JP5402177B2 - The galvanic anode body and the galvanic anode method - Google Patents

The galvanic anode body and the galvanic anode method Download PDF

Info

Publication number
JP5402177B2
JP5402177B2 JP2009091974A JP2009091974A JP5402177B2 JP 5402177 B2 JP5402177 B2 JP 5402177B2 JP 2009091974 A JP2009091974 A JP 2009091974A JP 2009091974 A JP2009091974 A JP 2009091974A JP 5402177 B2 JP5402177 B2 JP 5402177B2
Authority
JP
Japan
Prior art keywords
galvanic anode
metal
anode body
metal structure
galvanic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009091974A
Other languages
Japanese (ja)
Other versions
JP2010242161A (en
Inventor
靖庸 鈴木
雄一 井合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009091974A priority Critical patent/JP5402177B2/en
Publication of JP2010242161A publication Critical patent/JP2010242161A/en
Application granted granted Critical
Publication of JP5402177B2 publication Critical patent/JP5402177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、洋上、港湾ないし汽水域に構築される構造物を犠牲防食するための流電陽極体および流電陽極法に関する。   TECHNICAL FIELD The present invention relates to a galvanic anode body and a galvanic anode method for sacrificial corrosion protection of structures built on the sea, in harbors or brackish waters.

洋上、港湾や汽水域のような腐食環境において、腐食を受け易い鉄鋼のような素材により構造物を構築する場合、適切な防食手段を適用する必要がある。防食手段として、外部電源ないし犠牲金属を利用して構造物に防食電流を供給する電気防食法や、塗装等の防食皮膜による方法がしばしば採用される。   In the corrosive environment such as offshore, harbor and brackish water area, it is necessary to apply appropriate anti-corrosion means when constructing a structure with a material such as steel that is susceptible to corrosion. As an anticorrosion means, an anticorrosion method for supplying an anticorrosion current to a structure using an external power source or a sacrificial metal, or a method using an anticorrosion film such as painting is often employed.

電気防食法の中でも、犠牲金属よりなる流電陽極体を前記構造物に取り付ける流電陽極法は、メンテナンスの容易さから広範に採用されている。図1は流電陽極法の概念図である。鉄鋼よりも卑な腐食電位を有する犠牲金属が犠牲的に溶出することにより、流電陽極体1から鉄鋼構造物3へ防食電流Iが供給され、以って鉄鋼構造物3の溶出(腐食)が防止される。図8(a)(b)は流電陽極体の一例101であって、多面体の流電陽極105と一対のタブ109とを備える。流電陽極体101は、タブ109を利用して構造物に固定されるとともに、電気的にも接続される。特許文献1、2および非特許文献1は、電気防食に関する関連技術を開示している。   Among the cathodic protection methods, the galvanic anode method in which a galvanic anode body made of a sacrificial metal is attached to the structure has been widely adopted for ease of maintenance. FIG. 1 is a conceptual diagram of the galvanic anode method. By sacrificing the sacrificial metal having a lower corrosion potential than that of steel, the anticorrosion current I is supplied from the galvanic anode body 1 to the steel structure 3, and thus the elution (corrosion) of the steel structure 3. Is prevented. FIGS. 8A and 8B show an example 101 of a galvanic anode body, which includes a polyhedral galvanic anode 105 and a pair of tabs 109. The galvanic anode body 101 is fixed to the structure using the tab 109 and is also electrically connected. Patent Documents 1 and 2 and Non-Patent Document 1 disclose related technologies related to cathodic protection.

特許文献3は、皮膜により構造物を防食する関連技術を開示している。   Patent document 3 is disclosing the related technique which protects a structure with a membrane | film | coat.

