JP2003268577A - Electric corrosion prevention structure with shallow- bottomed vessel shape for electrically preventing corrosion of reinforcing bar in reinforced concrete and method of fitting the structure - Google Patents

Electric corrosion prevention structure with shallow- bottomed vessel shape for electrically preventing corrosion of reinforcing bar in reinforced concrete and method of fitting the structure

Info

Publication number
JP2003268577A
JP2003268577A JP2002290987A JP2002290987A JP2003268577A JP 2003268577 A JP2003268577 A JP 2003268577A JP 2002290987 A JP2002290987 A JP 2002290987A JP 2002290987 A JP2002290987 A JP 2002290987A JP 2003268577 A JP2003268577 A JP 2003268577A
Authority
JP
Japan
Prior art keywords
reinforced concrete
shallow
conductive plate
container
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290987A
Other languages
Japanese (ja)
Other versions
JP3841037B2 (en
Inventor
Satoru Yamamoto
悟 山本
Mitsuo Ishikawa
光男 石川
Sadao Takeda
定雄 竹田
Takeharu Kawaoka
岳晴 川岡
Kenkichi Tashiro
賢吉 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP2002290987A priority Critical patent/JP3841037B2/en
Publication of JP2003268577A publication Critical patent/JP2003268577A/en
Application granted granted Critical
Publication of JP3841037B2 publication Critical patent/JP3841037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric corrosion prevention structure with a shallow- bottomed vessel shape for electrically preventing corrosion of a reinforcing bar at the inside of reinforced concrete, and to provide a method of fitting the structure. <P>SOLUTION: The electric corrosion prevention structure 13 with a shallow- bottomed vessel shape consists of a frame 10 and an electrically conductive board 11 fitted so as to clog the one-side opening part of the frame 10, and an anode body 14 is fitted to the inside of the electrically conductive board 11. The electric corrosion protection structure 13 is fixed to the surface of reinforced concrete so that the electrically conductive board 11 and the reinforced concrete are retained in an insulation state. Next, an electrolyte is poured and filled from an electrolyte pouring hole 19 into the space formed of the reinforced concrete surface, the electrically conductive board 11 and the frame 10 of the electric corrosion prevention structure with a shallow-bottomed vessel shape. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は鉄筋コンクリート
の内部にある鉄筋を電気防食するための底浅容器状電気
防食構造体、電解質を充填した底浅容器状電気防食構造
体を鉄筋コンクリートに取付ける方法およびこの底浅容
器状電気防食構造体を用いた鉄筋コンクリートの電気防
食方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shallow-shelf container-type electrolytic protection structure for performing electrolytic corrosion protection on the reinforcing bars inside a reinforced concrete, a method for attaching an electrolyte-filled shallow-shelf container-shaped corrosion protection structure to reinforced concrete, and The present invention relates to a method for cathodic protection of reinforced concrete using a shallow-bottom container-shaped cathodic protection structure.

【0002】[0002]

【従来の技術】鉄筋コンクリート中の鉄筋は、コンクリ
ートの中性化および塩分濃度の増加に伴って腐食し、そ
の鉄筋コンクリート構造物の機能を低下させることがあ
る。例えば、臨海および海洋環境において海水、波浪お
よび気温の変化等に起因して、鉄筋コンクリート中の塩
分濃度が上昇したり、あるいはコンクリートが中性化し
たりする場合がある。このような環境下におかれた鉄筋
コンクリートの構造物を防食する方法として電気防食が
ある。これは、コンクリートを介して陽極から鉄筋コン
クリート中の鉄筋に直流電流を通電し、その鉄筋表面を
腐食に対して不活性にすることにより達成されるもので
ある。
2. Description of the Related Art Reinforcing bars in reinforced concrete may corrode with the neutralization of concrete and an increase in salt concentration, which may deteriorate the function of the reinforced concrete structure. For example, in coastal and marine environments, the salt concentration in reinforced concrete may increase or the concrete may become neutral due to changes in seawater, waves, and temperature. As a method of preventing corrosion of a reinforced concrete structure placed under such an environment, there is electrolytic protection. This is accomplished by passing a direct current through the concrete from the anode to the rebar in the reinforced concrete to render the rebar surface inert to corrosion.

【0003】例えば、図11に示されるように、鉄筋コ
ンクリート1からなる構造物に接合部材2および陽極3
を固定したのち、開口部を有する支持容器4に電解質
(バックフィルともいう)5を充填し、この電解質5を
充填した支持容器4を接合部材2の鉤6が支持容器4の
側壁に設けられた穴7に契合するように支持容器4を鉄
筋コンクリート1に押し当てて接合させ、それにより電
解質5を陽極3に接触させると共に鉄筋コンクリート1
からなる構造物の鉄筋コンクリートの表面に電解質5を
充填した支持容器4を取付け、陽極3を電源のプラス極
に接続し、鉄筋コンクリート内部の鉄筋8をマイナス極
に電気的に接合し、それによって鉄筋コンクリート1に
おける鉄筋8を電気防食する方法が知られている(例え
ば、特許文献1参照)。
For example, as shown in FIG. 11, a joining member 2 and an anode 3 are attached to a structure made of reinforced concrete 1.
After fixing, the support container 4 having an opening is filled with an electrolyte (also referred to as backfill) 5, and the support container 4 filled with the electrolyte 5 is provided with the hook 6 of the joining member 2 on the side wall of the support container 4. The supporting container 4 is pressed against the reinforced concrete 1 so as to be engaged with the hole 7, and is joined to the reinforced concrete 1, thereby bringing the electrolyte 5 into contact with the anode 3 and the reinforced concrete 1
The support container 4 filled with the electrolyte 5 is attached to the surface of the reinforced concrete of the structure consisting of, the anode 3 is connected to the positive pole of the power source, and the reinforcing bar 8 inside the reinforced concrete is electrically connected to the negative pole, whereby the reinforced concrete 1 There is known a method of performing galvanic protection of the reinforcing bar 8 in the above (for example, refer to Patent Document 1).

【0004】[0004]

【特許文献1】特開昭62−188784号公報[Patent Document 1] JP-A-62-188784

【0005】[0005]

