JP6660647B1 - Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same - Google Patents

Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same Download PDF

Info

Publication number
JP6660647B1
JP6660647B1 JP2019071267A JP2019071267A JP6660647B1 JP 6660647 B1 JP6660647 B1 JP 6660647B1 JP 2019071267 A JP2019071267 A JP 2019071267A JP 2019071267 A JP2019071267 A JP 2019071267A JP 6660647 B1 JP6660647 B1 JP 6660647B1
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
composite
packaging container
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019071267A
Other languages
Japanese (ja)
Other versions
JP2020169356A (en
Inventor
竹本笑子
藤森宏
山田夏輝
坂本仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Yoki Co Ltd
Original Assignee
Takemoto Yoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Yoki Co Ltd filed Critical Takemoto Yoki Co Ltd
Priority to JP2019071267A priority Critical patent/JP6660647B1/en
Application granted granted Critical
Publication of JP6660647B1 publication Critical patent/JP6660647B1/en
Priority to EP20785394.6A priority patent/EP3951007A4/en
Priority to PCT/JP2020/011897 priority patent/WO2020203279A1/en
Publication of JP2020169356A publication Critical patent/JP2020169356A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material

Abstract

【課題】樹脂製の包装容器における優れたガスバリア性、水蒸気バリア性を有し、かつその劣化を抑える複合酸化珪素膜及び複合金属酸化膜を提供する。【解決手段】原子層堆積法を用いて形成される複合酸化珪素膜であって、二酸化珪素を主成分とする第1酸化珪素膜と前記第1酸化珪素膜上に形成され、かつ前記第1酸化珪素膜より高密度な構造を有する第2酸化珪素膜とで構成され、 前記第2酸化珪素膜は、前記第1酸化珪素膜と異なる光電子スペクトルを有する膜である。【選択図】図1PROBLEM TO BE SOLVED: To provide a composite silicon oxide film and a composite metal oxide film having excellent gas barrier properties and water vapor barrier properties in a resin packaging container and suppressing deterioration thereof. A composite silicon oxide film formed by using an atomic layer deposition method, the first silicon oxide film containing silicon dioxide as a main component and the first silicon oxide film, and the first silicon oxide film. And a second silicon oxide film having a higher density than that of the silicon oxide film, and the second silicon oxide film has a photoelectron spectrum different from that of the first silicon oxide film. [Selection diagram] Fig. 1

Description

本発明は、複合酸化珪素膜又は複合金属酸化膜を有する樹脂製包装容器、及びその製造方法に関する。 The present invention relates to a resin packaging container having a composite silicon oxide film or a composite metal oxide film , and a method for producing the same.

近年、樹脂製の包装容器は様々な分野で利用されているが、樹脂製容器は、金属容器やガラス容器と比較して軽量で輸送コストが少なく、耐衝撃性に優れる半面、耐薬品性、ガスバリア性や水蒸気バリア性に劣るという欠点があった。特に、高級化粧品用の樹脂容器、品質管理の厳しい薬品等を収容する樹脂容器においては、ある程度のコストをかけてでもガスバリア性や水蒸気バリア性に優れた容器が求められている(特許文献1、2)。   In recent years, resin packaging containers have been used in various fields, but resin containers are lighter and have lower transportation costs than metal containers and glass containers, and have excellent impact resistance, There is a disadvantage that the gas barrier property and the water vapor barrier property are inferior. In particular, in resin containers for high-grade cosmetics and resin containers containing chemicals whose quality is strictly controlled, containers having excellent gas barrier properties and water vapor barrier properties are required even at a certain cost (Patent Document 1, 2).

本願発明者らは特許第5795427号(特許文献3)において、樹脂製容器上の内表面及び/又は外表面に原子層堆積法(ALD)を用いて、5nm〜100nmの金属酸化膜(酸化珪素膜)を形成することによって、ガスバリア性に優れた樹脂製容器を開発した。ALD法は、成膜に時間を要すると言う欠点があるが、複雑な形状を有する容器に均一な金属膜を形成できる点で優れており、小ロットかつ多品種の高級樹脂容器の成膜に最適な技術である。   The inventors of the present application have disclosed in Japanese Patent No. 5795427 (Patent Document 3) that a metal oxide film (silicon oxide) having a thickness of 5 nm to 100 nm is formed on an inner surface and / or an outer surface of a resin container by using atomic layer deposition (ALD). A resin container with excellent gas barrier properties has been developed by forming a film. The ALD method has a drawback that it takes time to form a film, but is excellent in that a uniform metal film can be formed on a container having a complicated shape, and is suitable for forming a small lot and a variety of high-grade resin containers. This is the optimal technology.

しかしながら、上記の発明によって形成される金属酸化膜(酸化珪素膜)は、成膜直後や未使用状態のまま保存管理していた場合は優れたガスバリア性を保持できるものの、水やエタノールといった内容物を入れた状態で使用を続けると、数週間〜数カ月後には形成した金属酸化膜に劣化が生じ、所望のガスバリア性を維持することが難しく、実用化に耐えることができなかった。 However, the metal oxide film (silicon oxide film) formed by the above-described invention can maintain excellent gas barrier properties immediately after the film formation or when it is stored and managed in an unused state, but the contents such as water and ethanol can be maintained. If the metal oxide film is continued to be used in a state in which the metal oxide film is kept, the formed metal oxide film is deteriorated after several weeks to several months, and it is difficult to maintain a desired gas barrier property, and it cannot be put to practical use.

金属酸化膜として、ガスバリア性及び水蒸気バリア性に優れる酸化アルミニウム膜(アルミナ膜)を樹脂製容器に採用することも考えられるが、医薬品、食品、化粧品等においては内容物が直接アルミナ膜に触れることが敬遠されるため、任意の手法を用いてアルミナ膜上に何らかのコーティングを行う必要がある。例えば、通常のALD法を用いてアルミナ膜上に二酸化珪素膜をコーティングした場合、上記と同様に二酸化珪素膜が容易に劣化・剥離してしまう問題がある。更に、ALD法に代えて塗布によるコーティングを行うことも可能ではあるが、複雑な形状を有する樹脂製容器内部への完全な塗布は困難であり、実用性に乏しく、現実的ではなかった。 As a metal oxide film, it is conceivable to use an aluminum oxide film (alumina film) with excellent gas barrier properties and water vapor barrier properties in a resin container, but in pharmaceuticals, foods, cosmetics, etc., the contents may directly touch the alumina film. Therefore, it is necessary to perform some coating on the alumina film using an arbitrary method. For example, when a silicon dioxide film is coated on an alumina film using a normal ALD method, there is a problem that the silicon dioxide film is easily deteriorated and peeled off as described above. Furthermore, although it is possible to perform coating by application instead of the ALD method, it is difficult to completely apply the resin inside a resin container having a complicated shape, which is not practical and is not practical.

更に、アルミナ膜を樹脂製容器に採用した場合、アルミナ膜の除去が難しく、樹脂製容器のリサイクルの際に課題があった。 Further, when an alumina film is used for a resin container, it is difficult to remove the alumina film, and there is a problem in recycling the resin container.

特開2014−65198号公報JP 2014-65198 A 特開2009−226861号公報JP 2009-228661 A 特許第5795427号Patent No. 5795427

本願発明は、上記した課題を解決し、内容物との接触によっても長期間劣化することがなく、優れたガスバリア性と水蒸気バリア性を持続させることができる複合酸化珪素膜又は複合金属酸化膜を有する樹脂製の包装容器を提供することを目的とする。 The present invention solves the above-mentioned problems, and does not deteriorate for a long time even by contact with the contents, and provides a composite silicon oxide film or a composite metal oxide film capable of maintaining excellent gas barrier properties and water vapor barrier properties. It is an object to provide a resin-made packaging container having the same.

上記目的を達成するため、本願の第一の発明は、原子層が堆積された複合酸化珪素膜を内表面及び/又は外表面に有する樹脂製の包装容器であって、二酸化珪素を主成分とする第1酸化珪素膜と、前記第1酸化珪素膜上に形成され、かつ前記第1酸化珪素膜より高密度な構造を有する第2酸化珪素膜とで構成され、
前記第2酸化珪素膜は、前記第1酸化珪素膜と異なる光電子スペクトルを有する膜であり、
102.3eVから103.3eVの範囲にピークを有し、
SiOx(2<x)の構造であり、前記第1酸化珪素膜の厚みは18.0nm以上、より好ましくは30.0nm以上であり、前記第2酸化珪素膜の厚みは0.6nm以上である、ことを特徴とする。
In order to achieve the above object, a first invention of the present application is a resin packaging container having an inner surface and / or an outer surface of a composite silicon oxide film on which an atomic layer is deposited, wherein silicon dioxide is a main component. A first silicon oxide film, and a second silicon oxide film formed on the first silicon oxide film and having a higher density structure than the first silicon oxide film;
The second silicon oxide film has a different photoelectron spectrum from the first silicon oxide film,
Has a peak in the range of 102.3 eV to 103.3 eV,
A structure of SiOx (2 <x), wherein the thickness of the first silicon oxide film is 18.0 nm or more, more preferably 30.0 nm or more, and the thickness of the second silicon oxide film is 0.6 nm or more. , Characterized in that.