特公平2−54421号公報Japanese Examined Patent Publication No. 2-54421 特開平6−235081号公報JP-A-6-235081 特開2005−320602号公報JP 2005-320602 A

日本学術振興会:金属防食技術便覧(日刊工業新聞社)(1978)Japan Society for the Promotion of Science: Handbook of Metal Corrosion Protection Technology (Nikkan Kogyo Shimbun) (1978)

特許文献2においても指摘されているように、流電陽極体を設置した後に、防食電流が変化することが頻繁に観察される。非特許文献1は、防食電流の変化を概念的に図9(日本学術振興会:金属防食技術便覧,日刊工業新聞社(1978)の第595ページに記載の図を清書の上で引用)のように示している。当初の電流密度に基づいて流電陽極の数及び配置を設計すると、電流密度が減少する場合には防食が不十分となることが予想される。そこで通常は、経験的知見等により減少後の定常値を見込んで流電陽極の数及び配置を設計する。しかしながら、発明者らの検討によれば、定常状態に至った後も防食電流はなおも変化しうる。かかる事情のために、防食性能を極めて長期間にわたって保証することは、現状においては容易なものではない。   As pointed out in Patent Document 2, it is frequently observed that the anticorrosion current changes after the galvanic anode body is installed. Non-Patent Document 1 conceptually shows changes in anticorrosion current as shown in FIG. 9 (Japan Society for the Promotion of Science: Metal Anticorrosion Technology Handbook, Nikkan Kogyo Shimbun (1978), page 595) As shown. If the number and arrangement of the galvanic anodes are designed based on the initial current density, it is expected that the corrosion protection will be insufficient when the current density decreases. Therefore, usually, the number and arrangement of the galvanic anodes are designed by taking into account the empirical knowledge and the like and expecting a steady value after the decrease. However, according to the study by the inventors, the anticorrosion current can still change even after reaching a steady state. Under such circumstances, it is not easy to guarantee the anticorrosion performance for a very long time.

本発明は上述の課題に鑑みてなされたものであって、その目的は、設置した後においても長期間にわたり安定した防食電流を供給しうる流電陽極体および流電陽極法を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a galvanic anode body and a galvanic anode method capable of supplying a stable anticorrosion current over a long period of time even after installation. is there.

本発明の第1の局面によれば、流電陽極体は、防食対象の金属構造物と固定的に接続するための金属よりなるタブと、前記金属構造物よりも卑な腐食電位を有する何れかの犠牲金属よりなり、前記タブと電気的および構造的に連結され、二以上の面を有する流電陽極と、前記面より選択された一以上の面を前記犠牲金属の溶出を防止するべく被覆し、前記犠牲金属の溶出を残る面のみに規制する被覆体と、を備え、前記流電陽極は、前記金属構造物に対向する対向面と、前記対向面と反対側の反対面と、側面とを含む六面よりなり、前記被覆体は、前記反対面のみまたは前記側面のみを残して被覆することを特徴とする。 According to the first aspect of the present invention, the galvanic anode body includes a tab made of a metal for fixedly connecting to a metal structure to be protected against corrosion, and a corrosive potential lower than that of the metal structure. The sacrificial metal is electrically and structurally connected to the tub and has two or more surfaces, and at least one surface selected from the surfaces is prevented from being eluted. And a covering body that restricts elution of the sacrificial metal only to the remaining surface, and the galvanic anode has a facing surface facing the metal structure, a facing surface opposite to the facing surface , And the covering body covers only the opposite surface or only the side surface.

あるいは好ましくは、前記犠牲金属は、アルミニウム、亜鉛、マグネシウム、アルミニウム合金、亜鉛合金、マグネシウム合金よりなる群より選択された何れかよりなる。   Alternatively, preferably, the sacrificial metal is made of any one selected from the group consisting of aluminum, zinc, magnesium, an aluminum alloy, a zinc alloy, and a magnesium alloy.