【本発明が解決しようとする課題】しかし、一般に、鉄
筋コンクリート1の表面には、図11に示されるよう
に、鉄筋コンクリート内部に埋め込まれた細い鉄筋9が
コンクリート表面に露出突出しており、このコンクリー
ト表面に露出突出している細い鉄筋9が陽極3と接触し
て電気防食回路が短絡し、十分な防食効果が得られない
ことがある。そのために、通常、鉄筋コンクリート1に
接合部材2および陽極3を固定する前に、コンクリート
表面に露出突出しているわずかな細い鉄筋9を探して取
り除き、オーバーレイの塗布を行う必要があり、この露
出した細い鉄筋9の除去およびオーバーレイの塗布を行
うには多大な労力が必要となってコストを押し上げてい
た。また、陽極3の電気抵抗により電源から遠くなるほ
ど防食電流が少なくなるため、防食が場所によって不均
一となるという問題があり、この問題を解決するために
陽極3に電流を配分するための配線(図示せず)を付加
する必要があった。さらに、前記従来の支持容器4は、
予め、支持容器4に電解質5を充填したのち、鉄筋コン
クリートに取付けていたので、重い電解質5を充填した
支持容器4を鉄筋コンクリートに取付けることは困難で
あり、特に重い電解質5を充填した支持容器4を鉄筋コ
ンクリートの下向き面に取付けるには重労働と熟練を要
した。
However, in general, on the surface of the reinforced concrete 1, as shown in FIG. 11, a thin reinforcing bar 9 embedded inside the reinforced concrete is exposed and projected on the concrete surface. In some cases, the thin reinforcing bar 9 exposed and exposed comes into contact with the anode 3 to short-circuit the cathodic protection circuit, and a sufficient anticorrosion effect cannot be obtained. Therefore, usually, before fixing the joining member 2 and the anode 3 to the reinforced concrete 1, it is necessary to search for and remove a small thin reinforcing bar 9 exposed and protruding on the concrete surface, and apply an overlay. A great amount of labor is required to remove the reinforcing bar 9 and apply the overlay, which increases the cost. Further, there is a problem that the anticorrosion current becomes smaller as the distance from the power source increases due to the electric resistance of the anode 3, so that the anticorrosion becomes uneven depending on the location. To solve this problem, wiring for distributing the current to the anode 3 ( (Not shown) had to be added. Furthermore, the conventional support container 4 is
Since the support container 4 was previously filled with the electrolyte 5 and then attached to the reinforced concrete, it is difficult to attach the support container 4 filled with the heavy electrolyte 5 to the reinforced concrete, and the support container 4 filled with the heavy electrolyte 5 is particularly difficult. Installation on the lower surface of reinforced concrete required heavy labor and skill.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは、
これらの課題を解決すべく研究を行った結果、(イ)図
1の斜視図に示されるように、絶縁性材料で構成された
絶縁体フレーム(以下、絶縁体フレームという)10
と、この絶縁体フレームの片面開口部を塞ぐように取付
けられた耐食性を有する導電性板(以下、導電性板とい
う)11と、この導電性板11の内側に取付けた陽極部
14からなる底浅容器形状を有する底浅容器状電気防食
構造体13を作製し、この底浅容器状電気防食構造体1
3を鉄筋コンクリートの表面に図2の断面図に示される
ように予め取付け、この底浅容器状電気防食構造体13
と鉄筋コンクリート1の表面とで形成された空間に電解
質21を注入し、導電性板11をプラス極に、鉄筋コン
クリート1をマイナス極にそれぞれ接続すると、底浅容
器状電気防食構造体自体は軽いものであるから底浅容器
状電気防食構造体13を鉄筋コンクリート1の表面に比
較的簡単に取付けることができ、したがって簡単な作業
で鉄筋コンクリートを電気防食することができる、
(ロ)このようにして取付けられた底浅容器状電気防食
構造体の導電性板11は、前記絶縁体フレーム10を介
して鉄筋コンクリート表面に固定するために、導電性板
および陽極部が鉄筋コンクリート表面から離れて固定さ
れ、そのために鉄筋が鉄筋コンクリートの表面から露出
突出している細い鉄筋があっても、導電性板および陽極
部と短絡することがない、(ハ)鉄筋コンクリートの表
面は滑らかではなく、一般に凹凸の激しい表面を有して
おり、一方、前記底浅容器状電気防食構造体の絶縁体フ
レームは、剛性のある合成樹脂で作られているので靭性
に乏しく、したがって、鉄筋コンクリート面と絶縁体フ
レームの間に隙間ができることは避けられず、かかる隙
間があると、後述する電解質が隙間から漏れ出るので好
ましくないところから、前記(1)に記載の底浅容器状
電気防食構造体における絶縁体フレームの片面に、図3
に示されるように、ポリウレタン、ポリエチレン、クロ
ロプレン、シリコンなどからなるスポンジ、発泡スチロ
ール等の弾性体からなる弾性体シール層15を形成する
ことが一層好ましい、などの研究結果が得られたのであ
る。
Therefore, the present inventors have
As a result of research to solve these problems, (a) an insulator frame (hereinafter referred to as an insulator frame) made of an insulating material, as shown in the perspective view of FIG.
And a bottom composed of a corrosion-resistant conductive plate (hereinafter referred to as a conductive plate) 11 mounted so as to close the opening on one side of the insulator frame, and an anode part 14 mounted inside the conductive plate 11. A shallow-bottom container-shaped electrolytic protection structure 13 having a shallow-container shape is produced, and this shallow-bottom container-shaped electrolytic protection structure 1 is manufactured.
3 is previously attached to the surface of the reinforced concrete as shown in the sectional view of FIG.
When the electrolyte 21 is injected into the space formed by the and the surface of the reinforced concrete 1 and the conductive plate 11 is connected to the positive pole and the reinforced concrete 1 is connected to the negative pole, the shallow shallow container-shaped electrolytic protection structure itself is light. Therefore, the shallow container-like electrolytic protection structure 13 can be attached to the surface of the reinforced concrete 1 relatively easily, so that the reinforced concrete can be protected against corrosion by a simple operation.
(B) In order to fix the conductive plate 11 of the shallow shallow container-type galvanic protection structure thus mounted to the reinforced concrete surface through the insulator frame 10, the conductive plate and the anode part are reinforced concrete surface. Even if there is a thin rebar that is fixed away from, so that the reinforcing bar is exposed and protruding from the surface of the reinforced concrete, it will not short-circuit with the conductive plate and the anode part. (C) The surface of the reinforced concrete is not smooth, and generally It has a highly uneven surface, while the insulator frame of the shallow container-type electrolytic protection structure has poor toughness because it is made of a rigid synthetic resin, and therefore has a reinforced concrete surface and an insulator frame. It is unavoidable that there is a gap between the two, and if there is such a gap, the electrolyte described below will leak out from the gap, which is not desirable. Et al, on one surface of the insulator frame at the bottom shallow container shape cathodic protection structure according to (1), 3
As shown in (4), it is more preferable to form the elastic body seal layer 15 made of an elastic body such as a sponge made of polyurethane, polyethylene, chloroprene, silicon, etc., or styrofoam.

【0007】この発明は、かかる研究結果に基づいてな
されたものであって、図1および図3に示されるよう
に、(1)絶縁性材料で構成された絶縁体フレーム10
と、この絶縁体フレーム10の片面開口部を塞ぐように
取付けられた耐食性を有する導電性板11とからなり、
この導電性板11の内側に陽極部14を取付けてなる鉄
筋コンクリートにおける鉄筋を電気防食するための底浅
容器状電気防食構造体、(2)絶縁体フレーム10と、
この絶縁体フレーム10の片面開口部を塞ぐように取付
けられた導電性板11とからなり、この導電性板11の
内側に陽極部14が接合されており、一方、前記導電性
板と対抗する絶縁体フレーム10の鉄筋コンクリート取
付け面側に弾性体からなる弾性体シール層15を介在さ
せてなる鉄筋コンクリートにおける鉄筋を電気防食する
ための底浅容器状電気防食構造体、に特徴を有するもの
である。
The present invention has been made on the basis of the results of such research. As shown in FIGS. 1 and 3, (1) an insulator frame 10 made of an insulating material.
And a conductive plate 11 having corrosion resistance attached so as to close the opening on one side of the insulator frame 10,
A bottom-shallow-container-shaped electrocorrosion structure for electrocorrosion of reinforcing bars in reinforced concrete in which the anode part 14 is attached to the inside of the conductive plate 11, (2) insulator frame 10,
The insulator frame 10 is formed of a conductive plate 11 attached so as to close the opening on one side, and an anode portion 14 is bonded to the inside of the conductive plate 11, while facing the conductive plate. The present invention is characterized by a shallow-shelf container-shaped anticorrosion structure for galvanically corroding rebar in reinforced concrete, in which an elastic body sealing layer 15 made of an elastic body is interposed on the reinforced concrete mounting surface side of the insulator frame 10.

【0008】この発明の鉄筋コンクリートにおける鉄筋
を電気防食するための底浅容器状電気防食構造体13を
構成する絶縁体フレーム10は軽量でかつ絶縁性の高い
材料で作ることが好ましく、したがって、合成樹脂で構
成することが最も好ましい。また、底浅容器状電気防食
構造体13を構成する導電性板11は、高強度を有し、
塩分や亜硫酸ガスなどが含まれる環境に対して耐食性が
あり、かつ軽量である材料で作られることが好ましく、
かかる材料としてカーボン、チタンクラッド板、カーボ
ン繊維板、チタンまたはチタン合金板などが考えられる
が、これらの中でもチタンまたはチタン合金板が最も好
ましい。このチタンまたはチタン合金板は幅:50〜1
000mm、長さ:200〜2000mm、厚さ:0.
1〜2mmの範囲内にあることが好ましい。チタンまた
はチタン合金板はあまり大きいと底浅容器状電気防食構
造体13の鉄筋コンクリートに対する取付けが困難にな
るという理由からである。
It is preferable that the insulator frame 10 constituting the shallow-shelf container-shaped electrolytic protection structure 13 for electrolytically protecting the reinforcing bars in the reinforced concrete of the present invention is made of a lightweight and highly insulating material. Most preferably, Further, the conductive plate 11 forming the shallow-bottomed container-shaped electrocorrosion structure 13 has high strength,
It is preferably made of a material that has corrosion resistance to the environment containing salt and sulfurous acid gas, and is lightweight,
Examples of such a material include carbon, a titanium clad plate, a carbon fiber plate, a titanium or titanium alloy plate, and of these, a titanium or titanium alloy plate is most preferable. This titanium or titanium alloy plate has a width of 50 to 1
000 mm, length: 200 to 2000 mm, thickness: 0.
It is preferably within the range of 1 to 2 mm. This is because if the titanium or titanium alloy plate is too large, it becomes difficult to attach the shallow-bottomed container-like electrolytic protection structure 13 to the reinforced concrete.