また、上記目的を達成するため、本願の第二の発明は、原子層が堆積された複合金属酸化膜を内表面及び/又は外表面に有する樹脂製の包装容器であって、前記複合金属酸化膜は、アルミニウム、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される金属酸化膜によって構成される基層と、前記基層上に形成され、二酸化珪素を主成分とする第1酸化珪素膜と、前記第1酸化珪素膜上に形成される第2酸化珪素膜からなり、前記第2酸化珪素膜は、前記第1酸化珪素膜より高密度な構造を有し、かつ異なった光電子スペクトルを有する膜であり、
102.3eVから103.3eVの範囲にピークを有し、
SiOx(2<x)の構造であり、前記基層の厚みは、2.0nm以上、より好ましくは5.0nm以上であり、前記第1酸化珪素膜の厚みは18.0nm以上、より好ましくは30.0nm以上であり、前記第2酸化珪素膜の厚みは0.6nm以上である、ことを特徴とする。
To achieve the above object, a second aspect of the present invention is a resin-made packaging container having the inner surface and / or outer surface of the composite metal oxide film atomic layer is deposited, the composite metal oxide The film is a base layer composed of a metal oxide film selected from the group consisting of aluminum, gallium, germanium, titanium, zirconium, and zinc; and a first silicon oxide formed on the base layer and containing silicon dioxide as a main component. A second silicon oxide film formed on the first silicon oxide film, wherein the second silicon oxide film has a higher density structure than the first silicon oxide film and has a different photoelectron spectrum. A film having
Has a peak in the range of 102.3 eV to 103.3 eV,
It has a structure of SiOx (2 <x), the thickness of the base layer is 2.0 nm or more, more preferably 5.0 nm or more, and the thickness of the first silicon oxide film is 18.0 nm or more, more preferably 30 nm or more. 0.02 nm or more, and the thickness of the second silicon oxide film is 0.6 nm or more.

さらに、本願の第三、第四の発明は、上記第一、第二の各発明の複合酸化珪素膜、複合金属酸化膜を樹脂製の包装容器に形成する製造方法である、ことを特徴とする。 Further, the third and fourth inventions of the present application are a method of forming the composite silicon oxide film and the composite metal oxide film of the first and second inventions in a resin packaging container. I do.

本願の第一発明に係る樹脂製包装容器よれば、第1酸化珪素膜よりも高密度な構造を有する第2酸化珪素膜を第1酸化珪素膜上に形成することで、内容物との接触によっても長期間劣化することがなく、優れたガスバリア性を持続させることができ、更に優れた水蒸気バリア性によって内容物が容器表面から外部に揮発することも抑制することができる。しかも、樹脂容器上に形成された酸化珪素膜は、他の金属酸化膜に比べて容易に剥離できるため、樹脂容器のリサイクルにも適している。 According to the resin packaging container of the first invention of the present application, the second silicon oxide film having a higher density structure than the first silicon oxide film is formed on the first silicon oxide film, so that contact with the contents is achieved. The gas barrier property can be maintained for a long time without deterioration, and the excellent gas barrier property can be maintained. Further, the excellent water vapor barrier property can prevent the content from volatilizing from the container surface to the outside. In addition, the silicon oxide film formed on the resin container can be easily peeled off as compared with other metal oxide films, and thus is suitable for recycling the resin container.

更に本願の第二発明に係る樹脂製包装容器よれば、複合金属酸化膜として、アルミニウム、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される金属酸化膜からなる基層と、その上に第1酸化珪素膜を、更にその上に第1酸化珪素膜よりも高密度な構造を有する第2酸化珪素膜を形成することで、樹脂容器のリサイクルには課題があるものの、より優れたガスバリア性を発揮し、より優れた水蒸気バリア性によって内容物の外部への揮発を更に抑制し、かつこれらの効果を更に長期間持続させることができる。 Further, according to the resin packaging container according to the second invention of the present application, as the composite metal oxide film, aluminum, gallium, germanium, titanium, zirconium, and a base layer made of a metal oxide film selected from the group consisting of zinc, and Forming a first silicon oxide film, and further forming a second silicon oxide film having a higher density structure than the first silicon oxide film on the first silicon oxide film. The gas barrier property is exhibited, and the volatilization of the content to the outside is further suppressed by the more excellent water vapor barrier property, and these effects can be maintained for a longer time.

更に本願の第二発明によれば、アルミニウム、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される金属酸化膜からなる基層と、その上に第1酸化珪素膜を、更にその上に第1酸化珪素膜よりも高密度な構造を有する第2酸化珪素膜を形成することで、樹脂容器のリサイクルには課題があるものの、より優れたガスバリア性を発揮し、より優れた水蒸気バリア性によって内容物の外部への揮発を更に抑制し、かつこれらの効果を更に長期間持続させることができる。   Further, according to the second invention of the present application, a base layer made of a metal oxide film selected from the group consisting of aluminum, gallium, germanium, titanium, zirconium, and zinc, and a first silicon oxide film thereon, By forming the second silicon oxide film having a higher density structure than the first silicon oxide film, although there is a problem in recycling the resin container, it exhibits more excellent gas barrier properties and more excellent water vapor barrier. The volatility of the content to the outside can be further suppressed by the property, and these effects can be maintained for a longer period of time.

また、医薬品、食品、化粧品等に使用する樹脂製の包装容器用の成膜は、無色かつ人体無害であることが求められる。酸化珪素膜以外にも、適用可能な金属酸化膜は多数存在するものの、多くの金属酸化膜は厚く積みすぎると無色でなくなり、かつ光の干渉で虹色に見えたり、場合によっては白色に見えたりするため、これらの点から酸化珪素膜が最も好ましく、また価格的にも問題がない。   In addition, film formation for resin packaging containers used for pharmaceuticals, foods, cosmetics, and the like is required to be colorless and harmless to the human body. Although there are many applicable metal oxide films other than the silicon oxide film, many metal oxide films are not colorless if they are too thick and look rainbow or white in some cases due to light interference. For these reasons, a silicon oxide film is most preferable from these points, and there is no problem in cost.

本願発明の第一実施形態に係る複合酸化珪素膜の断面図Sectional view of the composite silicon oxide film according to the first embodiment of the present invention 本願発明の第二実施形態に係る複合金属酸化膜の断面図Sectional view of the composite metal oxide film according to the second embodiment of the present invention 樹脂製の包装容器に形成した膜の断面図(第一実施形態)Sectional view of a film formed on a resin packaging container (first embodiment) 樹脂製容器に酸化珪素膜を形成する装置の概略図Schematic diagram of an apparatus for forming a silicon oxide film on a resin container 水蒸気ガス発生装置と活性化装置の概略図Schematic diagram of steam gas generator and activation device XPSを用いた光電子スペクトルのグラフGraph of photoelectron spectrum using XPS

以下、本発明の実施形態について詳細に説明する。
図1は、本願発明の第一実施形態に係る複合酸化珪素膜の構造を模式的に示したものである。樹脂製容器100の表面に、原子層堆積法(ALD)によって二酸化珪素を主成分とする第1酸化珪素膜101を形成し、その上に、第1酸化珪素膜101より高密度の第2酸化珪素膜102が、同じく原子層堆積法(ALD)によって形成されている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 schematically shows the structure of the composite silicon oxide film according to the first embodiment of the present invention. A first silicon oxide film 101 containing silicon dioxide as a main component is formed on the surface of a resin container 100 by atomic layer deposition (ALD), and a second oxide film having a higher density than the first silicon oxide film 101 is formed thereon. A silicon film 102 is also formed by atomic layer deposition (ALD).

なお、図1に示す酸化珪素膜は、第1酸化珪素膜101と第2酸化珪素膜102の2層構造の例を示しているが、更に第1酸化珪素膜101と第2酸化珪素膜102を繰り返し形成し、4層構造、6層構造等としても良い。各膜厚については、後述する実施例を参照されたい。   Note that the silicon oxide film illustrated in FIG. 1 illustrates an example of a two-layer structure including a first silicon oxide film 101 and a second silicon oxide film 102, and further includes a first silicon oxide film 101 and a second silicon oxide film 102. May be repeatedly formed to form a four-layer structure, a six-layer structure, or the like. For the respective film thicknesses, see the examples described later.

図2は、本願発明の第二実施形態に係る複合金属酸化膜の構造を模式的に示したものである。樹脂製容器100の表面に、酸化アルミニウム膜(アルミナ膜)からなる基層103を原子層堆積法(ALD)によって形成し、その上に同じく原子層堆積法(ALD)によって第1酸化珪素膜101を形成し、更にその上に、第1酸化珪素膜101より高密度の第2酸化珪素膜102を形成している。   FIG. 2 schematically shows the structure of the composite metal oxide film according to the second embodiment of the present invention. A base layer 103 made of an aluminum oxide film (alumina film) is formed on the surface of the resin container 100 by an atomic layer deposition method (ALD), and a first silicon oxide film 101 is further formed thereon by an atomic layer deposition method (ALD). After that, a second silicon oxide film 102 having a higher density than the first silicon oxide film 101 is formed thereon.