本発明の第2の局面によれば、流電陽極法は、防食対象の金属構造物と固定的に接続するための金属よりなるタブと、前記金属構造物よりも卑な腐食電位を有する何れかの犠牲金属よりなり、前記タブと電気的および構造的に連結され、二以上の面を有する流電陽極とを備えた流電陽極体を、前記面より選択された一以上の面を前記犠牲金属の溶出を防止するべく被覆して前記犠牲金属の溶出を残る面のみに規制し、前記タブにより前記流電陽極体を前記金属構造物と固定的および電気的に接続する、ことよりなり、前記流電陽極は、前記金属構造物に対向する対向面と、前記対向面と反対側の反対面と、側面とを含む六面よりなり、前記被覆体は、前記反対面のみまたは前記側面のみを残して被覆する。 According to the second aspect of the present invention, the galvanic anode method includes a tab made of metal for fixedly connecting to a metal structure to be protected against corrosion, and a corrosive potential lower than that of the metal structure. A galvanic anode body comprising a sacrificial metal and electrically and structurally connected to the tub and having two or more surfaces, and having at least one surface selected from the surfaces Covering the sacrificial metal to prevent elution of the sacrificial metal and restricting the elution of the sacrificial metal only to the remaining surface, and connecting the galvanic anode body to the metal structure fixedly and electrically by the tab. The galvanic anode comprises six surfaces including a facing surface facing the metal structure, a facing surface opposite to the facing surface, and a side surface, and the covering includes only the facing surface or the Cover only the sides.

好ましくは、前記流電陽極法は、前記流電陽極体を前記金属構造物と固定的および電気的に接続する以前に、海水ないし汽水中において前記金属構造物に対向するべく陽極を設置し、前記金属構造物を陰極として、前記海水ないし前記汽水を電気分解してその生成物を構造物に電着せしめることを、さらに含む。 Preferably, in the galvanic anode method, before the galvanic anode body is fixedly and electrically connected to the metal structure, an anode is installed to face the metal structure in seawater or brackish water, The method further includes electrolyzing the seawater or brackish water with the metal structure as a cathode to electrodeposit the product onto the structure.

設置した後においても長期間にわたり安定した防食電流を供給しうる流電陽極体および流電陽極法が提供される。   Provided are an galvanic anode body and an galvanic anode method capable of supplying a stable anticorrosion current over a long period of time even after installation.

図1は、流電陽極による防食の態様を表す概念図である。FIG. 1 is a conceptual diagram showing an aspect of anticorrosion by the galvanic anode. 図2は、本発明の一実施形態による流電陽極体の三面図である。FIG. 2 is a three-side view of a galvanic anode body according to an embodiment of the present invention. 図3は、前記流電陽極体の横断面図である。FIG. 3 is a cross-sectional view of the galvanic anode body. 図4は、変形例による流電陽極体の平面図である。FIG. 4 is a plan view of a galvanic anode body according to a modification. 図5は、他の変形例による流電陽極体の横断面図である。FIG. 5 is a cross-sectional view of a galvanic anode body according to another modification. 図6は、さらに他の変形例による流電陽極体の横断面図である。FIG. 6 is a cross-sectional view of a galvanic anode body according to still another modification. 図7は、その他の変形例による流電陽極体の横断面図である。FIG. 7 is a cross-sectional view of a galvanic anode body according to another modification. 図8は、従来例による流電陽極体の三面図および横断面図である。FIG. 8 is a three-side view and a cross-sectional view of a galvanic anode body according to a conventional example. 図9は、従来例による流電陽極体が供給する電流密度の変化を表すグラフの一例である。FIG. 9 is an example of a graph showing a change in current density supplied by the galvanic anode body according to the conventional example.