【0009】絶縁体フレーム10に導電性板11を取付
けて底浅容器状電気防食構造体13を作製するには、絶
縁体フレーム10に導電性板11を接着剤で接合するこ
とにより作ることができる。絶縁体フレーム10は可能
な限り断面積を小さくして軽量化することが好ましい
が、絶縁体フレームの断面積を小さくすると強度が不足
し、底浅容器状電気防食構造体13の強度が不十分な場
合がある。そのような場合に、底浅容器状電気防食構造
体13の強度を一層向上させるべく、図4に示されるよ
うに、導電性板11の縁を折り曲げて折曲げ縁34を形
成し、この折曲げ縁34で絶縁体フレーム10を囲むよ
うにして絶縁体フレーム10に導電性板11を接合する
と、絶縁体フレーム10および導電性板11の接合強度
を一層高めることができるとともに、底浅容器状電気防
食構造体13全体の強度を一層高めることができる。ま
た、絶縁体フレーム10を射出成形する際に導電性板1
1を鋳包むことにより一体的に形成することができる。
さらに絶縁体フレーム10に導電性板11を作業現場で
組み立てて底浅容器状電気防食構造体13を完成させて
も良い。
In order to attach the conductive plate 11 to the insulator frame 10 to produce the shallow container-like electrolytic protection structure 13, the conductive plate 11 is bonded to the insulator frame 10 with an adhesive. it can. It is preferable to reduce the cross-sectional area of the insulator frame 10 as much as possible to reduce the weight thereof. However, if the cross-sectional area of the insulator frame is reduced, the strength becomes insufficient, and the strength of the shallow shallow container-type corrosion protection structure 13 is insufficient. There is a case. In such a case, in order to further improve the strength of the shallow-shelf container-shaped electrocorrosion structure 13, as shown in FIG. 4, the edges of the conductive plate 11 are bent to form the bent edges 34, and the folded edges 34 are formed. When the conductive plate 11 is joined to the insulator frame 10 so as to surround the insulator frame 10 with the bent edge 34, the joint strength between the insulator frame 10 and the conductive plate 11 can be further increased, and at the same time, the shallow shallow container-shaped electrolytic protection is provided. The strength of the entire structure 13 can be further increased. Moreover, when the insulator frame 10 is injection-molded, the conductive plate 1
1 can be integrally formed by casting.
Further, the electrically conductive plate 11 may be assembled on the insulator frame 10 at the work site to complete the shallow container-type cathodic protection structure 13.

【0010】また、底浅容器状電気防食構造体13のフ
レームは、図10の一部断面斜視図に示されるように、
耐食性を有する導電性板の周囲を曲げ加工して導電体フ
レーム33を成形し、導電性板とフレームを一体成形す
ることができる。この導電体フレーム33は絶縁体フレ
ーム10に比べて一層軽量化することができる。しか
し、この場合、導電体フレーム33は導電性であるか
ら、鉄筋コンクリート1と導電体フレーム33を絶縁状
態に保持するために絶縁体からなる絶縁層31を導電体
フレーム33の鉄筋コンクリート取付け側面に設ける必
要がある。したがって、この発明は、(3)耐食性を有
する導電性板11と、前記耐食性を有する導電性板の周
囲を曲げ加工して成形した導電体フレーム33と、前記
導電体フレーム33の鉄筋コンクリート取付け側面に設
けた絶縁層31とからなり、前記耐食性を有する導電性
板11の内側に陽極部14を取付けてなる鉄筋コンクリ
ートにおける鉄筋を電気防食するための底浅容器状電気
防食構造体、に特徴を有するものである。前記絶縁層3
1は、絶縁性弾性体からなる絶縁性弾性体シール層で置
換することができる。前記(2)記載の絶縁体フレーム
10の鉄筋コンクリート取付け面側に貼り付けた弾性体
からなる弾性体シール層15は、導電体または絶縁体の
いずれで構成されていても良いが、前記(3)記載の底
浅容器状電気防食構造体における絶縁層31はフレーム
33が導電体で構成されているので、特に絶縁性に優れ
たポリウレタン、ポリエチレンなどの絶縁性弾性体から
なる絶縁性弾性体シール層で構成することが必要であ
る。
Further, the frame of the shallow-bottomed container-shaped cathodic protection structure 13 is, as shown in the partial sectional perspective view of FIG.
The periphery of a conductive plate having corrosion resistance can be bent to form the conductor frame 33, and the conductive plate and the frame can be integrally formed. The conductor frame 33 can be made lighter than the insulator frame 10. However, in this case, since the conductor frame 33 is conductive, it is necessary to provide the insulating layer 31 made of an insulator on the reinforced concrete mounting side of the conductor frame 33 in order to keep the reinforced concrete 1 and the conductor frame 33 in an insulated state. There is. Therefore, the present invention provides (3) a conductive plate 11 having corrosion resistance, a conductive frame 33 formed by bending the periphery of the conductive plate having corrosion resistance, and a side surface of the conductive frame 33 on which reinforced concrete is mounted. Characterized by a shallow-shelf container-shaped anticorrosion structure for galvanically corroding rebar in reinforced concrete, comprising an insulating layer 31 provided and having an anode portion 14 attached to the inside of said conductive plate 11 having corrosion resistance. Is. The insulating layer 3
1 can be replaced by an insulating elastic body seal layer made of an insulating elastic body. The elastic body seal layer 15 made of an elastic body attached to the reinforced concrete mounting surface side of the insulator frame 10 described in (2) above may be made of either a conductor or an insulator. Since the frame 33 of the insulating layer 31 in the shallow-bottomed container-shaped galvanic protection structure described above is made of a conductive material, an insulating elastic material sealing layer made of an insulating elastic material such as polyurethane or polyethylene having particularly excellent insulating properties. It is necessary to configure with.

【0011】チタンまたはチタン合金板で作製した導電
性板11は、軽量で高強度を有するが、長期間放置する
と、表面に薄い酸化チタン膜が形成されて導電性が徐々
に低下する。そのために、チタンまたはチタン合金板か
らなる導電性板11の表面に陽極部14を取付ける。陽
極部14は、図1に示されるように、白金など白金族金
属メッキ被膜、貴金属酸化物(MMO)被膜またはカーボ
ン被膜など長期間高導電性を保持することのできる被膜
を導電板11に直接形成することにより取付けることが
できる。しかし、チタンまたはチタン合金板の表面全面
に白金メッキした導電性板はコストが大幅に上昇する。
従って、白金族金属のメッキを施したチタンまたはチタ
ン合金の棒を用意し、これを曲げ加工して取っ手状に成
形し、この曲げ加工したチタンまたはチタン合金の棒に
白金族金属メッキした棒状体からなる陽極部14を図1
に示されるように導電性板11に溶接し取付けることが
好ましい。陽極部14は図1に示される曲げ棒に限定さ
れるものではなく、白金族金属メッキ被膜、貴金属酸化
物(MMO)被膜などを形成した帯、直線棒、網、リング
などでもよく、陽極部は幅:2〜50mm×厚さ:0.
3〜3mmからなる寸法の帯、直径:3〜20mmの
棒、または直径:0.5〜5mmの線からなる網でつく
ることが好ましい。帯で作製した帯状体からなる陽極部
を図9に示す。帯状体からなる陽極部14は、断面積に
対して表面積を多くすることができ、さらに図9に示さ
れるように片面に白金族金属メッキ、貴金属酸化物(MM
O)などからなる被膜29などを形成し、鉄筋方向のみ
に広く活性面を設けることができるので棒状体からなる
陽極部よりも有利である。図1では、導電性板11に白
金被膜、貴金属酸化物被膜またはカーボン被膜などの膜
からなる陽極部14およびチタンまたはチタン合金棒に
白金族金属メッキ被膜または貴金属酸化物被膜を被覆し
てなる棒状体からなる陽極部14が共に取付けられたも
のが示されており、図10ではチタンまたはチタン合金
棒に白金族金属メッキ被膜または貴金属酸化物被膜を被
覆してなる帯状体からなる陽極部14が取付けられてい
るが、導電性板11に取付けられる陽極部14は膜から
なる陽極部、棒状体からなる陽極部、帯状体からなる陽
極部の内のいずれか一つを設けることで十分である。
The conductive plate 11 made of titanium or a titanium alloy plate is lightweight and has high strength, but when left for a long period of time, a thin titanium oxide film is formed on the surface, and the conductivity gradually decreases. Therefore, the anode part 14 is attached to the surface of the conductive plate 11 made of a titanium or titanium alloy plate. As shown in FIG. 1, the anode part 14 is directly coated with a platinum group metal plating film such as platinum, a noble metal oxide (MMO) film, or a carbon film, which can maintain high conductivity for a long time, on the conductive plate 11. It can be attached by forming. However, the cost of a conductive plate in which the entire surface of a titanium or titanium alloy plate is plated with platinum increases significantly.
Therefore, prepare a rod of titanium or titanium alloy plated with platinum group metal, bend it to form a handle, and then rod-shape the platinum-plated metal of the bent rod of titanium or titanium alloy. The anode part 14 composed of
It is preferable to weld and attach to the conductive plate 11 as shown in FIG. The anode part 14 is not limited to the bending rod shown in FIG. 1, but may be a strip formed with a platinum group metal plating film, a noble metal oxide (MMO) film, a straight rod, a net or a ring. Has a width of 2 to 50 mm and a thickness of 0.
It is preferably made of a strip of dimensions 3 to 3 mm, a rod of diameter 3 to 20 mm, or a net of wires of diameter 0.5 to 5 mm. FIG. 9 shows an anode portion made of a band-shaped body produced from the band. The anode part 14 made of a strip can have a large surface area with respect to its cross-sectional area. Furthermore, as shown in FIG.
Since it is possible to form a coating film 29 made of O) or the like to provide a wide active surface only in the reinforcing bar direction, it is more advantageous than the anode portion made of a rod-shaped body. In FIG. 1, the conductive plate 11 has an anode part 14 formed of a film such as a platinum film, a noble metal oxide film or a carbon film, and a rod of titanium or titanium alloy rod coated with a platinum group metal plating film or a noble metal oxide film. It is shown that the anode part 14 made of a body is attached together, and in FIG. 10, the anode part 14 made of a strip-shaped body formed by coating a titanium or titanium alloy rod with a platinum group metal plating film or a noble metal oxide film is shown. Although attached, it is sufficient to provide the anode part 14 attached to the conductive plate 11 with any one of an anode part made of a film, an anode part made of a rod-shaped body, and an anode part made of a strip-shaped body. .