基層103の材料は、アルミニウム以外に、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される少なくとも1種の金属酸化物とすることができる。   The material of the base layer 103 can be at least one metal oxide selected from the group consisting of gallium, germanium, titanium, zirconium, and zinc, in addition to aluminum.

第二実施形態における第1酸化珪素膜101と第2酸化珪素膜102は、第一実施形態と同様に2層構造の例を示しているが、更に第1酸化珪素膜101と第2酸化珪素膜102を繰り返し形成し、基層と合わせた合計5層構造、7層構造等としても良い。或いは、基層を含めた3層構造を、繰り返し形成する6層構造、9層構造等としても良い。各膜厚については、後述する実施例を参照されたい。   The first silicon oxide film 101 and the second silicon oxide film 102 in the second embodiment show an example of a two-layer structure as in the first embodiment, but the first silicon oxide film 101 and the second silicon oxide film The film 102 may be repeatedly formed to have a total five-layer structure or a seven-layer structure combined with the base layer. Alternatively, the three-layer structure including the base layer may be a six-layer structure, a nine-layer structure, or the like, which is repeatedly formed. For the respective film thicknesses, see the examples described later.

上記第一実施形態、第二実施形態に係る第1酸化珪素膜は、SiO2であるが、第2酸化珪素膜は、第1酸化珪素膜よりも緻密で高密度に形成されたSiOx(2<x)の構造を有している。以下、その製造方法について説明する。 The first silicon oxide film according to the first embodiment and the second embodiment is SiO2, but the second silicon oxide film is formed of SiOx (2 <2) that is denser and denser than the first silicon oxide film. x) . Hereinafter, the manufacturing method will be described.

上記第一実施形態、第二実施形態に係る第1酸化珪素膜は、SiO2であるが、第2酸化珪素膜は、第1酸化珪素膜よりも緻密で高密度に形成されたSiOx(1≦x≦3)かつx≠2の構造を有している。以下、その製造方法について説明する。   The first silicon oxide film according to the first embodiment and the second embodiment is SiO2, but the second silicon oxide film is SiOx (1 ≦ 1) formed more densely and densely than the first silicon oxide film. x ≦ 3) and x ≠ 2. Hereinafter, the manufacturing method will be described.

本発明に係る複合酸化珪素膜及び複合金属酸化膜は、図4に模式的に示す原子層堆積(ALD)装置によって形成される。反応容器1内に、被処理体である樹脂製容器100を載置する。実際の製造では、反応容器1内に多数の容器を収容し、バッチで処理する。反応容器1は、排気ポンプ2につながれ、反応容器1に充満するガスを排気管3により排気するようになっている。また、反応容器1には、シリコン成膜用の金属ガスを供給する供給手段として、第1金属ガス容器4が、第1流量制御器5を通して接続されている。また、以下説明する第二実施形態で使用するアルミ等の金属ガスを供給する供給手段として、第2金属ガス容器6が、第2流量制御器7を通して接続されている。さらに、水蒸気又は酸素を含むガスをプラズマによって励起したガスを供給するプラズマガス供給手段として、水蒸気又は酸素ガス発生装置8が、活性化装置9、10を通して接続されている。   The composite silicon oxide film and the composite metal oxide film according to the present invention are formed by an atomic layer deposition (ALD) apparatus schematically shown in FIG. A resin container 100 which is an object to be processed is placed in the reaction container 1. In actual production, a large number of containers are accommodated in the reaction container 1 and processed in batches. The reaction vessel 1 is connected to an exhaust pump 2, and exhausts gas filling the reaction vessel 1 through an exhaust pipe 3. Further, a first metal gas container 4 is connected to the reaction container 1 through a first flow rate controller 5 as a supply unit for supplying a metal gas for silicon film formation. A second metal gas container 6 is connected through a second flow controller 7 as a supply unit for supplying a metal gas such as aluminum used in a second embodiment described below. Further, a steam or oxygen gas generator 8 is connected through a activating device 9 or 10 as a plasma gas supply means for supplying a gas obtained by exciting a gas containing water vapor or oxygen by plasma.

図5は、水蒸気ガス発生装置と活性化装置の概略図である。当該装置において、左側から不活性ガスを導入し、加湿器11において水をくぐらせることで、不活性ガスを加湿させることができる。不活性ガスはアルゴンガスを用いる。加湿されたアルゴンガスは、ガラス管12の中で、誘導性コイル13によって加えられた高周波磁界により領域14内にプラズマが生成され、ここを通過することで活性化された水蒸気を生成し、反応容器1に送られる。例えば、誘導性コイル13によって加えられる電磁エネルギーは20Wで、周波数は13.56MHzである。   FIG. 5 is a schematic diagram of a steam gas generator and an activation device. In the apparatus, the inert gas can be humidified by introducing an inert gas from the left side and passing water through the humidifier 11. Argon gas is used as the inert gas. The humidified argon gas generates a plasma in a region 14 by a high-frequency magnetic field applied by an inductive coil 13 in a glass tube 12, and generates an activated water vapor by passing through the region, thereby causing a reaction. It is sent to the container 1. For example, the electromagnetic energy applied by the inductive coil 13 is 20 W and the frequency is 13.56 MHz.

上記の行程で形成した第1酸化珪素膜101の上に、更に第2酸化珪素膜102を形成するが、その方法は、上記工程におけるプラズマを発生させるための電力を上昇させるか、又はプラズマにより励起した水蒸気又は酸素を導入する時間を伸ばすことにより形成される。形成された第2酸化珪素膜は、第1酸化珪素膜101よりも緻密で高密度な膜であり、SiOx(2<x)の構造を有する。 A second silicon oxide film 102 is further formed on the first silicon oxide film 101 formed in the above-described process. The method is to increase the power for generating plasma in the above-described process, or It is formed by extending the time for introducing excited water vapor or oxygen. The formed second silicon oxide film is a denser and denser film than the first silicon oxide film 101, and has a structure of SiOx (2 <x) .

上記の行程で形成した第1酸化珪素膜101の上に、更に第2酸化珪素膜102を形成するが、その方法は、上記工程におけるプラズマを発生させるための電力を上昇させるか、又はプラズマにより励起した水蒸気又は酸素を導入する時間を伸ばすことにより形成される。形成された第2酸化珪素膜は、第1酸化珪素膜101よりも緻密で高密度な膜であり、SiOx(1≦x≦3)かつx≠2の構造を有する。   A second silicon oxide film 102 is further formed on the first silicon oxide film 101 formed in the above-described process. The method is to increase the power for generating plasma in the above-described process, or It is formed by extending the time for introducing excited water vapor or oxygen. The formed second silicon oxide film is a denser and denser film than the first silicon oxide film 101, and has a structure of SiOx (1 ≦ x ≦ 3) and x ≠ 2.

第1酸化珪素膜101と第2酸化珪素膜102は、いずれも酸化珪素膜であるが図6に表されるような光電子スペクトルの違いを有している。図6(a)はX線光電分光分析(XPS)を用いて観測された光電子スペクトルであり、点線は第1酸化珪素膜101を、実線は第2酸化珪素膜102を示している。   The first silicon oxide film 101 and the second silicon oxide film 102 are both silicon oxide films, but have a difference in photoelectron spectrum as shown in FIG. FIG. 6A is a photoelectron spectrum observed using X-ray photoelectric spectroscopy (XPS). A dotted line indicates the first silicon oxide film 101 and a solid line indicates the second silicon oxide film 102.

第1酸化珪素膜101及び第2酸化珪素膜102は、同一基板上に成膜されており、当該基板に対しArエッチング処理を10分間行い表面の酸化珪素膜を取り除くことによって、第2酸化珪素膜102を取り除き、第1酸化珪素膜101の光電子スペクトルの測定を行った。同時に比較として第1酸化珪素膜101のみで構成された基板の測定結果を図6(b)に示す。第1酸化珪素膜101のみの場合に関しても同様のArエッチング処理を行い、表面の膜を取り除くことによって膜構造の比較を行った。なお、図中、実線で示す線は表面、点線で示す線はエッチング後の内部測定値である。 The first silicon oxide film 101 and the second silicon oxide film 102 are formed on the same substrate, and the substrate is subjected to an Ar etching process for 10 minutes to remove the silicon oxide film on the surface, thereby forming the second silicon oxide film. The film 102 was removed, and the photoelectron spectrum of the first silicon oxide film 101 was measured. At the same time, FIG. 6B shows a measurement result of a substrate composed of only the first silicon oxide film 101 for comparison. A similar Ar etching process was performed for only the first silicon oxide film 101, and the film structure was compared by removing the surface film. In the drawing, the solid line represents the surface and the dotted line represents the internal measurement value after etching.

第1酸化珪素膜101のみで形成された図6(b)はArエッチングによって表面の膜を取り除いた場合でも103.2eVを中心としたスペクトルの形状が変化していないのに対し、図6(a)は第2酸化珪素膜102が取り除かれたことにより、スペクトルの形状が変化し、図6(b)と同様の103.2eVを中心とするピークに変化していることが見て取れる。したがって図6(a)の実線で示す102.3eVから103.3eVの範囲にピークを有するものが第2酸化珪素膜102であるということを見て取ることができる。   FIG. 6B, which is formed only by the first silicon oxide film 101, shows that the shape of the spectrum centered at 103.2 eV does not change even when the film on the surface is removed by Ar etching. In a), it can be seen that the shape of the spectrum changes due to the removal of the second silicon oxide film 102 and changes to a peak centered at 103.2 eV as in FIG. 6B. Therefore, it can be seen that the second silicon oxide film 102 has a peak in the range from 102.3 eV to 103.3 eV indicated by the solid line in FIG.

図6(a)の実線で示される第2酸化珪素膜102のスペクトルは、複数のシリコンのスペクトルが組み合わさって構成されており、中でも102.8eVに強いピークを有することが見てとれる、この違いはシリコン原子の周辺の化学結合状態の違いによるものであり、より高密度となる方向に化学シフトしていることがわかる。   The spectrum of the second silicon oxide film 102 shown by the solid line in FIG. 6A is composed of a combination of a plurality of silicon spectra, and has a strong peak at 102.8 eV. The difference is due to the difference in the state of the chemical bond around the silicon atom, and it can be seen that the chemical shift is performed in the direction of higher density.

上記のとおり、樹脂製容器100の表面に形成されている第1酸化珪素膜101の上に、更に緻密で高密度な第2酸化珪素膜102を形成することにより、優れたガスバリア性と水蒸気バリア性を有するとともに、容器内の内容物との接触による膜の劣化を低減することができる。   As described above, by forming the denser and higher-density second silicon oxide film 102 on the first silicon oxide film 101 formed on the surface of the resin container 100, excellent gas barrier properties and water vapor barrier properties are obtained. And the deterioration of the film due to the contact with the contents in the container can be reduced.

なお、樹脂製容器の原料となる樹脂は特に限定されないが、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリスチレン、アクリロニトリルスチレン、ポリ塩化ビニル、シクロオレフィンポリマー、オレフィンコポリマーなどを挙げることができる。   In addition, the resin used as the raw material of the resin container is not particularly limited, and examples thereof include polyethylene, polypropylene, polyethylene terephthalate, polystyrene, acrylonitrile styrene, polyvinyl chloride, cycloolefin polymer, and olefin copolymer.

第二実施形態に係る複合酸化金属膜を形成する方法は、基本的に第一実施形態の複合酸化珪素膜を形成する装置及び方法と同じであるが、第1酸化珪素膜を形成する前に、アルミニウム、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される少なくとも1種の金属酸化膜(基層103)を樹脂製容器100の表面に形成し、その後、第一実施形態と同じ方法によって、第1酸化珪素膜101、更に第2酸化珪素膜102を形成するものである。   The method for forming the composite metal oxide film according to the second embodiment is basically the same as the apparatus and method for forming the composite silicon oxide film according to the first embodiment, but before forming the first silicon oxide film. At least one metal oxide film (base layer 103) selected from the group consisting of aluminum, gallium, germanium, titanium, zirconium, and zinc is formed on the surface of the resin container 100, and then the same as in the first embodiment. The first silicon oxide film 101 and the second silicon oxide film 102 are formed by a method.

上記各第一実施形態及び第二実施形態に基づいて、以下、いくつかの実施例を作成し、比較例と対比する試験を実施し、ガスバリア性能、水蒸気バリア性能、膜の劣化性能を比較した。   Based on each of the first embodiment and the second embodiment, below, several examples were created, a test was performed to compare with a comparative example, and gas barrier performance, water vapor barrier performance, and film degradation performance were compared. .

なお内容物として薬品類、食品類、化粧品類を収容する樹脂製の包装容器にあっては、製造直後の酸素透過度が、最低でも0.002(cc/pkg・day・atm)以下であり、3カ月経過後の酸素透過度が最低でも0.004(cc/pkg・day・atm)以内であることが求められる。また、本試験において3カ月経過後の内容物重量変化率(水蒸気バリア性)は、最低でも1.0%以下であることが求められる。これらの数値を、それぞれ基準値1、基準値2、基準値3とする。さらに特殊な薬品、食品、化粧品等においては、上記基準値よりもはるかに高いガスバリア性や水蒸気バリア性が求められるが、以下の実施例のとおり、各膜厚を調整することにより、基準値1〜3を遥かに超える高いガスバリア性及び水蒸気バリア性を有する複合膜を形成することができる。   In addition, in the case of a resin-made packaging container that contains medicines, foods, and cosmetics as contents, the oxygen permeability immediately after production is at least 0.002 (cc / pkg · day · atm) or less. It is required that the oxygen permeability after three months has passed is at least 0.004 (cc / pkg · day · atm). In this test, the content change rate (water vapor barrier property) after 3 months has passed is required to be at least 1.0% or less. These numerical values are referred to as reference value 1, reference value 2, and reference value 3, respectively. Further, in special medicines, foods, cosmetics, etc., gas barrier properties and water vapor barrier properties far higher than the above-mentioned reference values are required. It is possible to form a composite film having a high gas barrier property and a water vapor barrier property far exceeding 3 to 3.

(実施例1〜9の作成)
図4に示す原子層堆積(ALD)装置を用い、第一実施形態である図1に示す第1酸化珪素膜101を、成膜レート0.06nm/cycleの成膜を必要回数繰り返し実施し、18nm、30nm、54nmの第1酸化珪素膜101を有する樹脂製容器100を作成した。成膜対象となる樹脂製容器100は、ポリエチレンテレフタレート樹脂製である。
(Preparation of Examples 1 to 9)
Using the atomic layer deposition (ALD) apparatus shown in FIG. 4, the first silicon oxide film 101 shown in FIG. 1 , which is the first embodiment, is repeatedly formed at a deposition rate of 0.06 nm / cycle by a required number of times. A resin container 100 having the first silicon oxide film 101 of 18 nm, 30 nm, and 54 nm was formed. The resin container 100 for forming a film is made of polyethylene terephthalate resin.

本実施例における金属ガスとしてトリス(ジメチルアミノ)シランを用いた。樹脂製容器100の温度は23℃とした。   In this example, tris (dimethylamino) silane was used as a metal gas. The temperature of the resin container 100 was 23 ° C.

第1酸化珪素膜101は、容器の内側表面及び外側表面の両表面に形成され、全体に亘ってほぼ均一な膜厚となり、プラズマCVDなどでは付き回りがよくない、容器肩部の内面や底部の隅部などでも均一な膜厚であることが確認された。   The first silicon oxide film 101 is formed on both the inner surface and the outer surface of the container, has a substantially uniform thickness over the entire surface, and is not easily attached by plasma CVD or the like. It was confirmed that the film had a uniform film thickness even at the corners.

次に、上記18nm、30nm、54nmの第1酸化珪素膜101が形成された樹脂容器100に、プラズマによって活性化された水蒸気を導入するための時間を二倍とし、成膜レート0.06nm/cycleの成膜を必要回数繰り返し実施し、それぞれ0.6nm、3.0nm、4.8nmの膜厚からなる第2酸化珪素膜102を更に形成し、表1に示す実施例1〜9の樹脂製容器を得た。   Next, the time for introducing the water vapor activated by the plasma into the resin container 100 on which the 18 nm, 30 nm, and 54 nm first silicon oxide films 101 were formed was doubled, and the film formation rate was 0.06 nm / The cycle was repeatedly formed as many times as necessary, and a second silicon oxide film 102 having a thickness of 0.6 nm, 3.0 nm, and 4.8 nm was further formed, and the resins of Examples 1 to 9 shown in Table 1 were formed. A container was obtained.

(比較例1〜7の作成)
実施例1〜9で使用した成膜されていないポリエチレンテレフタレート製の樹脂製容器を比較例1とした。
(Preparation of Comparative Examples 1 to 7)
Comparative Example 1 was a resin container made of polyethylene terephthalate, on which no film was formed, used in Examples 1 to 9.

また、実施例1〜9と同様のポリエチレンテレフタレート製の樹脂製容器に、第1酸化珪素膜101と同様の酸化珪素膜のみを30nm形成した樹脂製容器を比較例2とした。 Comparative Example 2 was a resin container in which only the same silicon oxide film as the first silicon oxide film 101 was formed to a thickness of 30 nm in the same polyethylene terephthalate resin container as in Examples 1 to 9.

また、実施例1〜9と同様のポリエチレンテレフタレート製の樹脂製容器に、酸化アルミニウム膜103のみを8nmを形成した樹脂製容器を比較例3とした。 Comparative Example 3 was a resin container in which only the aluminum oxide film 103 was formed to 8 nm in the same polyethylene terephthalate resin container as in Examples 1 to 9.

また、実施例1〜9と同様のポリエチレンテレフタレート製の樹脂製容器に、第1酸化珪素膜101と第2酸化珪素膜102を、それぞれ実施例1〜9よりも薄く形成したものを比較例4とした。 Comparative Example 4 in which a first silicon oxide film 101 and a second silicon oxide film 102 were formed thinner than in Examples 1 to 9 in a polyethylene terephthalate resin container similar to Examples 1 to 9, respectively. And

さらに、実施例1〜9と同様のポリエチレンテレフタレート製の樹脂製容器に、第1酸化珪素膜101を102nmとし、第2酸化珪素膜102は実施例1〜9と同等のものを比較例5、6、7とした。   Further, in the same polyethylene terephthalate resin container as in Examples 1 to 9, the first silicon oxide film 101 was set to 102 nm, and the second silicon oxide film 102 was the same as that in Examples 1 to 9; 6 and 7.

