrode in which the surface of a thin-line titanium wire is covered with a noble metal selected from the group consisting of iridium, ruthenium, hafnium, and rhodium. Yes. The potential of the reference electrode described in Patent Document 1 is determined by the oxidation-reduction potential of the noble metal oxide if the pH is constant, and the oxidation-reduction potential can be obtained by a calculation formula (Nernst equation). When directly buried in an object, the pH fluctuates due to fluctuations in the moisture content around the electrode and the chloride ion concentration, which poses a problem in long-term potential stability. In addition, when the anticorrosion is applied, a part of the anticorrosion current flows into and out of the reference electrode (causes interference), and the potential of the reference electrode fluctuates. Therefore, the measured potential of the obtained steel material is not accurate. There is a problem.

また特許文献2には、表面が金属酸化物又は金属酸化物混合物で被覆された導電性金属支持体と、該導電性金属支持体を内包するセメント質モルタルからなる固体電解質とを含む埋め込み型照合電極が記載されている。特許文献2記載の照合電極は、固体電解質にpH緩衝能を有する物質又は保水材が含まれていないことに起因して、電位が経時的に変動するという問題がある。   Patent Document 2 discloses an embedded collation including a conductive metal support whose surface is coated with a metal oxide or a metal oxide mixture, and a solid electrolyte made of cementitious mortar containing the conductive metal support. An electrode is described. The reference electrode described in Patent Document 2 has a problem that the potential varies with time due to the fact that the solid electrolyte does not contain a substance having a pH buffering ability or a water retention material.

本発明者らは先に、導電体及びその周囲に配された電極部を備えた埋め込み型照合電極の改良技術を提案した(特許文献3及び4)。特許文献3記載の照合電極は、電極部に銀粒子及び酸化銀粒子を含んでいるため、従来品に比して電極反応のみかけの交換電流密度が大幅に増大しており、電位の安定性が向上している。また特許文献4記載の照合電極は、電極部に二酸化マンガン及びアセチレンブラックを含んでいるため、従来品に比して電極反応のみかけの交換電流密度が大幅に増大していることに加えてさらに、コンクリートのような固相環境下でも電極部が比較的多量の水分を保持し得るため、電位の安定性が大幅に向上しており、使用期間が長きに及んでも電位が変動し難いという特長を有する。しかしながら、照合電極の電位再現性や電位の安定性については、近年より高いレベルが要望されており、さらなる改善の余地がある。また、それらの特性を満たす照合電極であっても、構造が複雑であったり大型なものであったりすると、製造コストや取り扱い性の点で問題となる。   The inventors of the present invention have previously proposed an improved technique for an embedded collation electrode including a conductor and an electrode portion disposed around the conductor (Patent Documents 3 and 4). Since the reference electrode described in Patent Document 3 contains silver particles and silver oxide particles in the electrode portion, the apparent exchange current density of the electrode reaction is greatly increased as compared with the conventional product, and the potential stability is increased. Has improved. In addition, since the reference electrode described in Patent Document 4 contains manganese dioxide and acetylene black in the electrode portion, the apparent exchange current density of the electrode reaction is significantly increased as compared with the conventional product. Because the electrode part can retain a relatively large amount of water even in a solid phase environment such as concrete, the stability of the potential is greatly improved, and the potential does not easily change over a long period of use. Has features. However, higher levels of potential reproducibility and potential stability of the reference electrode have been demanded in recent years, and there is room for further improvement. Further, even if the reference electrode satisfies these characteristics, if the structure is complicated or large, it causes a problem in terms of manufacturing cost and handling.

特開2001−13100号公報JP 2001-13100 A 特開平5−10915号公報JP-A-5-10915 特開平6−317553号公報JP-A-6-317553 特開2015−40707号公報Japanese Patent Application Laid-Open No. 2015-40707

本発明の課題は、電位再現性に優れ、また長期間安定した電位を得ることができ、しかも比較的簡素な構成で製作及び取り扱いが簡単にできる照合電極を提供することにある。   An object of the present invention is to provide a reference electrode that is excellent in potential reproducibility, can obtain a stable potential for a long period of time, and can be easily manufactured and handled with a relatively simple configuration.

本発明は、コンクリート中に埋設され、該コンクリート中の金属の電位を測定するのに使用される照合電極であって、少なくとも表層部が貴金属酸化物を含んで構成されている電極本体と、前記電極本体の周囲に該電極本体と接触し且つ使用時に前記照合電極の周辺のコンクリートと液絡するように配されたセメント成形体とを備え、前記セメント成形体は、水酸化カルシウム及び保水材を含み、該保水材は、パーライト、ベントナイト及び硝酸マグネシウムからなる群から選択される1種以上である照合電極である。   The present invention is a reference electrode embedded in concrete and used for measuring the potential of a metal in the concrete, wherein at least a surface layer portion includes a noble metal oxide, A cement molded body that is in contact with the electrode body around the electrode body and arranged in liquid junction with the concrete around the reference electrode when in use, the cement molded body comprising calcium hydroxide and a water retaining material; The water retaining material is a reference electrode that is at least one selected from the group consisting of pearlite, bentonite, and magnesium nitrate.

本発明によれば、多少なりともpH変動を有するアルカリ環境、電気防食適用及び低水分条件下であっても、電位再現性に優れ、また長期間安定した電位を得ることができ、しかも比較的簡素な構成で製作及び取り扱いが簡単にできる照合電極が提供される。本発明の照合電極は特に、鉄筋コンクリート構造物における鉄筋の電極電位の測定に有用である。   According to the present invention, even in an alkaline environment having some pH fluctuation, an anticorrosion application, and a low moisture condition, the potential reproducibility is excellent and a stable potential can be obtained for a long period of time. A reference electrode that can be easily manufactured and handled with a simple configuration is provided. The reference electrode of the present invention is particularly useful for measuring the electrode potential of a reinforcing bar in a reinforced concrete structure.

図1は、本発明の照合電極の一実施形態の模式的な縦断面図(照合電極の軸線方向の断面図)である。FIG. 1 is a schematic longitudinal sectional view (a sectional view in the axial direction of a verification electrode) of one embodiment of the verification electrode of the present invention. 図2は、酸化イリジウム被覆電極(電極本体)の電位とその周囲のpHとの関係を、理論値と実測値とにより比較したグラフである。FIG. 2 is a graph comparing the relationship between the potential of the iridium oxide-coated electrode (electrode body) and the surrounding pH based on theoretical values and measured values. 図3は、コンクリート中における酸化イリジウム被覆電極(電極本体)の電位の実測値を正規確率紙にプロットしたグラフである。FIG. 3 is a graph in which measured values of potentials of iridium oxide-coated electrodes (electrode bodies) in concrete are plotted on normal probability paper. 図4は、本発明に係る電極本体の電位安定性評価試験の結果、より具体的には、飽和水酸化カルシウム水溶液中及びセメント成形体中それぞれにおける電位の経時変化を示すグラフである。FIG. 4 is a graph showing potential changes with time in the saturated calcium hydroxide aqueous solution and in the cement molded body, more specifically, as a result of the potential stability evaluation test of the electrode body according to the present invention. 図5は、実施例及び比較例の照合電極の評価試験方法の説明図である。FIG. 5 is an explanatory diagram of an evaluation test method for reference electrodes in Examples and Comparative Examples. 図6は、図5に示す評価試験方法による各実施例及び比較例の照合電極の評価結果、より具体的には、コンクリート中における照合電極の電極電位の経時変化を示すグラフである。FIG. 6 is a graph showing the evaluation results of the verification electrodes of the examples and comparative examples according to the evaluation test method shown in FIG. 5, more specifically, the change over time of the electrode potential of the verification electrodes in concrete.