【0012】次に、前記(1)〜(3)記載の底浅容器
状電気防食構造体を鉄筋コンクリートに取付ける方法を
説明する。まず、図1に示されるように、絶縁体フレー
ム10に予め穴16を明けておく。この穴16は取付け
る直前に明けてもよいが、予め明けておく方が好まし
い。底浅容器状電気防食構造体を取付ける個所の鉄筋コ
ンクリートにも穴12を予め形成し、底浅容器状電気防
食構造体13の絶縁体フレームに設けられた穴16およ
び鉄筋コンクリートの穴12に固定具を挿入することに
より鉄筋コンクリート1に固定して底浅容器状電気防食
構造体13を取付ける。固定具としては、合成樹脂、チ
タン、チタン合金またはステンレス製の木螺子、オール
アンカなどを使用することができる。これら固定具の中
でもチタンまたはチタン合金製の木螺子17を使用する
ことが強度および耐食性の観点から最も好ましい。鉄筋
コンクリートの穴12にプラグ28をセットし、絶縁体
フレーム10に明けた穴16に木螺子17を挿入し、木
螺子17により絶縁体フレーム10を鉄筋コンクリート
1に固定して底浅容器状電気防食構造体13を取付けた
状態の断面図を図2に示した。チタンまたはチタン合金
製の木螺子の場合、鉄筋コンクリート1中の鉄筋8と導
電性板11とが絶縁状態に保たれるように、木螺子17
に絶縁ワッシャー18を挿入したのち、木螺子17を締
める必要がある。以上、絶縁体フレーム10を有する前
記(1)〜(2)記載の底浅容器状電気防食構造体につ
いて述べたが、図10に示される耐食性を有する導電性
板の周囲を曲げ加工して成形した導電体フレーム33を
有する前記(3)記載の底浅容器状電気防食構造体を同
様にして鉄筋コンクリートに取付けることができる。
Next, a method of attaching the shallow-shelf container-shaped electrolytic protection structure described in (1) to (3) to reinforced concrete will be described. First, as shown in FIG. 1, a hole 16 is made in advance in the insulator frame 10. The hole 16 may be opened immediately before mounting, but it is preferable to open it in advance. Holes 12 are also formed in advance in the reinforced concrete where the shallow shallow container-type electrolytic protection structure is to be attached, and fixtures are attached to the holes 16 provided in the insulator frame of the shallow shallow container-type corrosion protection structure 13 and the holes 12 of the reinforced concrete. It is fixed to the reinforced concrete 1 by inserting and the shallow-bottom container-shaped electrolytic protection structure 13 is attached. As the fixing tool, synthetic resin, titanium, titanium alloy or wood screw made of stainless steel, all anchors, or the like can be used. Among these fixing tools, it is most preferable to use the wooden screw 17 made of titanium or titanium alloy from the viewpoint of strength and corrosion resistance. A plug 28 is set in the hole 12 of the reinforced concrete, a wood screw 17 is inserted into the hole 16 opened in the insulator frame 10, and the insulator frame 10 is fixed to the reinforced concrete 1 by the wood screw 17 to form a shallow container-like cathodic protection structure. FIG. 2 is a sectional view showing a state in which the body 13 is attached. In the case of a wooden screw made of titanium or titanium alloy, a wooden screw 17 is used so that the reinforcing bar 8 in the reinforced concrete 1 and the conductive plate 11 are kept in an insulating state.
After inserting the insulating washer 18 in, it is necessary to tighten the wood screw 17. As described above, the shallow container-type electrolytic protection structure having the insulator frame 10 described in (1) to (2) above is described. The conductive plate having corrosion resistance shown in FIG. The shallow-shelf container-shaped cathodic protection structure described in (3) having the conductor frame 33 described above can be similarly attached to the reinforced concrete.

【0013】底浅容器状電気防食構造体13を鉄筋コン
クリート1に取付けた後、電解質を底浅容器状電気防食
構造体13と鉄筋コンクリート1とで形成された空間に
注入する必要があるが、電解質注入口19は図1〜4に
示されるように、導電性板11に予め形成しておき、こ
の電解質注入口19には電解質注入ホース20を接続す
ることのできる接続具24を取付けておく。接続具24
の取付け方法はいかなる方法でも良く特に限定されるも
のではないが、電解質注入口19内面に螺子溝を形成
し、接続具24を螺入して取付けることが好ましい。接
続具24にはスリット25が設けられており、スリット
25にスライド板26が挿入可能となっている。このよ
うにして、底浅容器状電気防食構造体13を鉄筋コンク
リートに取付けたのち、導電性板11に設けられている
電解質注入口19に接続具24を螺入し、この接続具2
4に電解質注入ホース20をはめ込み、注入ポンプ等を
用いて、図2に示されるように、電解質21を鉄筋コン
クリート表面と底浅容器状電気防食構造体の導電性板1
1および絶縁体フレーム10とで形成された空間22に
電解質21を注入し充填し、電解質21の注入充填が終
了したのち電解質21の供給を中止し、接続具24に設
けられたスリット25にスライド板26を挿入して、電
解質21の流出を防止し、電解質注入ホース20を接続
具24から外し、電解質が充填された底浅容器状電気防
食構造体の取付け作業を終了する。
After mounting the shallow-bottomed container-shaped electrolytic protection structure 13 on the reinforced concrete 1, it is necessary to inject the electrolyte into the space formed by the shallow-bottomed container-shaped electrolytic protection structure 13 and the reinforced concrete 1. As shown in FIGS. 1 to 4, the inlet 19 is formed in advance on the conductive plate 11, and the electrolyte injection port 19 is provided with a connector 24 to which an electrolyte injection hose 20 can be connected. Connector 24
Although any method may be used for mounting, the method is not particularly limited, but it is preferable to form a screw groove on the inner surface of the electrolyte injection port 19 and screw the connection tool 24 into it. The connector 24 is provided with a slit 25, and the slide plate 26 can be inserted into the slit 25. In this way, after attaching the shallow-bottomed container-shaped electrocorrosion structure 13 to the reinforced concrete, the connector 24 is screwed into the electrolyte injection port 19 provided in the conductive plate 11, and the connector 2
2 is fitted with an electrolyte injecting hose 20, and an injecting pump or the like is used to attach an electrolyte 21 to the reinforced concrete surface and the conductive plate 1 of the shallow-bottomed container-like electrolytic protection structure.
1 and the insulator frame 10 are filled with the electrolyte 21 and filled with the electrolyte 21. After the filling and filling of the electrolyte 21 is completed, the supply of the electrolyte 21 is stopped and the slit 25 provided in the connector 24 is slid. The plate 26 is inserted to prevent the electrolyte 21 from flowing out, the electrolyte injection hose 20 is disconnected from the connector 24, and the attachment work of the electrolyte-filled shallow shallow container-type electrolytic protection structure is completed.