本発明の実施形態を添付の図面を参照して以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

従来例による流電陽極体101の横断面図である図8(c)を参照するに、当初の犠牲金属105は、通常、明瞭に角の立った台形や矩形の断面を有する。一定期間が経過した後の犠牲金属105’は、図8(d)のごとくに、角の丸くなった不定形の断面に変化する。図中、一点鎖線は、当初の表面を表している。かかる変化の前後を比較し、さらには流電陽極体周囲の電位分布を解析することにより本発明者らが明らかにしたところによれば、かかる角の周囲は電場が集中し、さらには海流に最も強く影響を受けるために、角からの溶出が最も活発となって、かかる角が速やかに消失するものと推定された。またかかる形状の変化がもたらす表面積の減少、および最も大きな防食電流を供給する角が消失することは、長期的な防食電流の変化をもたらすと推定された。   Referring to FIG. 8C, which is a cross-sectional view of the galvanic anode body 101 according to the conventional example, the initial sacrificial metal 105 usually has a clearly trapezoidal trapezoidal or rectangular cross section. The sacrificial metal 105 ′ after a lapse of a certain period changes to an irregular cross section with rounded corners as shown in FIG. In the figure, the alternate long and short dash line represents the initial surface. According to what the present inventors have clarified by comparing the potential before and after the change, and further by analyzing the potential distribution around the galvanic anode body, the electric field is concentrated around the corner, and further to the ocean current. Since it was most strongly affected, it was estimated that the elution from the corner became the most active and the corner disappeared quickly. It was also estimated that the reduction in surface area caused by such a shape change and the disappearance of the corner that supplies the largest anticorrosion current would result in a long-term change in the anticorrosion current.

上述のような知見に基づいて考察するに、角の影響を除くべく犠牲金属の表面を適宜被覆し、特定の面のみを露出させれば、かかる面からは均一な溶出が期待できる。均一に溶出するのであればかかる面の形状は変化せず、面積はほとんど不変であって、以って長期間にわたり安定した防食電流を供給しうることが期待できる。   Considering based on the above-mentioned knowledge, if the surface of the sacrificial metal is appropriately coated to remove the influence of corners and only a specific surface is exposed, uniform elution can be expected from this surface. If it elutes uniformly, the shape of such a surface does not change and the area is almost unchanged, so that it can be expected that a stable anticorrosive current can be supplied over a long period of time.

そこで本発明の一実施形態によれば、図2に示すように、流電陽極体1は、防食対象の金属構造物と固定的に接続するための金属よりなるタブ9と、前記金属構造物よりも卑な腐食電位を有する何れかの犠牲金属よりなり、前記タブ9と電気的および構造的に連結され、二以上の面を有する流電陽極5と、を備えており、かかる流電陽極5の一以上の面は、被覆体7により被覆されている。かかる被覆体7は、被覆した面からの犠牲金属の溶出を防止し、犠牲金属の溶出を、被覆されていない残る面5Aのみに規制する。   Therefore, according to one embodiment of the present invention, as shown in FIG. 2, the galvanic anode body 1 includes a tab 9 made of metal for fixedly connecting to a metal structure to be protected against corrosion, and the metal structure. A galvanic anode 5 made of any sacrificial metal having a more corrosive corrosion potential, electrically and structurally connected to the tub 9 and having two or more surfaces, and the galvanic anode One or more surfaces of 5 are covered with a covering 7. Such a covering 7 prevents elution of the sacrificial metal from the coated surface, and restricts the elution of the sacrificial metal only to the remaining uncoated surface 5A.

流電陽極5は、好適には縦長の六面体であって、通常その六面は、金属構造物に対向する対向面と、その反対側の反対面とを含む。被覆体7は、前記六面より選択された二以上の面を被覆する。図3の例では、対向面と反対面とを露出したままに残し、一対の側面を被覆している。上下の露出面5Aは、角を有していないために、均一に溶出して金属構造物に対して防食電流Iを供給する。好ましくは、被覆体7は、露出面5Aの両側端の影響を減ずるべく、露出面5Aよりも僅かに上下に張り出した態様とする。   The galvanic anode 5 is preferably an elongated hexahedron, and the hexahedron usually includes an opposing surface facing the metal structure and an opposing surface on the opposite side. The covering 7 covers two or more surfaces selected from the six surfaces. In the example of FIG. 3, the opposing surface and the opposite surface are left exposed and a pair of side surfaces are covered. Since the upper and lower exposed surfaces 5A do not have corners, the upper and lower exposed surfaces 5A are eluted uniformly to supply the anticorrosion current I to the metal structure. Preferably, the covering body 7 has a mode in which the covering body 7 protrudes slightly above and below the exposed surface 5A in order to reduce the influence of both side ends of the exposed surface 5A.

被覆体7の素材は、十分な長期間、流電陽極5に密着し続けることが必要である。そのような素材としては、タールエポ、変性エポ、FRP、ガラスフレーク塗料が例示できるが、もちろんこれらに限定されない。   The material of the covering 7 needs to be kept in close contact with the galvanic anode 5 for a sufficiently long period. Examples of such materials include tar epoxy, modified epoxy, FRP, and glass flake paint, but of course not limited thereto.

犠牲金属には、防食対象の構造物が鉄鋼よりなる場合、鉄よりも卑な腐食電位を有する金属ないし合金であれば、何れも適用しうる。そのような金属ないし合金としては、アルミニウム、亜鉛、マグネシウム、およびそれらの合金が例示できるが、もちろんこれらに限定されない。   As the sacrificial metal, when the structure to be protected against corrosion is made of steel, any metal or alloy having a lower corrosion potential than iron can be applied. Examples of such metals or alloys include aluminum, zinc, magnesium, and alloys thereof, but of course not limited thereto.

角の影響をさらに減ずるべく、図4に示すごとく、タブ9の接続された両端面をさらに被覆体7’により被覆してもよい。   In order to further reduce the influence of the corners, both end faces to which the tab 9 is connected may be further covered with a covering 7 'as shown in FIG.

あるいは、図5に示すごとく、金属構造物に対向する対向面をも被覆して、反対面のみを露出面25Aとしてもよい。対向面は対象の構造物にごく近いために、その近傍にのみ優先的に防食電流を供給してしまう。反対面だけが露出していることにより、より遠距離にも均一に防食電流を供給することができる。   Or as shown in FIG. 5, it is good also as an exposed surface 25A to cover also the opposing surface which opposes a metal structure, and only an opposite surface. Since the opposing surface is very close to the target structure, the anticorrosion current is preferentially supplied only to the vicinity thereof. Since only the opposite surface is exposed, the anticorrosion current can be supplied uniformly over a longer distance.

流電陽極の断面形状は、図3,5に示されるような台形に限られず、図6に示されるような矩形であったり、さらには他の形状であってもよい。図6のような矩形の流電陽極35は、損耗が進んでも露出面35Aの表面積が不変であるために、より安定した防食電流が供給できる。   The cross-sectional shape of the galvanic anode is not limited to the trapezoid as shown in FIGS. 3 and 5, but may be a rectangle as shown in FIG. 6 or another shape. The rectangular galvanic anode 35 as shown in FIG. 6 can supply a more stable anticorrosion current because the surface area of the exposed surface 35A is not changed even if wear progresses.

さらにまた、被覆体は、両側面に代えて他の面を被覆してもよい。図7はそのような一例であって、被覆体47は、対向面および反対面を被覆し、両側面を露出面45Aとしている。対向面および反対面は、他の面に比べて電流密度が異なるために、均一な溶出が困難である。すなわち、対向面はより速やかに溶出し、反対面はより緩やかに溶出する傾向がある。両側面はこれらに比べてより均一な溶出が可能であるため、流電陽極45は、さらに安定した防食電流が供給できる。   Furthermore, the covering may cover other surfaces instead of the both side surfaces. FIG. 7 shows such an example, and the covering 47 covers the opposing surface and the opposite surface, and both side surfaces are exposed surfaces 45A. Since the opposing surface and the opposite surface have different current densities compared to the other surfaces, uniform elution is difficult. That is, the opposing surface tends to elute more quickly and the opposite surface tends to elute more slowly. Since both sides can be eluted more uniformly than these, the galvanic anode 45 can supply a more stable anticorrosion current.

上述の各実施形態による流電陽極体1は、洋上、港湾ないし汽水域に構築される浮体構造物、鋼矢板岸壁、ケーソン等の鋼構造物に適用しうるが、これらに限られない。流電陽極体1は、タブ9を介して、溶接等の適宜の方法により鋼構造物に固定される。固定は、溶接に限らず電気的および構造的な接続に適した何れの方法でも利用しうる。何れの実施形態によっても、流電陽極体を設置した当初においては、図9に例示されるような防食電流の急激な変化は起こりうる。しかしながら、形状や表面積の変化がもたらす防食電流の変化が無いために、一定期間の後に定常状態に達すると、その後の防食電流は極めて変動が小さい。それ故、流電陽極体は長期間にわたり安定した防食電流を供給し、以って防食の観点から見た鋼構造物の寿命を延長しうる。   Although the galvanic anode body 1 by each above-mentioned embodiment can be applied to steel structures, such as a floating structure, a steel sheet pile quay, a caisson, etc. constructed in the sea, a harbor, or a brackish water area, it is not restricted to these. The galvanic anode body 1 is fixed to the steel structure through a tab 9 by an appropriate method such as welding. Fixing can be used not only by welding but by any method suitable for electrical and structural connections. In any embodiment, at the beginning of installing the galvanic anode body, a rapid change in the anticorrosion current as illustrated in FIG. 9 can occur. However, since there is no change in the anticorrosion current caused by the change in shape and surface area, when the steady state is reached after a certain period, the subsequent anticorrosion current has a very small fluctuation. Therefore, the galvanic anode body can supply a stable anticorrosion current over a long period of time, thereby extending the life of the steel structure from the viewpoint of anticorrosion.

各実施形態による流電陽極体1は、防食皮膜の施された構造物に対しても適用しうる。例えば、予め次のような方法により防食皮膜を施しておくことができる。まず海水ないし汽水中において、設置された構造物に対向するべく陽極を設置し、構造物を陰極として、外部電源等を利用して電流を供給することにより、海水ないし汽水を電気分解してその生成物を構造物に電着せしめる。あるいはさらに、電流の供給を一定期間停止することにより、かかる生成物を、海水ないし汽水中の不溶成分と、少なくとも部分的に置換せしめる。このようにして得られた防食皮膜の施された構造物に対して、上述と同様な方法により流電陽極体1を固定することにより、かかる構造物を防食する。   The galvanic anode body 1 according to each embodiment can be applied to a structure provided with an anticorrosion film. For example, the anticorrosion film can be applied in advance by the following method. First, in seawater or brackish water, an anode is installed to face the installed structure, and the structure is used as a cathode, and current is supplied using an external power source to electrolyze the seawater or brackish water. The product is electrodeposited onto the structure. Alternatively, further, the supply of current is stopped for a period of time to at least partially replace such products with insoluble components in seawater or brackish water. The structure having the anticorrosive film thus obtained is anticorrosive by fixing the galvanic anode 1 by the same method as described above.

防食皮膜の施された構造物に適用されると、各実施形態による流電陽極体1は、構造物を防食するのみならず、防食皮膜の劣化や剥離を防止し、以って極めて長期間の防食効果を奏する。   When applied to a structure provided with an anticorrosion film, the galvanic anode body 1 according to each embodiment not only protects the structure, but also prevents the anticorrosion film from deteriorating and peeling off, and thus has an extremely long period of time. Has the anticorrosive effect.

好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。   Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above-described embodiments. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiment.

設置した後においても長期間にわたり安定した防食電流を供給しうる流電陽極体および流電陽極法が提供される。   Provided are an galvanic anode body and an galvanic anode method capable of supplying a stable anticorrosion current over a long period of time even after installation.

1 流電陽極体
5,25,35,45 流電陽極
5A、25A,35A,45A 露出面
7,7’,27,37,47 被覆体
9 タブ
1 Current-flow anode body 5, 25, 35, 45 Current-flow anode 5A, 25A, 35A, 45A Exposed surface 7, 7 ', 27, 37, 47 Cover 9 Tab

Claims (4)

防食対象の金属構造物と固定的に接続するための金属よりなるタブと、
前記金属構造物よりも卑な腐食電位を有する何れかの犠牲金属よりなり、前記タブと電気的および構造的に連結され、二以上の面を有する流電陽極と、
前記面より選択された一以上の面を前記犠牲金属の溶出を防止するべく被覆し、前記犠牲金属の溶出を残る面のみに規制する被覆体と、
を備えた流電陽極体において、
前記流電陽極は、前記金属構造物に対向する対向面と、前記対向面と反対側の反対面と、側面とを含む六面よりなり、前記被覆体は、前記反対面のみまたは前記側面のみを残して被覆することを特徴とする流電陽極体。
A tab made of metal for fixed connection with a metal structure to be protected against corrosion;
An galvanic anode made of any sacrificial metal having a lower corrosion potential than the metal structure, electrically and structurally connected to the tab, and having two or more faces;
One or more surfaces selected from the surfaces are coated to prevent the elution of the sacrificial metal, and a covering for restricting the elution of the sacrificial metal only to the remaining surface;
In a galvanic anode body with
The galvanic anode is composed of six surfaces including an opposing surface facing the metal structure, an opposing surface opposite to the opposing surface, and a side surface, and the covering is only the opposite surface or only the side surface. A galvanic anode body, characterized in that it is coated while leaving
前記犠牲金属は、アルミニウム、亜鉛、マグネシウム、アルミニウム合金、亜鉛合金、マグネシウム合金よりなる群より選択された何れかよりなることを特徴とする請求項1に記載の流電陽極体。   The galvanic anode body according to claim 1, wherein the sacrificial metal is selected from the group consisting of aluminum, zinc, magnesium, an aluminum alloy, a zinc alloy, and a magnesium alloy. 防食対象の金属構造物と固定的に接続するための金属よりなるタブと、前記金属構造物よりも卑な腐食電位を有する何れかの犠牲金属よりなり、前記タブと電気的および構造的に連結され、二以上の面を有する流電陽極とを備えた流電陽極体を、前記面より選択された一以上の面を前記犠牲金属の溶出を防止するべく被覆して前記犠牲金属の溶出を残る面のみに規制し、
前記タブにより前記流電陽極体を前記金属構造物と固定的および電気的に接続する、
ことよりなる流電陽極法において、
前記流電陽極は、前記金属構造物に対向する対向面と、前記対向面と反対側の反対面と、側面とを含む六面よりなり、前記被覆体は、前記反対面のみまたは前記側面のみを残して被覆することを特徴とする流電陽極法。
A tab made of metal for fixed connection with a metal structure to be protected against corrosion, and any sacrificial metal having a lower corrosion potential than the metal structure, and is electrically and structurally connected to the tab. A galvanic anode body comprising a galvanic anode having two or more surfaces and covering at least one surface selected from the surfaces to prevent the sacrificial metal from eluting. Regulate only the remaining surface,
Connecting the galvanic anode body to the metal structure fixedly and electrically by the tab;
In galvanic anode method consists in,
The galvanic anode is composed of six surfaces including an opposing surface facing the metal structure, an opposing surface opposite to the opposing surface, and a side surface, and the covering is only the opposite surface or only the side surface. The galvanic anode method, characterized in that the coating is carried out leaving behind.
前記流電陽極体を前記金属構造物と固定的および電気的に接続する以前に、海水ないし汽水中において前記金属構造物に対向するべく陽極を設置し、前記金属構造物を陰極として、前記海水ないし前記汽水を電気分解してその生成物を構造物に電着せしめる、
ことをさらに含むことを特徴とする請求項に記載の流電陽極法。
Before the galvanic anode body is fixedly and electrically connected to the metal structure, an anode is installed to face the metal structure in seawater or brackish water, and the seawater is used as the cathode. Or electrolyze the brackish water to electrodeposit the product onto the structure,
The galvanic anode method according to claim 3 , further comprising:
JP2009091974A 2009-04-06 2009-04-06 The galvanic anode body and the galvanic anode method Active JP5402177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091974A JP5402177B2 (en) 2009-04-06 2009-04-06 The galvanic anode body and the galvanic anode method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091974A JP5402177B2 (en) 2009-04-06 2009-04-06 The galvanic anode body and the galvanic anode method

Publications (2)

Publication Number Publication Date
JP2010242161A JP2010242161A (en) 2010-10-28
JP5402177B2 true JP5402177B2 (en) 2014-01-29

Family

ID=43095492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091974A Active JP5402177B2 (en) 2009-04-06 2009-04-06 The galvanic anode body and the galvanic anode method

Country Status (1)

Country Link
JP (1) JP5402177B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752285B1 (en) * 2014-02-24 2015-07-22 株式会社ソフテム Galvanic anode
JP7066465B2 (en) * 2018-03-20 2022-05-13 株式会社Ihi Method for forming anticorrosion electrodeposition coating on underwater metal structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140380A (en) * 1983-01-31 1984-08-11 Nippon Boshoku Kogyo Kk Galvanic anode having long life
JPS60131979A (en) * 1983-12-21 1985-07-13 Kawasaki Steel Corp Structure of sacrificial electrode for corrosion prevention
JP2566026Y2 (en) * 1991-07-11 1998-03-25 日本防蝕工業株式会社 Current proof anode for cathodic protection
JP4146637B2 (en) * 2001-12-20 2008-09-10 株式会社Ihi Corrosion protection method for harbor steel structures
JP4457378B2 (en) * 2003-11-18 2010-04-28 日本防蝕工業株式会社 Electrocorrosion protection method for submerged part of metal structure by galvanic anode and galvanic anode structure therefor

Also Published As

Publication number Publication date
JP2010242161A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
CA2092304C (en) Prevention method of aquatic attaching fouling organisms and its apparatus
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
US6579429B2 (en) Antifouling system for structure exposed to seawater and heat exchanger
GB1597305A (en) Marine potentiometric antifouling and anticorrosion device
US20040134795A1 (en) System and method for protecting metals
Mrdović et al. Applications Impressed Current Cathodic Protection of the Ship Hull
JP2003286591A (en) Process for protecting corrosion of offshore structure and offshore structure
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
JP5167863B2 (en) Anode for forming anticorrosion electrodeposition coating on steel structure
US20180282880A1 (en) Sacrificial Collar
Carson Zinc as a self-regulating galvanic anode for ship hulls
JP3386898B2 (en) Corrosion protection structure of the material to be protected
EP1918393A2 (en) Alloy for use in galvanic protection
JP2019163505A (en) Corrosion prevention electrodeposition film formation method of in-water metal structure
JP3090187B2 (en) Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating
KR102652545B1 (en) Impressed current cathodic protection system for pipe
RU98194U1 (en) ANODE FOR CATHODE PROTECTION
WO2004009436A1 (en) Impressed current cathodic protection system for marine structure without reference cell
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater
JP2001064788A (en) Corrosion-protective method of metal surface in contact with flowing water of water film
JP2002121688A (en) Method for preventing corrosion of marine structure, and marine structure
JP2002047588A (en) Method for protecting corrosion of marine structure and marine structure
JPH0328385A (en) Screwing member for electrochemical corrosion protection
JP6433278B2 (en) Cathodic protection method
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250