(比較試験1)
多検体酸素透過度測定装置OX−TRAN 2/61(MOCON社製)を用い、実施例1〜9、及び比較例1〜7に係る樹脂製容器の酸素透過度を測定した。測定は、試験ガスとして空気を用い、23℃、60%RH環境下(容器内部は23℃、0%RH)で行い、容器の口部に窒素ガスの導入管及び排出管を装備した治具を取り付け、導入管から窒素を10cc/min.で導入し、排出管から排出される窒素中に含有する酸素量を測定した。測定結果は、樹脂製容器あたりの透過度(cc/pkg・day・atm)であり、結果を表1に示す。
(Comparative test 1)
The oxygen permeability of the resin containers according to Examples 1 to 9 and Comparative Examples 1 to 7 was measured using a multi-sample oxygen permeability measuring device OX-TRAN 2/61 (manufactured by MOCON). The measurement was performed using air as the test gas under a 23 ° C., 60% RH environment (23 ° C., 0% RH inside the container), and a jig equipped with a nitrogen gas inlet tube and a discharge tube at the mouth of the container. And 10 cc / min. Of nitrogen from the inlet tube. And the amount of oxygen contained in the nitrogen discharged from the discharge pipe was measured. The measurement results are the permeability (cc / pkg · day · atm) per resin container. The results are shown in Table 1.

表1に示すとおり、実施例1〜9は、製造直後(或いは容器として不使用状態)における酸素透過度が、前記した基準値1をはるかに超えており、金属酸化膜を設けていない純粋な樹脂製容器である比較例1に比べて、酸素透過度が格段に向上していることがわかる。また実施例4〜9のように、第1酸化珪素膜を30nm以上に厚くすることで、酸化透過度を更に大きく向上させることができる。   As shown in Table 1, in Examples 1 to 9, the oxygen permeability immediately after production (or in a non-use state as a container) far exceeded the reference value 1 described above, and pure oxygen without a metal oxide film was provided. It can be seen that the oxygen permeability is significantly improved as compared with Comparative Example 1 which is a resin container. Further, as in Examples 4 to 9, by increasing the thickness of the first silicon oxide film to 30 nm or more, the oxidative transmittance can be further improved.

なお、第1酸化珪素膜のみからなる比較例2は、製造直後のガスバリア性は優れているものの、下記比較試験2、3に示されるように劣化性能が劣っている。また酸化アルミ膜のガスバリア性が高いことは、当該試験結果からも明らかである。   Note that Comparative Example 2 consisting of only the first silicon oxide film had excellent gas barrier properties immediately after production, but was inferior in degradation performance as shown in Comparative Tests 2 and 3 below. It is clear from the test results that the aluminum oxide film has high gas barrier properties.

また、比較例4の薄い膜のレベルでは実際の使用においてやや問題があり、また比較例5〜7の厚い膜のレベルだと、逆に一般的な樹脂容器に採用される膜としては品質過剰であり、製造コスト上の問題がある。   Further, at the level of the thin film of Comparative Example 4, there is a problem in actual use, and at the level of the thick film of Comparative Examples 5 to 7, on the contrary, the quality of the film used for a general resin container is excessive. Therefore, there is a problem in manufacturing cost.

(比較試験2)
実施例1〜9、比較例1〜7に係る樹脂製容器に対し、水を満たし、50℃に設定を行った恒温槽内にて通常の4倍速での加速試験を3カ月行い(理論上12カ月の試験)、その酸素透過度の比較を行った。結果を表2に示す。
(Comparative test 2)
The resin containers according to Examples 1 to 9 and Comparative Examples 1 to 7 were filled with water and subjected to an acceleration test at a normal quadruple speed for 3 months in a thermostat set at 50 ° C. (theoretically). 12 month test), and their oxygen permeability was compared. Table 2 shows the results.

表2に示すとおり、実施例1〜9に係る複合酸化珪素膜は、3カ月間(理論上12カ月)、水を満たした状態でも、ガスバリア性の上記基準値2を満たしており、また実施例1〜8の劣化率(製造直後の酸素透過度に対する試験後の透過度の比)は、10を切っており、劣化率(劣化スピード)も抑制することができる。   As shown in Table 2, the composite silicon oxide films according to Examples 1 to 9 satisfy the above-described reference value 2 of the gas barrier property even in a state of being filled with water for 3 months (theoretical 12 months). The deterioration rate (the ratio of the permeability after the test to the oxygen permeability immediately after production) of Examples 1 to 8 is less than 10, and the deterioration rate (deterioration speed) can be suppressed.

なお、第1酸化珪素膜のみからなる比較例2は、製造直後のガスバリア性は優れているものの劣化性能が劣っている。また比較例5〜7は、第1酸化珪素膜を相当厚くしているためガスバリア性は優れているものの劣化率が大きく、成膜に要するコストに比較して効果が薄くなっている。   Note that Comparative Example 2 consisting of only the first silicon oxide film has excellent gas barrier properties immediately after production, but is inferior in deterioration performance. In Comparative Examples 5 to 7, since the first silicon oxide film is considerably thick, the gas barrier property is excellent, but the deterioration rate is large, and the effect is smaller than the cost required for film formation.

また、比較例4の薄い膜のレベルでは、基準値2を下回っており、実際の使用において問題がある。   In addition, the level of the thin film of Comparative Example 4 was lower than the reference value 2, and there was a problem in actual use.

(比較試験3)
実施例1〜9、比較例1〜7の樹脂製容器に対して70%エタノール水溶液を満たし50℃に設定を行った恒温槽内にて通常の4倍速での加速試験を3カ月行い(理論上12カ月の試験)、試験例1と同様にして酸素透過度の比較を行った。結果を表3に示す。

(Comparative test 3)
The resin containers of Examples 1 to 9 and Comparative Examples 1 to 7 were subjected to an acceleration test at a normal quadruple speed for 3 months in a constant temperature bath filled with a 70% aqueous ethanol solution and set at 50 ° C. (theory) And the oxygen permeability was compared in the same manner as in Test Example 1. Table 3 shows the results.

表3に示すとおり、実施例1〜9に係る複合酸化珪素膜は、3カ月間(理論上12カ月)、エタノール水溶液を満たした状態でも、ガスバリア性の上記基準値2を満たしており、また実施例1〜8の劣化率(製造直後の酸素透過度に対する試験後の酸素透過度の比)は、10を切っており、劣化率(劣化スピード)も抑制することができる。   As shown in Table 3, the composite silicon oxide films according to Examples 1 to 9 satisfy the above-described reference value 2 of the gas barrier property even in a state of being filled with the aqueous ethanol solution for three months (theoretically, 12 months). The deterioration rate (the ratio of the oxygen permeability after the test to the oxygen permeability immediately after production) of Examples 1 to 8 is less than 10, and the deterioration rate (deterioration speed) can be suppressed.

(比較試験4)
実施例1〜9、比較例1〜7の樹脂製容器に対し、70%エタノール水溶液で容器の8割まで充填し、その後アルミ製のキャップを用いて口部の密閉を行った。その後、40℃の恒温槽内にて通常の4倍速での加速試験を3カ月行い(理論上12カ月の試験)、その重量を測定し、試験開始前の重量と比較し、重量変化率を求めた。結果を表4として示す。なお、全体重量の変化は、内容物(水)が容器壁を通じて容器外部に蒸発することによって生じるものである。

(Comparative test 4)
The resin containers of Examples 1 to 9 and Comparative Examples 1 to 7 were filled up to 80% of the containers with a 70% aqueous ethanol solution, and then the mouth was sealed with an aluminum cap. Thereafter, an acceleration test at a normal quadruple speed is performed for 3 months in a constant temperature bath at 40 ° C. (a theoretical 12-month test), and the weight is measured and compared with the weight before the start of the test. I asked. The results are shown in Table 4. The change in the total weight is caused by the content (water) evaporating to the outside of the container through the container wall.

表4に示すとおり、実施例1〜12に係る複合酸化珪素膜は、3カ月間(理論上12カ月)、エタノール水溶液を満たした状態の重量減少率が上記基準値3を満たしており、水蒸気バリア性が高いことを示している。比較例2のように相当程度の厚みを有する第1酸化珪素膜のみ、また比較例4のように複合膜であっても膜厚が薄いと、水蒸気バリア性も劣ることがわかる。   As shown in Table 4, in the composite silicon oxide films according to Examples 1 to 12, the weight loss rate in a state filled with the aqueous ethanol solution satisfies the above-described reference value 3 for 3 months (theoretically 12 months), This indicates that the barrier property is high. It can be seen that when only the first silicon oxide film having a considerable thickness as in Comparative Example 2 or the composite film as in Comparative Example 4 is thin, the water vapor barrier property is inferior.

なお、上記のとおり比較例4〜7は、実施例1〜9に比べてややバリア性に劣るか、あるいは過剰成膜によるコスト増となるため、それぞれ比較例としているが、ユーザー要求や内容物によっては、比較例4〜7であっても実用に供することが可能である。即ち、実施例1〜9は、あくまで標準的な成膜モデルであって、比較例4〜7も本願発明の実施例としても良いことは言うまでもない。 Note that, as described above, Comparative Examples 4 to 7 are slightly inferior to the barrier properties compared to Examples 1 to 9 or increase costs due to excessive film formation. In some cases, even Comparative Examples 4 to 7 can be put to practical use. That is, Examples 1 to 9 are merely standard film formation models, and it goes without saying that Comparative Examples 4 to 7 may be examples of the present invention.

(実施例10〜15)
図4に示す原子層堆積(ALD)装置を用い、第二実施形態である図2に示す基層103として、2nm、5nm、8nm、20nm、30nm、40nmの酸化アルミニウム膜を成膜した樹脂容器を作製した。樹脂製容器100は、ポリエチレンテレフタレート樹脂製である。酸化アルミニウム膜の原子堆積成膜レートは、1サイクル当たり0.1nmである。
(Examples 10 to 15)
Using an atomic layer deposition (ALD) apparatus shown in FIG. 4, a resin container in which aluminum oxide films of 2 nm, 5 nm, 8 nm, 20 nm, 30 nm, and 40 nm were formed as the base layer 103 shown in FIG. Produced. The resin container 100 is made of polyethylene terephthalate resin. The atomic deposition rate of the aluminum oxide film is 0.1 nm per cycle.

上記2nm、5nm、8nm、20nm、30nm、40nmの酸化アルミニウム膜を成膜した樹脂容器に、実施例6と同じ、30nmの第1酸化珪素膜、4.8nmの第2酸化珪素膜を更に形成した樹脂容器を作製し、それぞれ実施例10、11、12、13、14、15とした。   The same 30 nm first silicon oxide film and 4.8 nm second silicon oxide film as in Example 6 were further formed on the resin container on which the aluminum oxide films of 2 nm, 5 nm, 8 nm, 20 nm, 30 nm and 40 nm were formed. The resulting resin containers were prepared as Examples 10, 11, 12, 13, 14, and 15, respectively.

(比較対象)
基層103を持たない上記実施例6を比較対象として、以下の各試験を実施した。
(Comparison)
The following tests were performed using the above-mentioned Example 6 having no base layer 103 as a comparative object.

(比較試験5)
比較試験1と同じく、多検体酸素透過度測定装置OX−TRAN 2/61(MOCON社製)を用い、実施例10〜13、及び比較例8、9に係る樹脂製容器の酸素透過度を測定した。測定は比較試験1と同じく、23℃、60%RH環境下(容器内部は23℃、0%RH)で行い、容器の口部に窒素ガスの導入管及び排出管を装備した治具を取り付け、試験ガスとして空気を用い、導入管から窒素を10cc/min.で導入し、排出管から排出される窒素中に含有する酸素量を測定した。測定結果は、樹脂製容器あたりの透過度(cc/pkg・day・atm)であり、結果を表5に示す。
(Comparative test 5)
As in Comparative Test 1, the oxygen permeability of the resin containers according to Examples 10 to 13 and Comparative Examples 8 and 9 was measured using a multi-sample oxygen permeability measuring device OX-TRAN 2/61 (manufactured by MOCON). did. The measurement was performed in a 23 ° C., 60% RH environment (23 ° C., 0% RH inside the container) as in Comparative Test 1, and a jig equipped with a nitrogen gas inlet and outlet tube was attached to the mouth of the container. Using air as a test gas, nitrogen was introduced at 10 cc / min. And the amount of oxygen contained in the nitrogen discharged from the discharge pipe was measured. The measurement results are the permeability (cc / pkg · day · atm) per resin container, and the results are shown in Table 5.

上記実施例10〜15は、基層として、単体でも十分なガスバリア性を有する酸化アルミ膜を有していることから、基準値1をはるかに超えており、第1酸化珪素膜及び第2酸化珪素膜からなる実施例6に比べても格段にガスバリア性が高まっていることがわかる。   In Examples 10 to 15 described above, since the base layer has an aluminum oxide film having a sufficient gas barrier property even by itself, it far exceeds the reference value 1, and thus the first silicon oxide film and the second silicon oxide film. It can be seen that the gas barrier properties are much higher than in Example 6 comprising a film.

さらに、実施例10〜15に対し、上記比較試験2〜4と同じ比較試験6、7、8を行った。その結果を表6、7、8に示す。なお、表6〜8においても、実施例6との対比を行った。

Further, Comparative Examples 6, 7, and 8 were performed on Examples 10 to 15 as in Comparative Examples 2 to 4. The results are shown in Tables 6, 7, and 8. In Tables 6 to 8, comparisons with Example 6 were also made.

酸化アルミ膜は、ガスバリア性に加えてもともと水蒸気バリア性も高いため、表6、7、8に示すとおり、基層+第1酸化珪素膜+第2酸化珪素膜の構造からなる実施例10〜15は、いずれも実施例6と対比して格段に優れた機能を有しており、上記基準値1〜3を容易にクリアしていることがわかる。   Since the aluminum oxide film originally has a high water vapor barrier property in addition to the gas barrier property, as shown in Tables 6, 7, and 8, Examples 10 to 15 each having a structure of a base layer + a first silicon oxide film + a second silicon oxide film. All have much more excellent functions than those of Example 6, and it can be seen that the above reference values 1 to 3 are easily cleared.

このように実施例10〜15は、いずれも極めて高いガスバリア性や水蒸気バリア性を必要とする特殊な樹脂容器に適用される複合金属酸化膜であり、いわゆる標準的なガスバリア性を有する樹脂容器としては、実施例1〜9の複合酸化珪素膜で十分な効果を発揮するものである。また、実施例10〜15は、酸化アルミ膜上に第1酸化珪素膜+第2酸化珪素膜が形成されていることから、長期使用によっても酸化アルミ膜上と第1酸化珪素膜が容易に剥離してしまうことがない。   As described above, Examples 10 to 15 are composite metal oxide films applied to special resin containers requiring extremely high gas barrier properties and water vapor barrier properties, and are used as resin containers having a so-called standard gas barrier property. The composite silicon oxide films of Examples 1 to 9 exhibit sufficient effects. In Examples 10 to 15, since the first silicon oxide film + the second silicon oxide film were formed on the aluminum oxide film, the first silicon oxide film and the aluminum oxide film could be easily formed even after long-term use. There is no peeling.

(実施例16〜19)
実施例16〜19は、上記実施例10〜15で採用した酸化アルミニウム膜からなる基層に代えて、酸化亜鉛膜を基層として形成したものであり、酸化亜鉛膜の厚さを5、8、20、30nmとし、当該各酸化亜鉛膜の上に、第1酸化珪素膜を30nm、第2酸化珪素膜を4.8nm形成した。なお、酸化亜鉛膜の原子堆積成膜レートは、1サイクル当たり0.2nmである。
(Examples 16 to 19)
In Examples 16 to 19, the zinc oxide film was used as the base layer instead of the aluminum oxide film used in the above Examples 10 to 15, and the thickness of the zinc oxide film was set to 5, 8, 20. The first silicon oxide film was formed to 30 nm and the second silicon oxide film was formed to 4.8 nm on each of the zinc oxide films. Note that the atomic deposition rate of the zinc oxide film is 0.2 nm per cycle.

実施例10〜15の各樹脂容器に対し、上記各比較試験と同様の試験9、10、11、12を行った。その結果を、表9、10、11、12として示す。



Tests 9, 10, 11, and 12 similar to the above-described comparative tests were performed on each of the resin containers of Examples 10 to 15. The results are shown in Tables 9, 10, 11, and 12.



酸化亜鉛膜を基層として用いたものは、酸化アルミニウム膜を用いたものより各性能は若干落ちるものの、酸化珪素膜に比べてガスバリア性と水蒸気バリア性も高いため、表9、10、11、12に示すとおり、基層+第1酸化珪素膜+第2酸化珪素膜の構造からなる実施例16〜19は、いずれも優れた機能を有しており、上記基準値1〜3を容易にクリアしていることがわかる。 Although the performance using the zinc oxide film as the base layer is slightly lower than the performance using the aluminum oxide film, the gas barrier property and the water vapor barrier property are higher than those of the silicon oxide film. As shown in the examples, Examples 16 to 19 each having the structure of the base layer + the first silicon oxide film + the second silicon oxide film have excellent functions, and easily clear the above reference values 1 to 3. You can see that it is.

なお、上記実施例10〜19は、基層として最も標準的な酸化アルミニウム膜及び酸化亜鉛膜を形成した例を示したが、これらの金属膜以外にも、酸化ガリウム膜、酸化ゲルマニウム膜、酸化チタン膜、酸化ジルコニウム膜等であっても良く、同様の効果を奏することができる。   In Examples 10 to 19, the most standard aluminum oxide film and zinc oxide film were formed as the base layers. However, in addition to these metal films, a gallium oxide film, a germanium oxide film, and a titanium oxide film were used. A film, a zirconium oxide film, or the like may be used, and similar effects can be obtained.

以上のとおり、本願の第一発明(実施例1〜9及び比較例4〜7を含む)によれば、構造と特性の異なる第1、第2の酸化珪素膜からなる複合酸化珪素膜を採用することにより、樹脂製の包装容器用成膜として敬遠されがちな酸化アルミニウム被膜を使用しなくても、長期に渡って高いガスバリア性・水蒸気バリア性を発揮できる金属酸化膜を得ることができ、内容物の酸化や容器外に揮発することを大きく抑制することができる。更に、樹脂製容器との剥離が容易であるため、樹脂製容器のリサイクルにも適している。   As described above, according to the first invention of the present application (including Examples 1 to 9 and Comparative Examples 4 to 7), the composite silicon oxide film including the first and second silicon oxide films having different structures and characteristics is employed. By doing so, it is possible to obtain a metal oxide film that can exhibit high gas barrier properties and water vapor barrier properties over a long period of time without using an aluminum oxide coating that is often avoided as a film for a resin packaging container, Oxidation of the contents and volatilization outside the container can be largely suppressed. Further, since the resin container can be easily separated from the resin container, it is suitable for recycling the resin container.

また本願の第二発明(実施例10〜19)によれば、酸化金属膜(酸化アルミニウム膜、酸化亜鉛膜等)の被膜の上に、第一発明に係る2種類の酸化珪素膜を有する複合酸化金属膜を採用することにより、第一発明に比べて、更に高いガスバリア性・水蒸気バリア性を有することにより、樹脂製容器による特殊な内容物の保護も可能とすることができる。   According to the second invention (Examples 10 to 19) of the present application, a composite having two types of silicon oxide films according to the first invention on a metal oxide film (aluminum oxide film, zinc oxide film, etc.). By adopting a metal oxide film, it is possible to protect special contents by a resin container by having higher gas barrier properties and water vapor barrier properties as compared with the first invention.

なお、ガスバリア性を発揮する酸化金属膜は、金属に直接炭素が結合した化合物、酸素を介して炭素が結合した化合物、窒素を介して炭素が結合した化合物など、ガス化する各種有機金属化合物を用いることができ、従来の原子層堆積法で用いることができる化合物は全て適用可能である。有機金属ガスとしては、例えば、トリメチルアミノシラン、ビスジメチルアミノシランなどの有機シリコン化合物、トリメチルアミドジルコニウムなどの有機ジルコニウム化合物、チタンイソポプロポオキシド、チタンジメチルエチルアミノチタンなどの有機チタン化合物、トリメチルガリウムなどの有機ガリウム化合物、有機亜鉛化合物、有機ゲルマニウム化合物、トリメチルアルミニウムなどの有機アルミニウム化合物などを挙げることができるが、特に内容物として薬品、食品、化粧品等を収容する樹脂製の包装容器には酸化珪素膜が好適であり、本願発明は当該酸化珪素膜に特化した発明である。   Note that the metal oxide film exhibiting gas barrier properties includes various organic metal compounds that are gasified, such as a compound in which carbon is directly bonded to a metal, a compound in which carbon is bonded through oxygen, and a compound in which carbon is bonded through nitrogen. All compounds that can be used and can be used in conventional atomic layer deposition methods are applicable. Examples of the organic metal gas include, for example, organic silicon compounds such as trimethylaminosilane and bisdimethylaminosilane, organic zirconium compounds such as trimethylamidozirconium, organic titanium compounds such as titanium isopopropoxide and titanium dimethylethylaminotitanium, and organic compounds such as trimethylgallium. Gallium compounds, organozinc compounds, organogermanium compounds, organoaluminum compounds such as trimethylaluminum and the like can be cited, and in particular, silicon oxide films are used for resin-made packaging containers containing chemicals, foods, cosmetics, and the like as contents. It is preferable that the present invention is an invention specializing in the silicon oxide film.

1 反応容器
2 排気ポンプ
3 排気管
4 第1金属ガス容器
5 第1流量制御器
6 第2金属ガス容器
7 第2流量制御器
8 水蒸気又は酸素ガス発生装置
9、10 活性化装置
11 加湿器
12 ガラス管
13 誘導性コイル
14 プラズマ発生領域
100 樹脂製容器(樹脂層)
101 第1酸化珪素膜
102 第2酸化珪素膜
103 基層


DESCRIPTION OF SYMBOLS 1 Reaction container 2 Exhaust pump 3 Exhaust pipe 4 First metal gas container 5 First flow controller 6 Second metal gas container 7 Second flow controller 8 Steam or oxygen gas generator 9, 10 Activator 11 Humidifier 12 Glass tube 13 Inductive coil 14 Plasma generation area 100 Resin container (resin layer)
101 first silicon oxide film 102 second silicon oxide film 103 base layer


Claims (7)

原子層が堆積された複合酸化珪素膜を内表面及び/又は外表面に有する樹脂製の包装容器であって、
前記複合酸化珪素膜は、
二酸化珪素を主成分とする第1酸化珪素膜と
前記第1酸化珪素膜上に形成され、かつ前記第1酸化珪素膜より高密度な構造を有する第2酸化珪素膜とで構成され、
前記第2酸化珪素膜は、前記第1酸化珪素膜と異なる光電子スペクトルを有する膜であり、
102.3eVから103.3eVの範囲にピークを有し、
SiOx(2<x)の構造であり、
前記第1酸化珪素膜の厚みは18.0nm以上、好ましくは30.0nm以上であり、前記第2酸化珪素膜の厚みは0.6nm以上である、
ことを特徴とする複合酸化珪素膜を有する樹脂製包装容器。
A resin packaging container having a composite silicon oxide film on which an atomic layer is deposited on an inner surface and / or an outer surface,
The composite silicon oxide film,
A first silicon oxide film containing silicon dioxide as a main component, and a second silicon oxide film formed on the first silicon oxide film and having a higher density structure than the first silicon oxide film;
The second silicon oxide film has a different photoelectron spectrum from the first silicon oxide film,
Has a peak in the range of 102.3 eV to 103.3 eV,
A structure of SiOx (2 <x),
The thickness of the first silicon oxide film is 18.0 nm or more, preferably 30.0 nm or more, and the thickness of the second silicon oxide film is 0.6 nm or more.
A resin packaging container having a composite silicon oxide film.
前記複合酸化珪素膜は、前記第1酸化珪素膜と前記第2酸化珪素膜が交互に複数繰り返し形成されている、
ことを特徴とする請求項1に記載の複合酸化珪素膜を有する樹脂製包装容器。
The composite silicon oxide film includes a plurality of the first silicon oxide films and the second silicon oxide films alternately formed.
A resin packaging container having the composite silicon oxide film according to claim 1.
原子層が堆積された複合金属酸化膜を内表面及び/又は外表面に有する樹脂製の包装容器であって、
前記複合金属酸化膜は、
アルミニウム、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される金属の酸化膜によって構成される基層と、
前記基層上に形成され、二酸化珪素を主成分とする第1酸化珪素膜と、
前記第1酸化珪素膜上に形成される第2酸化珪素膜からなり、
前記第2酸化珪素膜は、前記第1酸化珪素膜より高密度な構造を有し、かつ異なった光電子スペクトルを有する膜であり、
102.3eVから103.3eVの範囲にピークを有し、
SiOx(2<x)の構造であり、
前記基層の厚みは、2.0nm以上、好ましくは5.0nm以上であり、
前記第1酸化珪素膜の厚みは18.0nm以上、好ましくは30.0nm以上であり、前記第2酸化珪素膜の厚みは0.6nm以上である、
ことを特徴とする複合金属酸化膜を有する樹脂製包装容器。
A resin packaging container having a composite metal oxide film having an atomic layer deposited on its inner surface and / or outer surface,
The composite metal oxide film ,
Aluminum, gallium, germanium, titanium, zirconium, and a base layer composed of an oxide film of a metal selected from the group consisting of zinc,
A first silicon oxide film formed on the base layer and containing silicon dioxide as a main component;
A second silicon oxide film formed on the first silicon oxide film;
The second silicon oxide film has a higher density structure than the first silicon oxide film, and has a different photoelectron spectrum,
Has a peak in the range of 102.3 eV to 103.3 eV,
A structure of SiOx (2 <x),
The thickness of the base layer is 2.0 nm or more, preferably 5.0 nm or more,
The thickness of the first silicon oxide film is 18.0 nm or more, preferably 30.0 nm or more, and the thickness of the second silicon oxide film is 0.6 nm or more.
A resin packaging container having a composite metal oxide film.
前記複合金属酸化膜は、前記基層の上に、前記第1酸化珪素膜と前記第2酸化珪素膜が交互に複数繰り返し形成されている、
ことを特徴とする請求項3に記載の複合金属酸化膜を有する樹脂製包装容器。
The composite metal oxide film includes a plurality of the first silicon oxide films and the second silicon oxide films alternately formed on the base layer.
A resin packaging container having the composite metal oxide film according to claim 3.
前記複合金属酸化膜は、前記基層、前記第1酸化珪素膜、前記第2酸化珪素膜の3層が、当該順序のままで複数繰り返し形成されている、
ことを特徴とする請求項3に記載の複合金属酸化膜を有する樹脂製包装容器。
In the composite metal oxide film, three layers of the base layer, the first silicon oxide film, and the second silicon oxide film are repeatedly formed in the same order.
A resin packaging container having the composite metal oxide film according to claim 3.
原子層堆積法を用い、樹脂製の包装容器に複合酸化珪素膜を形成する方法であって、
反応容器内において、前記包装容器に二酸化珪素を主成分とする第1酸化珪素膜を原子層で堆積する工程と
前記第1酸化珪素膜上に、前記第1酸化珪素膜より高密度な構造を有する第2酸化珪素膜を原子層で堆積する工程とかなり、
前記第2酸化珪素膜は、前記第1酸化珪素膜と異なる光電子スペクトルを有する膜であり、
102.3eVから103.3eVの範囲にピークを有し、
SiOx(2<x)の構造であり、
前記第1酸化珪素膜の厚みは18.0nm以上、より好ましくは30.0nm以上であり、前記第2酸化珪素膜の厚みは0.6nm以上である、
ことを特徴とする樹脂製の包装容器に複合酸化珪素膜を形成する方法。
A method of forming a composite silicon oxide film on a resin packaging container by using an atomic layer deposition method,
A step of depositing a first silicon oxide film containing silicon dioxide as a main component in an atomic layer on the packaging container in the reaction container; and forming a structure having a higher density than the first silicon oxide film on the first silicon oxide film. Considerably depositing a second silicon oxide film having an atomic layer,
The second silicon oxide film has a different photoelectron spectrum from the first silicon oxide film,
Has a peak in the range of 102.3 eV to 103.3 eV,
A structure of SiOx (2 <x),
The thickness of the first silicon oxide film is 18.0 nm or more, more preferably 30.0 nm or more, and the thickness of the second silicon oxide film is 0.6 nm or more.
A method of forming a composite silicon oxide film on a resin packaging container.
原子層堆積法を用い、樹脂製の包装容器に複合金属酸化膜を形成する方法であって、
反応容器内において、前記包装容器にアルミニウム、ガリウム、ゲルマニウム、チタン、ジルコニウム、及び亜鉛からなる群から選択される金属の酸化膜によって構成される基層を原子層で堆積する工程と、
前記基層上に、二酸化珪素を主成分とする第1酸化珪素膜を原子層で堆積する工程と
前記第1酸化珪素膜上に、前記第1酸化珪素膜より高密度な構造を有する第2酸化珪素膜を原子層で堆積する工程とかなり、
前記第2酸化珪素膜は、前記第1酸化珪素膜より高密度な構造を有し、かつ異なった光電子スペクトルを有する膜であり、
102.3eVから103.3eVの範囲にピークを有し、
SiOx(2<x)の構造であり、
前記基層の厚みは、2.0nm以上、より好ましくは5.0nm以上であり、
前記第1酸化珪素膜の厚みは18.0nm以上、より好ましくは30.0nm以上であり、前記第2酸化珪素膜の厚みは0.6nm以上である、
ことを特徴とする樹脂製の包装容器に複合金属酸化膜を形成する方法。
A method of forming a composite metal oxide film on a resin packaging container by using an atomic layer deposition method,
In the reaction vessel, aluminum, gallium, germanium, titanium, zirconium, and a step of depositing an atomic layer of a base layer constituted by an oxide film of a metal selected from the group consisting of zinc,
Depositing an atomic layer of a first silicon oxide film containing silicon dioxide as a main component on the base layer; and forming a second oxide film having a higher density structure on the first silicon oxide film than the first silicon oxide film. The process of depositing a silicon film in atomic layers and
The second silicon oxide film has a higher density structure than the first silicon oxide film, and has a different photoelectron spectrum,
Has a peak in the range of 102.3 eV to 103.3 eV,
A structure of SiOx (2 <x),
The thickness of the base layer is 2.0 nm or more, more preferably 5.0 nm or more,
The thickness of the first silicon oxide film is 18.0 nm or more, more preferably 30.0 nm or more, and the thickness of the second silicon oxide film is 0.6 nm or more.
A method for forming a composite metal oxide film on a packaging container made of resin, characterized by comprising:
JP2019071267A 2019-04-03 2019-04-03 Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same Active JP6660647B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019071267A JP6660647B1 (en) 2019-04-03 2019-04-03 Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same
EP20785394.6A EP3951007A4 (en) 2019-04-03 2020-03-18 Resin-made packaging container having composite silicon oxide film or composite metal oxide film, and method for manufacturing same
PCT/JP2020/011897 WO2020203279A1 (en) 2019-04-03 2020-03-18 Resin-made packaging container having composite silicon oxide film or composite metal oxide film, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071267A JP6660647B1 (en) 2019-04-03 2019-04-03 Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same

Publications (2)

Publication Number Publication Date
JP6660647B1 true JP6660647B1 (en) 2020-03-11
JP2020169356A JP2020169356A (en) 2020-10-15

Family

ID=69998040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071267A Active JP6660647B1 (en) 2019-04-03 2019-04-03 Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same

Country Status (3)

Country Link
EP (1) EP3951007A4 (en)
JP (1) JP6660647B1 (en)
WO (1) WO2020203279A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385605B2 (en) * 2003-01-29 2009-12-16 凸版印刷株式会社 Ceramic vapor deposition film
JP2007190844A (en) * 2006-01-20 2007-08-02 Konica Minolta Holdings Inc Resin substrate with gas barrier property and organic electroluminescent device
JP2007223098A (en) * 2006-02-22 2007-09-06 Toppan Printing Co Ltd Plastic container
JP2008056967A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Gas barrier property resin base material, and organic electroluminescence device
JP5251071B2 (en) * 2007-10-22 2013-07-31 凸版印刷株式会社 Barrier film and method for producing the same
JP5239441B2 (en) 2008-03-25 2013-07-17 凸版印刷株式会社 Gas barrier film
JP2009274251A (en) * 2008-05-13 2009-11-26 Toppan Printing Co Ltd Transparent barrier film and its manufacturing method
JP5797255B2 (en) * 2008-10-29 2015-10-21 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP5684288B2 (en) * 2010-12-28 2015-03-11 麒麟麦酒株式会社 Gas barrier plastic molded body and method for producing the same
JP5994221B2 (en) * 2011-08-05 2016-09-21 大日本印刷株式会社 Laminated body having deodorizing performance and packaging body using the same
JP2013253319A (en) * 2012-05-09 2013-12-19 Mitsubishi Plastics Inc Gas barrier film and method for producing the same
JP2014065198A (en) 2012-09-25 2014-04-17 Toppan Printing Co Ltd Gas barrier film
JP2015166170A (en) * 2014-03-04 2015-09-24 東洋製罐グループホールディングス株式会社 gas barrier laminate
JP5795427B1 (en) * 2014-12-26 2015-10-14 竹本容器株式会社 Manufacturing method of resin container with coating and resin container coating apparatus
JP2017014618A (en) * 2016-06-01 2017-01-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for treating flexible substrate
JP6834230B2 (en) * 2016-08-05 2021-02-24 大日本印刷株式会社 Barrier film

Also Published As

Publication number Publication date
WO2020203279A1 (en) 2020-10-08
JP2020169356A (en) 2020-10-15
EP3951007A1 (en) 2022-02-09
EP3951007A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
JP4050800B2 (en) Plastic container having barrier coating and method for producing the same
JP2007216504A (en) Gas-barrier laminated film and its manufacturing method
JP5109975B2 (en) Biodegradable plastic container with deposited film by plasma CVD
JP2010023238A (en) Gas barrier packaging material and its manufacturing method
JPH11348171A (en) Transparent barrier film and laminated body using same
JP2005088452A (en) Gas barrier film and laminate using it
WO2017115783A1 (en) Laminate and method for manufacturing same, gas barrier film and method for manufacturing same, and organic light-emitting element
TWI677438B (en) Laminated body and manufacturing method thereof, and gas barrier film and manufacturing method thereof
JP6660647B1 (en) Resin packaging container having composite silicon oxide film or composite metal oxide film, and method for producing the same
JP6834230B2 (en) Barrier film
JP5795427B1 (en) Manufacturing method of resin container with coating and resin container coating apparatus
JP4028069B2 (en) Transparent barrier film
JP2008264998A (en) Gas barrier laminated film, its manufacturing method, packaging laminated material using gas barrier laminated film and packaging bag
JP2006116737A (en) Gas barrier laminated film
JP2015166170A (en) gas barrier laminate
JP2000025148A (en) Laminated material
JPH11322984A (en) Transparent barrier film and laminated body using the same
JPH11105189A (en) Transparent barrier nylon film, and laminated body and container for package using it
JP6007488B2 (en) High moisture-proof film and manufacturing method thereof
JP5098601B2 (en) Gas barrier vapor deposition film, method for producing the same, and laminate material using the same
JP2007284690A (en) Method for producing transparent barrier polypropylene film
JP4139470B2 (en) Transparent barrier film and laminate using the same
JP6944664B2 (en) Barrier film
JP5961993B2 (en) High moisture-proof film and manufacturing method thereof
JPH11322982A (en) Transparent barrier film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190404

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200207

R150 Certificate of patent or registration of utility model

Ref document number: 6660647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250