【0014】電解質注入口は、図1〜4に示されるよう
に、導電性板11に設けることができるが、図5〜8お
よび図10に示されるように、電解質注入口は絶縁体フ
レーム10または導電体フレーム33に設けることがで
きる。この場合、絶縁体フレーム10または導電体フレ
ーム33に内側から外側に貫通する切抜き口35を形成
し、この切抜き口35を収縮可能なスポンジ状弾性体2
7で塞いだ構造に形成する。導電性板11を曲げ加工し
て形成した導電体フレーム33の切抜き口35は敷居板
32で導電体フレーム33の内部空間を塞ぐことが好ま
しい。図5〜8および図10に示される電解質注入口を
採用した場合の電解質注入方法は、底浅容器状電気防食
構造体13を鉄筋コンクリート1に取付けたのち、ま
ず、図6に示されるように、注入ノズル30を鉄筋コン
クリートの表面に沿って差し込む。注入ノズル30は硬
いが、スポンジ状弾性体27は収縮可能であるので、注
入ノズル30を鉄筋コンクリートの表面に沿って差し込
むと、図7に示されるように、スポンジ状弾性体27は
収縮して注入ノズル30の先端がスポンジ状弾性体27
を押し広げられ差し込まれる。この状態で電解質21を
注入し電解質27の充填が終了したのち注入ノズル30
を引抜くと、スポンジ状弾性体27は膨らんで再び切抜
き口35を塞ぎ、電解質は底浅容器状電気防食構造体と
鉄筋コンクリートとで構成された空間に保持される。
The electrolyte inlet may be provided in the conductive plate 11 as shown in FIGS. 1 to 4, but the electrolyte inlet may be the insulator frame 10 as shown in FIGS. 5 to 8 and 10. Alternatively, it can be provided on the conductor frame 33. In this case, a cutout 35 penetrating from the inside to the outside is formed in the insulator frame 10 or the conductor frame 33, and the cutout 35 can be contracted.
Formed in a structure closed with 7. The cutout 35 of the conductor frame 33 formed by bending the conductive plate 11 preferably closes the inner space of the conductor frame 33 with the threshold plate 32. The electrolyte injection method in the case of adopting the electrolyte injection port shown in FIGS. 5 to 8 and 10 is as follows. First, after attaching the shallow shallow container-shaped electrolytic protection structure 13 to the reinforced concrete 1, first, as shown in FIG. The injection nozzle 30 is inserted along the surface of the reinforced concrete. Although the injection nozzle 30 is hard, the sponge-like elastic body 27 can contract, so when the injection nozzle 30 is inserted along the surface of the reinforced concrete, the sponge-like elastic body 27 contracts and injects as shown in FIG. The tip of the nozzle 30 has a sponge-like elastic body 27.
Is pushed out and inserted. In this state, the electrolyte 21 is injected, and after the filling of the electrolyte 27 is completed, the injection nozzle 30
, The sponge-like elastic body 27 swells and closes the cutout 35 again, and the electrolyte is held in the space constituted by the shallow-bottomed container-like electrolytic protection structure and reinforced concrete.

【0015】導電性板11に設けられた電解質注入口1
9と反対側の位置にガス抜き細孔23を設けることが好
ましい。このガス抜き細孔23は空間22に電解質21
を充填すると空間22の空気を底浅容器状電気防食構造
体の外に逃す作用をする。さらに電解質21が十分に充
填されたことを、覗きながら確認し、電解質21の供給
を中止する役目もする。さらに前記底浅容器状電気防食
構造体の導電性板11に設けられているガス抜き細孔2
3は、電気防食を開始すると電気分解作用により塩素等
のガスが発生し、そのガスにより電解質が劣化するが、
そのとき発生したガスを排出させる作用もする。前記電
解質としてはモルタル、ベントナイトなどのゲル状の電
解質を使用する。
Electrolyte inlet 1 provided in conductive plate 11
It is preferable to provide the gas vent hole 23 at a position on the opposite side to 9. The degassing pores 23 are provided in the space 22 with the electrolyte 21.
Is filled, the air in the space 22 is allowed to escape to the outside of the shallow-bottom container-like electrolytic protection structure. Further, it also serves to confirm that the electrolyte 21 is sufficiently filled, by observing, and to stop the supply of the electrolyte 21. Further, the gas vent holes 2 provided in the conductive plate 11 of the shallow-bottomed container-shaped anticorrosion structure.
No. 3, when electrocorrosion is started, gas such as chlorine is generated due to electrolysis, and the gas deteriorates the electrolyte.
It also acts to discharge the gas generated at that time. As the electrolyte, a gel electrolyte such as mortar or bentonite is used.

【0016】鉄筋コンクリートの構造物の表面は平でな
いことが多く、底浅容器状電気防食構造体を鉄筋コンク
リートに取付けたあとでゲル状の電解質を注入し充填す
る場合にはコンクリート面と絶縁体フレームとの間の隙
間から電解質が漏れ出ることがある。そこで、底浅容器
状電気防食構造体の絶縁体フレーム面に弾性体からなる
絶縁体シール層を形成することが好ましい。この弾性体
からなる絶縁体シール層を形成した底浅容器状電気防食
構造体が図3に記載の底浅容器状電気防食構造体13で
ある。この図3に記載の底浅容器状電気防食構造体13
を鉄筋コンクリート1に取付ける方法は、前記(1)〜
(3)記載の底浅容器状電気防食構造体を鉄筋コンクリ
ートに取付ける方法と全く同じであるから、その説明は
省略する。
The surface of a reinforced concrete structure is often not flat, and when a gel electrolyte is injected and filled after attaching a shallow shallow container-shaped electrolytic protection structure to the reinforced concrete, a concrete surface and an insulator frame are used. Electrolyte may leak through the gaps between. Therefore, it is preferable to form an insulator seal layer made of an elastic body on the insulator frame surface of the shallow container-type cathodic protection structure. The shallow-shelf container-type anticorrosion structure 13 shown in FIG. 3 is a shallow-shelf container-shaped anticorrosion structure 13 in which an insulating seal layer made of this elastic material is formed. The shallow shallow container-shaped electrolytic protection structure 13 shown in FIG.
The method of attaching the to the reinforced concrete 1 is described in (1) to
(3) The method of attaching the shallow container-type electrolytic protection structure to the reinforced concrete is exactly the same as that described above, and the description thereof is omitted.

【0017】このようにして鉄筋コンクリート1に電解
質21を充填した状態で底浅容器状電気防食構造体を取
付けたのち、導電性板11を電線により直流電源Eのプ
ラス極に接続し、一方、鉄筋コンクリートの鉄筋8に直
流電源Eのマイナス極を接続することにより鉄筋コンク
リートにおける鉄筋8を電気防食することができる。ま
た、広い面積の鉄筋コンクリートを防食する場合は、底
浅容器状電気防食構造体を多数並べて鉄筋コンクリート
に取付け、底浅容器状電気防食構造体の導電性板を例え
ばチタン線のような導電体で接続することにより広範囲
の鉄筋コンクリートの鉄筋を防食することができる。
In this way, after mounting the shallow-shelf container-shaped anticorrosion structure in the state where the electrolyte 21 is filled in the reinforced concrete 1, the conductive plate 11 is connected to the positive pole of the DC power source E by an electric wire, while the reinforced concrete is connected. By connecting the negative pole of the DC power source E to the rebar 8, the rebar 8 in the reinforced concrete can be galvanically protected. In addition, when corrosion-protecting reinforced concrete over a wide area, a large number of shallow-shelf container-shaped corrosion protection structures are installed side by side on reinforced concrete, and the conductive plates of the shallow-shelf container-shaped corrosion protection structure are connected with a conductor such as titanium wire. By doing so, it is possible to prevent corrosion of a wide range of reinforced concrete reinforcing bars.

【0018】[0018]

【発明の実施の形態】チタン板(幅:250mm×長
さ:1000mm×厚さ:0.5mm)を用意し、端部
に直径:40mmの電解質注入口を形成し、電解質注入
口と対抗する他端部に直径:2mmのガス抜き細孔を形
成した。 さらに直径:1.5mm×長さ:100mmの寸法を有
する白金メッキチタン線を用意し、さらに片面に白金メ
ッキした厚さ:0.5mm、幅:20mm、長さ:40
0mmの寸法を有する白金メッキチタン板を用意し、こ
れを取っ手状に曲げ加工して棒状体からなる陽極部およ
び帯状体からなる陽極部を作製し、これら陽極部をチタ
ン板に溶接により接合し、導電性板を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION A titanium plate (width: 250 mm × length: 1000 mm × thickness: 0.5 mm) is prepared, and an electrolyte inlet having a diameter of 40 mm is formed at an end to oppose the electrolyte inlet. A gas venting hole having a diameter of 2 mm was formed at the other end. Furthermore, a platinum-plated titanium wire having dimensions of diameter: 1.5 mm x length: 100 mm was prepared, and platinum was plated on one side. Thickness: 0.5 mm, width: 20 mm, length: 40
A platinum-plated titanium plate having a dimension of 0 mm was prepared, and this was bent into a handle shape to prepare an anode part made of a rod-shaped body and an anode part made of a strip-shaped body, and these anode parts were joined to the titanium plate by welding. , A conductive plate was prepared.