以下、本発明の照合電極について、その好ましい一実施形態に基づき図面を参照して説明する。図1には、本発明の照合電極の一実施形態である照合電極1が示されている。照合電極1は、コンクリート中に埋設され、該コンクリート中の金属の電位を測定するのに使用されるもので、電極本体2と、電極本体2の周囲に電極本体2と接触するように配されたセメント成形体3と、電極本体2及びセメント成形体3を収容する収容体4とを備える。   Hereinafter, a reference electrode of the present invention will be described based on a preferred embodiment with reference to the drawings. FIG. 1 shows a verification electrode 1 which is an embodiment of the verification electrode of the present invention. The reference electrode 1 is embedded in concrete and used to measure the potential of the metal in the concrete. The reference electrode 1 is arranged around the electrode body 2 and in contact with the electrode body 2. The cement molded body 3 and the housing body 4 for housing the electrode body 2 and the cement molded body 3 are provided.

収容体4は、照合電極1の外形を形成しており、図1に示すように、中空の円筒状ないし管状をなし、その軸線方向即ち長手方向Xの両端が開口している。収容体4は、中空部に配されたセパレータ5によって上部4aと下部4bとに区分されており、その下部4bの中空部に電極本体2及びセメント成形体3が収容されている。収容体4の上部4aの中空部には、エポキシ樹脂、シリコン樹脂等の充填材6が充填され、また、上部4a側の開口部は、樹脂等からなる栓体7によって封止されている。収容体4の材質としては、この種の照合電極において収容体として使用可能なものを特に制限なく用いることができ、例えば、塩化ビニル、ポリスチレン、ポリエチレン、ポリプロピレン、アクリル、PTFE(四フッ化エチレン樹脂)、PVDF(フッ化ビニリデン樹脂)、PEEK(ポリエーテル・エーテル・ケトン樹脂)等の樹脂、セラミック等が挙げられる。   The container 4 forms the outer shape of the verification electrode 1 and has a hollow cylindrical shape or tube shape as shown in FIG. 1, and both ends in the axial direction, that is, the longitudinal direction X are open. The container 4 is divided into an upper part 4a and a lower part 4b by a separator 5 arranged in the hollow part, and the electrode body 2 and the cement molded body 3 are accommodated in the hollow part of the lower part 4b. The hollow portion of the upper portion 4a of the container 4 is filled with a filler 6 such as epoxy resin or silicon resin, and the opening on the upper portion 4a side is sealed with a plug 7 made of resin or the like. As the material of the container 4, any material that can be used as a container in this type of reference electrode can be used without particular limitation. For example, vinyl chloride, polystyrene, polyethylene, polypropylene, acrylic, PTFE (tetrafluoroethylene resin) ), Resins such as PVDF (vinylidene fluoride resin), PEEK (polyether-ether-ketone resin), and ceramics.

セメント成形体3は、照合電極1の使用時において、照合電極1の周辺の図示しないコンクリートと液絡、即ち電解液を介して電気的に接続するように配されている。即ち、収容体4の下部4b側の開口部はセメント成形体3によって閉塞されており、該開口部にてセメント成形体3が露出しているところ、斯かる構成の照合電極1の下部4b側を常法に従ってコンクリート中に埋設した場合、セメント成形体3は、収容体4内にて電極本体2と接触しつつ、下部4b側の開口部にて照合電極1の周辺のコンクリートとも接触することになる。ここで、セメント成形体3及び照合電極1の周辺のコンクリートには、それぞれ、細孔空隙などとも呼ばれる空隙が多数存在し、この空隙の中には細孔溶液と呼ばれる水分が存在し、この細孔溶液は通常、セメントあるいはコンクリートの主成分たる水酸化カルシウムなどの電解質を含む電解液であるため、照合電極1の使用時においては、セメント成形体3はその内部の電解液を介してこれと接触するコンクリートと液絡する。   When the verification electrode 1 is used, the cement molded body 3 is arranged so as to be electrically connected to concrete (not shown) around the verification electrode 1 via a liquid junction, that is, an electrolytic solution. That is, the opening on the lower portion 4b side of the container 4 is closed by the cement molded body 3, and the cement molded body 3 is exposed at the opening, so that the lower electrode 4b side of the reference electrode 1 having such a configuration is exposed. Is embedded in concrete according to a conventional method, the cement molded body 3 is in contact with the concrete around the reference electrode 1 at the opening on the lower portion 4b side while in contact with the electrode body 2 in the housing 4. become. Here, in the concrete around the cement molded body 3 and the reference electrode 1, there are a large number of voids called pore voids, and moisture called a pore solution exists in the voids. Since the pore solution is usually an electrolytic solution containing an electrolyte such as calcium hydroxide, which is the main component of cement or concrete, when the reference electrode 1 is used, the cement molded body 3 is connected to this through the electrolytic solution inside. Liquid junction with contacting concrete.

図1に示すように、電極本体2には導線8が接続されている。導線8は、その一端が充填材6中で電極本体2に接続され、他端が図示しない計測機器に接続されており、収容体4の上部4a側の開口部を閉塞する栓体7をその高さ方向に貫通して外部に延出している。このように、電極本体2と計測機器とが導線8を介して電気的に接続され、また前述したように、電極本体2と接触するように配されたセメント成形体3が照合電極1の周辺のコンクリートと液絡していることにより、照合電極1が設置されたコンクリート中の金属の電位を該計測機器によって測定することができる。   As shown in FIG. 1, a conductive wire 8 is connected to the electrode body 2. One end of the conducting wire 8 is connected to the electrode body 2 in the filler 6 and the other end is connected to a measuring device (not shown), and the plug 7 that closes the opening on the upper portion 4a side of the container 4 is connected to the plug 7 It penetrates in the height direction and extends to the outside. In this way, the electrode body 2 and the measuring device are electrically connected via the conductor 8, and as described above, the cement molded body 3 arranged so as to come into contact with the electrode body 2 is provided around the reference electrode 1. By being in liquid junction with the concrete, the potential of the metal in the concrete on which the verification electrode 1 is installed can be measured by the measuring device.

電極本体2は網目状をなし、該電極本体2を厚み方向に貫通する開孔2Hを複数有している。本発明においては、電極本体の形状は特に制限されず、例えば照合電極1の長手方向Xに延びる棒状ないし板状でも良いが、照合電極の電気的性能を向上させるためには、電極本体2とセメント成形体3との接触面積をなるべく大きくすることが好ましく、その観点から、図1に示す如き網目状を電極本体の好ましい形状として例示できる。網目状の電極本体2の各部の寸法等は任意に設定することができる。   The electrode body 2 has a mesh shape and has a plurality of apertures 2H that penetrate the electrode body 2 in the thickness direction. In the present invention, the shape of the electrode main body is not particularly limited, and may be, for example, a rod shape or a plate shape extending in the longitudinal direction X of the verification electrode 1, but in order to improve the electrical performance of the verification electrode, It is preferable to increase the contact area with the cement molded body 3 as much as possible, and from this viewpoint, a mesh shape as shown in FIG. 1 can be exemplified as a preferable shape of the electrode body. The dimensions and the like of each part of the mesh electrode body 2 can be arbitrarily set.

図1に拡大して示すように、電極本体2の表層部21は貴金属酸化物を含んで構成されている。即ち電極本体2は、網目状の基材20と、基材20の表面を被覆する表層部21とからなり、その表層部21が貴金属酸化物を含んでいる。つまり、照合電極1においては、電極本体2の表層部21とセメント成形体3とが接触している。基材20は、電極本体2を長寿命にする観点から耐食性に優れていることが望ましく、斯かる観点から基材20の材質としては、チタン、タンタル又はニオブが好ましい。尚、本発明においては、電極本体は少なくともその表層部が貴金属酸化物を含んで構成されていれば良く、電極本体全体が貴金属酸化物でも良い。   As shown in FIG. 1 in an enlarged manner, the surface layer portion 21 of the electrode body 2 is configured to include a noble metal oxide. That is, the electrode body 2 includes a network-like base material 20 and a surface layer portion 21 that covers the surface of the base material 20, and the surface layer portion 21 contains a noble metal oxide. That is, in the verification electrode 1, the surface layer portion 21 of the electrode body 2 and the cement molded body 3 are in contact with each other. The base material 20 is desirably excellent in corrosion resistance from the viewpoint of extending the life of the electrode body 2, and from this viewpoint, the material of the base material 20 is preferably titanium, tantalum or niobium. In the present invention, it is sufficient that at least the surface layer portion of the electrode body includes a noble metal oxide, and the entire electrode body may be a noble metal oxide.

電極本体2の表層部21に用いる貴金属酸化物としては、酸化イリジウム、酸化ルテニウム及び酸化パラジウムが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの貴金属酸化物は、酸化還元反応(電極反応)の交換電流密度が高いので、微小な電流が流入しても照合電極の電位変動がなく安定した電位の測定が可能となる。   Examples of the noble metal oxide used for the surface layer portion 21 of the electrode body 2 include iridium oxide, ruthenium oxide, and palladium oxide, and these can be used alone or in combination of two or more. Since these noble metal oxides have a high exchange current density in the oxidation-reduction reaction (electrode reaction), even if a minute current flows, the potential of the reference electrode does not fluctuate and a stable potential can be measured.

照合電極1の特徴的な構成の1つとして、このような貴金属酸化物を含む電極本体2を内包するセメント成形体3に、水酸化カルシウム及び保水材が含有されている点が挙げられる。即ち照合電極1は、電極本体2の表層部21に含まれる貴金属酸化物とそれを構成する貴金属との間で得られる酸化還元電位を基準として利用するものであるところ、この電極本体2に周囲に水酸化カルシウム及び保水材を含むセメント成形体3が配されていることで、電極本体2の周囲のpH値及び水分量の変動を抑制するような系が実現されており、その酸化還元電位を基準として、照合電極1の周辺のコンクリート中に埋設された鋼材の電位を測定するようになされている。このような照合電極1における酸化還元電位は、電気化学的には純粋な可逆電位と言えるので、電極本体2の電位は長期間安定するようになり、また電位再現性が向上する。即ち、水酸化カルシウム及び保水材を含んだセメント成形体3を、電極本体2の周囲にこの電極本体2と接触するように配することで、照合電極1内部のpH値及び水分量が安定し、そのため、コンクリート中に埋設された鋼材や電気防食用陽極の電位を精度よく測定することができ、鋼材の腐食防食のモニタリングや電気防食の維持管理が容易に行なえるようになる。   One characteristic configuration of the reference electrode 1 is that the cement molded body 3 containing the electrode body 2 containing such a noble metal oxide contains calcium hydroxide and a water retention material. That is, the reference electrode 1 uses the oxidation-reduction potential obtained between the noble metal oxide contained in the surface layer 21 of the electrode body 2 and the noble metal constituting it as a reference. Is provided with a cement molded body 3 containing calcium hydroxide and a water retention material, thereby realizing a system that suppresses fluctuations in the pH value and moisture content around the electrode body 2, and its redox potential. As a reference, the electric potential of the steel material embedded in the concrete around the reference electrode 1 is measured. Such an oxidation-reduction potential in the reference electrode 1 can be said to be a purely reversible potential electrochemically, so that the potential of the electrode body 2 becomes stable for a long period of time, and the potential reproducibility is improved. That is, by arranging the cement molded body 3 containing calcium hydroxide and a water retaining material so as to be in contact with the electrode body 2 around the electrode body 2, the pH value and water content inside the reference electrode 1 are stabilized. Therefore, it is possible to accurately measure the potential of the steel material and the anode for cathodic protection that are embedded in the concrete, and it becomes possible to easily monitor the corrosion protection of the steel material and to maintain and manage the cathodic protection.

以下に、本発明者らがこのような照合電極1の特徴的な構成に想到するに至った経緯を説明する。
金属チタンを基材とし、その表面に貴金属酸化物を含む被覆が施された電極(以下、特定電極ともいう)は、電解工業分野の電解プロセスにおいて、電解用の不溶性金属電極として広く用いられ、またpH電極としても利用されている。そのため本発明者らは、前記特定電極の電位は、環境のpH値に依存し、貴金属酸化物とそれを構成する貴金属の酸化還元電位により決定づけられていると推定した。
Hereinafter, the reason why the inventors have come up with such a characteristic configuration of the verification electrode 1 will be described.
An electrode (hereinafter also referred to as a specific electrode) having a metal titanium base material and a coating containing a noble metal oxide on its surface (hereinafter also referred to as a specific electrode) is widely used as an insoluble metal electrode for electrolysis in an electrolysis process in the field of electrolysis industry. It is also used as a pH electrode. For this reason, the inventors estimated that the potential of the specific electrode depends on the pH value of the environment and is determined by the redox potential of the noble metal oxide and the noble metal constituting the noble metal oxide.

そこで本発明者らは、前記推定を確かめるため、前記特定電極として、金属チタンの表面を酸化イリジウム(IrO2)で被覆した電極を用意し、その酸化イリジウム被覆電極をpH1〜13の電解液に浸漬してその浸漬中の電極の電位を測定した。図2には、その電位の実測値が、理論値と共に示されている。この電位の理論値は、下記式(1)で示す酸化還元反応について、下記式(2)で示すネルンストの式(Nernst equation)を用いて導出された酸化イリジウムの酸化還元電位である。図2に示す通り、実測値と理論値とは各pH値において互いにほぼ同様の値を示し、これにより、酸化イリジウム被覆電極の電位は、該電極の表層部に存する酸化イリジウムの酸化還元電位によって決定づけられていることがわかる。このことから本発明者らは、酸化イリジウム被覆電極即ち前記特定電極は、pH値が比較的安定している環境、例えばコンクリート中において、ほぼ一定の電位を示すと推定した。 Therefore, in order to confirm the above estimation, the present inventors prepared an electrode in which the surface of metal titanium was coated with iridium oxide (IrO 2 ) as the specific electrode, and the iridium oxide-coated electrode was used as an electrolyte solution having a pH of 1 to 13. It was immersed and the potential of the electrode during the immersion was measured. In FIG. 2, the measured value of the potential is shown together with the theoretical value. The theoretical value of this potential is the redox potential of iridium oxide derived from the redox reaction represented by the following formula (1) using the Nernst equation represented by the following formula (2). As shown in FIG. 2, the measured value and the theoretical value show almost the same values at each pH value, whereby the potential of the iridium oxide-coated electrode depends on the redox potential of iridium oxide existing on the surface layer portion of the electrode. You can see that it is determined. Based on this, the present inventors estimated that the iridium oxide-coated electrode, that is, the specific electrode exhibits a substantially constant potential in an environment where the pH value is relatively stable, for example, in concrete.

そこで本発明者らは、前記推定を確かめるため、酸化イリジウム被覆電極を実際にコンクリート中に埋設し、飽和塩化銀基準電極(Silver Silver−Chloride Electrode)を基準として電位を測定した。図3には、その電位の実測値を正規確率紙にプロットしたグラフが示されている。正規確率紙にプロットされた点(電位の実測値)が一直線に並べば正規分布と判断する。実測値の平均値は、pH12.5近傍における酸化イリジウムの酸化還元電位に近似していたが、図3に示す通り、実測値のばらつきは大きく、前記推定に反する結果となった。   Therefore, in order to confirm the above estimation, the present inventors actually embedded an iridium oxide-coated electrode in concrete and measured the potential with reference to a saturated silver chloride reference electrode (Silver Silver-Chloride Electrode). FIG. 3 shows a graph in which measured values of the potential are plotted on normal probability paper. If the points plotted on the normal probability paper (measured values of potential) are aligned, a normal distribution is determined. The average value of the actually measured values was close to the oxidation-reduction potential of iridium oxide in the vicinity of pH 12.5. However, as shown in FIG.

以上の結果から本発明者らは、酸化イリジウム被覆電極の如き、金属チタンからなる基材の表面が貴金属酸化物を含む層で被覆された特定電極は、そのままでは、コンクリート中の鋼材の電位を測定するための照合電極には使用し難いとの結論に達した。そこで、本発明者らは検討を重ねた結果、図3に示したような電位のばらつきの要因は、前記特定電極とコンクリートとの界面におけるpH値及び水分量のばらつきに関係すると考え、さらに検討を重ねた結果、前記特定電極の周囲にこれと接触するようにセメント成形体を配し、そのセメント成形体にpH緩衝剤としての水酸化カルシウムと、安定した含水率を保持するための保水材とを含有させることで、電位のばらつきの要因となった、電極とコンクリートとの界面におけるpH値及び水分量のばらつきが低減され、電位再現性及び電位安定性が向上するとの知見を得た。本発明は斯かる知見に基づきなされたものである。   From the above results, the present inventors have determined that the potential of the steel material in the concrete is not changed in the specific electrode in which the surface of the base material made of metal titanium, such as an iridium oxide-coated electrode, is coated with a layer containing a noble metal oxide. It was concluded that it was difficult to use as a reference electrode for measurement. Therefore, as a result of repeated studies, the present inventors considered that the cause of the variation in potential as shown in FIG. 3 is related to the variation in pH value and moisture content at the interface between the specific electrode and the concrete. As a result, a cement molded body is arranged around the specific electrode so as to be in contact with the specific electrode, calcium hydroxide as a pH buffering agent and a water retention material for maintaining a stable moisture content in the cement molded body. As a result, it was found that the variation in pH value and water content at the interface between the electrode and concrete, which caused the variation in potential, was reduced, and the potential reproducibility and potential stability were improved. The present invention has been made based on such knowledge.

セメント成形体3は、セメント、保水材、水酸化カルシウム及び水を含むセメント組成物の硬化物である。セメント組成物が硬化してセメント成形体3となるまでの間は通常、養生期間が確保される。このセメント組成物はさらに、川砂、山砂、陸砂、海砂、砕砂、珪砂又はこれらの混合物等の細骨材を含み得る。セメント成形体3は、セメント組成物を調製してそれを硬化させるだけで得られるため製造が簡単であり、また、その中間製造物たるセメント組成物が流動性を有するため、例えば、これを収容体4に流し込むなどの作業を比較的容易に行うことができ、作業性に優れる。また、セメント成形体3は保形性に優れており、セメント組成物が硬化して所定形状のセメント成形体3となった後は、その所定形状が維持されやすい。従って、このような有利な点を持つセメント成形体3を用いた照合電極1は、比較的簡素な構成で製作及び取り扱いが簡単にできるという利点を有する。   The cement molded body 3 is a cured product of a cement composition containing cement, a water retention material, calcium hydroxide, and water. Usually, a curing period is secured until the cement composition is hardened to become a cement molded body 3. The cement composition may further comprise fine aggregates such as river sand, mountain sand, land sand, sea sand, crushed sand, quartz sand or mixtures thereof. The cement molded body 3 is easy to manufacture because it can be obtained simply by preparing a cement composition and curing it, and the cement composition, which is an intermediate product, has fluidity. Operations such as pouring into the body 4 can be performed relatively easily, and workability is excellent. Moreover, the cement molded body 3 is excellent in shape retention, and after the cement composition is hardened and becomes a cement molded body 3 having a predetermined shape, the predetermined shape is easily maintained. Therefore, the verification electrode 1 using the cement molded body 3 having such advantages has an advantage that it can be easily manufactured and handled with a relatively simple configuration.

セメント成形体3の製造に用いられるセメントとしては、普通・中庸熱・耐硫酸塩等の各種ポルトランドセメント;これらポルトランドセメントに高炉スラグ、フライアッシュ又はシリカを混合した各種混合セメント(高炉セメント、フライアッシュセメント、シリカセメント)等が挙げられ、本発明ではこれらの1種を単独で又は2種以上を組み合わせて用いることができる。但し、早強・超早強ポルトランドセメント及びアルミナセメントは、水和熱による発熱が大きいため、本発明では使用を避けた方が好ましい。また、セメント成形体3に含有可能な細骨材の好ましい一例として、目開き2mmのふるいをすべて通過するものの含有量が85質量%以上である細骨材が挙げられる。   The cement used for the production of the cement molded body 3 includes various portland cements such as normal, medium heat, and sulfate resistant; various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash or silica (blast furnace cement, fly ash). In the present invention, one of these can be used alone or two or more can be used in combination. However, early strength / super early strength Portland cement and alumina cement generate a large amount of heat due to heat of hydration, so it is preferable to avoid using them in the present invention. Moreover, as a preferable example of the fine aggregate that can be contained in the cement molded body 3, a fine aggregate having a content of 85% by mass or more passing through all sieves having a mesh opening of 2 mm can be given.

セメント成形体3に含有される水酸化カルシウムは、セメント成形体3に存する細孔溶液の主成分であり、非常に強い緩衝能を有する。また飽和水酸化カルシウム水溶液は、照合電極1が埋設されるコンクリートと同程度のpH値となる。従って、水酸化カルシウムを含むセメント成形体3は、電極本体2の周囲のpH値を長期にわたり安定させる。   Calcium hydroxide contained in the cement molded body 3 is a main component of the pore solution existing in the cement molded body 3 and has a very strong buffering capacity. The saturated calcium hydroxide aqueous solution has a pH value comparable to that of the concrete in which the verification electrode 1 is embedded. Therefore, the cement molded body 3 containing calcium hydroxide stabilizes the pH value around the electrode body 2 over a long period of time.

セメント成形体3中の水酸化カルシウムの含有量は、セメント成形体3中のセメントの質量に対して、好ましくは2〜8質量%である。セメント成形体3中の水酸化カルシウムの含有量が少なすぎると、セメント成形体3中の水酸化カルシウム水溶液が少なすぎることなるため、照合電極1をコンクリート中に埋設した後にセメント成形体3のpH値が大きく変動するおそれがあり、また水酸化カルシウムの含有量が多すぎると、セメント成形体3中の未水和水酸化カルシウムが徐々に水に溶解することによって、セメント成形体3が崩壊しやすくなるおそれがある。   The content of calcium hydroxide in the cement molded body 3 is preferably 2 to 8% by mass with respect to the mass of cement in the cement molded body 3. If the content of calcium hydroxide in the cement molded body 3 is too small, the amount of calcium hydroxide aqueous solution in the cement molded body 3 is too small. Therefore, the pH of the cement molded body 3 after the reference electrode 1 is embedded in concrete. The value may fluctuate greatly, and if the content of calcium hydroxide is too large, the unhydrated calcium hydroxide in the cement molded body 3 is gradually dissolved in water, so that the cement molded body 3 collapses. May be easier.

セメント成形体3に含有される保水材としては、パーライト、ベントナイト及び硝酸マグネシウムからなる群から選択される1種以上が好ましい。セメント成形体3にこのような保水材が含有されることで、セメント成形体3の保水性が向上し、これを内蔵する照合電極1は、従来の照合電極と比べて電位安定性に優れたものとなる。   The water retaining material contained in the cement molded body 3 is preferably at least one selected from the group consisting of pearlite, bentonite and magnesium nitrate. By containing such a water retaining material in the cement molded body 3, the water retention of the cement molded body 3 is improved, and the verification electrode 1 incorporating the same has superior potential stability compared to the conventional verification electrode. It will be a thing.

パーライトは、黒曜石、真珠岩、松脂岩又は珪藻土等を高温で熱処理してできる人工発泡体である。これらのパーライト原料の中でも特に真珠岩、松脂岩、珪藻土は、保水性に優れるため好ましい。
ベントナイトには、カルシウム型、ナトリウム型があり、本発明ではどちらも用いることができるが、カルシウム型よりも吸水・膨潤性の大きいナトリウム型のベントナイトが有利である。このナトリウム型のベントナイトとは、モンモリロナイトのシート状結晶の層間にナトリウムイオンやカリウムイオン等のアルカリ金属類を吸着しているベントナイトである。
硝酸マグネシウムは潮解性を有するため、比較的少量でもセメント成形体3の保水性を十分に高め、照合電極1の内部に水分を長期間保持させ得る。
Perlite is an artificial foam produced by heat-treating obsidian, pearlite, pine stone, diatomaceous earth, or the like at a high temperature. Among these pearlite raw materials, pearlite, pine stone, and diatomaceous earth are particularly preferable because of their excellent water retention.
There are two types of bentonite, calcium type and sodium type, which can be used in the present invention, but sodium type bentonite having higher water absorption and swelling than calcium type is advantageous. This sodium-type bentonite is bentonite in which alkali metals such as sodium ions and potassium ions are adsorbed between layers of montmorillonite sheet-like crystals.
Since magnesium nitrate has deliquescence, even with a relatively small amount, the water retention of the cement molded body 3 can be sufficiently increased, and moisture can be retained inside the verification electrode 1 for a long period of time.

セメント成形体3中の保水材の含有量は、セメント成形体3の保水性及び形状保持性の一層の向上の観点から、セメント成形体3中のセメントの質量に対して、好ましくは5〜20質量%である。   The content of the water retaining material in the cement molded body 3 is preferably 5 to 20 with respect to the mass of the cement in the cement molded body 3 from the viewpoint of further improving the water retention and shape retention of the cement molded body 3. % By mass.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば、本発明の照合電極の外形形状は、図1に示す照合電極1の如き管状に限定されず、任意の形状を選択し得る。また、照合電極1においては充填材6とセメント成形体3とがセパレータ5によって分け隔てられていたが、セパレータ5が設置されずに、充填材6とセメント成形体3とが接触していても良い。また例えば収容体4において、セメント成形体3が充填された部分(下部4b)が、充填材6が充填された部分(上部4a)に対して着脱自在に構成されていても良く、斯かる構成により、照合電極のメンテナンス性が向上し、電極本体2やセメント成形体3の管理保守作業が行いやすくなる。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, the outer shape of the collation electrode of the present invention is not limited to a tubular shape like the collation electrode 1 shown in FIG. 1, and an arbitrary shape can be selected. Further, in the reference electrode 1, the filler 6 and the cement molded body 3 are separated by the separator 5, but the separator 6 is not installed and the filler 6 and the cement molded body 3 are in contact with each other. good. Further, for example, in the container 4, the portion filled with the cement molded body 3 (lower portion 4 b) may be configured to be detachable with respect to the portion filled with the filler 6 (upper portion 4 a). As a result, the maintainability of the verification electrode is improved, and the maintenance work of the electrode body 2 and the cement molded body 3 is facilitated.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔試験例1〕
照合電極における電極本体の電位安定性評価試験を行った。試験対象の電極本体は、「表層部が貴金属酸化物を含んで構成されている電極本体」であり、具体的には、金属チタンの表面を酸化イリジウムで被覆した電極本体Aと、金属チタンの表面を酸化ルテニウムで被覆した電極本体Bとを、下記(電極本体の作製)に従って作製した。
先ず、評価対象の電極本体A,Bを、電極本体A,Bとの相対的電位を求める飽和水酸化カルシウムを内部溶液とする水銀・酸化水銀基準電極(Hg/HgO/satCa(OH)2電極)と共に飽和水酸化カルシウム水溶液中に25日間浸漬し、その浸漬期間中に適宜電位を測定した。ここで使用した飽和水酸化カルシウム水溶液は、水酸化カルシウム(吉澤石灰工業株式会社製、特号消石灰、密度2.34g/cm3)を水(埼玉県上尾市産水道水)に溶解して調製されたもので、水温は20℃であった。この飽和水酸化カルシウム水溶液は、コンクリート中の細孔空隙水を模擬したものである。
その後、飽和水酸化カルシウム水溶液から取り出した電極本体A,Bを、電極本体A,Bとの相対的電位を求める水銀・酸化水銀基準電極と共にセメント成形体中に所定期間埋設し、その埋設期間中データロガーにて連続測定を行った。ここで使用したセメント成形体は、下記(セメント成形体の作製)に従って作製した。
[Test Example 1]
The potential stability evaluation test of the electrode body in the reference electrode was performed. The electrode body to be tested is an “electrode body in which the surface layer portion includes a noble metal oxide”, specifically, an electrode body A in which the surface of metal titanium is coated with iridium oxide, and metal titanium. An electrode body B whose surface was coated with ruthenium oxide was prepared according to the following (preparation of electrode body).
First, a mercury / mercury oxide reference electrode (Hg / HgO / satCa (OH) 2 electrode) in which the electrode bodies A and B to be evaluated have a saturated calcium hydroxide as an internal solution for obtaining a relative potential with the electrode bodies A and B. ) And a saturated calcium hydroxide aqueous solution for 25 days, and the potential was appropriately measured during the immersion period. The saturated calcium hydroxide aqueous solution used here was prepared by dissolving calcium hydroxide (Yoshizawa Lime Industry Co., Ltd., special slaked lime, density 2.34 g / cm 3 ) in water (tap water from Ageo City, Saitama Prefecture). The water temperature was 20 ° C. This saturated calcium hydroxide aqueous solution simulates pore void water in concrete.
Thereafter, the electrode bodies A and B taken out from the saturated calcium hydroxide aqueous solution are embedded in a cement molded body together with a mercury / mercury oxide reference electrode for obtaining a relative potential with the electrode bodies A and B for a predetermined period. Continuous measurement was performed with a data logger. The cement molded body used here was produced according to the following (production of a cement molded body).

(電極本体の作製)
電極本体A(酸化イリジウム被覆電極)は次の手順で作製した。即ち、塩化イリジウム酸をn−ブタノールに溶かして調製した溶液を、一端がチタン線でスポット溶接された13mm×30mmのチタンメッシュ材に刷毛で塗りつけた後、そのメッシュ材を焼成して電極本体Aを得た。
電極本体B(酸化ルテニウム被覆電極)の作製方法は、前記の電極本体Aの作製方法において、塩化イリジウム酸に代えて塩化ルテニウムを用いた以外は、前記の電極本体Aの作製方法と同じである。
(Production of electrode body)
Electrode body A (iridium oxide-coated electrode) was produced by the following procedure. That is, after a solution prepared by dissolving iridium chloroidic acid in n-butanol was applied to a 13 mm × 30 mm titanium mesh material spot-welded at one end with a titanium wire with a brush, the mesh material was baked to produce electrode body A. Got.
The production method of the electrode body B (ruthenium oxide-coated electrode) is the same as the production method of the electrode body A except that ruthenium chloride is used instead of iridium chloride in the production method of the electrode body A. .

(セメント成形体の作製)
セメント100質量部、水酸化カルシウム5質量部、パーライト(保水材)10質量部及び細骨材28質量部をミキサーで混合し、得られた混合物に水60質量部を加えて混練し、セメント組成物を得た。このセメント組成物を所定時間養生させて硬化させ、目的とするセメント成形体を得た。使用した材料の詳細は下記の通り。
・セメント:(株)トクヤマ製普通ポルトランドセメント、比重3.16
・水酸化カルシウム:吉澤石灰工業株式会社製、特号消石灰、密度2.34g/cm3
・パーライト:三井金属鉱業社製、三井パーライトA、密度0.055g/cm3
・細骨材:静岡県掛川産陸砂、比重2.59
・水:埼玉県上尾市産水道水
(Preparation of cement molding)
100 parts by weight of cement, 5 parts by weight of calcium hydroxide, 10 parts by weight of pearlite (water retaining material) and 28 parts by weight of fine aggregate are mixed with a mixer, and 60 parts by weight of water is added to the resulting mixture and kneaded to obtain a cement composition. I got a thing. This cement composition was cured for a predetermined time and cured to obtain a target cement molded body. Details of the materials used are as follows.
Cement: Normal portland cement manufactured by Tokuyama Corporation, specific gravity 3.16
・ Calcium hydroxide: manufactured by Yoshizawa Lime Industry Co., Ltd., special slaked lime, density 2.34 g / cm 3
Perlite: Mitsui Metal Mining Co., Ltd., Mitsui Perlite A, density 0.055 g / cm 3
-Fine aggregate: Land sand from Kakegawa, Shizuoka Prefecture, specific gravity 2.59
・ Water: tap water from Ageo City, Saitama Prefecture

図4には前記試験例1の結果が示されている。測定値はすべて飽和塩化銀電極基準の値に換算した値である。図4中、符号Iで示す試験期間は、電極本体A,Bの飽和水酸化カルシウム水溶液中への浸漬期間に相当し、符号IIで示す試験期間は、電極本体A,Bのセメント成形体中への埋設期間に相当する。
試験期間Iにおいては、電極本体A,Bの周囲に存しているのはpH値が安定な水溶液であるため、電極本体A,Bの電位は図4に示す通り、電極本体A,Bの表層部に含まれている貴金属酸化物(酸化イリジウム、酸化ルテニウム)におけるpH12.5〜12.7の酸化還元電位に近似し、且つ試験期間Iの全期間(25日間)にわたって安定していた。
また試験期間Iから試験期間IIへ移行する過程においては、電極本体A,Bは若干卑な電位になったが、試験期間IIにおいては図4に示す通り、電極本体A,Bの電位は貴金属酸化物におけるpH12.7の酸化還元電位に近似し安定していた。この試験期間IIにおける電極本体A,Bの電位の安定性は、電極本体A,Bの周囲に配されたセメント成形体に水酸化カルシウム及びパーライト(保水材)が含有された結果、電極本体A,Bの周囲のpH値及び水分量がそれぞれ長期間にわたって適正な範囲を維持し得るようになったためと推察される。
FIG. 4 shows the results of Test Example 1. All measured values are values converted into values based on saturated silver chloride electrodes. In FIG. 4, the test period indicated by the symbol I corresponds to the immersion period of the electrode bodies A and B in the saturated calcium hydroxide aqueous solution, and the test period indicated by the symbol II is in the cement molded body of the electrode bodies A and B. Equivalent to the period of burial.
In the test period I, an aqueous solution having a stable pH value exists around the electrode bodies A and B. Therefore, the potentials of the electrode bodies A and B are as shown in FIG. It approximated the oxidation-reduction potential of pH 12.5 to 12.7 in the noble metal oxide (iridium oxide, ruthenium oxide) contained in the surface layer portion, and was stable over the entire period (25 days) of the test period I.
Further, in the process of transition from the test period I to the test period II, the electrode bodies A and B were slightly lower in potential, but in the test period II, the potentials of the electrode bodies A and B were noble metals as shown in FIG. It was close to the oxidation-reduction potential at pH 12.7 in the oxide and was stable. The stability of the potentials of the electrode bodies A and B during the test period II is as a result of containing calcium hydroxide and pearlite (water retaining material) in the cement molded body arranged around the electrode bodies A and B. , It is assumed that the pH value and water content around B can be maintained within an appropriate range over a long period of time.

〔実施例1〜5及び比較例1〕
図1に示す照合電極1と同様の構成の埋め込み型照合電極を作製した。電極本体2として、前記試験例1で作製した電極本体A(酸化イリジウム被覆電極)を用いた。
具体的には先ず、硬質塩化ビニル樹脂管からなる中空管状の収容体4の中空部にセパレータ5を設けた後、電極本体Aと結線されたチタン線をセパレータ5に挿入し、収容体4の上部4aの中空部にてこのチタン線と導線8とを接続した。
次に、収容体4の上部4a側の開口部から充填材6としてのエポキシ樹脂を充填した後、該開口部にプラスチック製の栓体7を設置して該開口部を封止した。
次に、下記表1に示す組成のセメント組成物を、収容体4の下部4b側の開口部から流し込んで下部4bの中空部全体に充填した後、その中空部内のセメント組成物を室温で1日養生して硬化させてセメント成形体3とした。このセメント組成物の材料としては、前記(セメント成形体の作製)で使用した材料に加えてさらに、保水材としてのベントナイト((株)立花マテリアル製、TB−250、みかけ比重0.68)を使用した。収容体4の下部4b側の開口部はセメント成形体3によって完全に閉塞され、その開口部を閉塞するセメント成形体3の外表面は、収容体4の下部4b側の開口部の端面と面一であった。こうして目的とする埋め込み型照合電極を作製した。
[Examples 1 to 5 and Comparative Example 1]
An embedded type verification electrode having the same configuration as that of the verification electrode 1 shown in FIG. 1 was produced. As the electrode body 2, the electrode body A (iridium oxide-coated electrode) prepared in Test Example 1 was used.
Specifically, first, a separator 5 is provided in a hollow portion of a hollow tubular container 4 made of a hard polyvinyl chloride resin tube, and then a titanium wire connected to the electrode body A is inserted into the separator 5. The titanium wire and the conductive wire 8 were connected at the hollow portion of the upper portion 4a.
Next, after filling the opening 4 on the side of the upper part 4a of the container 4 with an epoxy resin as the filler 6, a plastic stopper 7 was installed in the opening to seal the opening.
Next, a cement composition having the composition shown in Table 1 below is poured from the opening on the lower part 4b side of the container 4 to fill the entire hollow part of the lower part 4b, and then the cement composition in the hollow part is set to 1 at room temperature. It was cured and cured to obtain a cement molded body 3. As a material of this cement composition, in addition to the material used in the above (preparation of cement molded body), bentonite (TB-250 manufactured by Tachibana Material Co., Ltd., apparent specific gravity 0.68) as a water retaining material is further used. used. The opening on the lower 4b side of the container 4 is completely closed by the cement molded body 3, and the outer surface of the cement molded body 3 closing the opening is the end face of the opening on the lower 4b side of the container 4 It was one. In this way, the intended embedded reference electrode was produced.

〔試験例2〕
各実施例及び比較例の照合電極について、次の方法によりコンクリート中での電位の経時変化を測定した。具体的には図5に示すように、内部に直径9mmの鉄筋91が格子状に埋設されたコンクリート試験体90(縦800mm×横400mm×高さ200mm)を作製し、このコンクリート試験体90の上面に、電気ドリルを用いて直径26mm、深さ50mmの照合電極の設置孔を約100mm間隔で7個一列に形成した。こうして形成した設置孔のうち、中央に位置する設置孔を除く他の6個の設置孔には、図5中符号10で示す試験対象の照合電極を設置し、また、中央に位置する設置孔には、コンクリートとの液絡を確保するために、飽和水酸化カルシウム水溶液のゲルを詰め込んだ後で、照合電極10の相対的電位を求めるための水銀酸化水銀基準電極11をそのゲルの上から差し込んで設置した。基準電極11の内部の電解質は、飽和水酸化カルシウム水溶液のゲル化物からなる固体の電解質である。そして、照合電極10から延出する導線10Lを、コンクリート試験体90の外部に配置された計測機器(高抵抗電圧計)12のプラス端子に接続すると共に、基準電極11から延出する導線11Lを計測機器12のマイナス端子に接続し、その状態で常法に従って照合電極10の電位の経時変化を測定した。
[Test Example 2]
About the reference electrode of each Example and a comparative example, the time-dependent change of the electric potential in concrete was measured with the following method. Specifically, as shown in FIG. 5, a concrete specimen 90 (length 800 mm × width 400 mm × height 200 mm) in which reinforcing bars 91 having a diameter of 9 mm are embedded in a lattice shape is produced. On the upper surface, using an electric drill, seven reference electrode installation holes having a diameter of 26 mm and a depth of 50 mm were formed in a row at intervals of about 100 mm. Of the installation holes formed in this way, the other six installation holes excluding the installation hole located in the center are provided with the verification electrode to be tested indicated by reference numeral 10 in FIG. 5, and the installation holes located in the center. In order to secure a liquid junction with the concrete, a mercury mercury oxide reference electrode 11 for determining the relative potential of the reference electrode 10 is filled from above the gel after filling a gel of a saturated calcium hydroxide aqueous solution. Plugged in and installed. The electrolyte inside the reference electrode 11 is a solid electrolyte made of a gelled saturated calcium hydroxide aqueous solution. And while connecting the conducting wire 10L extended from the collation electrode 10 to the plus terminal of the measuring device (high resistance voltmeter) 12 arrange | positioned outside the concrete test body 90, conducting wire 11L extended from the reference electrode 11 is connected. Connected to the minus terminal of the measuring instrument 12, and in that state, the change with time of the potential of the reference electrode 10 was measured according to a conventional method.

図6には前記試験例2の結果が示されている。図6に示す通り、比較例1の照合電極の電位は変動し、経時的に貴化したのに対し、実施例1〜5の照合電極の電位は何れもコンクリート中において長期間安定し、その間、実施例1〜5の照合電極のセメント成形体が適正なpH値及び水分量を維持していたことがわかる。尚、図6の電位は、飽和塩化銀基準電極(Silver Silver−Chloride Electrode)に換算した値である。   FIG. 6 shows the results of Test Example 2. As shown in FIG. 6, the potential of the reference electrode of Comparative Example 1 fluctuated and became noble over time, whereas the potentials of the reference electrodes of Examples 1 to 5 were all stable in the concrete for a long time. It can be seen that the cement molded bodies of the reference electrodes of Examples 1 to 5 maintained appropriate pH values and moisture amounts. The potential in FIG. 6 is a value converted to a saturated silver chloride reference electrode (Silver Silver-Chloride Electrode).

1 照合電極
2 電極本体
20 基材
21 表層部
3 セメント成形体
4 収容体
4a 収容体の上部
4b 収容体の下部
5 セパレータ
6 充填材
7 栓体
8 導線
DESCRIPTION OF SYMBOLS 1 Reference electrode 2 Electrode main body 20 Base material 21 Surface layer part 3 Cement molded object 4 Container 4a Upper part of the container 4b Lower part of the container 5 Separator 6 Filler 7 Plug 8 Conductor

Claims (2)

コンクリート中に埋設され、該コンクリート中の金属の電位を測定するのに使用される照合電極であって、
少なくとも表層部が貴金属酸化物を含んで構成されている電極本体と、
前記電極本体の周囲に該電極本体と接触し且つ使用時に前記照合電極の周辺のコンクリートと液絡するように配されたセメント成形体とを備え、
前記セメント成形体は、水酸化カルシウム及び保水材を含み、該保水材は、パーライト、ベントナイト及び硝酸マグネシウムからなる群から選択される1種以上である照合電極。
A reference electrode embedded in concrete and used to measure the potential of a metal in the concrete,
An electrode body having at least a surface layer portion containing a noble metal oxide; and
A cement molded body arranged around the electrode body so as to come into contact with the concrete around the reference electrode and in use when in contact with the electrode body;
The cement molded body includes calcium hydroxide and a water retention material, and the water retention material is at least one selected from the group consisting of pearlite, bentonite, and magnesium nitrate.
前記貴金属酸化物は、酸化イリジウム、酸化ルテニウム及び酸化パラジウムからなる群から選択される1種以上である請求項1に記載の照合電極。   The reference electrode according to claim 1, wherein the noble metal oxide is at least one selected from the group consisting of iridium oxide, ruthenium oxide, and palladium oxide.
JP2016127087A 2016-06-27 2016-06-27 Reference electrode Active JP6725337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127087A JP6725337B2 (en) 2016-06-27 2016-06-27 Reference electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127087A JP6725337B2 (en) 2016-06-27 2016-06-27 Reference electrode

Publications (2)

Publication Number Publication Date
JP2018004283A true JP2018004283A (en) 2018-01-11
JP6725337B2 JP6725337B2 (en) 2020-07-15

Family

ID=60947835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127087A Active JP6725337B2 (en) 2016-06-27 2016-06-27 Reference electrode

Country Status (1)

Country Link
JP (1) JP6725337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014003A1 (en) * 2022-07-15 2024-01-18 日本電信電話株式会社 Corrosion reproduction device, control device, evaluation system, control method, and program

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135695A (en) * 1975-04-28 1976-11-24 Chemoprojekt Projektova Inzeny Measuring method of polarization potential of metallic construction positioned in corrosive medium of current flowing and system for carrying out the method
JPH02156095A (en) * 1988-12-07 1990-06-15 Permelec Electrode Ltd Method and device for anticorrosion
EP0486057A2 (en) * 1990-11-16 1992-05-20 Oronzio De Nora S.A. Permanent reference electrode for monitoring the electrochemical potential of metal structures in concrete and soil
JPH04178554A (en) * 1990-11-14 1992-06-25 Nippon Boshoku Kogyo Kk Lead reference electrode
JPH06317553A (en) * 1993-05-06 1994-11-15 Nakagawa Boshoku Kogyo Kk Reference electrode for concrete burying
JP2000044364A (en) * 1998-07-22 2000-02-15 Denki Kagaku Kogyo Kk Detection of repair-needing portion of concrete structure and its repair
JP2008241620A (en) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology Electrometry device
CN202939152U (en) * 2012-09-03 2013-05-15 青岛双瑞海洋环境工程股份有限公司 Long-service-life embedded reference electrode for monitoring/detecting corrosion of reinforced concrete
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode
JP2015090041A (en) * 2013-11-07 2015-05-11 日本電信電話株式会社 Corrosion prevention system
JP2015145527A (en) * 2014-02-04 2015-08-13 株式会社ナカボーテック Back-fill for cathodic protection
EP3101411A1 (en) * 2015-06-05 2016-12-07 CESCOR S.r.l. Permanent reference eletrode for the potential measurement of buried metallic structures

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135695A (en) * 1975-04-28 1976-11-24 Chemoprojekt Projektova Inzeny Measuring method of polarization potential of metallic construction positioned in corrosive medium of current flowing and system for carrying out the method
JPH02156095A (en) * 1988-12-07 1990-06-15 Permelec Electrode Ltd Method and device for anticorrosion
JPH04178554A (en) * 1990-11-14 1992-06-25 Nippon Boshoku Kogyo Kk Lead reference electrode
EP0486057A2 (en) * 1990-11-16 1992-05-20 Oronzio De Nora S.A. Permanent reference electrode for monitoring the electrochemical potential of metal structures in concrete and soil
JPH0510915A (en) * 1990-11-16 1993-01-19 Oronzio De Nora Sa Permanent reference electrode for investigating electrochemical potential of metallic structure in concrete and soil
JPH06317553A (en) * 1993-05-06 1994-11-15 Nakagawa Boshoku Kogyo Kk Reference electrode for concrete burying
JP2000044364A (en) * 1998-07-22 2000-02-15 Denki Kagaku Kogyo Kk Detection of repair-needing portion of concrete structure and its repair
JP2008241620A (en) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology Electrometry device
CN202939152U (en) * 2012-09-03 2013-05-15 青岛双瑞海洋环境工程股份有限公司 Long-service-life embedded reference electrode for monitoring/detecting corrosion of reinforced concrete
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode
JP2015090041A (en) * 2013-11-07 2015-05-11 日本電信電話株式会社 Corrosion prevention system
JP2015145527A (en) * 2014-02-04 2015-08-13 株式会社ナカボーテック Back-fill for cathodic protection
EP3101411A1 (en) * 2015-06-05 2016-12-07 CESCOR S.r.l. Permanent reference eletrode for the potential measurement of buried metallic structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014003A1 (en) * 2022-07-15 2024-01-18 日本電信電話株式会社 Corrosion reproduction device, control device, evaluation system, control method, and program

Also Published As

Publication number Publication date
JP6725337B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US7749362B2 (en) Protection of reinforcement
Dong et al. Effective monitoring of corrosion in reinforcing steel in concrete constructions by a multifunctional sensor
Fedrizzi et al. The use of migrating corrosion inhibitors to repair motorways' concrete structures contaminated by chlorides
EP3101411B1 (en) Permanent reference electrode for the potential measurement of buried metallic structures
US9625403B1 (en) Method of ascertaining fully grown passive film formation on steel rebar embedded in concrete
Ji et al. Corrosion current distribution of macrocell and microcell of steel bar in concrete exposed to chloride environments
Jin et al. Electrochemical characterization of a solid embeddable Ag/AgCl reference electrode for corrosion monitoring in reinforced concrete
JP2007271501A (en) Method of evaluating corrosion protection for coating
JP5941022B2 (en) Reference electrode
KR100564879B1 (en) Monitoring sensor of corrosion rate and corrosion environment of steel reinforcement embedded in concrete
Jin et al. Fabrication and characterization of pseudo reference electrode based on graphene-cement composites for corrosion monitoring in reinforced concrete structure
KR101698464B1 (en) Method for monitering chloride penetration into reinforced concrete with high conductive cement composite
JP6725337B2 (en) Reference electrode
JPH0510915A (en) Permanent reference electrode for investigating electrochemical potential of metallic structure in concrete and soil
Herrera et al. Electro-chemical chloride extraction: Influence of C3A of the cement on treatment efficiency
JP6239992B2 (en) Backfill for cathodic protection
Yousif et al. Corrosion of steel in high-strength self-compacting concrete exposed to saline environment
JP2008241620A (en) Electrometry device
JP3053043B2 (en) Reference electrode for concrete burial
US20230295810A1 (en) Cathodic protection polypropylene graphite reference electrode
Sammut et al. Chloride ion detection through the voltage response of a galvanic pair
Joseph Development of cement-based batteries for self-powering cathodic protection systems
Geng et al. A time-saving method for assessing the corrosion inhibitor efficiency
Atkins Chloride Monitoring in Concrete Using Ion Selective Electrodes
Runci et al. Mortar resistivity as a parameter for monitoring steel corrosion in alkali-activated materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6725337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250