【0019】さらに、発泡ポリビニル樹脂を射出成形し
て作製した外寸法が幅:250mm×長さ:1000m
mを有し、開口部の内寸法が幅:210mm×長さ:9
60mmを有し、さらに厚さ:10mmを有する絶縁体
フレームを用意した。 導電性板に絶縁体フレームを接着剤で接着することによ
り底浅容器状電気防食構造体を作製し、さらに底浅容器
状電気防食構造体の絶縁体フレームにスポンジ層を接着
したのち、絶縁体フレーム、導電性板およびスポンジ層
を共に貫通する穴を絶縁体フレームに沿って形成した。
Further, the outer dimensions produced by injection molding a foamed polyvinyl resin have a width of 250 mm and a length of 1000 m.
m, and the internal dimensions of the opening are width: 210 mm x length: 9
An insulator frame having a thickness of 60 mm and a thickness of 10 mm was prepared. A shallow shallow container-shaped electrocorrosion structure is manufactured by adhering an insulator frame to a conductive plate with an adhesive, and a sponge layer is bonded to the insulator frame of the shallow shallow container-shaped electrocorrosion structure. A hole was formed along the insulator frame to penetrate through the frame, the conductive plate and the sponge layer.

【0020】屋外にある鉄筋コンクリート床板の下面に
おける底浅容器状電気防食構造体の取付け位置面を選定
し、電動工具で突起物、脆弱層およびほこりなどを取り
除いたのち、底浅容器状電気防食構造体の穴にチタン製
の木螺子を挿入し、木螺子を螺入して底浅容器状電気防
食構造体を鉄筋コンクリート床板の下面に取付けた。木
螺子と導電性板とが電気的に絶縁状態を保つように、木
螺子に絶縁ワッシャーを挿入したのち、木螺子を螺入し
て締めた。
After selecting the mounting position surface of the shallow shallow container-shaped cathodic protection structure on the lower surface of the reinforced concrete floor plate outdoors, and removing the projections, fragile layer and dust with an electric tool, the shallow shallow container-shaped cathodic protection structure Titanium wood screws were inserted into the holes of the body, and the wood screws were screwed in to attach the shallow-bottom container-shaped electrolytic protection structure to the lower surface of the reinforced concrete floorboard. An insulating washer was inserted into the wood screw so that the wood screw and the conductive plate were electrically insulated, and then the wood screw was screwed in and tightened.

【0021】このようにして、底浅容器状電気防食構造
体を鉄筋コンクリート床板の下面の固定したのち、チタ
ン板に設けた電解質注入口に接続具を螺入し、この接続
具に電解質注入ホースをはめ込み、モルタルポンプで電
解質であるモルタルを圧入したところ、約9.8KPa
という低い圧力で底浅容器状電気防食構造体内に注入す
ることができた。モルタルが十分に充填されたか否かは
ガス抜き細孔から確認した。モルタルが十分に充填され
たのち、直流電源のプラス極に導電性板を接続し、マイ
ナス極を鉄筋に接続して電気防食回路を形成した。この
電気防食回路に流す電流は、鉄筋コンクリートの面積に
対して電流密度が40mA/m2の電流が流れるように調整し
た。この電流密度は鉄筋コンクリート中の鉄筋を電気防
食するに必要な電流密度の最大値である。電解電圧(陽
極と鉄筋との間の電圧)は1.8v〜3.0vであり、電圧は
温度の影響によって異なり、冬期に高く夏期に低くなっ
たが、ほぼ安定していた。
In this way, after fixing the bottom-bottomed container-like electrolytic protection structure to the lower surface of the reinforced concrete floor plate, a connector is screwed into the electrolyte inlet provided in the titanium plate, and an electrolyte injection hose is connected to this connector. When it was fitted and mortar, which is the electrolyte, was pressed in with a mortar pump, it was about 9.8 KPa
It was possible to inject into the shallow-bottomed container-shaped cathodic protection structure with such a low pressure. Whether or not the mortar was sufficiently filled was confirmed from the degassing pores. After the mortar was sufficiently filled, a conductive plate was connected to the positive pole of the DC power source, and the negative pole was connected to the reinforcing bar to form a galvanic protection circuit. The current passed through this cathodic protection circuit was adjusted so that a current density of 40 mA / m 2 would flow with respect to the area of the reinforced concrete. This current density is the maximum value of the current density required for galvanic protection of the reinforcing bars in reinforced concrete. The electrolysis voltage (the voltage between the anode and the rebar) was 1.8 v to 3.0 v, and the voltage was high in winter and low in summer, but was almost stable.

【0022】[0022]

【発明の効果】この発明は、電解質を注入した底浅容器
状電気防食構造体を鉄筋コンクリートの表面に取付ける
作業が簡単であるとともに、導電性板を絶縁体フレーム
により離して鉄筋コンクリート表面に固定するために、
導電性板が鉄筋コンクリート表面から露出突出している
鋼材の除去作業を完璧に行う必要がなく、従来のような
短絡防止のための作業を省略することができ、かつ電解
質を容易に充填することができるので熟練度の高い左官
工が不要となり、さらに施工費用および工期が大幅に縮
小されるなど優れた効果を奏するものである。
EFFECTS OF THE INVENTION The present invention makes it possible to easily attach the electrolyte-injected bottom shallow container-shaped anticorrosion structure to the surface of reinforced concrete and to fix the conductive plate to the surface of reinforced concrete by separating it with an insulator frame. To
It is not necessary to completely perform the work of removing the steel material where the conductive plate is exposed and protruding from the reinforced concrete surface, and it is possible to omit the conventional work for preventing short circuits and to easily fill the electrolyte. Therefore, highly skilled plasterers are not required, and the construction cost and construction period are greatly reduced, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の底浅容器状電気防食構造体の斜視図
である。
FIG. 1 is a perspective view of a shallow container-type galvanic protection structure of the present invention.

【図2】この発明の底浅容器状電気防食構造体を鉄筋コ
ンクリートに取付け、電解質を注入している状態を示す
一部断面説明図である。
FIG. 2 is a partial cross-sectional explanatory view showing a state in which the shallow-shelf container-shaped electrolytic protection structure of the present invention is attached to reinforced concrete and an electrolyte is injected.

【図3】この発明の底浅容器状電気防食構造体の斜視図
である。
FIG. 3 is a perspective view of a shallow-bottomed container-shaped electrolytic protection structure of the present invention.

【図4】この発明の底浅容器状電気防食構造体の斜視図
である。
FIG. 4 is a perspective view of the shallow-bottomed container-shaped electrolytic protection structure of the present invention.

【図5】この発明の底浅容器状電気防食構造体の斜視図
である。
FIG. 5 is a perspective view of a shallow-bottomed container-shaped electrolytic protection structure of the present invention.

【図6】この発明の図5の底浅容器状電気防食構造体と
鉄筋コンクリート表面とで形成された空間に電解質を注
入する方法を示す断面説明図である。
6 is a cross-sectional explanatory view showing a method for injecting an electrolyte into a space formed by the shallow-shallow-vessel-shaped electrolytic protection structure of FIG. 5 and the surface of reinforced concrete of the present invention.

【図7】この発明の図5の底浅容器状電気防食構造体と
鉄筋コンクリート表面とで形成された空間に電解質を注
入する方法を示す断面説明図である。
FIG. 7 is a cross-sectional explanatory view showing a method of injecting an electrolyte into a space formed by the shallow-shallow-case container-shaped anticorrosion structure of FIG. 5 and the surface of reinforced concrete of the present invention.

【図8】この発明の図5の底浅容器状電気防食構造体と
鉄筋コンクリート表面とで形成された空間に電解質を注
入する方法を示す断面説明図である。
8 is a cross-sectional explanatory view showing a method of injecting an electrolyte into a space formed by the shallow-shelf container-shaped anticorrosion structure of FIG. 5 and a reinforced concrete surface of the present invention.

【図9】帯状体からなる陽極部の斜視図である。FIG. 9 is a perspective view of an anode part made of a strip.

【図10】この発明の底浅容器状電気防食構造体の一部
断面斜視説明図である。
FIG. 10 is a partial cross-sectional perspective explanatory view of a shallow-shelf container-shaped anticorrosion structure of the present invention.

【図11】従来の鉄筋コンクリートの電気防食装置を示
す一部斜視図である。
FIG. 11 is a partial perspective view showing a conventional reinforced concrete cathodic protection device.

【符号の説明】[Explanation of symbols]

1:鉄筋コンクリート、2:接合部材、3:陽極、4:
支持容器、5:電解質、6:鉤、7:穴、8:鉄筋、
9:細い鉄筋、10:絶縁体フレーム、11:導電性
板、12:穴、13:底浅容器状電気防食構造体、1
4:陽極部、15:絶縁性シール層、16:穴、17:
木螺子、18:絶縁ワッシャー、19:電解質注入口、
20:電解質注入ホース、21:電解質、22:空間、
23:ガス抜き細孔、24:接続具、25:スリット、
26:スライド板、27:スポンジ状弾性体、28:プ
ラグ、29:被膜、30:注入ノズル、31:絶縁層、
32:敷居板、33:導電体フレーム、34:折曲げ
縁、35:切抜き口、E:直流電源
1: Reinforced concrete, 2: Joining member, 3: Anode, 4:
Support container, 5: electrolyte, 6: hook, 7: hole, 8: rebar,
9: Thin rebar, 10: Insulator frame, 11: Conductive plate, 12: Hole, 13: Shallow-bottomed container-like electrolytic protection structure, 1
4: Anode part, 15: Insulating sealing layer, 16: Hole, 17:
Wood screw, 18: insulating washer, 19: electrolyte inlet,
20: electrolyte injection hose, 21: electrolyte, 22: space,
23: degassing pores, 24: connector, 25: slit,
26: slide plate, 27: sponge-like elastic body, 28: plug, 29: coating, 30: injection nozzle, 31: insulating layer,
32: threshold plate, 33: conductor frame, 34: bent edge, 35: cutout port, E: DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 定雄 東京都大田区南蒲田一丁目21番12号 日本 防蝕工業株式会社内 (72)発明者 川岡 岳晴 東京都大田区南蒲田一丁目21番12号 日本 防蝕工業株式会社内 (72)発明者 田代 賢吉 東京都板橋区前野町一丁目29番10号 日本 防蝕工業株式会社技術研究所内 Fターム(参考) 2E001 DH26 EA01 GA01 GA07 GA59 GA77 HA04 HB01 HB02 HB08 HF02 4K060 AA03 BA02 BA03 BA07 BA22 BA39 BA43 EA08 EB01 FA03   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Sadao Takeda             1-12-12 Minami-Kamata, Ota-ku, Tokyo Japan             Corrosion Protection Co., Ltd. (72) Inventor Takeharu Kawaoka             1-12-12 Minami-Kamata, Ota-ku, Tokyo Japan             Corrosion Protection Co., Ltd. (72) Inventor Kenkichi Tashiro             29-10 Maeno-cho, Itabashi-ku, Tokyo Japan             Corrosion Protection Industry Co., Ltd. F term (reference) 2E001 DH26 EA01 GA01 GA07 GA59                       GA77 HA04 HB01 HB02 HB08                       HF02                 4K060 AA03 BA02 BA03 BA07 BA22                       BA39 BA43 EA08 EB01 FA03

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】絶縁性材料で構成された絶縁体フレーム
(以下、絶縁体フレームという)と、この絶縁体フレー
ムの片面開口部を塞ぐように取付けられた耐食性を有す
る導電性板(以下、導電性板という)とからなり、この
導電性板の内側に陽極部を取付けてなることを特徴とす
る鉄筋コンクリートにおける鉄筋を電気防食するための
底浅容器状電気防食構造体。
1. An insulator frame made of an insulating material (hereinafter referred to as an insulator frame), and a conductive plate having corrosion resistance (hereinafter referred to as a conductive plate) attached so as to close an opening on one side of the insulator frame. A plate, which is composed of a conductive plate) and an anode part attached to the inside of the conductive plate.
【請求項2】絶縁体フレームと、この絶縁体フレームの
片面開口部を塞ぐように取付けられた耐食性を有する導
電性板とからなり、この導電性板の内側に陽極部を取付
けてなる鉄筋コンクリートにおける鉄筋を電気防食する
ための底浅容器状電気防食構造体であって、前記導電性
板と対抗する絶縁体フレームの鉄筋コンクリート取付け
側面に弾性体からなる弾性体シール層を介在させてなる
ことを特徴とする鉄筋コンクリートにおける鉄筋を電気
防食するための底浅容器状電気防食構造体。
2. A reinforced concrete structure comprising an insulator frame and a corrosion-resistant conductive plate attached so as to close an opening on one side of the insulator frame, and an anode part being attached to the inside of the conductive plate. A shallow-shelf container-shaped anticorrosion structure for performing galvanic protection of reinforcing bars, characterized in that an elastic body sealing layer made of an elastic body is interposed on a side of a reinforced concrete mounting of an insulator frame facing the conductive plate. Shallow container-shaped cathodic protection structure for cathodic protection of rebar in reinforced concrete.
【請求項3】耐食性を有する導電性板と、前記耐食性を
有する導電性板の周囲を曲げ加工して成形した導電体フ
レームと、前記導電体フレームの鉄筋コンクリート取付
け側面に設けた絶縁層とからなり、前記耐食性を有する
導電性板の内側に陽極部を取付けてなることを特徴とす
る鉄筋コンクリートにおける鉄筋を電気防食するための
底浅容器状電気防食構造体。
3. A conductive plate having corrosion resistance, a conductive frame formed by bending the periphery of the conductive plate having corrosion resistance, and an insulating layer provided on a side of the conductive frame on which reinforced concrete is mounted. A bottom-bottomed container-shaped electrocorrosion structure for galvanic protection of reinforcing bars in reinforced concrete, characterized in that an anode part is attached to the inside of the corrosion-resistant conductive plate.
【請求項4】請求項3記載の導電体フレームの鉄筋コン
クリート取付け側面に設けられた絶縁層は、絶縁性弾性
体からなる絶縁性弾性体シール層であることを特徴とす
る鉄筋コンクリートにおける鉄筋を電気防食するための
底浅容器状電気防食構造体。
4. The reinforcing layer in the reinforced concrete according to claim 3, wherein the insulating layer provided on the side of the reinforced concrete mounting of the conductive frame is an insulating elastic seal layer made of an insulating elastic body. Shallow bottom container type anticorrosion structure.
【請求項5】前記導電性板にガス抜き細孔が設けられて
いることを特徴とする請求項1、2、3または4記載の
鉄筋コンクリートにおける鉄筋を電気防食するための底
浅容器状電気防食構造体。
5. A shallow-bottomed container-shaped galvanic protection for galvanically corroding rebar in reinforced concrete according to claim 1, 2, 3 or 4, characterized in that the conductive plate is provided with degassing pores. Structure.
【請求項6】電解質注入口が設けられていることを特徴
とする請求項1、2、3、4または5記載の鉄筋コンク
リートにおける鉄筋を電気防食するための底浅容器状電
気防食構造体。
6. A shallow-bottomed container-shaped galvanic protection structure for galvanic protection of rebar in reinforced concrete according to claim 1, 2, 3, 4 or 5, wherein an electrolyte inlet is provided.
【請求項7】前記電解質注入口は導電性板に設けられて
いることを特徴とする請求項6記載の鉄筋コンクリート
における鉄筋を電気防食するための底浅容器状電気防食
構造体。
7. A bottom-bottomed container-shaped electrolytic protection structure for electrolytically protecting reinforcing bars in reinforced concrete according to claim 6, wherein said electrolyte inlet is provided in a conductive plate.
【請求項8】前記電解質注入口は、絶縁体フレームまた
は導電体フレームに内側から外側に貫通する切抜き口を
形成し、この切抜き口を収縮可能な弾性体で塞いだ構造
を有することを特徴とする請求項6記載の鉄筋コンクリ
ートにおける鉄筋を電気防食するための底浅容器状電気
防食構造体。
8. The electrolyte injection port has a structure in which a cutout hole penetrating from the inside to the outside is formed in an insulator frame or a conductor frame, and the cutout hole is closed with a contractible elastic body. A shallow-bottomed container-shaped electrolytic protection structure for performing electrolytic protection on the reinforcing bars in the reinforced concrete according to claim 6.
【請求項9】請求項3記載の導電体フレームの鉄筋コン
クリート取付け側面に設けられた絶縁層の上に、さらに
弾性体シール層を貼り付けてなることを特徴とする鉄筋
コンクリートにおける鉄筋を電気防食するための底浅容
器状電気防食構造体。
9. An electric corrosion preventive method for reinforcing bars in reinforced concrete, characterized in that an elastic body sealing layer is further adhered onto an insulating layer provided on the side of the conductive frame on which the reinforced concrete is mounted, according to claim 3. Shallow bottom container type anticorrosion structure.
【請求項10】前記陽極部は、白金被膜、貴金属酸化物
被膜またはカーボン被膜からなり、この膜を導電性板に
被覆して取付けてなることを特徴とする請求項1、2、
3、4、5、6、7、8または9記載の鉄筋コンクリー
トにおける鉄筋を電気防食するための底浅容器状電気防
食構造体。
10. The anode part is made of a platinum film, a noble metal oxide film or a carbon film, and the film is attached to a conductive plate by covering this film.
A shallow-bottomed container-shaped galvanic protection structure for galvanic protection of reinforcing bars in reinforced concrete according to 3, 4, 5, 6, 7, 8 or 9.
【請求項11】前記陽極部は、チタンまたはチタン合金
からなる棒または帯の表面に白金被膜または貴金属酸化
物被膜を被覆してなる被覆棒状体または被覆帯状体から
なり、この被覆棒状体または被覆帯状体を導電性板に接
合してなることを特徴とする請求項1、2、3、4、
5、6、7、8、9または10記載の鉄筋コンクリート
における鉄筋を電気防食するための底浅容器状電気防食
構造体。
11. The anode part comprises a coated rod-shaped body or a coated strip-shaped body obtained by coating the surface of a rod or strip made of titanium or a titanium alloy with a platinum coating or a noble metal oxide coating. The strip-shaped body is joined to a conductive plate, and the strip-shaped body is joined to the conductive plate.
A shallow-bottomed container-shaped galvanic protection structure for galvanic protection of reinforcing bars in reinforced concrete according to 5, 6, 7, 8, 9 or 10.
【請求項12】鉄筋コンクリートにおける鉄筋を電気防
食するための底浅容器状電気防食構造体を鉄筋コンクリ
ートに電解質を充填した状態で取付ける方法であって、 底浅容器状電気防食構造体を絶縁体フレームまたは導電
体フレームが鉄筋コンクリート表面近くに来るようにか
つ導電性板および陽極部が鉄筋コンクリートから離れた
位置になるように設置し、さらに導電性板と鉄筋コンク
リートとが絶縁状態に保たれるように鉄筋コンクリート
表面に底浅容器状電気防食構造体を固定し、 ついで、鉄筋コンクリート表面と底浅容器状電気防食構
造体の導電性板と絶縁体フレームまたは導電体フレーム
とで形成された空間に電解質を注入し充填することを特
徴とする電解質を充填した底浅容器状電気防食構造体を
鉄筋コンクリートに取付ける方法。
12. A method for attaching a shallow shallow container-shaped electrolytic protection structure for electrolytically protecting reinforcing bars in reinforced concrete in a state in which reinforced concrete is filled with an electrolyte, wherein the shallow shallow container-shaped electrolytic protection structure is an insulator frame or Install the conductor frame near the reinforced concrete surface and the conductive plate and the anode part away from the reinforced concrete.Furthermore, on the reinforced concrete surface so that the conductive plate and the reinforced concrete are kept insulated. Fix the shallow-shelf container-shaped anticorrosion structure, and then inject and fill the space between the reinforced concrete surface and the conductive plate of the shallow-shelf container-shaped corrosion protection structure with the insulator frame or conductor frame. Attaching a shallow shallow container-like electrolytic protection structure filled with electrolyte to reinforced concrete Method.
【請求項13】請求項12に記載の方法で底浅容器状電
気防食構造体を鉄筋コンクリートに取付けたのち電解質
を充填し、ついで導電性板を電源のプラス極に接続し、
鉄筋コンクリートにおける鉄筋を電源のマイナス極に接
続することを特徴とする底浅容器状電気防食構造体を用
いた鉄筋コンクリートの電気防食方法。
13. The method according to claim 12, wherein the shallow-shelf container-shaped anticorrosion structure is attached to the reinforced concrete, the electrolyte is filled, and then the conductive plate is connected to the positive electrode of the power source.
A cathodic protection method for reinforced concrete using a shallow container-like cathodic protection structure, characterized in that the rebar in the reinforced concrete is connected to the negative pole of the power source.
JP2002290987A 2002-01-08 2002-10-03 Shallow bottom container type anticorrosion structure and method of attaching the same to prevent corrosion of reinforcing bars in reinforced concrete Expired - Fee Related JP3841037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290987A JP3841037B2 (en) 2002-01-08 2002-10-03 Shallow bottom container type anticorrosion structure and method of attaching the same to prevent corrosion of reinforcing bars in reinforced concrete

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002001224 2002-01-08
JP2002-1224 2002-01-08
JP2002290987A JP3841037B2 (en) 2002-01-08 2002-10-03 Shallow bottom container type anticorrosion structure and method of attaching the same to prevent corrosion of reinforcing bars in reinforced concrete

Publications (2)

Publication Number Publication Date
JP2003268577A true JP2003268577A (en) 2003-09-25
JP3841037B2 JP3841037B2 (en) 2006-11-01

Family

ID=29217771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290987A Expired - Fee Related JP3841037B2 (en) 2002-01-08 2002-10-03 Shallow bottom container type anticorrosion structure and method of attaching the same to prevent corrosion of reinforcing bars in reinforced concrete

Country Status (1)

Country Link
JP (1) JP3841037B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057016A (en) * 2006-09-01 2008-03-13 Nakabohtec Corrosion Protecting Co Ltd Electrolytic protection structure of reinforced concrete structure
JP2015209587A (en) * 2014-04-30 2015-11-24 株式会社クニムネ Electrode panel for electric anticorrosion
JP2020147771A (en) * 2019-03-11 2020-09-17 株式会社ナカボーテック Electrical connection structure and electrical connection method
JP2021017633A (en) * 2019-07-22 2021-02-15 株式会社ピーエス三菱 Installation method of galvanic anode material
JP2021017632A (en) * 2019-07-22 2021-02-15 株式会社ピーエス三菱 Installation method of galvanic anode material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057016A (en) * 2006-09-01 2008-03-13 Nakabohtec Corrosion Protecting Co Ltd Electrolytic protection structure of reinforced concrete structure
JP2015209587A (en) * 2014-04-30 2015-11-24 株式会社クニムネ Electrode panel for electric anticorrosion
JP2020147771A (en) * 2019-03-11 2020-09-17 株式会社ナカボーテック Electrical connection structure and electrical connection method
JP7049286B2 (en) 2019-03-11 2022-04-06 株式会社ナカボーテック Electrical connection structure and electrical connection method
JP2021017633A (en) * 2019-07-22 2021-02-15 株式会社ピーエス三菱 Installation method of galvanic anode material
JP2021017632A (en) * 2019-07-22 2021-02-15 株式会社ピーエス三菱 Installation method of galvanic anode material

Also Published As

Publication number Publication date
JP3841037B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US4812212A (en) Apparatus for cathodically protecting reinforcing members and method for installing same
KR100331344B1 (en) Ion Conductive Agents, Cathodic Protection Systems of Electrochemically Active Metals and Corrosion-treated Structures
KR930008997B1 (en) Anti-fouling device for afloaters
RU2009127896A (en) CONSUMABLE ANODE UNIT
ES2741127T3 (en) Sacrificial anodes in localized concrete repair
JP3841037B2 (en) Shallow bottom container type anticorrosion structure and method of attaching the same to prevent corrosion of reinforcing bars in reinforced concrete
US20060054498A1 (en) System for preventing adhesion of marine organisms
JP2009197292A (en) Corrosion prevention apparatus of steel structure disposed underwater
KR102474879B1 (en) Metal corrosion protection kit
JP2017179527A (en) Galvanic anode unit
JP6640573B2 (en) Galvanic anode unit and anticorrosion structure of concrete structure using it
JP4196282B2 (en) Shallow bottom container-like anticorrosion structure for anticorrosion of rebar in reinforced concrete, and electrocorrosion protection method using the same
JPH0730472B2 (en) Mounting structure of insoluble electrode for cathodic protection
JPS62199784A (en) Method for preventing corrosion of concrete structure
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
JP2601807B2 (en) Antifouling device and antifouling / anticorrosion device for structures in contact with seawater
JP4144881B2 (en) Method of attaching an anticorrosion electrode to concrete and a jig for fixing the anticorrosion electrode
JP2003027607A (en) Electrical protection method for reinforced concrete structure
JP2015232168A (en) Electric protection device for concrete structure
JP3766043B2 (en) Anticorrosion reinforced concrete assembly and its anticorrosion method
JP3386898B2 (en) Corrosion protection structure of the material to be protected
JP2007132112A (en) Marine organism adhesion preventing device, composite plate thereof, and device setting method
JP2014015652A (en) Method for producing concrete structure and concrete structure
US20240068110A1 (en) Cathodic protection of concrete using an anode attached to an outer surface.
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Ref document number: 3841037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees