JP6655675B2 - 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置 - Google Patents

非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置 Download PDF

Info

Publication number
JP6655675B2
JP6655675B2 JP2018140342A JP2018140342A JP6655675B2 JP 6655675 B2 JP6655675 B2 JP 6655675B2 JP 2018140342 A JP2018140342 A JP 2018140342A JP 2018140342 A JP2018140342 A JP 2018140342A JP 6655675 B2 JP6655675 B2 JP 6655675B2
Authority
JP
Japan
Prior art keywords
terminal
csi
pdcch
cell
scheduling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018140342A
Other languages
English (en)
Other versions
JP2018186564A (ja
Inventor
ソンウク キム
ソンウク キム
チュンクイ アン
チュンクイ アン
スンミン リ
スンミン リ
キチョン キム
キチョン キム
ソクチェル ヤン
ソクチェル ヤン
ハンピョル ソ
ハンピョル ソ
チョンヒョン パク
チョンヒョン パク
ヒャンソン ユ
ヒャンソン ユ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2018186564A publication Critical patent/JP2018186564A/ja
Application granted granted Critical
Publication of JP6655675B2 publication Critical patent/JP6655675B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • H04L41/064Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis involving time analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/826Involving periods of time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/74Admission control; Resource allocation measures in reaction to resource unavailability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Description

本発明は非免許帯域をサポート(支援)する無線接続システムに関するもので、部分サブフレーム(pSF:partial Subframe)を構成してスケジュールする方法及びこれをサポートする装置に関するものである。特に、本発明はpSFの構成時にチャネル状態情報を報告する方法に関するものである。
無線接続システムが音声やデータなどのような種々の通信サービスを提供するために広範囲に展開されている。一般に、無線接続システムは、使用可能なシステムリソース(帯域幅、送信電力など)を共有して多重ユーザとの通信をサポートできる多元接続(multiple access)システムである。多元接続システムの例には、CDMA(code division multiple access)システム、FDMA(frequency division multiple access)システム、TDMA(time division multiple access)システム、OFDMA(orthogonal frequency division multiple access)システム、SC−FDMA(single carrier frequency division multiple access)システムなどがある。
本発明の目的は、非免許帯域をサポートする無線接続システムにおいて非免許帯域で定義される部分サブフレーム(pSF)を構成する方法を提供することである。
本発明の他の目的は、pSFが構成される場合、これに対する多様なスケジューリング方法を提供することである。例えば、クロスキャリアスケジューリング、セルフキャリアスケジューリング及びハイブリッドスケジューリング方法を提供する。
本発明のさらに他の目的は、pSF運用のための基地局及び端末の動作方法を提供することである。
本発明のさらに他の目的は、クロスキャリアスケジューリングを適用するとき、スケジューリング方式を制限する方法を提供することである。
本発明のさらに他の目的は、非免許帯域セル(Unlicensed Cell)でEPDCCHを用いたセルフスケジューリングの際、EREGをインデックスする方法を提供することである。
本発明のさらに他の目的は、セルフキャリアスケジューリングを適用する場合、UセルにEPDCCHを構成して送信する方法及びこれをデコードする方法を提供することである。
本発明のさらに他の目的は、pSFに割り当てられるDM−RSパターンを提供することである。
本発明のさらに他の目的は、このような方法をサポートする装置を提供することである。
本発明で達成しようとする技術的目的は以上で言及した事項に制限されなく、言及しなかったさらに他の技術的課題は以下で説明する本発明の実施形態から本発明が属する技術分野で通常の知識を有する者によって考慮されることができる。
本発明は非免許帯域をサポートする無線接続システムに関するもので、部分サブフレーム(pSF)を構成してスケジュールする方法及びこれをサポートする装置に関するものである。特に、本発明はpSF構成時にチャネル状態情報を報告する方法に関するものである。
本発明の一態様として、非免許帯域をサポートする無線接続システムにおいて端末がチャネル状態情報(CSI)を報告する方法は、非免許帯域をサポートする非免許帯域セル(Uセル)に設定された下りリンクバーストを所定のサブフレームの分だけ受信する段階と、下りリンクバーストに対するCSIを測定する段階と、測定したCSIを基地局に報告する段階と、を含むことができる。この際、端末は、下りリンクバーストに部分サブフレーム(pSF)が含まれる場合、pSFをCSI測定のための有効な下りリンクサブフレームと見なさず、pSFは一般サブフレームより小さい大きさに構成されることができる。
本発明の他の態様として、非免許帯域をサポートする無線接続システムにおいてチャネル状態情報(CSI)を報告する端末は、受信機と、送信機と、CSI報告をサポートするために構成されたプロセッサと、を含むことができる。この際、プロセッサは、受信機を制御して非免許帯域をサポートする非免許帯域セル(Uセル)に設定された下りリンクバーストの所定数のサブフレームを受信し、下りリンクバーストに対するCSIを測定し、送信機を制御して測定したCSIを基地局に報告するように構成され、プロセッサは、下りリンクバーストに部分サブフレーム(pSF)が含まれる場合、pSFをCSI測定のための有効な下りリンクサブフレームと見なさず、pSFは一般サブフレームより小さい大きさに構成されることができる。
pSFに対してはセルフキャリアスケジューリング方式でスケジュールされ、下りリンクバーストに含まれた一般サブフレームはクロスキャリアスケジューリング方式でスケジュールされることができる。
CSI報告は基地局が免許帯域に構成されるプライマリーセル(Pセル)を介して要請した場合に遂行され、CSIはPセルを介して報告されることができる。
CSI報告は基地局がUセルを介して要請した場合に遂行され、CSIはUセルを介して報告されることができる。
CSI報告は免許帯域に構成されるPセルを介して周期的に遂行されることができる。
仮に、pSFが有効なサブフレームと見なされない場合、pSFにはCSIを測定するための参照リソースが割り当てられず、端末は、CSI測定時、下りリンク(DL)バーストに含まれた完全なサブフレームに対してのみCSIを測定するように構成されることができる。
上述した本発明の態様は、本発明の好適な実施形態の一部に過ぎず、本願発明の技術的特徴が反映された様々な実施形態が、当該技術の分野における通常の知識を有する者にとって、以下に詳述する本発明の詳細な説明に基づいて導出され、理解されるであろう。
本発明の実施例によると、次のような効果がある。
一つ目、クロスキャリアスケジューリング、セルフキャリアスケジューリング及びハイブリッドスケジューリングなどの多様なスケジューリング方式を提供することにより、LAA端末に適応的に無線リソースをスケジュールすることができる。
二つ目、pSF運用のための基地局及び端末の動作方法を提供することにより、LAAのUセル上で発生し得るリソース浪費を防止することができる。
三つ目、クロスキャリアスケジューリングを適用するとき、pSFで端末に適用するスケジューリング方式を制限することによってPDCCHなどの制御リソースの浪費を防止することができる。
四つめ、セルフキャリアスケジューリングを適用する場合、UセルにEPDCCHを構成して送信する方法及びこれをデコードする方法を提供することができる。pSFの場合、正常なSFではないので、既存のリソース割当て方式がそのまま使われにくい。特に、EPDCCHを送信するためには既存の方式を補わなければならない。したがって、本発明では、pSFが構成されるリソース上のリソース要素に対して新たにEREGインデックシングを遂行し、EREG個数を所定値に固定し、結合レベルを上げることにより、EPDCCHを効率的で安定的にマッピングすることができる。
五つ目、pSFに割り当てられるDM−RSパターンを提供することにより、端末がpSFでもチャネル推定を行ってデータデコーディング性能を高めることができる。
本発明の実施形態から得られる効果は、以上で言及した効果に制限されず、言及していない他の効果は、以下の本発明の実施形態に関する記載から、本発明の属する技術の分野における通常の知識を有する者にとって明確に導出され理解されるであろう。すなわち、本発明を実施することによる意図しなかった効果も、本発明の実施形態から、当該技術の分野における通常の知識を有する者によって導出可能である。
本発明に関する理解を助けるために詳細な説明の一部として含まれる添付の図面は、本発明に関する様々な実施形態を提供する。また、添付の図面は、詳細な説明と共に本発明の実施形態を説明するために用いられる。
物理チャネル及びこれらを用いた信号送信方法を説明するための図である。 無線フレームの構造の一例を示す図である。 下りリンクスロットに対するリソースグリッド(resource grid)を例示する図である。 上りリンクサブフレームの構造の一例を示す図である。 下りリンクサブフレームの構造の一例を示す図である。 コンポーネントキャリア(CC)及びLTE−Aシステムで使用されるキャリアアグリゲーションの一例を示す図である。 クロスキャリアスケジューリングによるLTE−Aシステムのサブフレームの構造を示す図である。 クロスキャリアスケジューリングによるサービングセル構成の一例を示す図である。 CA環境で動作するCoMPシステムの概念図である。 本発明の実施例で使用可能なセル特定参照信号(CRS:Cell specific Reference Signal)が割り当てられたサブフレームの一例を示す図である。 本発明の実施例で使用可能なCSI−RSがアンテナポートの個数によって割り当てられたサブフレームの一例を示す図である。 LTE/LTE−Aシステムで使われるレガシーPDCCH(Legacy PDCCH)、PDSCH及びE−PDCCHが多重化される一例を示す図である。 LTE−UシステムでサポートするCA環境の一例を示す図である。 TxOP区間を設定する方法の一つを示す図である。 部分サブフレームの一例を説明するための図である。 非免許帯域でWiFi APが無線チャネルを占有する場合、基地局がプレスケジューリングを遂行するための条件の一つを説明するための図である。 pSFを説明するための図の一つである。 プレスケジューリング法の一つを説明するための図である。 セル特定RSが配置される形態の一つを説明するための図である。 フローティングサブフレームで下りリンク物理チャネルを送信する方法を説明するための図である。 フローティングTTIが構成されるとき、開始位置を制限する方法を説明するための図である。 DLバーストの最後のフローティングTTIの長さを設定する方法の一つを説明するための図である。 PStartでDM−RS及びEPDCCHを構成する方法を説明するための図である。 DM−RSパターン別にEPDCCHを構成する方法を説明するための図である。 クロスキャリアスケジューリングが構成された場合、端末がデコードするサブフレームを制限する方法を説明するための図である。 4.2節で説明したセルフスケジューリング方式を端末と基地局間のシグナリングの観点で説明するための図である。 pSFが構成される場合、CSIを測定及び報告する方法を説明するための図である。 ここで説明する装置は図1〜図27で説明した方法を実装することができる手段である。
本発明は非免許帯域をサポートする無線接続システムに関するもので、部分サブフレーム(partial Subframe)を構成してスケジュールする方法及びこれをサポートする装置を提案する。
以下の実施例は、本発明の構成要素と特徴を所定の形態で結合したものである。各構成要素又は特徴は、別の明示的な言及がない限り、選択的なものとして考慮することができる。各構成要素又は特徴は、他の構成要素や特徴と結合しない形態で実施することができる。また、一部の構成要素及び/又は特徴を結合して本発明の実施例を構成することもできる。本発明の実施例で説明する動作の順序は変更してもよい。ある実施例の一部の構成や特徴は他の実施例に含まれてもよく、又は他の実施例の対応する構成又は特徴に取り替えられてもよい。
図面に関する説明において、本発明の要旨を曖昧にさせうる手順又は段階などは記述を省略し、当業者のレベルで理解できるような手順又は段階も記述を省略した。
明細書全般にわたり、ある部分がある構成要素を“含む(comprising又はincluding)”というとき、これは特に反対する記載がない限り他の構成要素を排除するものではなくて他の構成要素をさらに含むことができることを意味する。また、明細書に記載した“…部”、“…機”、“モジュール”などの用語は少なくとも一つの機能又は動作を処理する単位を意味し、これはハードウェア又はソフトウェアあるいはハードウェア及びソフトウェアの結合で実装されることができる。また、“一(a又はan)”、“一つ(one)”、“その(the)”及び類似関連語は本発明を記述する文脈において(特に、以下の請求項の文脈で)本明細書に他に指示されるか文脈によって明らかに反駁されることがない限り、単数及び複数のいずれも含む意味として使われることができる。
本明細書で、本発明の実施例は、基地局と移動局との間のデータ送受信関係を中心に説明した。ここで、基地局は移動局と直接通信を行うネットワークの終端ノード(terminal node)としての意味を有する。本文書で基地局によって行われるとした特定動作は、場合によっては、基地局の上位ノード(upper node)によって行われてもよい。
すなわち、基地局を含む複数のネットワークノード(network nodes)からなるネットワークで移動局との通信のために行われる様々な動作は、基地局又は基地局以外の他のネットワークノードによって行われてもよい。ここで、「基地局」は、固定局(fixed station)、Node B、eNode B(eNB)、発展した基地局(ABS:Advanced Base Station)又はアクセスポイント(access point)などの用語に代えてもよい。
また、本発明の実施例でいう「端末(Terminal)」は、ユーザ機器(UE:User Equipment)、移動局(MS:Mobile Station)、加入者端末(SS:Subscriber Station)、移動加入者端末(MSS:Mobile Subscriber Station)、移動端末(Mobile Terminal)、又は発展した移動端末(AMS:Advanced Mobile Station)などの用語に代えてもよい。
また、送信端は、データサービス又は音声サービスを提供する固定及び/又は移動ノードを意味し、受信端は、データサービス又は音声サービスを受信する固定及び/又は移動ノードを意味する。そのため、上りリンクでは、移動局を送信端とし、基地局を受信端とすることができる。同様に、下りリンクでは、移動局を受信端とし、基地局を送信端とすることができる。
本発明の実施例は、無線接続システムであるIEEE 802.xxシステム、3GPP(3rd Generation Partnership Project)システム、3GPP LTEシステム及び3GPP2システムのうち少なくとも一つに開示された標準文書によって裏付けることができ、特に、本発明の実施例は、3GPP TS 36.211、3GPP TS 36.212、3GPP TS 36.213、3GPP TS 36.321及び3GPP TS 36.331の文書によって裏付けることができる。すなわち、本発明の実施例において説明していない自明な段階又は部分は、上記の文書を参照して説明することができる。また、本文書で開示している用語はいずれも上記の標準文書によって説明することができる。
以下、本発明に係る好適な実施の形態を、添付の図面を参照して詳しく説明する。添付の図面と共に以下に開示される詳細な説明は、本発明の例示的な実施の形態を説明するためのもので、本発明が実施されうる唯一の実施の形態を示すためのものではない。
また、本発明の実施例で使われる特定用語は、本発明の理解を助けるために提供されたもので、このような特定用語の使用は、本発明の技術的思想を逸脱しない範囲で他の形態に変更してもよい。
例えば、伝送機会区間(TxOP:Transmission Opportunity Period)という用語は伝送区間又はRRP(Reserved Resource Period)という用語と等しい意味として使われることができる。また、LBT(Listen Before Talk)過程はチャネル状態がアイドル(遊休)であるかを判断するためのキャリアセンシング過程と同一の目的で遂行することができる。
以下では本発明の実施形態を使える無線接続システムの一例として3GPP LTE/LTE−Aシステムについて説明する。
以下の技術は、CDMA(code division multiple access)、FDMA(frequency division multiple access)、TDMA(time division multiple access)、OFDMA(orthogonal frequency division multiple access)、SC−FDMA(single carrier frequency division multiple access)などのような様々な無線接続システムに適用することができる。
CDMAは、UTRA(Universal Terrestrial Radio Access)やCDMA2000のような無線技術(radio technology)によって実現することができる。TDMAは、GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)のような無線技術によって実現することができる。OFDMAは、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802−20、E−UTRA(Evolved UTRA)などのような無線技術によって実現することができる。
UTRAは、UMTS(Universal Mobile Telecommunications System)の一部である。3GPP LTE(Long Term Evolution)は、E−UTRAを用いるE−UMTS(Evolved UMTS)の一部であって、下りリンクでOFDMAを採用し、上りリンクでSC−FDMAを採用する。LTE−A(Advanced)システムは、3GPP LTEシステムの改良されたシステムである。本発明の技術的特徴に関する説明を明確にするために、本発明の実施例を3GPP LTE/LTE−Aシステムを中心に説明するが、IEEE 802.16e/mシステムなどに適用してもよい。
1. 3GPP LTE/LTE_Aシステム
無線接続システムにおいて、端末は下りリンク(DL:Downlink)を介して基地局から情報を受信し、上りリンク(UL:Uplink)を介して基地局に情報を送信する。基地局と端末が送受信する情報は、一般データ情報及び様々な制御情報を含み、これらが送受信する情報の種類/用途によって様々な物理チャネルが存在する。
1.1 システム一般
図1は、本発明の実施例で使用できる物理チャネル及びこれらを用いた信号送信方法を説明するための図である。
電源が消えた状態で再び電源がついたり、新しくセルに進入したりした端末は、S11段階で基地局と同期を取るなどの初期セル探索(Initial cell search)作業を行う。そのために、端末は基地局から1次同期チャネル(P−SCH:Primary Synchronization Channel)及び2次同期チャネル(S−SCH:Secondary Synchronization Channel)を受信して基地局と同期を取り、セルIDなどの情報を取得する。
その後、端末は、基地局から物理放送チャネル(PBCH:Physical Broadcast Channel)信号を受信してセル内放送情報を取得することができる。
一方、端末は、初期セル探索段階で下りリンク参照信号(DL RS:Downlink Reference Signal)を受信して下りリンクチャネル状態を確認することができる。
初期セル探索を終えた端末は、S12段階で、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)、及び物理下りリンク制御チャネル情報に基づく物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)を受信し、より具体的なシステム情報を取得することができる。
その後、端末は、基地局への接続を完了するために、段階S13乃至段階S16のようなランダムアクセス過程(Random Access Procedure)を行うことができる。そのために、端末は、物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)を介してプリアンブル(preamble)を送信し(S13)、物理下りリンク制御チャネル及びこれに対応する物理下りリンク共有チャネルを介してプリアンブルに対する応答メッセージを受信することができる(S14)。競合ベースのランダムアクセスでは、端末は、さらなる物理ランダムアクセスチャネル信号の送信(S15)、及び物理下りリンク制御チャネル信号及びこれに対応する物理下りリンク共有チャネル信号の受信(S16)のような衝突解決手順(Contention Resolution Procedure)を行うことができる。
上述したような手順を行った端末は、その後、一般的な上りリンク/下りリンク信号送信手順として、物理下りリンク制御チャネル信号及び/又は物理下りリンク共有チャネル信号の受信(S17)、及び物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)信号及び/又は物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)信号の送信(S18)を行うことができる。
端末が基地局に送信する制御情報を総称して、上りリンク制御情報(UCI:Uplink Control Information)という。UCIは、HARQ−ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative−ACK)、SR(Scheduling Request)、CQI(Channel Quality Indication)、PMI(Precoding Matrix Indication)、RI(Rank Indication)情報などを含む。
LTEシステムにおいて、UCIは、一般的にPUCCHを介して周期的に送信するが、制御情報とトラフィックデータが同時に送信されるべき場合にはPUSCHを介して送信してもよい。また、ネットワークの要求/指示に応じてPUSCHを介してUCIを非周期的に送信してもよい。
図2には、本発明の実施例で用いられる無線フレームの構造を示す。
図2(a)は、タイプ1フレーム構造(frame structure type 1)を示す。タイプ1フレーム構造は、全二重(full duplex)FDD(Frequency Division Duplex)システムと半二重(half duplex)FDDシステムの両方に適用することができる。
1無線フレーム(radio frame)は、
の長さを有し、
の均等な長さを有し、0から19までのインデックスが与えられた20個のスロットで構成される。1サブフレームは、2個の連続したスロットと定義され、i番目のサブフレームは、2i及び2i+1に該当するスロットで構成される。すなわち、無線フレーム(radio frame)は、10個のサブフレーム(subframe)で構成される。1サブフレームを送信するのにかかる時間をTTI(transmission time interval)という。ここで、Tsはサンプリング時間を表し、Ts=1/(15kHz×2048)=3.2552×10−8(約33ns)と表示される。スロットは、時間領域で複数のOFDMシンボル又はSC−FDMAシンボルを含み、周波数領域で複数のリソースブロック(Resource Block)を含む。
1スロットは、時間領域で複数のOFDM(orthogonal frequency division multiplexing)シンボルを含む。3GPP LTEは、下りリンクでOFDMAを使うので、OFDMシンボルは1シンボル区間(symbol period)を表現するためのものである。OFDMシンボルは、1つのSC−FDMAシンボル又はシンボル区間ということができる。リソースブロック(resource block)は、リソース割当て単位であって、1スロットで複数の連続した副搬送波(subcarrier)を含む。
全二重FDDシステムでは、各10ms区間で10個のサブフレームを下りリンク送信と上りリンク送信のために同時に利用することができる。このとき、上りリンク送信と下りリンク送信は周波数領域で区別される。一方、半二重FDDシステムでは、端末は送信と受信を同時に行うことができない。
上述した無線フレームの構造は一つの例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、又はスロットに含まれるOFDMシンボルの数は様々に変更されてもよい。
図2(b)には、タイプ2フレーム構造(frame structure type 2)を示す。タイプ2フレーム構造はTDDシステムに適用される。1無線フレームは、
の長さを有し、
の長さを有する2個のハーフフレーム(half−frame)で構成される。各ハーフフレームは、
の長さを有する5個のサブフレームで構成される。i番目のサブフレームは、2i及び2i+1に該当する各
の長さを有する2個のスロットで構成される。ここで、Tsは、サンプリング時間を表し、Ts=1/(15kHz×2048)=3.2552×10−8(約33ns)で表示される。
タイプ2フレームは、DwPTS(Downlink Pilot Time Slot)、保護区間(GP:Guard Period)、UpPTS(Uplink Pilot Time Slot)の3つのフィールドで構成される特別サブフレームを含む。ここで、DwPTSは、端末での初期セル探索、同期化又はチャネル推定に用いられる。UpPTSは、基地局でのチャネル推定と端末の上り送信同期を取るために用いられる。保護区間は、上りリンクと下りリンクとの間において下りリンク信号の多重経路遅延によって上りリンクで生じる干渉を除去するための区間である。
下記の表1に、特別フレームの構成(DwPTS/GP/UpPTSの長さ)を示す。
図3は、本発明の実施例で使用できる下りリンクスロットのリソースグリッド(resource grid)を例示する図である。
図3を参照すると、1つの下りリンクスロットは、時間領域で複数のOFDMシンボルを含む。ここで、1つの下りリンクスロットは、7個のOFDMシンボルを含み、1つのリソースブロックは周波数領域で12個の副搬送波を含むとするが、これに限定されるものではない。
リソースグリッド上で各要素(element)をリソース要素(resource element)とし、1つのリソースブロックは12×7個のリソース要素を含む。下りリンクスロットに含まれるリソースブロックの数NDLは、下りリンク送信帯域幅(bandwidth)に依存する。上りリンクスロットの構造は、下りリンクスロットの構造と同一であってもよい。
図4は、本発明の実施例で使用できる上りリンクサブフレームの構造を示す。
図4を参照すると、上りリンクサブフレームは、周波数領域で制御領域とデータ領域とに区別される。制御領域には、上りリンク制御情報を運ぶPUCCHが割り当てられる。データ領域には、ユーザデータを運ぶPUSCHが割り当てられる。単一搬送波特性を維持するために、一つの端末はPUCCHとPUSCHを同時に送信しない。一つの端末に対するPUCCHにはサブフレーム内にRB対が割り当てられる。RB対に属するRBは、2個のスロットのそれぞれで異なる副搬送波を占める。これを、PUCCHに割り当てられたRB対はスロットの境界(slot boundary)で周波数ホッピング(跳躍)(frequency hopping)するという。
図5には、本発明の実施例で使用できる下りリンクサブフレームの構造を示す。
図5を参照すると、サブフレームにおける第一のスロットでOFDMシンボルインデックス0から最大3個のOFDMシンボルが、制御チャネルが割り当てられる制御領域(control region)であり、残りのOFDMシンボルが、PDSCHが割り当てられるデータ領域(data region)である。3GPP LTEで用いられる下りリンク制御チャネルの例には、PCFICH(Physical Control Format Indicator Channel)、PDCCH、PHICH(Physical Hybrid−ARQ Indicator Channel)などがある。
PCFICHは、サブフレームにおける最初のOFDMシンボルで送信され、サブフレーム内に制御チャネルの送信のために使われるOFDMシンボルの数(すなわち、制御領域のサイズ)に関する情報を運ぶ。PHICHは、上りリンクに対する応答チャネルであって、HARQ(Hybrid Automatic Repeat Request)に対するACK(Acknowledgement)/NACK(Negative−Acknowledgement)信号を運ぶ。PDCCHを介して送信される制御情報を下りリンク制御情報(DCI:downlink control information)という。下りリンク制御情報は、上りリンクリソース割当て情報、下りリンクリソース割当て情報、又は任意の端末グループに対する上りリンク送信(Tx)電力制御命令を含む。
1.2 PDCCH(Physical Downlink Control Channel)
1.2.1 PDCCH一般
PDCCHは、DL−SCH(Downlink Shared Channel)のリソース割当て及び送信フォーマット(すなわち、下りリンクグラント(DL−Grant))、UL−SCH(Uplink Shared Channel)のリソース割当て情報(すなわち、上りリンクグラント(UL−Grant))、PCH(Paging Channel)におけるページング(paging)情報、DL−SCHにおけるシステム情報、PDSCHで送信されるランダムアクセス応答(random access response)のような上位レイヤ(upper−layer)制御メッセージに対するリソース割当て、任意の端末グループ内の個別端末に対する送信電力制御命令の集合、VoIP(Voice over IP)活性化の有無に関する情報などを運ぶことができる。
複数のPDCCHが制御領域内で送信されてもよく、端末は複数のPDCCHをモニタすることができる。PDCCHは、1つ又は複数の連続したCCE(control channel elements)の集合(aggregation)で構成される。1つ又は複数の連続したCCEの集合で構成されたPDCCHは、サブブロックインターリービング(subblock interleaving)を経た後、制御領域を通して送信することができる。CCEは、無線チャネルの状態による符号化率をPDCCHに提供するために使われる論理的割当て単位である。CCEは、複数のリソース要素グループ(REG:resource element group)に対応する。CCEの数とCCEによって提供される符号化率との関係によってPDCCHのフォーマット及び可能なPDCCHのビット数が決定される。
1.2.2 PDCCH構造
複数の端末に対する多重化された複数のPDCCHが制御領域内で送信されてもよい。PDCCHは1つ又は2つ以上の連続したCCEの集合(CCE aggregation)で構成される。CCEは、4個のリソース要素で構成されたREGの9個のセットに対応する単位のことを指す。各REGには4個のQPSK(Quadrature Phase Shift Keying)シンボルがマップされる。参照信号(RS:Reference Signal)によって占有されたリソース要素はREGに含まれない。すなわち、OFDMシンボル内でのREGの総数は、セル特定参照信号が存在するか否かによって異なってくることがある。4個のリソース要素を1つのグループにマップするREGの概念は、他の下りリンク制御チャネル(例えば、PCFICH又はPHICH)にも適用することができる。PCFICH又はPHICHに割り当てられないREGを
とすれば、システムで利用可能なCCEの個数は
であり、各CCEは0から
までのインデックスを有する。
端末のデコーティングプロセスを単純化するために、n個のCCEを含むPDCCHフォーマットは、nの倍数と同じインデックスを有するCCEから始まってもよい。すなわち、CCEインデックスがiである場合、
を満たすCCEから始まってもよい。
基地局は1つのPDCCH信号を構成するために{1,2,4,8}個のCCEを使うことができ、ここで、{1,2,4,8}をCCE集合レベル(aggregation level)と呼ぶ。特定PDCCHの送信のために使われるCCEの個数はチャネル状態によって基地局で決定される。例えば、良好な下りリンクチャネル状態(基地局に近接している場合)を有する端末のためのPDCCHは、1つのCCEだけで十分でありうる。一方、よくないチャネル状態(セル境界にある場合)を有する端末の場合は、8個のCCEが十分な堅牢さ(robustness)のために要求されることがある。しかも、PDCCHの電力レベルも、チャネル状態にマッチして調節されてもよい。
下記の表2にPDCCHフォーマットを示す。CCE集合レベルによって、表2のように4つのPDCCHフォーマットがサポートされる。
端末ごとにCCE集合レベルが異なる理由は、PDCCHに載せられる制御情報のフォーマット又はMCS(Modulation and Coding Scheme)レベルが異なるためである。MCSレベルは、データコーディングに用いられるコードレート(code rate)と変調次数(変調序列、modulation order)を意味する。適応的なMCSレベルはリンク適応(link adaptation)のために用いられる。一般に、制御情報を送信する制御チャネルでは3〜4個程度のMCSレベルを考慮することができる。
制御情報のフォーマットを説明すると、PDCCHを介して送信される制御情報を下りリンク制御情報(DCI)という。DCIフォーマットによってPDCCHペイロード(payload)に載せられる情報の構成が異なることがある。PDCCHペイロードは、情報ビット(information bit)を意味する。下記の表3は、DCIフォーマットによるDCIを示すものである。
表3を参照すると、DCIフォーマットには、PUSCHスケジューリングのためのフォーマット0、1つのPDSCHコードワードのスケジューリングのためのフォーマット1、1つのPDSCHコードワードの簡単な(compact)スケジューリングのためのフォーマット1A、DL−SCHの非常に簡単なスケジューリングのためのフォーマット1C、閉ループ(Closed−loop)空間多重化(spatial multiplexing)モードでのPDSCHスケジューリングのためのフォーマット2、開ループ(Open−loop)空間多重化モードでのPDSCHスケジューリングのためのフォーマット2A、上りリンクチャネルのためのTPC(Transmission Power Control)命令の送信のためのフォーマット3及び3Aがある。DCIフォーマット1Aは、端末にいずれの送信モードが設定されてもPDSCHスケジューリングのために用いることができる。
DCIフォーマットによってPDCCHペイロード長が変わることがある。また、PDCCHペイロードの種類とそれによる長さは、簡単な(compact)スケジューリングであるか否か、又は端末に設定された送信モード(transmission mode)などによって異なってもよい。
送信モードは、端末がPDSCHを介した下りリンクデータを受信するように設定(configuration)することができる。例えば、PDSCHを介した下りリンクデータには、端末にスケジュールされたデータ(scheduled data)、ページング、ランダムアクセス応答、又はBCCHを介したブロードキャスト情報などがある。PDSCHを介した下りリンクデータは、PDCCHを介してシグナルされるDCIフォーマットと関係がある。送信モードは、上位層シグナリング(例えば、RRC(Radio Resource Control)シグナリング)によって端末に半静的に(semi−statically)設定することができる。送信モードは、シングルアンテナ送信(Single antenna transmission)又はマルチアンテナ(Multi−antenna)送信に区別できる。
端末は、上位層シグナリングによって半静的(semi−static)に送信モードが設定される。例えば、マルチアンテナ送信には、送信ダイバーシティ(Transmit diversity)、開ループ(Open−loop)又は閉ループ(Closed−loop)空間多重化(Spatial multiplexing)、MU−MIMO(Multi−user−Multiple Input Multiple Output)、及びビーム形成(Beamforming)などがある。送信ダイバーシティは、多重送信アンテナで同一のデータを送信して送信信頼度を高める技術である。空間多重化は、多重送信アンテナで互いに異なるデータを同時に送信し、システムの帯域幅を増加させることなく高速のデータを送信できる技術である。ビーム形成は、多重アンテナでチャネル状態による加重値を与えて信号のSINR(Signal to Interference plus Noise Ratio)を増加させる技術である。
DCIフォーマットは、端末に設定された送信モードに依存する。端末が自身に設定された送信モードによってモニタする参照(Reference)DCIフォーマットがある。次の通り、端末に設定される送信モードは10個の送信モードを有することができる。
(1)送信モード1:単一アンテナポート;ポート0
(2)送信モード2:送信ダイバーシティ(Transmit Diversity)
(3)送信モード3:開ループ空間多重化(Open−loop Spatial Multiplexing)
(4)送信モード4:閉ループ空間多重化(Closed−loop Spatial Multiplexing)
(5)送信モード5:多重ユーザMIMO
(6)送信モード6:閉ループランク=1プリコーディング
(7)送信モード7:コードブックに基づかない、単一レイヤ送信をサポートするプリコーディング
(8)送信モード8:コードブックに基づかない、2個までのレイヤをサポートするプリコーディング
(9)送信モード9:コードブックに基づかない、8個までのレイヤをサポートするプリコーディング
(10)送信モード10:コードブックに基づかない、CoMPのために用いられる、8個までのレイヤをサポートするプリコーディング
1.2.3 PDCCH送信
基地局は、端末に送信しようとするDCIによってPDCCHフォーマットを決定し、制御情報にCRC(Cyclic Redundancy Check)を付加する。CRCにはPDCCHの所有者(owner)や用途によって固有の識別子(例えば、RNTI(Radio Network Temporary Identifier))をマスクする。特定の端末のためのPDCCHであれば、端末固有の識別子(例えば、C−RNTI(Cell−RNTI))をCRCにマスクすることができる。若しくは、ページングメッセージのためのPDCCHであれば、ページング指示識別子(例えば、P−RNTI(Paging−RNTI))をCRCにマスクすることができる。システム情報、より具体的にシステム情報ブロック(system information block、SIB)のためのPDCCHであれば、システム情報識別子(例えば、SI−RNTI(system information RNTI))をCRCにマスクすることができる。端末のランダムアクセスプリアンブルの送信に対する応答であるランダムアクセス応答を示すために、RA−RNTI(random access−RNTI)をCRCにマスクすることができる。
続いて、基地局は、CRCの付加された制御情報にチャネルコーディングを行って符号化されたデータ(coded data)を生成する。このとき、MCSレベルによるコードレートでチャネルコーディングを行うことができる。基地局は、PDCCHフォーマットに割り当てられたCCE集合レベルによる送信率マッチング(rate matching)を行い、符号化されたデータを変調して変調シンボルを生成する。この時、MCSレベルによる変調次数を用いることができる。1つのPDCCHを構成する変調シンボルは、CCE集合レベルが1、2、4、8のいずれか一つであってもよい。その後、基地局は、変調シンボルを物理的なリソース要素にマップ(CCE to RE mapping)する。
1.2.4 ブラインドデコーディング(BS:Blind Decoding)
一つのサブフレーム内で複数のPDCCHが送信されてもよい。すなわち、一つのサブフレームの制御領域は、インデックス0〜
を有する複数のCCEで構成される。ここで、
は、k番目のサブフレームの制御領域内におけるCCEの総数を意味する。端末は、サブフレームごとに複数のPDCCHをモニタする。ここで、モニタリングとは、端末がモニタされるPDCCHフォーマットによってPDCCHのそれぞれのデコーディングを試みることをいう。
基地局は、端末にサブフレーム内に割り当てられた制御領域で該当PDCCHがどこに位置するのかに関する情報を提供しない。端末は基地局から送信された制御チャネルを受信するために自身のPDCCHがどの位置でどのCCE集合レベルやDCIフォーマットで送信されるのかを把握できず、端末は、サブフレーム内でPDCCH候補(candidate)の集合をモニタして自身のPDCCHを探す。これをブラインドデコーディング(BD)という。ブラインドデコーディングとは、端末がCRC部分に自身の端末識別子(UE ID)をデマスク(De−Masking)した後、CRC誤りを検討し、当該PDCCHが自身の制御チャネルであるか否かを確認する方法をいう。
活性モード(active mode)で、端末は自身に送信されるデータを受信するために各サブフレームのPDCCHをモニタする。DRXモードで、端末は各DRX周期のモニタリング区間で起床(wake up)し、モニタリング区間に該当するサブフレームでPDCCHをモニタする。PDCCHのモニタリングが行われるサブフレームをnon−DRXサブフレームという。
端末は、自身に送信されるPDCCHを受信するためには、non−DRXサブフレームの制御領域に存在する全てのCCEに対してブラインドデコーディングを行わなければならない。端末は、いずれのPDCCHフォーマットが送信されるのかを把握できないことから、各non−DRXサブフレーム内でPDCCHのブラインドデコーディングに成功するまで、可能なCCE集団レベルでPDCCHを全てデコードしなければならない。端末は、自身のためのPDCCHがいくつのCCEを用いるのかを把握できず、PDCCHのブラインドデコーディングに成功するまで、可能な全てのCCE集団レベルで検出を試みなければならない。
LTEシステムでは端末のブラインドデコーディングのためにサーチスペース(SS:Search Space)概念を定義する。サーチスペースは、端末がモニタするためのPDCCH候補セットを意味し、各PDCCHフォーマットによって異なるサイズを有することができる。サーチスペースは、共用サーチスペース(CSS:Common Search Space)及び端末特定サーチスペース(USS:UE−specific/Dedicated Search Space)を含むことができる。
共用サーチスペースの場合、全ての端末が共用サーチスペースのサイズを認知できるが、端末特定サーチスペースは、端末ごとに個別に設定することができる。したがって、端末は、PDCCHをデコードするために、端末特定サーチスペース及び共用サーチスペースを全てモニタしなければならなく、したがって、1サブフレームで最大44回のブラインドデコーディング(BD)を行うことになる。ここには、異なるCRC値(例えば、C−RNTI、P−RNTI、SI−RNTI、RA−RNTI)によって行うブラインドデコーディングは含まれない。
サーチスペースの制約によって、基地局が、与えられたサブフレーム内でPDCCHを送信しようとする端末の全てにPDCCHを送信するためのCCEリソースが確保されない場合が発生しうる。なぜなら、CCE位置が割り当てられて残ったリソースは、特定端末のサーチスペース内に含まれないことがあるためである。次のサブフレームでも続き得るこのような障壁を最小化するために、端末特定ホッピング(hopping)シーケンスを端末特定サーチスペースの始点に適用することができる。
表4は、共用サーチスペースと端末特定サーチスペースのサイズを示す。
ブラインドデコーディングを試みる回数による端末の負荷を軽減するために、端末は、定義された全てのDCIフォーマットによるサーチを同時に行うわけではない。具体的に、端末は、端末特定サーチスペースで常にDCIフォーマット0及び1Aに対するサーチを行う。この時、DCIフォーマット0と1Aは同じサイズを有するが、端末は、PDCCHに含まれたDCIフォーマット0と1Aを区別するために用いられるフラグ(flag for format 0/format 1A differentiation)を用いてDCIフォーマットを区別することができる。また、端末にDCIフォーマット0とDCIフォーマット1Aに加えて他のDCIフォーマットが要求されてもよいが、その一例としてDCIフォーマット1、1B、2がある。
共用サーチスペースで、端末はDCIフォーマット1Aと1Cをサーチすることができる。また、端末はDCIフォーマット3又は3Aをサーチするように設定されてもよく、DCIフォーマット3と3Aは、DCIフォーマット0と1Aと同じサイズを有するが、端末は、端末特定識別子以外の識別子によってスクランブルされたCRCを用いてDCIフォーマットを区別することができる。
サーチスペース
は、集合レベル
によるPDCCH候補セットを意味する。サーチスペースのPDCCH候補セット
によるCCEは、次式1によって決定することができる。
[式1]
ここで、
は、サーチスペースでモニタするためのCCE集合レベルLによるPDCCH候補の個数を表し、
である。
は、PDCCHにおいて各PDCCH候補で個別CCEを指定するインデックスであり、
である。
であり、
は、無線フレーム内でのスロットインデックスを表す。
上述したように、端末は、PDCCHをデコードするために端末特定サーチスペース及び共用サーチスペースの両方をモニタする。ここで、共用サーチスペース(CSS)は、{4,8}の集合レベルを有するPDCCHをサポートし、端末特定サーチスペース(USS)は、{1,2,4,8}の集合レベルを有するPDCCHをサポートする。表5は、端末によってモニタされるPDCCH候補を表す。
式1を参照すると、共用サーチスペースの場合、2個の集合レベル、L=4及びL=8に対して
は0に設定される。一方、端末特定サーチスペースの場合、集合レベルLに対して
は式2のように定義される。
[式2]
ここで、
であり、
はRNTI値を表す。また、
であり、
である。
2.キャリアアグリゲーション(CA:Carrier Aggregation、キャリア併合)環境
2.1 CA一般
3GPP LTE(3rd Generation Partnership Project Long Term Evolution;Rel−8又はRel−9)システム(以下、LTEシステム)は、単一コンポーネントキャリア(CC:Component Carrier)を複数の帯域に分割して使う多重搬送波変調(MCM:Multi−Carrier Modulation)方式を用いる。しかし、3GPP LTE−Advancedシステム(以下、LTE−Aシステム)では、LTEシステムに比べて広帯域のシステム帯域幅をサポートするために、一つ以上のコンポーネントキャリアを結合して使うキャリアアグリゲーション(CA:Carrier Aggregation)のような方法を用いることができる。キャリアアグリゲーションは、搬送波集成、搬送波整合、マルチコンポーネントキャリア環境(Multi−CC)、又はマルチキャリア環境と呼ぶこともできる。
本発明でマルチキャリアはキャリアの併合(又は、搬送波集成)を意味し、この場合、キャリアの併合は、隣接した(contiguous)キャリア間の併合だけでなく、隣接しない(non−contiguous)キャリア間の併合も意味する。また、下りリンクと上りリンクにおいて集成されるコンポーネントキャリアの数を異なるように設定してもよい。下りリンクコンポーネントキャリア(以下、「DL CC」という。)の数と上りリンクコンポーネントキャリア(以下、「UL CC」という。)の数とが一致する場合を対称的(symmetric)併合といい、両者の数が異なる場合を非対称的(asymmetric)併合という。このようなキャリアアグリゲーションは、搬送波集成、帯域幅集成(bandwidth aggregation)、スペクトル集成(spectrum aggregation)などのような用語に言い換えてもよい。
2つ以上のコンポーネントキャリアが結合して構成されるキャリアアグリゲーションは、LTE−Aシステムでは100MHz帯域幅までサポートすることを目標とする。目標帯域よりも小さい帯域幅を有する1個以上のキャリアを結合するとき、結合するキャリアの帯域幅は、既存のIMTシステムとの互換性(backward compatibility)維持のために、既存のシステムで使う帯域幅に制限することができる。
例えば、既存の3GPP LTEシステムでは、{1.4,3,5,10,15,20}MHz帯域幅をサポートし、3GPP LTE−advancedシステム(すなわち、LTE−A)では、既存のシステムとの互換のために、それらの帯域幅のみを用いて20MHzよりも大きい帯域幅をサポートするようにすることができる。また、本発明で用いられるキャリアアグリゲーションシステムは、既存のシステムで用いる帯域幅にかかわらず、新しい帯域幅を定義してキャリアアグリゲーションをサポートするようにすることもできる。
また、このようなキャリアアグリゲーションは、イントラバンドCA(Intra−band CA)とインターバンドCA(Inter−band CA)とに区別できる。イントラバンドキャリアアグリゲーションとは、複数のDL CC及び/又はUL CCが周波数上で隣接するか近接して位置することを意味する。言い換えると、DL CC及び/又はUL CCのキャリア周波数が同じバンド内に位置することを意味できる。一方、周波数領域において遠く離れている環境をインターバンドCA(Inter−Band CA)と呼ぶことができる。言い換えると、複数のDL CC及び/又はUL CCのキャリア周波数が、互いに異なるバンドに位置することを意味できる。この場合、端末は、キャリアアグリゲーション環境における通信を行うために、複数のRF(radio frequency)端を使うことができる。
LTE−Aシステムは、無線リソースを管理するためにセル(cell)の概念を用いる。上述したキャリアアグリゲーション環境は、多重セル(multiple cells)環境と呼ぶことができる。セルは、下りリンクリソース(DL CC)及び上りリンクリソース(UL CC)の組合せと定義されるが、上りリンクリソースは必須要素ではない。このため、セルは、下りリンクリソース単独、又は下りリンクリソース及び上りリンクリソースの両者で構成することができる。
例えば、特定端末が、1個の設定されたサービングセル(configured serving cell)を有する場合、1個のDL CCと1個のUL CCを有することができる。しかし、特定端末が2個以上の設定されたサービングセルを有する場合には、セルの数だけのDL CCを有し、UL CCの数はそれと同数又は小さい数であってもよい。若しくは、これと逆にDL CCとUL CCが構成されてもよい。すなわち、特定端末が複数の設定されたサービングセルを有する場合、DL CCの数よりもUL CCが多いキャリアアグリゲーション環境がサポートされてもよい。
また、キャリアアグリゲーション(CA)は、それぞれのキャリア周波数(セルの中心周波数)が異なる2つ以上のセルの併合と理解されてもよい。キャリアアグリゲーションでいう「セル(Cell)」は、周波数の観点で説明されるものであり、一般的に使われる、基地局のカバーする地理的領域としての「セル」とは区別されなければならない。以下、上述したイントラバンドキャリアアグリゲーションをイントラバンド多重セルといい、インターバンドキャリアアグリゲーションをインターバンド多重セルという。
LTE−Aシステムで用いられるセルは、プライマリセル(PCell:Primary Cell)及びセカンダリセル(SCell:Secondary Cell)を含む。PセルとSセルはサービングセル(Serving Cell)として用いることができる。RRC_CONNECTED状態にあるが、キャリアアグリゲーションが設定されていないか又はキャリアアグリゲーションをサポートしない端末の場合、Pセルのみで構成されたサービングセルが1つのみ存在する。一方、RRC_CONNECTED状態であるとともに、キャリアアグリゲーションが設定されている端末の場合、一つ以上のサービングセルが存在してもよく、全体のサービングセルにはPセルと一つ以上のSセルが含まれる。
サービングセル(PセルとSセル)は、RRCパラメータを用いて設定することができる。PhysCellIdは、セルの物理層識別子であって、0から503までの整数値を有する。SCellIndexは、Sセルを識別するために使われる簡略な(short)識別子であって、1から7までの整数値を有する。ServCellIndexは、サービングセル(Pセル又はSセル)を識別するために使われる簡略な(short)識別子であって、0から7までの整数値を有する。0値はPセルに適用され、SCellIndexはSセルに適用するためにあらかじめ与えられる。すなわち、ServCellIndexにおいて最も小さいセルID(又はセルインデックス)を有するセルがPセルとなる。
Pセルはプライマリ周波数(又は、primary CC)上で動作するセルを意味する。端末が初期接続設定(initial connection establishment)過程を行うか、接続再設定過程を行うために用いられてもよく、ハンドオーバー過程で指示されたセルのことを指してもよい。また、Pセルは、キャリアアグリゲーション環境で設定されたサービングセルのうち、制御関連通信の中心となるセルを意味する。すなわち、端末は、自身のPセルでのみPUCCHの割当てを受けて送信することができ、システム情報を取得するか、モニタリング手順を変更する時にPセルのみを用いることができる。E−UTRAN(Evolved Universal Terrestrial Radio Access)は、キャリアアグリゲーション環境をサポートする端末に対して、移動性制御情報(mobilityControlInfo)を含む上位層のRRC接続再設定(RRCConnectionReconfigutaion)メッセージを用いてハンドオーバー手順のためにPセルのみを変更することもできる。
Sセルはセカンダリ周波数(又は、Secondary CC)上で動作するセルを意味できる。特定端末にPセルは1一つのみ割り当てられ、Sセルは1つ以上割り当てられてもよい。Sセルは、RRC接続設定がなされた後に構成可能であり、追加の無線リソースを提供するために用いることができる。キャリアアグリゲーション環境で設定されたサービングセルにおいてPセル以外のセル、すなわち、SセルにはPUCCHが存在しない。
E−UTRANは、Sセルをキャリアアグリゲーション環境をサポートする端末に追加する時、RRC_CONNECTED状態にある関連したセルの動作に関する全てのシステム情報を特定シグナル(dedicated signal)を用いて提供することができる。システム情報の変更は、関連したSセルの解除及び追加によって制御することができ、このとき、上位層のRRC接続再設定(RRCConnectionReconfigutaion)メッセージを用いることができる。E−UTRANは、関連したSセル内でブロードキャストするよりは、端末別に異なるパラメータを有する特定シグナリング(dedicated signaling)をすればよい。
初期セキュリティ活性化過程が始まった後に、E−UTRANは、接続設定過程で初期に構成されるPセルに加えて一つ以上のSセルを含むネットワークを構成することができる。キャリアアグリゲーション環境でPセル及びSセルはそれぞれのコンポーネントキャリアとして動作することができる。以下の実施例では、プライマリコンポーネントキャリア(PCC)はPセルと同じ意味で使われ、セカンダリコンポーネントキャリア(SCC)はSセルと同じ意味で使われてもよい。
図6は、本発明の実施例で用いられるコンポーネントキャリア(CC)、及びLTE_Aシステムで用いられるキャリアアグリゲーションの一例を示す図である。
図6(a)は、LTEシステムで用いられる単一キャリア構造を示す。コンポーネントキャリアにはDL CCとUL CCがある。一つのコンポーネントキャリアは20MHzの周波数範囲を有することができる。
図6(b)は、LTE_Aシステムで用いられるキャリアアグリゲーション構造を示す。図6(b)では、20MHzの周波数サイズを有する3個のコンポーネントキャリアが結合された場合を示している。DL CCとUL CCがそれぞれ3個ずつあるが、DL CCとUL CCの個数に制限があるわけではない。キャリアアグリゲーションの場合、端末は3個のCCを同時にモニタすることができ、下りリンク信号/データを受信することができ、上りリンク信号/データを送信することができる。
仮に、特定セルでN個のDL CCが管理される場合には、ネットワークは、端末にM(M≦N)個のDL CCを割り当てることができる。この時、端末はM個の制限されたDL CCのみをモニタしてDL信号を受信することができる。また、ネットワークはL(L≦M≦N)個のDL CCに優先順位を与えて主なDL CCを端末に割り当てることもでき、この場合、UEはL個のDL CCは必ずモニタしなければならない。この方式は上りリンク送信に同様に適用されてもよい。
下りリンクリソースの搬送波周波数(又はDL CC)と上りリンクリソースの搬送波周波数(又は、UL CC)とのリンケージ(linkage)は、RRCメッセージのような上位層メッセージやシステム情報で示すことができる。例えば、SIB2(System Information Block Type2)によって定義されるリンケージによってDLリソースとULリソースとの組合せを構成することができる。具体的に、リンケージは、ULグラントを運ぶPDCCHが送信されるDL CCと該ULグラントを用いるUL CCとのマッピング関係を意味することができ、HARQのためのデータが送信されるDL CC(又はUL CC)とHARQ ACK/NACK信号が送信されるUL CC(又はDL CC)とのマッピング関係を意味することもできる。
2.2 クロスキャリアスケジューリング(Cross Carrier Scheduling)
キャリアアグリゲーションシステムには、キャリア(又は搬送波)又はサービングセル(Serving Cell)に対するスケジューリング観点で、自己スケジューリング(Self−Scheduling)方法及びクロスキャリアスケジューリング(Cross Carrier Scheduling)方法がある。クロスキャリアスケジューリングは、クロスコンポーネントキャリアスケジューリング(Cross Component Carrier Scheduling)又はクロスセルスケジューリング(Cross Cell Scheduling)と呼ぶこともできる。
自己スケジューリングは、PDCCH(DLグラント)とPDSCHが同一DL CCで送信されるか、又はDL CCで送信されたPDCCH(ULグラント)によって送信されるPUSCHが、ULグラントを受信したDL CCとリンクされているUL CCで送信されることを意味する。
クロスキャリアスケジューリングは、PDCCH(DLグラント)とPDSCHがそれぞれ異なるDL CCで送信されるか、又はDL CCで送信されたPDCCH(ULグラント)によって送信されるPUSCHが、ULグラントを受信したDL CCとリンクされているUL CC以外のUL CCで送信されることを意味する。
クロスキャリアスケジューリングは、端末特定(UE−specific)に活性化又は非活性化することができ、上位層シグナリング(例えば、RRCシグナリング)を用いて半静的(semi−static)に各端末に対して知らせることができる。
クロスキャリアスケジューリングが活性化された場合、PDCCHには、該PDCCHが示すPDSCH/PUSCHがどのDL/UL CCで送信されるのかを知らせるキャリア指示子フィールド(CIF:Carrier Indicator Field)が必要である。例えば、PDCCHは、PDSCHリソース又はPUSCHリソースをCIFを用いて複数のコンポーネントキャリアの一つに割り当てることができる。すなわち、DL CC上のPDCCHが多重集成されたDL/UL CCのうちの一つにPDSCH又はPUSCHリソースを割り当てる場合にCIFが設定される。この場合、LTE Release−8のDCIフォーマットはCIFによって拡張されてもよい。このとき、設定されたCIFは、3ビットフィールドに固定されてもよく、設定されたCIFの位置はDCIフォーマットサイズに関係なく固定されてもよい。また、LTE Release−8のPDCCH構造(同一のコーディング及び同一のCCEベースのリソースマッピング)を再使用してもよい。
一方、DL CC上のPDCCHが同DL CC上のPDSCHリソースを割り当てるか、単一リンクされたUL CC上のPUSCHリソースを割り当てる場合には、CIFが設定されない。この場合、LTE Release−8と同じPDCCH構造(同一のコーディング及び同一のCCEベースのリソースマッピング)とDCIフォーマットが用いられてもよい。
クロスキャリアスケジューリングが可能な場合、端末はCC別送信モード及び/又は帯域幅によってモニタリングCCの制御領域で複数のDCIに対するPDCCHをモニタする必要がある。このため、これをサポートできる検索空間の構成とPDCCHモニタリングが必要である。
キャリアアグリゲーションシステムにおいて、端末DL CC集合は、端末がPDSCHを受信するようにスケジュールされたDL CCの集合を指し、端末UL CC集合は、端末がPUSCHを送信するようにスケジュールされたUL CCの集合を指す。また、PDCCHモニタリング集合(monitoring set)は、PDCCHモニタリングを行う少なくとも一つのDL CCの集合を意味する。PDCCHモニタリング集合は、端末DL CC集合と同一であってもよく、端末DL CC集合の副集合(subset)であってもよい。PDCCHモニタリング集合は、端末DL CC集合におけるDL CCの少なくとも一つを含むことができる。若しくは、PDCCHモニタリング集合は、端末DL CC集合とは別個に定義されてもよい。PDCCHモニタリング集合に含まれるDL CCは、リンクされたUL CCに対する自己スケジューリング(self−scheduling)は常に可能なように設定することができる。このような、端末DL CC集合、端末UL CC集合及びPDCCHモニタリング集合は、端末特定(UE−specific)、端末グループ特定(UE group−specific)又はセル特定(Cell−specific)に設定することができる。
クロスキャリアスケジューリングが非活性化された場合には、PDCCHモニタリング集合が常に端末DL CC集合と同一であるということを意味し、このような場合にはPDCCHモニタリング集合に対する別のシグナリングのような指示が必要でない。しかし、クロスキャリアスケジューリングが活性化された場合には、PDCCHモニタリング集合が端末DL CC集合内で定義されることが好ましい。すなわち、端末に対してPDSCH又はPUSCHをスケジュールするために、基地局はPDCCHモニタリング集合のみを介してPDCCHを送信する。
図7は、本発明の実施例で用いられるクロスキャリアスケジューリングによるLTE−Aシステムのサブフレーム構造を示す図である。
図7を参照すると、LTE−A端末のためのDLサブフレームは、3個の下りリンクコンポーネントキャリア(DL CC)が結合されており、DL CC 「A」はPDCCHモニタリングDL CCとして設定された場合を示す。CIFが使用されない場合、各DL CCはCIF無しで自身のPDSCHをスケジュールするPDCCHを送信することができる。一方、CIFが上位層シグナリングによって使用される場合には、一つのDL CC 「A」のみがCIFを用いて自身のPDSCH又は他のCCのPDSCHをスケジュールするPDCCHを送信することができる。この時、PDCCHモニタリングDL CCとして設定されていないDL CC 「B」及び「C」はPDCCHを送信しない。
図8は、本発明の実施例で用いられるクロスキャリアスケジューリングによるサービングセル構成の一例を示す図である。
キャリアアグリゲーション(CA)をサポートする無線接続システムでは基地局及び/又は端末を一つ以上のサービングセルで構成することができる。図8で、基地局は、Aセル、Bセル、Cセル及びDセルの全4個のサービングセルをサポートすることができ、端末AはAセル、Bセル及びCセルで構成され、端末BはBセル、Cセル及びDセルで構成され、端末CはBセルで構成された場合を仮定する。ここで、各端末に構成されたセルのうち少なくとも一つをPセルとして設定することができる。この時、Pセルは常に活性化された状態であり、Sセルは基地局及び/又は端末によって活性化又は非活性化されてもよい。
図8で、構成されたセルは、基地局のセルのうち、端末からの測定報告(measurement report)メッセージに基づいてCAにセル追加が可能なセルであって、端末別に設定可能である。構成されたセルは、PDSCH信号の送信に対するACK/NACKメッセージの送信のためのリソースをあらかじめ予約しておく。活性化されたセル(Activated cell)は、構成されたセルのうち、実際にPDSCH信号及び/又はPUSCH信号を送信するように設定されたセルであり、CSI報告及びSRS(Sounding Reference Signal)送信を行う。非活性化されたセル(De−Activated cell)は、基地局の命令又はタイマー動作によってPDSCH/PUSCH信号の送受信を行わないように構成されるセルであって、CSI報告及びSRS送信も中断される。
2.3 CA環境に基づくCoMP動作
以下では本発明の実施形態に適用可能な協力的多重ポイント(CoMP:Cooperative Multi−Point)伝送動作について説明する。
LTE−AシステムにおいてLTEでのCA(carrier aggregation)機能を用いてCoMP伝送を実現することができる。図9はCA環境で動作するCoMPシステムの概念図である。
図9で、Pセルとして動作するキャリアとSセルとして動作するキャリアは周波数軸に同じ周波数帯域を使うことができ、地理的に離れた二つのeNBにそれぞれ割り当てられた場合を仮定する。この際、UE1のサービングeNBをPセルとして割り当て、多くの干渉を与える隣接セルをSセルとして割り当てることができる。すなわち、一つの端末に対してPセルの基地局とSセルの基地局が互いにJT(Joint Transmission)、CS/CB及び動的セル選択(Dynamic cell selection)などの多様なDL/UL CoMP動作を遂行することができる。
図9は一つの端末(例えば、UE1)に対して二つのeNBが管理するセルをそれぞれPセルとSセルとして結合する場合に対する例を示す。ただし、他の例として3個以上のセルが結合することができる。例えば、三つ以上のセルの一部セルは同じ一周波数帯域で一つの端末に対してCoMP動作を遂行し、他のセルは他の周波数帯域で単純CA動作を遂行するように構成されることも可能である。この際、Pセルは必ずしもCoMP動作に参加する必要はない。
2.4 参照信号(RS:Reference Signal)
以下では本発明の実施例で使用可能な参照信号について説明する。
図10は本発明の実施例で使用可能なセル特定参照信号(CRS:Cell specific Reference Signal)が割り当てられたサブフレームの一例を示す図である。
図10はシステムで4個のアンテナをサポートする場合にCRSの割当て構造を示す。3GPP LTE/LTE−AシステムでCRSはデコーディング及びチャネル状態測定の目的で使われる。したがって、CRSはPDSCH伝送をサポートするセル(cell)内の全ての下りリンクサブフレームで全下りリンク帯域幅にわたって送信され、基地局(eNB)に構成された全てのアンテナポートから送信される。
具体的に、CRSシーケンスはスロットnでアンテナポートpのための参照シンボルとして使われる複素変調シンボル(complex−valued modulation symbols)にマッピングされる。
UEはCRSを用いてCSIを測定することができ、CRSを用いてCRSを含むサブフレームでPDSCHを介して受信された下りリンクデータ信号をデコードすることができる。すなわち、eNBは全てのRBで各RB内の一定位置にCRSを送信し、UEは前記CRSに基づいてチャネル推定を遂行した後にPDSCHを検出した。例えば、UEはCRS REで受信された信号を測定する。UEはCRS RE別受信エネルギーとPDSCHがマッピングされたRE別受信エネルギーの比を用いてPDSCHがマッピングされたREからPDSCH信号を検出することができる。
このように、CRSに基づいてPDSCH信号が送信される場合、eNBは全てのRBに対してCRSを送信しなければならないため、不必要なRSオーバーヘッドが発生することになる。このような問題点を解決するために、3GPP LTE−AシステムではCRSの外にUE−特定RS(以下、UE−RS)及びチャネル状態情報参照信号(CSI−RS:Channel State Information Reference Signal)をさらに定義する。UE−RSは復調のために使われ、CSI−RSはチャネル状態情報を獲得するために(derive)使われる。
UE−RS及びCRSは復調のために使われるので、用途の側面で復調用RSであると言える。すなわち、UE−RSはDM−RS(DeModulation Reference Signal)の一種と見なすことができる。また、CSI−RS及びCRSはチャネル測定あるいはチャネル推定に使われるので、用途の側面ではチャネル状態測定用RSであると言える。
図11は本発明の実施例で使用可能なCSI−RSがアンテナポートの個数によって割り当てられたサブフレームの一例を示す図である。
CSI−RSは復調の目的ではなく無線チャネルの状態測定のために3GPP LTE−Aシステムで導入した下りリンク参照信号である。3GPP LTE−AシステムはCSI−RS伝送のために複数のCSI−RS設定を定義している。CSI−RS伝送が構成されたサブフレームでCSI−RSシーケンスはアンテナポートp上の参照シンボルとして使われる複素変調シンボルによってマッピングされる。
図11(a)はCSI−RS構成の中で2個のCSI−RSポートによるCSI−RS伝送に利用可能な20種のCSI−RS構成0〜19を示したものであり、図11(b)はCSI−RS構成の中で4個のCSI−RSポートによって利用可能な10種のCSI−RS構成0〜9を示したものであり、図11(c)はCSI−RS構成の中で8個のCSI−RSポートによって利用可能な5種のCSI−RS構成0〜4を示したものである。
ここで、CSI−RSポートはCSI−RS伝送のために設定されたアンテナポートを意味する。CSI−RSポートの個数によってCSI−RS構成が変わるので、CSI−RS構成番号が違うと言ってもCSI−RS伝送のために構成されたアンテナポートの個数が違えば違うCSI−RS構成となる。
一方、CSI−RSはサブフレームごとに送信されるように構成されたCRSとは違い、多数のサブフレームに相当する所定の伝送周期ごとに送信されるように設定される。したがって、CSI−RS構成はリソースブロック対内でCSI−RSが占有するREの位置だけではなくCSI−RSが設定されるサブフレームによっても変わる。
また、CSI−RS構成番号が同じであってもCSI−RS伝送のためのサブフレームが違えばCSI−RS構成も違うと言える。例えば、CSI−RS伝送周期(TCSI−RS)が違うかあるいは一無線フレーム内でCSI−RS伝送が構成された最初のサブフレーム(ΔCSI−RS)が違えばCSI−RS構成が違うと言える。
以下では、(1)CSI−RS構成番号が付与されたCSI−RS構成と、(2)CSI−RS構成番号、CSI−RSポートの個数及び/又はCSI−RSが構成されたサブフレームによって変わるCSI−RS構成を区分するために、後者(2)の構成をCSI−RSリソース構成(CSI−RS resource configuration)という。前者(1)の設定はCSI−RS構成又はCSI−RSパターンともいう。
eNBは、UEにCSI−RSリソース構成を知らせるとき、CSI−RSの伝送のために使われるアンテナポートの個数、CSI−RSパターン、CSI−RSサブフレーム構成(CSI−RS subframe configuration)ICSI−RS、CSIフィードバックのための参照PDSCH伝送電力に関するUE仮定(UE assumption on reference PDSCH transmitted power for CSI feedback)P、ゼロパワーCSI−RS構成リスト、ゼロパワーCSI−RSサブフレーム構成などに関する情報を知らせることができる。
CSI−RSサブフレーム構成インデックスICSI−RSはCSI−RSの存在(occurrence)に対するサブフレーム構成周期TCSI−RS及びサブフレームオフセットΔCSI−RSを特定するための情報である。次の表4はTCSI−RS及びΔCSI−RSによるCSI−RSサブフレーム構成インデックスICSI−RSを例示したものである。
この際、次の式3を満たすサブフレームがCSI−RSを含むサブフレームとなる。
[式3]
3GPP LTE−Aシステム以後に定義された伝送モード(例えば、伝送モード9あるいはその外に新たに定義される伝送モード)に設定されたUEはCSI−RSを用いてチャネル測定を遂行し、UE−RSを用いてPDSCHを復号することができる。
3GPP LTE−Aシステム以後に定義された伝送モード(例えば、伝送モード9あるいはその外の新たに定義される伝送モード)に設定されたUEはCSI−RSを用いてチャネル測定を遂行し、UE−RSを用いてPDSCHを復号することができる。
2.5 Enhanced PDCCH(EPDCCH)
3GPP LTE/LTE−Aシステムにおいて複数のコンポーネントキャリア(CC:Component Carrier=(serving)cell)に対する結合状況でのクロスキャリアスケジューリング(CCS:Cross Carrier Scheduling)動作を定義すると、一つのスケジュールされるCC(すなわち、scheduled CC)は他の一つのスケジューリングCC(すなわち、scheduling CC)からのみDL/ULスケジューリングを受けることができるように(すなわち、該当scheduled CCに対するDL/UL grant PDCCHを受信することができるように)前もって設定できる。この際、スケジューリングCCは基本的に自分に対するDL/ULスケジューリングを遂行することができる。言い換えれば、前記CCS関係にあるスケジューリング/スケジュールされるCCをスケジュールするPDCCHに対するサーチスペース(SS:Search Space)は全てのスケジューリングCCの制御チャネル領域に存在することができる。
一方、LTEシステムにおいて、FDD DLキャリア又はTDD DLサブフレームは各サブフレームの最初のn個(n<=4)のOFDMシンボルを各種制御情報伝送のための物理チャネルであるPDCCH、PHICH及びPCFICHなどの伝送に使い、残りのOFDMシンボルをPDSCH伝送に使うように構成される。この際、各サブフレームで制御チャネル伝送に使うOFDMシンボルの個数はPCFICHなどの物理チャネルを介して動的にあるいはRRCシグナリングを介した半静的な方式で端末に伝達されることができる。
一方、LTE/LTE−Aシステムにおいては、DL/ULスケジューリング及び各種制御情報を送信するための物理チャネルであるPDCCHは制限されたOFDMシンボルを介して送信されるなどの限界があるので、OFDMシンボルを介して送信されてPDSCHから分離されたPDCCHのような制御チャネルの代わりにFDM/TDM方式でPDSCHともっと自由に多重化する拡張されたPDCCH(すなわち、E−PDCCH)を導入することができる。図12はLTE/LTE−Aシステムで使われるレガシーPDCCH(Legacy PDCCH)、PDSCH及びE−PDCCHが多重化する一例を示す図である。
2.6 制限されたCSI測定
無線ネットワークでセルの間に及ぶ干渉による影響を減らすために、ネットワーク個体間の協力動作を遂行することができる。例えば、セルAがデータを送信する特定のサブフレームの間にセルA以外の他のセルは共用制御情報のみを送信し、データは送信しないように制限することで、セルAでデータを受信している使用者に対する干渉を最小化することができる。
このような方法によって、ネットワーク内にセル間の協力によって特定の瞬間にデータを送信するセルを除いた残りのセルで最小限の共用制御情報のみを送信することによってセル間に及ぶ干渉の影響を減らすことができる。
このために、上位層で二つのCSI測定サブフレーム集合CCSI、0及びCCSI、1を設定する場合、端末はリソース制限測定(RRM:Resource−Restricted Measurement)動作を遂行することができる。この際、二つの測定サブフレーム集合に相当するCSI参照リソースは二つのサブフレーム集合の一つにのみ属すると仮定する。
次の表7はCSIサブフレーム集合(Subframe Set)を設定する上位層信号の一例を示す。
表7はCSIサブフレーム集合を設定するために送信されるCQI報告構成(CQI−Report Cofig)メッセージの一例を示す。この際、CQI報告構成メッセージには、非周期的CQI報告(cqi−ReportAperiodic−r10)IE、nomPDSCH−RS−EPRE−Offset IE、周期的CQI報告(cqi−ReportPeriodci−r10)IE、PMI−RIレポート(pmi−RI−Report−r9)IE及びCSIサブフレームパターン構成(csi−subframePatternConfig)IEが含まれることができる。この際、CSIサブフレームパターン構成IEはサブフレーム集合別に測定サブフレームパターンを示すCSI測定サブフレーム集合1情報(csi−MeasSubframeSet1)IE及びCSI測定サブフレーム集合2情報(csi−MeasSubframeSet2)IEを含む。
ここで、CSI測定サブフレーム集合1(csi−MeasSubframeSet1−r10)情報要素(IE:Information Element)及びCSI測定サブフレーム集合2(csi−MeasSubframeSet2−r10)IEは40ビットのビットマップ情報として各サブフレーム集合に属するサブフレームについての情報を示す。また、非周期的CQI報告(CQI−ReportAperiodic−r10)IEは端末に対する非周期的CQI報告のための設定を遂行するためのIEであり、周期的CQI報告(CQI−ReportPeriodic−r10)IEは周期的CQI報告のための設定を遂行するIEである。
nomPDSCH−RS−EPRE−Offset IEは
値を示す。この際、実際の値(Actual Value)は
値*2[dB]に設定される。また、PMI−RIレポートIEはPMI/IR報告が構成されるか否かを示す。EUTRANは伝送モードがTM8、9又は10に設定された場合にのみPMI−RIレポートIEを構成する。
3. LTE−Uシステム
3.1 LTE−Uシステム構成
以下では免許帯域(Licensed Band)であるLTE−A帯域と非免許帯域(Unlicensed Band)の搬送波結合環境でデータを送受信する方法について説明する。本発明の実施形態において、LTE−Uシステムはこのような免許帯域と非免許帯域のCA状況をサポートするLTEシステムを意味する。非免許帯域はワイファイ(WiFi)帯域又はブルートゥース(BT)帯域などを用いることができる。
図13はLTE−UシステムでサポートするCA環境の一例を示す図である。
以下では、説明の便宜のために、UEが二つの要素搬送波(CC:Component Carrier)を用いて免許帯域と非免許帯域のそれぞれで無線通信を行うように設定された状況を仮定する。もちろん、UEに三つ以上のCCが構成された場合にも以下で説明する方法を適用することができる。
本発明の実施形態において、免許帯域の搬送波(LCC:Licensed CC)は主要素搬送波(Primary CC:PCC又はPセルと呼ぶことができる)であり、非免許帯域の搬送波(Unlicensed CC:UCC)は副要素搬送波(Secondary CC:SCC又はSセルと呼ぶことができる)の場合を仮定する。ただし、本発明の実施形態は多数の免許帯域と多数の非免許帯域がキャリアアグリゲーション方式で用いられる状況にも拡張して適用することができる。また、本発明の提案方式は3GPP LTEシステムだけでなく他の特性のシステムにも拡張して適用可能である。
図13は一つの基地局で免許帯域と非免許帯域を共にサポートする場合を示した。すなわち、端末は免許帯域であるPCCを介して制御情報及びデータを送受信することができ、また非免許帯域であるSCCを介して制御情報及びデータを送受信することができる。しかし、図12に示した状況は一例であり、一つの端末が多数の基地局と接続するCA環境にも本発明の実施形態を適用することができる。
例えば、端末はマクロ基地局(M−eNB:Macro eNB)とPセルを構成し、スモール基地局(S−eNB:Small eNB)とSセルを構成することができる。この際、マクロ基地局とスモール基地局はバックホール網を介して連結されてもよい。
本発明の実施形態において、非免許帯域は競争に基づく任意接続方式で動作することができる。この際、非免許帯域をサポートするeNBはデータ送受信前にまずキャリアセンシング(CS:Carrier Sensing)過程を遂行することができる。CS過程は該当帯域が他の個体によって占有されているかを判断する過程である。
例えば、Sセルの基地局(eNB)は現在チャネルを使っているビジー(busy)状態であるかあるいは使っていないアイドル(idle)状態であるかをチェックする。仮に、該当帯域がアイドル状態であると判断されれば、基地局は、クロスキャリアスケジューリング方式の場合、Pセルの(E)PDCCHを介して、又はセルフスケジューリング方式の場合、SセルのPDCCHを介してスケジューリンググラント(scheduling grant)を端末に送信してリソースを割り当て、データ送受信を試みることができる。
CS過程はLBT(Listen Before Talk)過程と同様にあるいは類似して遂行されることができる。LBT過程は、Pセルの基地局がUセル(非免許帯域で動作するセル)の現在状態がビジー状態であるかあるいはアイドル状態であるかをチェックする過程である。例えば、既に設定されたあるいは上位層信号によって設定されたCCA(Clear Channel Assessment)閾値が存在する場合、Uセルで該当CCA閾値より高いエネルギーが検出されればビジー状態と判断され、そうでなければアイドル状態と判断される。Uセルがアイドル状態と判断される場合、Pセルの基地局はPセルの(E)PDCCHを介して又はUセルのPDCCHを介してスケジューリンググラント(すなわち、DCIなど)を送信してUセルに対するリソースをスケジューリングし、Uセルを介してデータ送受信を遂行することができる。
この際、基地局はM個の連続したサブフレームで構成された伝送機会(TxOP:Transmission OPportunity)区間を設定することができる。ここで、M値及びM個のサブフレームの用途を前もって基地局が端末にPセルを介した上位層シグナリングによって、あるいは物理制御チャネル又は物理データチャネルを介して知らせることができる。M個のサブフレームで構成されたTxOP区間は予約されたリソース区間(RRP:Reserved Resource Period)と呼ぶことができる。
3.2 TxOP区間
基地局はTxOP区間の間に一つの端末とデータを送受信することもでき、多くの端末にそれぞれN個の連続したサブフレームで構成されたTxOP区間を設定し、TDM又はFDM方式でデータを送受信することもできる。この際、基地局はTxOP区間の間に免許帯域であるPセル及び非免許帯域であるSセルを介してデータを送受信することができる。
ただし、基地局が免許帯域であるLTE−Aシステムのサブフレーム境界(subframe boundary)に合わせてデータ伝送を行えば、非免許帯域であるSセルのアイドル判断時点と実際データ伝送時点の間にタイミングギャップ(timing gap)が存在し得る。特に、Sセルは該当基地局と端末が独占的に使えない非免許帯域で、CSに基づく競争によって用いなければならないので、このようなタイミングギャップの間に他のシステムが情報伝送を試みることもできる。
したがって、基地局はSセルでタイミングギャップの間に他のシステムが情報伝送を試みることを防止するために予約信号(reservation signal)を送信することもできる。ここで、予約信号はSセルの該当リソース領域を自分のリソースとして予約しておくために送信する一種の“dummy情報”あるいは“PDSCHの一部に対する複写本”を意味する。予約信号はタイミングギャップ(すなわち、Sセルのアイドル判断時点以後から実際の伝送時点まで)の間に送信されることができる。
3.3 TxOP区間設定方法
図14はTxOP区間を設定する方法の一つを示す図である。
基地局はPセルを介してTxOP区間を前もって半静的な方式で設定することができる。例えば、基地局は上位層信号(例えば、RRC信号)によってTxOP区間を構成するサブフレームの個数Nの値と該当TxOP区間の用途についての構成情報を端末に送信することができる(S1410)。
ただし、システム構成によってS1410段階は動的に遂行されることができる。このような場合、基地局はTxOP区間についての構成情報をPDCCH又はE−PDCCHを介して端末に送信することができる。
Sセルではキャリアセンシング(CS)過程を行って現在チャネル状態がアイドル状態であるかあるいはビジー状態であるかをチェックすることができる(S1420)。
PセルとSセルは互いに異なる基地局又は互いに同一である基地局が管理することができる。ただし、互いに異なる基地局が管理する場合には、バックホールを介してSセルのチャネル状態についての情報がPセルに伝達されることができる(S1430)。
その後、TxOP区間に設定されたサブフレームで端末はPセル及びSセルを介してデータを送受信することができる。仮に、S1410段階で該当TxOPの用途が下りリンクデータ伝送用に設定された場合、端末はTxOP区間でSセルを介してDLデータを受信することができ、TxOPの用途が上りリンクデータ伝送用に設定された場合、端末はSセルを介してULデータを送信することができる(S1440)。
本発明の実施例において、TxOP区間はDL伝送バースト(DL Tx burst)、DLバースト又はRRP区間と同一の意味として使える。ただし、DLバースト又はDL伝送バーストなどはチャネル占有のための予約信号を伝送する区間も含むことができる。
4. 部分サブフレーム構成及びスケジューリング方法
本発明の実施例は非免許帯域で動作するLTE−Aシステムに関するものである。本発明の実施例において、このようなシステムをLAA(Licensed Assisted Access)システムと呼ぶことにする。すなわち、LAAシステムではLTE/LTE−Aに対する基本的な動作をそのまま遂行するとともに非免許帯域でLTE端末とデータ送受信を行う方法を提供する。
非免許帯域で競争に基づく接続方式で共存するWiFiシステム又はインターオペレート(inter−operate)システムを考慮すると、Sセルのサブフレーム(SF:SubFrame)がPセルのサブフレーム(SF)の境界に合わせて伝送の開始を許せば、LTE−Aシステムが他のシステムに過度にチャネル占有を譲歩することになることができる。したがって、LAAシステムでは、既存のLTE−Aシステムとは違い、SF境界ではない時点で信号伝送の開始又は終了を許すことができる。この際、連続的な信号伝送区間をデータバースト(Data Burst)に定義することができる。データバーストは上述したTxOP、RRPなどと同一の意味として使われることができる。
以下では、SF境界ではない時点に信号伝送を開始するかあるいはSF境界以前の時点で信号伝送が終了する場合、一つのサブフレーム(例えば、1ms)より小さい単位の部分SF(pSF:partial SF)を構成する方法について説明する。
4.1 クロスキャリアスケジューリング
LTE−Aシステムのキャリアアグリゲーション(CA)状況でセカンダリセル(secondary cell)をスケジュールする方法は大別して二つに区分することができる。一つは特定のセルで他のセルに対してスケジューリングを行うクロスキャリアスケジューリング(cross−carrier scheduling)方法であり、他の一つは該当セルで直接スケジュールするセルフスケジューリング(self−scheduling)方法がある。以下では、クロスキャリアスケジューリング方法によるpSF設定方法及びこれによるPDCCH伝送及び動作方法について説明する。
図15は部分サブフレームの一例を説明するための図である。
図15で、Uセル(UCell)はPセルのSF #Nに対応する時点からキャリアセンシング過程(又は、CCA過程、LBT過程)を遂行するためのバックオフ(backoff)を始めてSF #N+1の中間時点に予約信号(reservation signal)の伝送を開始し、前もって決定された時点からプリアンブル及び/又はPDSCH伝送を開始する場合である。
この際、本発明の実施例において、Uセル上のSF #N+1の時点のpSFに対するスケジューリングをPセル上のSF #N+2の時点に遂行することができる。このように、pSF開始時点より遅くクロスキャリアスケジューリングを行うことをポストスケジューリング(post−scheduling)と呼ぶことができる。また、pSF開始時点に先立ってSF #N+1の時点にクロスキャリアスケジューリングを行うことをプレスケジューリング(pre−scheduling)と呼ぶことができる。
本発明の実施例において、説明の便宜上、PセルのSF #Nと対応するUセルのSFをPセルのSF番号と同様にSF #Nと呼ぶことにする。また、図15を含めた他の図面でTxOP区間(又は、RRP区間、DLバースト区間)の大きさは4SF(すなわち、4ms)で構成されることを仮定して説明する。もちろん、このようなTxOP区間の大きさはチャネル環境及び/又はシステム要求事項によって変化することができる値である。
以下では、プレスケジューリングを行う条件について説明する。
4.1.1 プレスケジューリング条件
(A−1a)プレスケジューリングを行う一番簡単な方法として、SF #N+1の開始直前のUセル上のCCA結果にかかわらず、基地局又は端末の送信すべきデータが存在すれば、いつもプレスケジューリングが遂行されることができる。しかし、チャネルがビジー(busy)であってPDCCHを送信したSFで信号を送信することができない場合が発生すれば、該当PDCCHリソースが浪費されることができる。したがって、eNBが送信すべきデータがあっても該当SFの間にデータを送信することができる確率が高い時に限ってPDCCHを送信することが好ましく、以下ではこのような条件について説明する。
(A−1b)SF #N+1開始直前のCCA結果がアイドル状態の場合にのみプレスケジューリングが遂行されるように許されることができる。
非免許帯域に共存するシステムの特性上、特定の送信端がチャネルを占有すれば、よほど長い時間の間に連続して占有することができる。したがって、SF #N+1開始直前のCCA結果がビジーであれば、基地局は該当SFの間に続けて信号を送信することができないこともある。仮に、SF #N+1の間にチャネルがずっとビジーであってUセルで信号を送信することができなかったとすれば、SF #N+1でプレスケジューリングによるPDCCHリソースは浪費されることができる。したがって、これを防止するために、SF #N+1開始直前のCCA結果がアイドル状態の場合にのみ基地局がプレスケジューリングを遂行するように許されることができる。
仮に、SF #N+1開始直前のCCA結果がビジー状態であれば、該当SFの間に基地局はCSを遂行しないこともできる。若しくは、SF #N+1直前にビジーであったがCSを遂行してからSF #N+1の中間のアイドル区間によってバックオフ動作が終わったときは、基地局はSFを始めることができないから、予約信号を送信しなければならない。
(A−1c)SF #N+1開始直前のCCA結果がアイドル状態でありながらSF #N+1の間にバックオフ動作が終わることができるときにのみプレスケジューリングを遂行するように許すことができる。
例えば、基地局がバックオフを行う場合、バックオフカウント値が‘N’であり、該当バックオフカウント値が‘0’になるまで必要な時間がT3msであると仮定する。仮に、T3msが1msより大きい値であれば、基地局はSF #N+1の間にずっとチャネルがアイドル状態であると言ってもSF伝送を始めることができないであろう。
したがって、基地局はSF #N+1開始直前のCCA結果がアイドル状態でありながらT3<=Xの条件を満たすとき、プレスケジューリングを遂行するように構成されることができる。この際、X=1msであればSF #N+1がいつもアイドル状態である場合を仮定してプレスケジューリングを行うものである。
仮に、SF #N+1開始直前のCCA結果がビジー状態であるかT3>Xであれば、基地局は該当SFではプレスケジューリングを遂行しない。(A−1b)条件で記述したように、SF #N+1開始直前のCCA結果がビジー状態であれば、基地局は該当SFの間にCS及びバックオフ動作を遂行しないこともできる。
若しくは、基地局はSF #N+1直前にUセルがビジー状態であったがCSを遂行してからSF #N+1の中間のアイドル区間によってバックオフ動作が終わったときにはSFを始めることができないので、予約信号を送信することが好ましい。
(A−1d)基地局はSF #N+1開始直前のCCA結果にかかわらず、SF #N+1の間にバックオフ動作が終わることができる場合にのみプレスケジューリングが許されることができる。例えば、基地局は、(A−1c)条件と同様に、T3<=Xの条件を満たせばプレスケジューリングを遂行することができる。一方、T3>Xであれば、基地局は該当SFではプレスケジューリングを遂行しない。
(A−1e)基地局はSF #N+1開始直前のCCA結果がビジー状態であると言っても現在伝送中のノード(例えば、送信端)の伝送がいつ終わるかが分かれば、これを考慮してプレスケジューリングを遂行することができる。
例えば、図16のように現在伝送中の送信端がWiFi APであり、PセルでWiFi信号を受信することができると仮定する。図16は非免許帯域でWiFi APが無線チャネルを占有する場合、基地局がプレスケジューリングを遂行するための条件の一つを説明するための図である。
図16で、基地局がWiFi信号をデコードすることができれば、Pセルの基地局は現在伝送中のWiFiデータがSF #N+1の始めからYms(0<Y<1ms)後に終わることが分かる。この時、バックオフカウント値が0になるまで必要な時間がT3msであると仮定すれば、基地局はY+T3<Xの条件を満たす場合に限り、プレスケジューリングを遂行することができる。
上述した(A−1a)、(A−1d)の条件は、Uセルで他のシステム又は伝送端によってデータが伝送されつつあるSFでも適用することができる。例えば、図17で、SF #N+4のように一つのSF内に二つのpSFが存在することができるからである。図17はpSFを説明するための図の一つである。
また、(A1−d)条件の場合、基地局は、以前のTxOP区間の間にSF #N+4のpSFで伝送が終わる場合、該当SF #N+4の間にバックオフ動作が完了することができるときにだけプレスケジューリングを遂行するように許されることができる。
4.1.2 A/N伝送方法
以下では、プレスケジューリング時の受信確認信号(例えば、ACK、NACK信号)の伝送方法について説明する。例えば、図15のようにSF #N+1の時点にeNBがUセルに予約信号(及び/又はプリアンブル)及びPDSCHを送信した場合を仮定する。
仮に、UEがPセルからPDCCHの受信に成功したが、Uセルでプリアンブル及び/又はPDSCH上の参照信号(RS:Reference Signal)検出に失敗した場合、端末は該当SFでUセルのチャネルがビジーであって送信された信号がないと判断することができる。したがって、端末はPDSCHデコーディングを試みなくて該当SFに対するバッファリングを遂行しないことができる。
LTE−AシステムのCA状況で、端末がPDCCHデコーディングに失敗するか、PDCCHデコーディングは成功したがPDSCHデコーディングに失敗して該当PDSCHをバッファーに保存する二つの動作のみが存在した。端末は、前者の場合にDTX信号を、後者の場合にNACK信号をACK/NACKリソースに送信することができた。この際、DTXはACK/NACKを送信しないことを意味するかあるいはACK/NACK伝送における特定の状態(state)を意味する。
言い替えれば、UEがACK/NACKを送信しないというのは、eNBがUセル上で送信すべきデータがないとき、UEのACK/NACK動作と同一であることを意味する。しかし、LAA環境では、端末がPDCCHの受信に成功したが、正常に受信することができなかったPDSCHをバッファーにも保存しない新しい状態に対する考慮がさらに必要である。以下では、このような新しい状態に対する定義方法について説明する。
(A−2a)端末がPDCCHの受信に成功したが、プリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合とプリアンブル(及び/又はPDSCH上のRS)検出に成功したがPDSCHデコーディングに失敗した場合、端末はNACK状態又はDTX状態であると見なすことができる。これについて後述する(A−2b)〜(A−2e)でより詳細に説明する。
(A−2b)端末がPDCCHの受信に成功したが、プリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合、端末はNACK信号を送信するように設定することができる。この場合、eNBは該当端末が少なくともPDCCHの受信に成功したことが分かるが、関連のPDSCHをUEがバッファーに保存したかは明らかに分からない。
(A−2c)端末がPDCCHの受信に成功したが、プリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合、端末はDTX信号を送信するように設定することができる。この場合、eNBはUEに関連したPDSCHをバッファーに保存しなかったことが明らかに分かる。
また、eNBがプレスケジューリングを遂行したがチャネルがビジーであって該当SFでデータを送信しなかった場合にもUEはACK/NACK伝送を遂行しないように構成されることができる。
このような場合、実際にUセル上にSFを構成しなかったプレスケジューリングによるACK/NACKオーバーヘッドを減らすことができる。しかし、基地局は、端末からA/N信号を受信することができなければ、PDCCH検出失敗と誤認してPDCCH伝送電力を増加させるか、PDCCH結合レベルを上げるなどの誤作動を遂行するおそれがある。
(A−2d)基地局がPセルでクロスキャリアスケジューリングを行う場合、Pセル−PDCCH及びUセル−PDCCHの結合レベルが同一である場合を仮定する。UEがUセル−PDCCHの受信に成功したとすれば、既存のLTE−AのCA状況で該当UEはUセル−PDCCHのARI(A/N Resource Indicator)を用いてACK/NACK伝送を試みる。
仮に、端末がUセル−PDCCHの受信に成功してもプリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合、端末はARIを使わずにPUCCHフォーマット1a/1bでフォールバックを遂行するように設定することができる。eNBは端末からPUCCHフォーマット1a/1bを介してACK/NACKを受信すれば、結合レベルが同一であるのでPセル−PDCCHとUセル−PDCCHの成功確率が類似しているという仮定の下に、端末がUセル−PDCCHの受信に成功したがUセルのプリアンブル(及び/又はPDSCH上のRS)検出に成功することができなかったことを黙示的に解釈することができる。
(A−2e)端末がPDCCHの受信に成功したがプリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合、A/N信号伝送の時、NACK/DTXではない新しい状態を形成することにより、(A−2b)と(A−2c)で指摘した曖昧さ(ambiguity)を解決することができる。
例えば、端末がPDCCHの受信に成功したがプリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合の状態をDTX2に定義することができる。この際、DTX2状態をLTE−AシステムのACK/NACK/DTX状態と区別するように定義し、端末が基地局にフィードバックすることができる。
本実施例の一態様において、システム上でDTX2を含むチャネル選択伝送テーブル(channel selection transmission table)を新たに構成することができる。
本実施例の他の態様において、システム上でACK=11、NACK=10、DTX=00、DTX2=01に区分して各伝送ブロック(TB)別に2ビットのACK/NACK情報を構成することができる。
このような方式のように新たに定義されたDTX2の状態によって、端末がプリアンブル(及び/又はPDSCH上のRS)検出に失敗した場合をeNBが認知することができるようになれば、DTX2状態をフィードバックされたeNBは次に送信すべきプリアンブル(及び/又はPDSCH上のRS)の検出確率を高めるために伝送電力を高めることができる。
4.1.3 プレスケジューリング法
プレスケジューリングの際、図18のように基地局がPセルを介してSF #N+1の時点にPDCCHを送信したが、SF #N+1の時点にバックオフ動作が完了しなくて基地局はUセル上でPDSCHを送信することができないことがあり得る。図18はプレスケジューリング法の一つを説明するための図である。
このような場合、端末がSF #N+1上でプリアンブル(及び/又はPDSCH上のRS)検出を遂行するに際して、プリアンブル(及び/又はPDSCH上のRS)が存在しないが存在したと判断する間違った警報(false alarm)が発生し得る。これを防止するために、PDCCHを受信したUEはいつもプリアンブル(及び/又はPDSCH上のRS)の存在有無にかかわらず、該当サブフレームでPDSCHに対するバッファリングを遂行することができる。
また、eNBはバックオフ動作が終わるまで同じUEにPDCCHを多数回送信することができる。基地局が同じUEにPDCCHを送信する度に新しいPDSCHが送信される(すなわち、新しいパケット)を知らせるとすると、該当UEはPDCCHを受信する度にバッファリングを遂行し、新しいパケットであることを認知すれば、既にバッファリングを遂行したデータを削除(flushing)することができる。
例えば、図18を参照すると、端末がSF #N+1でPDSCHに対するバッファリングを遂行したとしても、SF #N+2で新しいパケットを知らせるPDCCHを受信し、さらに新しいPDSCH(すなわち、新しいパケット)を受信するはずであるので、端末はSF #N+1でバッファリングしたデータを削除することができる。
基地局がSF #N+2で新しいパケットを送信する方法の一例として、SF #N+2で送信するPDCCHに対してSF #N+1のPDCCHとHARQプロセス番号(HARQ process number)を同様に構成し、NDI(New Data Indicator)をトグル(toggle)させることができる。
また、図18のようにSF #N+1の時点にPDCCHを送信したが、バックオフ動作が終わらないため実際にeNBがUセル上でPDSCHを送信することができないような場合、同じUEに同じPDCCHを多数回送信するように構成することができる。
以下では、このような場合にPDCCH上のリソース浪費を解決するための方法について説明する。
特定のUEにPDCCHを一度送信すれば、該当SFにPDSCHを送信することができずに次のSFにPDSCHを送信するとしてもPDCCHは繰り返して送信しないことがあり得る。例えば、図18を参照すると、SF #N+1で送信したPDCCHはSF #N+2では送信しないこともある。SF #N+1でPDCCHを受信したUEは該当SF #N+1でPDSCHを受信しなければ、SF #N+2でもSF #N+1で受信したPDCCH情報を同様に活用することができる。SF #N+1で受信したPDCCH情報は該当UEがPDSCHを介してデータを受信するまでずっと有効なものと見なすことができる。
若しくは、eNBは任意のSF #N+kの時点に該当UEにSF #N+1のPDCCH情報の代わりをする新しいPDCCH情報を送信することができる。この時、新しいPDCCH情報という事実はDCI情報(例えば、scrambling sequence、CRC mask、search space、及び/又は新しいindicatorなど)によって知らせることができる。
若しくは、UEは、SF #N+1に受信されたPDCCHが一定の条件を満たせば、有効ではないものであると判断することができる。例えば、一定のTimer値(T1)を上位層シグナリングによって設定し、SF #N+1に受信したPDCCHはSF #N+1+T1の時点からは有効ではないものと見なすことができる。
上述したPDSCHに対するACK/NACKタイミング及びリソース設定方法に対して提案する。端末がSF #N+1の時点にPDCCHを受信したとしても、該当PDCCH上のスケジューリング情報が活用された時点(すなわち、実際のPDSCH伝送時点)はSF #N+1ではないSF #N+mであると仮定する。この際、ACK/NACK伝送タイミングはSF #N+mの時点を基準に送信されるように規定することができる。例えば、FDDシステムではSF #N+m+4の時点で端末がACK/NACK信号を基地局に送信することができる。この時のACK/NACK伝送リソースはSF #N+1の時点のPDCCHのCCEインデックスによって設定されたリソースであってもよい。若しくは、端末は上位層シグナリングによって前もって決定されたリソースを活用してSF #N+m+4の時点にACK/NACK信号を送信することもできる。
4.1.4 PDSCH開始点設定方法
以下では、クロスキャリアスケジューリングの場合、スケジューリングセルであるUセルのPDSCH開始点設定について説明する。
LTE−Aシステムにおいて(E)PDCCHに基づくクロスキャリアスケジューリングの場合、スケジュールされるUセルの開始時点はスケジュールされるセルに設定されたPDSCH開始シンボルに従うように規定されることができる。この際、PDSCH開始シンボルはRRCシグナリングによって設定することができる。特に、部分サブフレーム(pSF)のためのクロスキャリアスケジューリングの場合、特徴的に該当RRCシグナリングによるPDSCH開始シンボルは有効ではないものと見なすことができる。
この際、PDSCH開始時点はpSFの開始位置によって決定されることができる。例えば、PDCCH領域が上位層シグナリングによって二つのシンボルを含むことに前もって設定されていれば、端末はpSFの開始位置から2シンボル以後にPDSCHが始まると見なすことができる。
クロスキャリアスケジューリングがE−PDCCHを介して行われる場合、pSFの長さに合わせてE−PDCCHの開始シンボルが決定されることができる。例えば、上位層シグナリングによってE−PDCCHの開始シンボルが4番目のOFDMシンボルに設定されているとしても、スケジュールされるセルであるUセル上のpSFの開始位置が7番目のOFDMシンボルの場合は、スケジューリングセルのE−PDCCHの開始シンボルを7番目のOFDMシンボルとして認識するようにすることができる。これにより、UEは、スケジューリングセル上のバッファリングを遂行するに当たり、Uセル上のpSF開始時点からバッファリングを遂行するという利点がある。
4.1.5 スケジューリング方式制限方法
先に4.1節で説明した方法において(すなわち、pSFに対してクロスキャリアスケジューリングを遂行することにおいて)、プレスケジューリングはUセル上で実際にどの時点にCCA動作(又はCS動作、LBT動作)が完了するかを予測することができないからPDCCH浪費の問題があり得て、ポストスケジューリングはUEバッファリングの側面で問題があり得る。したがって、LAAシステムでは、pSFに対してクロスキャリアスケジューリングは許されず、セルフスケジューリングのみ許されるように構成されることができる。
仮に、基地局がpSF伝送時点にクロスキャリアスケジューリングを遂行しなければならなければ、該当pSFにPDSCHは含まれないこともある。例えば、単にチャネルを占有するためのダミー信号(dummy signal)で該当pSFが構成されることができる。
若しくは、pSFは同期(synchronization)、AGC設定及び/又はセル識別(cell identification)の用途のためにのみ構成されることもできる。
若しくは、端末にクロスキャリアスケジューリングが構成された場合、端末はpSFを期待しないこともできる。この際、端末がpSFを期待しないという意味は、端末がPセルを介してスケジュールされるUセルのSFがpSFではなくて完全なSFであると仮定して該当SFをデコードすることを意味する。
このような場合、pSFは以下に後述するPStartの場合にのみ限定することができる。例えば、PEndの場合にはクロスキャリアスケジューリングを適用することができる。
4.2 セルフスケジューリング
以下では、セルフスケジューリング方法について説明する。Uセルに構成されるpSFに対するセルフスケジューリングはPDCCH及び/又はE−PDCCHを介して遂行されることができる。以下で説明するセルフスケジューリング方式はSF境界以前に始まるPStart、及び完全なSFであるFull SF及び/又はSF境界以前に終わるPendの両者に共に適用可能である。
4.2.1 PDCCHを用いたセルフスケジューリング
UセルにおいてPDCCHの開始時点はCCA過程(又は、CS過程、LBT過程)を完了した後、プリアンブル伝送が終わる時点に設定することができる。若しくは、PDCCHの開始時点はセル特定RS(CRS:Cell−specific RS)ポート0に対するシンボルの一つに設定することができる。図19はセル特定RSが配置される形態の一つを説明するための図である。図19を参照すると、CRSポート0が割り当てられるシンボルは1st、5th、8th及び12thシンボルである。よって、PDCCHが送信される時点はCSRポート0が割り当てられるシンボルの一つに設定することができる。
この際、PDCCHの時間軸上の長さは上位層シグナリングによって前もって決定された値であってもよい。
若しくは、PDCCHの時間軸上の長さはpSFの長さによって前もって決定された値であってもよい。例えば、pSFの長さが1スロット(one slot)の長さより長ければ2OFDMシンボルの間にPDCCHが送信され、一つのスロットの長さより短ければ1OFDMシンボルの間に送信されることができる。
既存のLTE−AシステムにおいてPDCCHの開始時点はPCFICH値によって決定される。仮に、Uセルに対してPCFICHが存在しなければ、上位層シグナリングによって前もって設定された値によってPDCCHの開始時点が決定されることができる。例えば、PDCCHの開始時点が5番目のシンボル(1st slot、l=4)であり、PDCCHの長さが1シンボルに前もって設定されていれば、PDSCHの開始時点は6番目のシンボル(1st slot、l=5)と見なされることができる。
若しくは、UCellにPCFICHが存在すれば、pSFのためのPCFICH値は既存のSFのPCFICHと解釈を異にすることができる。例えば、pSFが5番目のシンボル(1st slot、l=4)で始まり、PCFICH値が2であれば、端末は7番目(5+2)のシンボルからPDSCHが始まったと見なすことができる。
若しくは、PCFICHが存在しないとき、PDCCHの時間軸上の長さは前もって設定した値であってもよい。また、TXバースト上の一番目のSFがpSFである場合にのみPCFICH(及びPHICH)が存在しなくて前もって設定された値又は上位層信号(例えば、RRC)によってPDCCHの時間軸上の長さが設定されることができる。
本発明の実施例において、端末はUセル上に二つの制御領域があると見なし、PDCCHに対するブラインドデコーディング(BD)を遂行することができる。例えば、完全なサブフレームで端末は各サブフレームの一番目のシンボルから三番目のシンボルまでを制御領域として認識することができる。また、部分サブフレームでは二番目のスロットの一番目のシンボルから二番目のシンボルまでを制御領域として認識してBDを遂行することができる。
4.2.1節に記述した方法はPStartであるpSFに適用される。
4.2.2 フローティングサブフレーム構造上の下りリンク物理チャネル
図20はフローティングサブフレームで下りリンク物理チャネルを送信する方法を説明するための図である。
図20に示したフローティングサブフレームは、UセルのSFの大きさがPセルのSFの大きさと同一であるとともにUセルのSFの開始及び終了時点がPセルのSF境界と一致しないように設定されるサブフレームを意味する。
図20を参照すると、基地局は、SF境界ではない時点にLBT動作が完了してもいつも1ms程度のTTIを維持しながらSFを送信することができる。TTIの開始時点と終了時点がPセルのサブフレーム境界と一致しないとしてもUセルとPセルの間に整列(align)されているサブフレーム境界は依然として有効であり、Uセル上の参照信号及びPDCCHはPセルタイミングを基準に構成されることができる。
この際、TTIの開始時点がサブフレーム境界ではない場合、SF#(n+1)上に存在するPDCCHから該当TTIに対するスケジューリングを受信することができる。PDCCHの長さはUセル上のPCFICHによって決定されることもでき、上位層シグナリングによって前もって設定された値であってもよい。
この際、設定されたPDCCHの長さが2OFDMシンボル以上の場合に限り、TTIの開始点が限定されることができる。例えば、PDCCHの長さが2OFDMシンボルの場合、SF #Nの二番目のOFDMシンボルではTTIが始まることができないように設定することができる。これは、仮に二番目のOFDMシンボルでTTIが始まれば、SF #Nの二番目のOFDMシンボルとSF#(n+1)の一番目のOFDMシンボルにPDCCHが分けられて送信されることができ、このため、PDCCHのデコーディングの成功を保証しにくいことがあるからである。
類似の例として、仮にPDCCHの長さが3OFDMシンボルの場合、SF #Nの二番目及び三番目のOFDMシンボルではTTIが始まることができないように設定することができる。
図20のようなフローティングSFの構造において、SF #Nの前側の3個のOFDMシンボルをパンクチャリングした後、残りの部分にPDSCHのREをマッピングして送信し、パンクチャリングされた3個のOFDMシンボルをそのままSF #N+1にマッピングして送信することができる。若しくは、TTIの開始時点を基準にREマッピングを新たに始めるように設定することができる。
4.2.3 E−PDCCHを用いたセルフスケジューリング
LTE−AシステムにおいてE−PDCCHの開始シンボルはRRCシグナリングによって設定され、1〜4OFDMシンボルの値を有する。
しかし、チャネルのアイドル/ビジー状態によってSFの長さが変わるLAAシステムのpSFの場合には、プリアンブルの伝送が終わる地点から又はPDSCH上のRS(例えば、CRSポート0に対するRSが割り当てられるシンボルの一つ)が始まる時点からE−PDCCH開始位置を設定しておくことができる。言い替えれば、LAAシステムでは、RRCシグナリングによって設定されたUセルに対するE−PDCCH開始シンボルについての情報はpSFに対して有効ではないものとして端末が見なすことができる。
ただし、E−PDCCHを構成するPRBの個数はRRCシグナリングによって決定された値をそのまま維持することができる。
若しくは、E−PDCCHを構成するPRBの個数は既存のRRCシグナリングとは別個にpSFの長さによって前もって決定された値であってもよい。例えば、E−PDCCHを構成するPRBの個数は、pSFを構成するOFDMシンボルの個数が7より小さければ8PRBに、7以上であれば4PRBに設定することができる。
DLバースト(又はTxOP、RRPなど)が始まるSFの開始シンボル(starting symbol)が変化するため、無線リソースを効率的に活用するためにDLバーストが終わるSFの終了シンボル(ending symbol)も変化するように設定することができる。仮に、終了シンボルの位置によってE−PDCCHの長さも変化すれば、E−PDCCHを介してセルフスケジューリングを受ける端末の実装複雑度が増加することができる。
これを解決するために、全てのE−PDCCHの終了シンボルはSF境界ではない特定のOFDMシンボルに設定することができる。例えば、DLバーストが終わるSFの最小長が11OFDMシンボルに設定されていれば、E−PDCCHの終了シンボルはいつも11番目のOFDMシンボルに設定することができる。この際、E−PDCCHの終了シンボルは既設定の値であっても、上位層信号によって設定された値であってもよい。
UEは、特定のSFがDLバースト上で始まるSFであるかあるいは終わるSFであるかが分からないこともある。すなわち、端末は全てのSFに対して始まるSFであると仮定してE−PDCCHに対する受信を試み、同時に終わるSFであると仮定してE−PDCCHに対する受信を試みることができる。この際、UEが仮定することができるE−PDCCH構成方法は次のようである。
(1)第1のE−PDCCH構成方法:E−PDCCHの開始シンボル及び終了シンボルが共に既存のLTE−Aシステムの定義に従うE−PDCCH。
既存のE−PDCCH開始シンボルは前もって決定されるかあるいはRRCシグナリングによって設定され、シンボルインデックス1〜4の値を有する。すなわち、開始シンボルはシンボルインデックス1〜4OFDMの一つであり得て、終了シンボルは最後のOFDMシンボルに設定することができる。この際、さらにE−PDCCH開始シンボルはシンボルインデックス‘0’であるOFDMシンボルを含むことができる。
(2)第2のE−PDCCH構成方法:(1)の方法より後の開始シンボルで始まって(特徴的には、LTE−Aシステムで定義されず、pSFが始まるシンボル位置以後に始まって)LTE−Aシステムで定義される終了シンボルとして終わるE−PDCCH。
例えば、pSFの最初のOFDMシンボルが[0、4、7]番目のOFDMシンボルの一つであれば、一番後側の7番目(又は7番目のOFDMシンボルで始まるPDCCHが終わるOFDMシンボル)で始まり終了OFDMシンボルで終わるE−PDCCHを仮定することができる。この際、E−PDCCH開始シンボルは前もってシステム上で定義されるかRRC信号によって端末に知られることができる。若しくは、可能なpSFの最初のOFDMシンボルの集合がシグナリングされるとき、該当OFDMシンボル集合内の最大のOFDMシンボル(又は最大のOFDMシンボルで始まるPDCCHが終わるOFDMシンボル)にEPDCCH開始シンボルが決定されることができる。
(3)第3のE−PDCCH構成方法:既存のLTE−Aシステムで定義される開始シンボルで始まり(1)の方法の場合より前に終了シンボルとして終わる(すなわち、最後のOFDMシンボル以前のシンボルで終わる)E−PDCCH。
さらに、E−PDCCH開始シンボルは‘0’番目のシンボルインデックスを含むことができる。EPDCCH終了シンボルは前述したようにDLバーストが終わるSFの最小長に設定することができる。例えば、pSFが[10、11、12又は14]番目のOFDMシンボルで終わることができれば、10番目のOFDMシンボルがEPDCCHの終了シンボルに設定することができる。この際、EPDCCH終了シンボルは前もって決定されるかあるいはRRCシグナリングによって端末に知られることができる。
若しくは、pSFの終了OFDMシンボル集合が端末にシグナリングされるとき、EPDCCH終了シンボルはOFDMシンボル集合内の最小OFDMシンボルに決定されることができる。仮に、DLバーストが終わるSFのために許された長さ(例えば、OFDMシンボル長)の最小値が特定値(例えば、XOFDMシンボル)以下であれば、該当値以下の長さではEPDCCHの終了シンボルに設定することができないことがある。例えば、DLバーストの終わるSFが[3、6、9、10、11、12、13又は14]番目のOFDMシンボルで、X=5である場合、E−PDCCHは3OFDMシンボルのみで構成されることができない。
また、残りの[6、9、10、11、12、13又は14]番目のOFDMシンボルの中で最小値である6OFDMシンボルがEPDCCH終了シンボルに決定されることができる。
また、EPDCCH終了シンボルで構成することができるOFDMシンボル個数の集合とDLバーストが終わるSFを構成するOFDMシンボル個数の集合が違う場合、DLバーストの終了SFのOFDMシンボルとEPDCCH終了シンボルは違うことがあり得る。例えば、DLバーストの最後のSFを構成するOFDMシンボルは[7、9、10、11、12、13又は14]番目のOFDMシンボルの一つであり、EPDCCH終了シンボルで構成することができるOFDMシンボル個数の集合は[6、9、10、11、12又は14]番目のOFDMシンボルである場合、DLバーストの中でpSFのEPDCCH終了シンボルは、EPDCCH終了シンボルで構成することができるOFDMシンボル個数集合の最小値である6番目のOFDMシンボルに決定されることができる。
(4)第4のE−PDCCH構成方法:EPDCCHの開始シンボル及び終了シンボルのいずれもLTE−Aシステムで定義されないE−PDCCH。
このようなE−PDCCHの場合、例えば、(2)で記述したE−PDCCH開始シンボル決定方法及び(3)で記述したE−PDCCH終了シンボル決定方法に従うことができる。
pSFを含むDLバースト(又はTxOP、RRPなど)に構成されることができるE−PDCCHをデコードするため、前述した四つのE−PDCCHを決定する方法を全て仮定して端末がE−PDCCH受信を試みることは端末の複雑度を高めることができる。よって、上述した四つのE−PDCCH構成方法の一部のみでE−PDCCHが構成されるように制限してE−PDCCHを設定することができる。これに対する具体的な実施例は次のようである。UEは次の組合せの一つに属する全てのE−PDCCHに対する検出を試み、これからSFの長さが分かる。
(A)DLバーストの最初のSFのみpSFが許される場合:(1)の方式又は(1)及び(2)の方式のE−PDCCHが許されることができる。
(B)DLバーストの終了SFにのみpSFが許される場合:E−PDCCH構成時、(3)の方式のみ許されることができる。
(C)DLバーストの最初のSF及び終了SFに対してpSFが許される場合:E−PDCCH構成時、(1)、(2)及び(3)の方式の組合せ、(1)及び(3)の方式の組合せ、(1)及び(4)の方式の組合せ、(2)及び(3)の方式の組合せ、(2)及び(4)の方式の組合せ、(3)及び(4)の方式の組合せ、(3)の方式のみ、又は(4)の方式のみが許されることができる。
(D)前記提案したpSFを構成するE−PDCCHの組合せのうち、(3)又は(4)の方式を含む組合せに対し(すなわち、最後のOFDMシンボル以前のシンボルで終わるE−PDCCH及び終了pSFを受信する)UEの動作は次のようである。
最後のOFDMシンボル以前に終わるE−PDCCHを検出したUEは該当SFを構成するPDSCHがサブフレーム境界以前に終わることになることを認知することができる。仮に、E−PDCCH終了シンボルは、前述したようにDLバーストが終わるSFの最小長に設定される場合、E−PDCCH上に送信されるDCIを介して指示された情報を活用して実際にDLバーストが終わるシンボルの位置が正確に分かる。
例えば、[10、11、12又は14]番目のOFDMシンボルでDLバーストが終わることができれば、DLバーストの終了pSFに構成されるE−PDCCHは10番目のOFDMシンボルで終わるように設定することができる。端末が終了pSFを受信するUEはブラインドデコーディングによってEPDCCHが10番目のOFDMシンボルで終わることを認知したとすれば、該当SFのPDSCHがサブフレームの境界以前に終わることが分かるが、[10、11、12、又は14]番目のOFDMシンボルの中でどのOFDMシンボルで終わるかはまだ正確に分からない。
したがって、端末はE−PDCCH上に送信されるDCIに指示される情報を活用して実際にどのOFDMシンボルでPDSCHが終わるかが分かる。この際、基地局はEPDCCHのDCIによって指示されるOFDMシンボル情報をスクランブリングシーケンス、CRCマスク、サーチスペース及び/又は新しい指示子などを介して端末に知らせることができる。
例えば、DCIフォーマットに2ビットの大きさの新しいフィールドが定義される場合、新しいフィールドの‘00’は10番目のOFDMシンボル、‘01’は11番目のOFDMシンボル、‘10’は12番目のOFDMシンボルでPDSCHが終わることを指示するように設定することができる。このような動作は(1)又は(2)のE−PDCCH構成方式を含む組合せにおいてpSFの開始OFDMシンボルの候補が3個以上の場合も同様に適用することができる。
4.2.3.1 EREGインデックシング法
以下では、上述したE−PDCCHを用いてセルフスケジューリングを行う場合、E−PDCCHを構成するリソース要素のEREG(enhanced REG)インデックシングを行う方法について説明する。4.2.3.1節及び4.2.3.2節の方法はPStartであるpSFに適用される。
基地局は既存の完全なSF(すなわち、Full SF)のE−PDCCHのような方法でEREGのためのインデックシングをした後、pSFによって送信できなかったシンボルはパンクチャリングされたと仮定することができる。若しくは、pSFの実際の開始OFDMシンボルから新たにEREGインデックシングを遂行することもできる。
仮に、pSFがスロット境界に合わせて構成され、特に該当SFの二番目のスロット境界で始まるように制限される場合には、基地局は完全なSFでのように割り当てたEREGに対するインデックシング後、一番目のスロットに含まれるOFDMシンボルをパンクチャリングして二番目のスロットにマッピングすることによってpSFを構成することができる。
この際、EREGは向上した制御チャネルのリソース要素に対するマッピングを定義するために使われる。完全なサブフレームに対して各物理リソースブロック対(PRB pair)当たり0番目のEREGから15番目のEREGまでの16個のEREGが存在することができる。一般CPの場合はアンテナポートp={107、108、109、110}、又は拡張CPの場合はアンテナポートp={107、108}に対してDM−RSを伴うリソース要素を除き、全てのリソース要素はPRB対上で周波数を優先して0から15まで昇順に循環的にマッピングされ、以後には時間リソース上にマッピングされる。この時、該当PRB対内で番号iを有する全てのリソース要素はEREG番号iを構成することができる。
また、フレーム構造タイプ3に対し、仮に上位層パラメータ(例えば、subframeStartPosition)が‘s07’を指示し、下りリンク伝送がサブフレームの二番目のスロットで始まれば(すなわち、pSFが構成されれば)、このように説明したEREGマッピング方式は該当サブフレームの一番目のスロットの代わりに二番目のスロットに適用することができる。
この際、フレーム構造タイプ3はLAAで使用する新しいフレーム構造を示し、上位層パラメータが指示する‘s07’は基地局がTxOP区間(又はDLバースト、RRP)を構成する一番目のSFがpSFで構成されることを意味することができる。
4.2.3.2 最小結合レベル設定
以下ではpSFのためのEPDCCHに対する最小結合レベルを設定する方法について説明する。
最小結合レベルはLTE−Aシステムの特別サブフレーム(special SF)のために設定された値を再使用することができる。例えば、一般CPの場合、特別SF構成(special SF configuration)3、4及び8の場合(すなわち、pSFを構成するシンボルの個数が11個又は12個)と特別SF構成1、2、6、7及び9の場合(すなわち、pSFを構成するシンボルの個数が7個、9個又は10個の場合)を分けて最小結合レベルを設定することができる。
仮に、pSFに対するEPDCCHの最小結合レベルは、特別SF構成上に定義されなかったシンボルの個数(例えば、Q個)で構成されたpSFの場合にはQと最も近い長さ(又は、Qより小さい最大長又はQより大きい最小長)のシンボルで構成された特別SF構成に対する設定方法に従うように定義することができる。これは拡張CPの場合にも同じ規則を易しく拡張して適用することができる。
4.2.3.3 EPDCCHモニタリングサブフレーム
現在のLTE−Aシステムにおいて、E−PDCCHに対するモニタリングSFはセル単位でRRC層で端末にシグナリングされる。
この際、端末はUCellでEPDCCHモニタリングSFに対するRRCシグナリングがDLバースト区間内でのみ有効であると見なすことができる。
若しくは、全てのUCell(又は、特定UCell)のためにはこのようなRRCシグナリングを許さず、前もって定義されたPCell(又は他のCell)上の構成を承継するように設定することができる。このような規則は、クロスキャリアスケジューリング(又は、セルフスケジューリング)によって定義されたMBSFN SFのためにも同様に適用可能である。
4.2.3.4 ZP−CSI−RS設定方法
LTE−Aシステムにおいて特定EPDCCH集合上のZP−CSI−RS設定はRRCシグナリングによって遂行される。
LAAシステムのUセル上で不連続的に現れるDLバーストの特性上、ZP−CSI−RSが周期的に設定されることは難しいことがあり得る。よって、端末はUCellでZP−CSI−RS構成に対するシグナリングがDLバースト区間内でのみ有効であると見なすことができる。
若しくは、端末は、Uセルで送信されるEPDCCH集合に関連して非周期的ZP−CSI−RS構成が導入される場合、RRCシグナリングによって設定されたEPDCCH集合上のZP−CSI−RSは有効でないと見なすことができる。
LTE−Aシステムで使われるEPDCCHはZP−CSI−RSが存在するREに対してレートマッチング(rate−matching)が遂行される。このような場合は、RRCシグナリングによって設定されたZP−CSI−RSが存在するREに対してはレートマッチングが遂行されないこともある。
また、非周期的ZP−CSI−RS構成上のZP−CSI−RSREに対してレートマッチングが遂行されるように規定されることができる。
4.2.3.5 PDSCH開始位置
LTE−Aシステムでは、EPDCCHを介してセルフスケジューリングが遂行されるとき、PDSCHの開始シンボルは上位層シグナリングによって設定されたEPDCCHの開始シンボルと同様に設定される。本発明の実施例において、DLバースト(又は、TxOPなど)の最初のSFの開始時点は4番目のOFDMシンボルで、UCell上のスケジューリングはEPDCCHを介してセルフスケジュールされるように設定することができる。この際、UEはDLバーストの最初のSFのPDSCH開始シンボルは4番目のOFDMシンボルとして認識し、DLバーストの残りのSFでのPDSCH開始シンボルは設定されたEPDCCH開始シンボルと違うものとして認識することができる。例えば、DLバーストの最初のSF以外のSFでPDSCHの開始シンボルは1番目のOFDMシンボルに前もって定義されるかあるいは上位層シグナリングによって設定されることができる。
次の表8はPDSCH開始時点を設定する方法の一つを説明するためのものである。
4.2.3.6 一つのECCEを構成するEREG個数
LTE−Aシステムにおいては、E−PDCCHを送信することができるOFDMシンボルの個数(又は、RE個数)が少ない一部の特別サブフレーム構成(special subframe configuration)1、2、6、7又は9に対して向上した制御チャネル要素(ECCE:Enhanced Control Channel Element)を構成する向上したリソース要素グループ(EREG:Enhanced resource Element Group)の個数が4ではなくて2倍である8に設定される。これについての詳細な内容は3GPP TS 36.213規格文書の9.1.4節の内容を参照することができる。
LAAシステムでは、部分サブフレーム(pSF)伝送によってE−PDCCHを送信することができるOFDMシンボルの個数(又は、RE個数)が減る場合にも類似の動作を遂行するように設定することができる。例えば、pSFを構成するOFDMシンボルの個数が11個以上であれば一つのECCEを構成するEREG個数を4個に設定し、11個未満であればECCEを構成するEREGの個数を8個に設定することができる。
一つのECCEを構成するEREGの個数を設定する方法はPStartに適用される。
4.2.3.7 E−PDCCHデコーディング候補個数
LTE−Aシステムでは、E−PDCCHで送信するDCIの大きさに比べてサブフレーム内でE−PDCCH伝送のために使用可能なREの個数が少ない場合(Case1)、又はECCEを構成するEREGの個数が8であって全てのECCEの個数が少なくなる場合(Case2)に特定のサブフレームでEPDCCHデコーディング候補個数が変わることができる。Case1又はCase2が適用される場合についての詳細な説明は3GPP TS 36.213規格文書の9.1.4節の内容を参照することができる。
LAAシステムにおいて、pSFを構成するOFDMシンボルの個数が特定の個数(例えば、既設定の又は上位層シグナリングされた値)以下になれば上述したCase1が適用されるように設定することができる。
若しくは、4.2.3.5節で説明したように特定の条件を満たせば、一つのECCEを構成するEREG個数をいつも8個に固定させる場合にはCase2が適用されるように設定することができる。
LTE−Aシステムにおいて、一般SF(すなわち、full SF)で一つのPRB対に含まれるREの個数(nEPDCCH)は168個である。仮に、pSFが1個のスロットで構成される場合は84個のREを有することができ、pSFが1個のスロットより大きい大きさに設定される場合にも104個以下のREで構成される可能性が高い。
このような場合、REの個数nEPDCCH<104の場合にはCase1が適用されることができる。例えば、nEPDCCH<104の場合、端末はCase1と見なしてEPDCCHをデコードすることができる。TS 36.213規格文書のテーブル9.1.4−1a、9.1.4−1b、9.1.4−2a、9.1.4−2b、9.1.4−3a、9.1.4−3b、9.1.4−4a、9.4.4−4b、9.1.4−5a及び/又は9.1.4−5bを参照すると、Case1が適用される場合、他のCaseに比べてEPDCCH結合レベルが“1、2、4、8(、16)”より大きい“2、4、8、16(、32)”が適用される。すなわち、基地局はCase2又は3が適用される場合よりEPDCCH結合レベルが2倍になるようにEPDCCHを構成して送信することができる。
したがって、LAAシステムにおいてpSFの場合にpSFを構成するREの個数(nEPDCCH)が特定の個数(例えば、104個)以下の場合、基地局はEPDCCHに対してCase1を適用して(すなわち、EPDCCH結合レベルを上げて)構成し、端末に送信することができる。端末は、pSFが構成された場合、Case1が適用されたものに基づいてEPDCCHに対するブラインドデコーディングを遂行することができる。
本実施例の他の態様として、上述した4.2.1節及び4.2.3節の方法において、pSFの長さによってその選択を異にするように構成されることができる。例えば、基地局は、pSFの長さがZシンボルより大きければPDCCHを用いてセルフスケジューリングを遂行し、Zシンボル以下であればEPDCCHを用いてセルフスケジューリングを遂行するように設定することができる。
4.2.3.7節の方法はPStartであるpSFに適用される。
本実施例のさらに他の態様として、上述した4.2.1節及び4.2.3節の方法において、(E)PDCCHの開始シンボルの設定はpSFではない完全なSF(すなわち、プールSF)の場合にも同様に適用することができる。例えば、完全なSFの5番目のOFDMシンボル(1st slot、l=4)からPDCCHを構成し、PDCCH領域ではない残りのOFDMシンボルをPDSCHに設定することができる。
4.2.3.8 スケジューリング方式制限方法
上述した4.2節で説明したように端末がセルフスケジューリングを受けるように構成される場合、基地局がpSFに対してセルフスケジューリングを遂行するに際して、該当pSFに対する制御チャネルの位置をeNBが知らせるか、その位置をUEが検出するために実装の複雑度の増加する問題があり得る。
したがって、該当端末は、pSFに対してセルフスケジューリングは許されずにクロスキャリアスケジューリングのみが許されるように構成されることができる。仮に、基地局がpSFを送信する時点にセルフスケジューリングを遂行しなければならなければ、該当pSFにPDSCHは含まれないこともある。例えば、該当pSFは単にチャネルを占有するためのダミー信号で構成されるか、同期獲得、AGC設定、及び/又はセル識別のための用途にのみ構成されることができる。すなわち、端末にセルフスケジューリングが構成された場合には、該当端末はpSFの受信を期待しないことができる。
4.3 ハイブリッドスケジューリング
以下ではチャネル環境又はシステム要求事項によってクロスキャリアスケジューリングとセルフスケジューリングを一緒に用いるハイブリッドスケジューリング方式について説明する。
DLバーストの最初のSFは、その長さの可変性によって、UCellでセルフスケジュールするときに制御チャネルの位置が一定でないので、最初のSFに対するセルフスケジューリングはeNBとUEの側面で実装が難しいことがあり得る。また、UCellの個数が増えれば、PCellでクロスキャリアスケジューリングのための負担(overhead)が大きく増加することができる。
したがって、DLバーストの最初のSF(又は、pSF)にはクロスキャリアスケジューリングを適用し、残りのSFにはセルフスケジューリングを適用するように構成することができる。
LTE−AシステムのCA状況では基地局がRRCシグナリングによって該当セルがクロスキャリアスケジューリング又はセルフスケジューリングを行うか否かを端末に知らせた。しかし、本発明の実施例では、一つのDLバーストに対して一部のSFはクロスキャリアスケジューリングを、残りの一部のSFはセルフキャリアスケジューリングを遂行することができる。これをハイブリッドスケジューリングと呼ぶことにする。
4.3.1 プレスケジューリング
図15で、pSF開始に先立つSF #N+1の時点に基地局がクロスキャリアスケジューリングを行うことをプレスケジューリングに定義した。図15を参照すると、SF #N+1で送信されるPDSCHに対するスケジューリングはPCell上のSF #N+1で遂行され、残りのSFはUCellでセルフスケジューリング方式でスケジュールされることができる。
SF #N+1の時点にプレスケジュールされたと言っても、SF #N+1の間にチャネルがアイドルでなければ、基地局はSF #N+1でpSFを送信することができなく、SF #N+2の時点にまたプレスケジューリングを遂行することができる。このような問題を解決するために、eNBはUEにプレスケジューリングと別個のシグナリングによってDLバーストが実際に始まったことを知らせることができる。
例えば、図15で、eNBはSF #N+2の時点にDLバーストが始まったことをPCell又はUCellを介して端末に明示的に知らせることができる。より詳細に、DLバースト開始通知メッセージはセル特定サーチスペース(CSS)を介して端末に送信されることができる。
UEはDLバーストの開始を知らせるDLバースト開始通知メッセージを受信するまではクロスキャリアスケジューリングを期待し、DLバーストの開始を知らせるメッセージを受信したSFを含み、該当DLバーストが終わるまでセルフスケジューリングを期待することができる。この際、UEがクロスキャリアスケジューリング又はセルフキャリアスケジューリングを期待するというのは、UEがPDCCH及び/又はEPDCCHをデコードするためにPセル又はUセルのサーチスペースをモニター及びデコードすることを意味する。
この際、DLバーストの長さは物理層シグナリング又は上位層シグナリングによって端末に設定することができる。
本実施例の他の態様として、図15で、eNBはSF #N+2の時点にDLバースト上の最初のSF(例えば、pSF)の長さについての情報をPCellを介して又はUCellを介して明示的に端末に知らせることができる。例えば、基地局はCSSを介して該当情報を端末に送信することができる。
仮に、DLバースト上の最初のSFの長さがWシンボルより大きければ、最初のSFはクロスキャリアスケジューリングによって、W以下であれば最初のSFはセルフスケジューリング方式でスケジュールされることができる。この際、UEはDLバースト上の最初のSFの長さについての情報を受信するまではクロスキャリアスケジューリングを期待するように構成される。UEは、CSSを介して受信されたDLバースト上の最初のSFの長さが分かり、SFの長さによって違うスケジューリング方式が適用されることが分かる。例えば、DLバースト上の最初のSFの長さがWシンボルより大きければ端末はクロスキャリアスケジューリングを期待し、DLバースト上の残りのSFに対してはセルフスケジューリングを期待することができる。一方、端末がCSSを介して分かることになったDLバースト上の最初のSFの長さがWシンボル以下であればDLバースト上のSFに対してはセルフスケジューリングを期待することができる。
4.3.2 ポストスケジューリング
図15で、pSF開始時点より遅くクロスキャリアスケジューリングを行うことをポストスケジューリングに定義した。この際、SF #N+1のPDSCH伝送に対するスケジューリングはPCell上のSF #N+2で、残りのSFに対するスケジューリングはUCellでセルフスケジュールされることができる。
4.3.1節と同様に、eNBはUEにポストスケジューリングと別個のシグナリングによってDLバーストが実際に始まったことを明示的に知らせることができる。UEはいつもPCell上のクロスキャリアスケジューリングとUCell上のセルフスケジューリングを全て期待することができる。端末がPCell上にDLバーストの開始を知らせるメッセージを受信すれば、端末はその次のSFからDLバーストが終わるまではUCell上のセルフスケジューリングのみ期待し、PCell上のクロスキャリアスケジューリングは期待しないこともできる。この際、DLバーストの長さは物理層シグナリング又は上位層シグナリングによって設定することができる。
4.3.3 特定のUセルに対するハイブリッドスケジューリング
端末は特定のUCellに対していつもクロスキャリアスケジューリング及びセルフスケジューリングを同時に期待するように設定することができる。
4.3.1節、4.3.2節又は4.3.3節のスケジューリング方法において、基地局は特定のUCellに対していつもクロスキャリアスケジューリング及び/又はセルフキャリアスケジューリングを遂行することができ、基地局が指定した時点から(又は指定した区間内で)クロスキャリアスケジューリング及び/又はセルフキャリアスケジューリングを遂行するように構成されることができる。
4.3.4 サーチスペース
前記4.3節で説明したハイブリッドスケジューリング方法において、特定の時点に一つのUCellに対するスケジューリンググラントが一つのUセルだけではない多数のUセルの中で一つ以上のセルで送信されることができることを仮定した。例えば、特定UEの観点でSF #N時点にPCellだけでなくUCell1でUCell1に対するスケジューリンググラントがeNBから送信されると期待することができる。若しくは、端末はSF #N時点にPCellだけでなくUCell2でUCell1に対するスケジューリンググラントがeNBから送信されると期待することができる。すなわち、以下では、一つのUセルに対するスケジューリングが複数のCellから設定することができる環境でPDCCHサーチスペース構成及びUEのPDCCHブラインドデコーディング(BD)方法について説明する。
スケジュールされたセル(Scheduled cell)のスケジューリングのためのPDCCHサーチスペースは、他のセルに対して複数のスケジュールを遂行するスケジューリングセル(scheduling cell)の全てに同時に構成されることができる。また、UEは、複数のスケジューリングセル上のサーチスペースに対して同時に、スケジュールされたセルに対するスケジューリング検出のためのPDCCHブラインドデコーディングを試みることができる。この際、UEの特定のスケジュールされたセルに対するBD遂行回数は次のように設定することができる。
LTE−Aシステムにおいて、特定のスケジュールされたセルに対するBD回数がN回であり、スケジューリングセルの個数をK(>1)個であると仮定するとき、UEは該当スケジュールされたセルに対するBD回数をNより大きく設定することができる。例えば、該当スケジュールされたセルに対するBD回数をK*N個に設定することができる。若しくは、UEの立場で特定のスケジュールされたセルに対するBD回数が増加してUE実装複雑度が増加する問題を考慮し、スケジューリングセルの個数が複数になるとき、BD回数がNより小さいか同じになるように設定することができる。
以下では、この実施例の他の態様として、スケジューリングセルが複数個になる場合にもBD回数をNに維持させる方法について説明する。
一番単純には、スケジューリングセル(等)間のBD回数を均等に分割することができる。例えば、スケジューリングセルの個数が2個の場合、各スケジューリングセルに対するBD回数はN/2に設定することができる。このような方法を適用する場合、結合レベル(AL:Aggregation Level)別のBD回数が多数のスケジューリングセルの間に同一に設定されると定義することができる。例えば、AL{1、2、4、8}に対するBD回数がそれぞれ{6、6、2、2}回であり、K=2である場合、各スケジューリングセルのAL別のBD回数は{3、3、1、1}回に設定することができる。
若しくは、スケジューリングセル(等)間のBD回数を不均等に設定することもできる。例えば、システム帯域幅が大きいスケジューリングセルにもっと多いBD回数を設定するかあるいは免許帯域スケジューリングセル(Pセル)にもっと多いBD回数を設定することもできる。例えば、AL{1、2、4、8}に対するBD回数がそれぞれ{6、6、2、2}であり、K=2である場合、システム帯域幅が大きいスケジューリングセル又は免許帯域のスケジューリングセルのAL別のBD回数は{4、4、2、2}回に設定し、残りのスケジューリングセルの場合、AL別のDB回数は{2、2、0、0}に設定することができる。これは、システム帯域幅が大きいスケジューリングセル又は免許帯域のスケジューリングセルに対して高いALのBD回数がより多く設定されると解釈することができる。
スケジューリングセルの個数が複数であり、全BD回数がNより大きいか小さいMに設定されるとき、スケジューリングセル間のDB回数(M)を均等にあるいは不均等に設定する方法は前記提案方法を活用することができる。
以下では、本発明の実施例のさらに他の態様として、複数のスケジューリングセルの一部又は全部がTDDセルの場合、BD回数の割当て方法について説明する。
TDD DL/UL構成によって、特定時点にDL SFであるスケジューリングセルの個数が1個又は2個以上であることがあり得る。仮に、特定時点にDL SFであるスケジューリングセルの個数がK個であると仮定するとき、UEは該当スケジュールされたセルに対するBD回数をK*N個に設定することができる。
若しくは、特定時点にDL SFであるスケジューリングセル(等)の個数が変わってもUEの立場で行うBDの回数はいつも一定になるように設定することができる。例えば、特定時点にDL SFであるスケジューリングセル(等)の個数が1個であれば該当セルでN回のBDを遂行し、特定時点にDL SFであるスケジューリングセル(等)の個数が2個以上であれば前記提案した方法によってセル別にBD回数を分割し、BD回数の総和をNに維持させることができる。
若しくは、特定時点にDL SFであるスケジューリングセル(等)の個数によってBD回数を設定する複雑度を減らすために、複数のスケジューリングセルが許されるSFを#0、#1、#5、#6に制限することができる。すなわち、現在のLTE−AシステムのTDD DL/UL構成上でいつもDL SFに設定されるSFの場合にのみ複数のスケジューリングセルを許し、BD回数をセル別に設定し、残りのSFの場合にはセルフスケジューリングのみ許すように構成されることができる。
下りリンク伝送だけでなく、上りリンク伝送に対しても特定のスケジューリングセルに対するスケジューリンググラントが複数のセルから送信されることができる。この際、スケジュールされたセル上のPUSCH伝送に対するPHICHの場合、複数のスケジューリングセルの中で該当PUSCHに対するスケジューリンググラントが実際に送信されたスケジューリングセル上に送信されることができる。
4.4 pSFに対するCSI測定及び報告方法
以下では、pSFのCSI測定のための有効性(validity)について説明する。以下の実施例は4.1節〜4.3節で説明したスケジューリング方式が適用される場合に一緒に又は単独で適用可能な実施例である。
4.4.1 SF形態による有効性設定
一定でないpSFの長さに対してUEとeNBの間に不一致(mismatch)が発生し得る。この際、仮にpSFがCSI参照リソース(CSI reference resource)に指定されれば、UEとeNB間のpSF長さ情報の不一致によってUEは誤ったCQI値を基地局にフィードバックすることがあり得る。これを防止するために、pSFは有効下りリンクサブフレーム(valid downlink SF)と見なされることができない。また、完全なSFのみが有効下りリンクサブフレームと見なされることができる。
例えば、基地局はpSFにCSI−RSリソースを割り当てないことができ、端末はpSFに対しては有効サブフレームと見なさないので、pSFをCSI測定及び報告のための参照リソースとして使わない。よって、端末はDLバースト(又は、TxOP区間、RRP区間など)に含まれた完全なSFに対してのみCSIを測定し、周期的又は非周期的方式で基地局に報告することができる。もちろん、端末は、CSI報告周期でDLバーストがなくても以前に測定したCSIを基地局に報告することができる。
4.4.1節で、pSFは最初の一部のOFDMシンボルが空いたままで送信されるPStart SF、最後の一部のOFDMシンボルが空いたままで送信されるPEnd SFを含むことができる。
4.4.2 pSFの長さによる有効性設定
競争に基づく任意接続方式で動作する非免許帯域の特性上、特定のeNBの該当帯域に対する占有割合が低いこともある。このような状況でpSFまで有効下りリンクSFから除かれれば、端末が活用するCSI参照リソースの個数が多くないから、正確なCQIを測定して報告することができないことがあり得る。したがって、pSFを有効下りリンクSFと見なすことができる。
D−2a)pSFの長さによって該当SFの有効性が決定されることができる。例えば、pSFの長さが7680Tsより大きい場合にのみ有効下りリンクSFと見なされることができる。この際、7680Tsの大きさはLTE−Aシステムで定義される特別SFの最小単位である。
D−2b)DLバーストの開始pSF(又は、終了pSF)のサポート可否はUE性能(及び/又はeNB性能)として設定することができる。この際、基地局は開始pSF(又は、終了pSF)受信が可能であるというUE性能シグナリング(UE capability signaling)を送信したUE及び/又は基地局性能シグナリング(eNB capability signaling)を受信したUEに限って開始pSF(又は終了pSF)が有効であると見なすことができる。
このようなpSFはDLバーストの開始SF及び/又は終了SFでも構成されることができる。この際、4.4.1節及び4.4.2節で説明した方法はDLバーストの開始SFのみならず終了SFに対しても適用可能である。
4.5 フローティングTTI
以下では、フローティングTTI構造について説明する。図20の例示のように、SF境界ではない時点に基地局のLBT動作(CCA動作又はCS動作)が完了しても、pSFではないいつも完全な大きさのSFが構成されることができる。例えば、基地局はいつも1ms程度のTTIを維持しながらSFを送信することができる。これをフローティングTTI構造であると定義することができる。
4.5.1 開始位置制限
4.2.2節で説明したようにPDCCHの長さが1OFDMシンボルより大きい場合、フローティングTTIの開始位置に対する制約が必要であり得る。DM−RSに基づいてPDSCHデコーディングを試みる伝送モード(TM)を使うUEに対し、図21のようにフローティングTTIが送信されれば、端末のDM−RSによるチャネル推定に問題が発生し得る。図21はフローティングTTIが構成されるとき、開始位置を制限する方法を説明するための図である。
例えば、時間軸上にコード分割多重化(CDM:code division multiplexing)した構造を有するDM−RSを考慮するとき、図21のようにDM−RSが連続したOFDMシンボルではなくて1ms程度だけ離れた構造では二つのDM−RS間のチャネル情報が一致しなくて直交性(orthogonality)が保証されないことがあり、これによって端末のチャネル推定性能が低下することができる。
これを解決するために、DM−RSが連続したOFDMシンボルに送信されることができるようにフローティングTTIの開始位置が制限されることができる。例えば、図21で6番目のOFDMシンボル及び13番目のOFDMシンボルではフローティングTTIが始まらないように設定することができる。図21で6番目のOFDMシンボルから13番目のOFDMシンボルはSF #Nに含まれたシンボルであり、0番目〜5番目のOFDMシンボルはSF #N+1に含まれたシンボルである。
本実施例の他の態様として、端末のバッファリング性能を考慮して一部のSFで開始位置が制限されることができる。フローティングTTIの構造上、いつも端末の最小伝送単位(例えば、1ms)のバッファリングを必要とする。しかし、一部の端末の場合、1msバッファリングがサポートされないこともある。例えば、1スロット程度のバッファリングのみがサポートされる端末を考慮する場合、フローティングTTIの開始位置は最初のOFDMシンボル又は二番目のOFDMシンボル以後にのみ制限されることができる。
4.5.2 DLバーストの最後のフローティングTTIの長さ
基地局のLBT動作が完了した時点がOFDMシンボル境界と正確に一致しない場合、基地局は該当時点から次のOFDMシンボル境界まで予約信号を送信することができる。また、伝送ノードが一度チャネルを占有したとき、占有可能な最大時間が限定されていることがあり得る。図22はDLバーストの最後のフローティングTTIの長さを設定する方法の一つを説明するための図である。
図22のように基地局はSF #Nの三番目のOFDMシンボルの中間からチャネル占有のための予約信号(reservation signal)を送信した後、四番目のOFDMシンボルからフローティングTTIが始まり、伝送ノードの占有可能な最大時間が2msであると仮定する。この際、最後のTTIの最後のOFDMシンボル(例えば、SF #N+2の三番目のOFDMシンボル)は送信できないことがあり得る。
仮に、4.5.1節のようにフローティングTTIの開始位置に制限があれば、予約信号の長さは一つのOFDMシンボルより長いことがあり得る。これにより、DLバーストを構成する最後のフローティングTTIの長さは図21に示したTTIより短くなることができる。
仮に、UEは該当フローティングTTIが上位層シグナリング又は物理層シグナリングによってDLバーストを構成する最後のフローティングTTIであることが分かれば、基地局は最後のTTIに対する最初のOFDMシンボル位置だけでなく該当TTIを構成するOFDMシンボルの個数(又は、終了OFDMシンボルの位置)を端末に知らせることが好ましい。
一方、UEは該当フローティングTTIがDLバーストを構成する最後のフローティングTTIであることが分からなければ、eNBは各フローティングTTIに対するスケジューリンググラントごとに最初のOFDMシンボルの位置のみならず該当TTIを構成するOFDMシンボルの個数(又は終了OFDMシンボルの位置)を端末に知らせることが好ましい。
仮に、予約信号が基地局及び端末で前もって知っている信号(known sequence)で構成され、端末がDLバーストを構成するフローティングTTIの個数を上位層シグナリング又は物理層シグナリングによって知っている場合に限り、端末はDLバースト上の最後のフローティングTTIの長さを黙示的に類推することができる。
例えば、予約信号が2OFDMシンボルにわたって入って来たし、DLバーストを構成するフローティングTTIが2個であることを知っているUEが二番目のフローティングTTIでスケジューリンググラントを受信したとすれば、14OFDMシンボルではなくて12OFDMシンボルで構成されたフローティングTTIであると仮定してデコーディングを遂行することができる。
4.5.3 フローティングTTIでのEPDCCH伝送方法
PDCCHを介してセルフスケジュールされるUEはいつもSFの最初のOFDMシンボルから始まるPDCCHからフローティングTTIの開始時点が分かる。
しかし、フローティングTTIの場合、EPDCCHの開始シンボルが一定でないこともあるので、EPDCCHを介してセルフスケジュールされるUEはEPDCCHを正常に受信するためには全ての開始位置候補(starting position candidate)に対してEPDCCHデコーディング遂行しなければならない。これは端末の実装複雑度を大きく増加させる。
これを解決するために、本発明の実施例では、基地局が端末にPCellの共用サーチスペースを活用してEPDCCHの開始位置を指示することができる。若しくは、4.5.2節で記述したように最後のTTIの終了位置が変わることを考慮し、EPDCCHが終わる位置も端末に明示的に指示することができる。
4.6 PDCCH領域及びPDSCH開始シンボル設定方法
4.6.1 PDCCH領域設定方法
UCellでPCFICHが定義されなければ、Uセルに対するPDCCH領域は上位層シグナリングによって端末に設定することができる。このような設定値はセルフキャリアスケジューリング及び/又はクロスキャリアスケジューリングの場合に適用することができる。若しくは、このような設定値はUE特定(UE−specific)に適用するかセル特定(cell−specific)に適用することができる。
この際、PDSCH開始シンボルは上位層シグナリングによって設定されたPDCCH領域によって決定されることができる。例えば、PDCCH領域は2OFDMシンボルに設定されており、pSFの開始時点は0番目のOFDMシンボル又は3番目のOFDMシンボルに設定されていれば、UEは、pSFが0番目のOFDMシンボルで始まればPDSCHは2番目のOFDMシンボルで始まり、pSFが3番目のOFDMシンボルで始まればPDSCHは5番目のOFDMシンボルで始まると仮定することができる。
4.6.2 PDSCH開始シンボル設定
DLバーストに構成されるPDSCHの開始シンボルが上位層シグナリングによって端末に設定することができる。この際、設定された値はセルフキャリアスケジューリング及び/又はクロスキャリアスケジューリングに適用することができる。また、該当値は端末特定(UE−specific)の値又はセル特定(cell−specific)の値に設定することができる。この際、PDSCHの開始シンボルは可能なpSFの開始位置によって多くの値を有することができ、PDCCH領域はPDSCHの開始シンボルによって黙示的に決定することができる。例えば、PDSCHの開始シンボルが3番目のOFDMシンボルに設定されれば、PDCCH領域はPCFICHがなくても0番目のOFDM symbolから2番目のOFDMシンボルまで3個のOFDMシンボルで構成されることをUEは仮定することができる。
4.6.3 上位層信号シグナリング方法
PDCCH領域とPDSCH開始シンボルは共に上位層シグナリングによって設定することができる。設定された値はセルフキャリアスケジューリング及び/又はクロスキャリアスケジューリングの場合に適用することができる。また、該当値はいずれも端末特定の値又はセル特定の値であってもよい。若しくは、値の一部は端末特定の値であり、値の残りはセル特定の値であってもよい。この際、PDCCH領域以後にのみPDSCH開始シンボルを構成するように制限されることができる。若しくは、UEはPDCCH領域とPDSCH開始シンボルが重畳するシグナリングを期待しないことができる。
4.7 pSF運用のための基地局及び端末の動作
前述したように、pSF構造をeNBがどのように適用するかによってUEの動作が変わることができる。本発明の実施例において、説明の便宜上、DLバーストを構成するサブフレームの初めの一部のOFDMシンボルが空いたままで送信されるpSFを‘PStart’、最後の一部のOFDMシンボルが空いたままで送信されるpSFを‘PEnd’、完全なSFを‘Full’に定義して説明する。
また、DLバーストはDL伝送バースト(DL Tx burst)と呼ぶことができ、TxOP区間、RRP区間と同一の意味として使うことができる。この際、DLバーストは予約信号が送信される区間まで含む概念であってもよい。
4.7.1 G1)PStartとFullのみ運用する方法
eNBはPStartとFullのみを運用するが、スケジューリングすべきUEのタイプによって次のようにPStartの長さを変えて設定することができる。
G1−A)クロスキャリアスケジューリング端末の場合、Fullでのみスケジュールされることを期待することができる。
G1−B)セルフキャリアスケジューリング端末でありながらPDCCHを介してスケジュールされるように設定されたUEはPStart及びFullが共にスケジュールされることを期待することができる。この際、PStartの最初のOFDMシンボルは全てのOFDMシンボルが許されることができ、一部のOFDMシンボルでのみ始まることができるように制限されることができる。例えば、二番目のCRSアンテナポート0が送信される五番目のOFDMシンボルでのみPStartが始まるように制限されることができる。若しくは、二番目のスロット境界でのみPStartが始まることができるように制限されることもできる。
端末はCRS及び/又はPDCCHデコーディングの成否によって実際のPStartの開始時点を決定することができる。若しくは、端末はPStartの開始時点をプリアンブル(又は、initial signal)の位置及び/又はシーケンスによって決定することができる。
G1−C)セルフキャリアスケジューリングUEでありながらEPDCCHを介してスケジュールされるように設定されたUEはPStart及びFullが共にスケジュールされることを期待することができる。若しくは、PStartでEPDCCHをデコードすることができるかが端末性能(UE capability)として定義され、eNBは該当性能がサポート可能であるとシグナルされた端末に対してのみPStart EPDCCHを介してスケジュールするように設定することができる。若しくは、eNBはUE別に(又は、cell共通に)PStartでEPDCCHを介したスケジューリング可否に対して上位層シグナル(例えば、RRC)によって構成することができる。若しくは、PStartでEPDCCHがサポートされないように構成することができる。この際、PStartの最初のOFDM symbolはG1−B)の場合のように制約があり得て、G1−B)に相応するUEの最初のOFDMシンボルとG1−C)に相応するUEの最初のOFDMシンボルは違うことができる。
例えば、G1−B)に相応するUEの最初のOFDMシンボルが二番目のスロット境界に相当し、G1−C)に相応するUEの最初のOFDMシンボルが三番目のOFDMシンボルであれば、eNBはスケジューリングすべきUEが何のUEであるかあるいはLBT終了時点がいつであるかによって基地局はG1−B)方式を適用するかあるいはG1−C)方式を適用するかを決定することができる。
G1−C)方式の場合、端末がPStartであるかFullであるかを区別することができる方法は次の一つであってもよい。
(1)方式1:基地局が明示的なシグナリングによって端末にSFのタイプを指示することができる。端末には二つ以上のEPDCCH集合が設定されることができる。この際、長さが小さいEPDCCHの場合、端末が該当SFがFullであるかPStartであるかを区分することができないことがあり得る。よって、基地局は該当SFがFullであるかPStartであるか及び/又は該当SFの大きさを端末に明示的に指示することができる。
(2)方式2:二つのEPDCCH集合の一方をPStart用途に、他方をFull用途に前もって設定して置き、UEはどのEPDCCH集合がデコードされるかによって該当SFがPStartであるかFullであるかが分かる。
(3)方式3:端末がBDによってPStartであるかあるいはFullであるかを区別することができる。例えば、二つのEPDCCH集合のそれぞれに対してPStart用途のEPDCCH(相対的に短い長さのEPDCCH)とFull用途のEPDCCH(相対的に長い長さのEPDCCH)が前もって設定されており、端末がどの長さのEPDCCHに対してデコーディングが成功したかによって端末は該当SFがPStartであるかFullであるかを区別することができる。
(4)方式4:端末はDLバーストで送信されるプリアンブルによって該当SFがPStartであるかFullであるかを区別することができる。例えば、二つのEPDCCH集合のそれぞれに対してPStart用途のEPDCCH(相対的に短い長さのEPDCCH)とFull用途のEPDCCH(相対的に長い長さのEPDCCH)が前もって設定されている場合、端末はプリアンブルの位置及び/又はプリアンブルシーケンスによって該当SFがPStartであるかFullであるかを区別することができる。
4.7.2 PStartに割り当てられるDM−RSパターン
以下では、PStartを構成するOFDMシンボルの個数が7個であるとき、DM−RS及びEPDCCHを構成する方法について説明する。
図23はPStartでDM−RS及びEPDCCHを構成する方法を説明するための図である。
端末にPStartが構成される場合、DM−RSパターンは図23の(a)、(b)及び(c)の一つの形態に構成されることができる。この際、CRSはLTE−Aシステムにおいて構成されるCRSパターンをそのまま活用することができるが、DM−RSパターンは図23の(a)、(b)及び(c)の一つを適用することができる。
PStartでEPDCCH開始位置は図23で8番目、9番目又は10番目のOFDMシンボルの一つとなることができ、EPDCCH終了位置は図23で12番目及び13番目のOFDMの一つとなることができる。この際、端末に送信されるPDSCHの伝送効率を考慮すると、PStart上にDM−RS及び/又はCSI−RS/CSI−IMは構成されないように設定することができる。
4.7.3 G2)FullとPEndのみを運用する方法
以下では、基地局がFullとPEndのみを運用する方法について説明する。
G2−A)クロスキャリアスケジューリングUEの場合、Full及びPEndが共にスケジュールされることを期待することができる。この際、該当SFがPEndであるかを知らせる指示子又はPEndの長さを知らせる指示子のための追加のシグナリングが必要であり得る。例えば、該当SFがPEndであるか(又は、PEndの長さ)を知らせる指示はPDCCHを介して送信されることができる。
G2−B)PDCCHによってセルフスケジュールされるように設定されたUEはFull又はPEndが共にスケジュールされることを期待することができる。この際、該当SFがPEndであるかを知らせる指示子又はPEndの長さを知らせる指示子のための追加のシグナリングが必要であり得る。例えば、PEndであるか(又は、PEndの長さ)を知らせる指示はPCell上の共用シグナル(common signal)によって又はLAA SCell上のPCFICHを介して又はPDCCHを介して端末に送信されることができる。
G2−C)セルフキャリアスケジューリングUEでありながらEPDCCHを介してスケジュールされるように設定された端末はFullのみがスケジュールされることを期待することができる。若しくは、該当端末はFull及びPEndが共にスケジュールされることを期待することができる。若しくは、PEndでEPDCCHをデコードすることができるかが端末性能(UEcapability)に定義されている場合、eNBは該当端末性能があるとシグナルされたUEに対してのみPEndのEPDCCHを介してスケジュールするように設定することができる。若しくは、eNBはUE別に(又はcell共通に)上位層シグナリング(例えば、RRCシグナリング)によってPEndでEPDCCHを介してスケジューリングされるかを指示することができる。
この際、該当SFがFullであるかPEndであるかをUEが区別する方法は次の一つであってもよい。
(1)方式1:基地局はPCell上の共用シグナルによって又はLAA SCell上のPCFICHを介してFullであるかPEndであるかを端末に指示することができる。例えば、UEはPEnd用途に設定されたEPDCCH集合に対してデコーディングを試みることができる。若しくは、端末はPCell上の共用信号によってあるいはLAA SCell上のPCFICHを介して該当SFがPEndであることを認知することができる。このような端末は該当SFに対して(EPDCCHデコーディングではない)PDCCHデコーディングを遂行するように設定することができる。
(2)方式2:基地局は明示的シグナリングによって指示することができる。すなわち、基地局は該当SFがFullであるかPEndであるか又は該当SFの大きさを明示的に端末に指示することができる。
(3)方式3:二つのEPDCCH集合の一方をPEnd用途、他方をFull用途に前もって設定して置き、UEはどのEPDCCH集合がデコードされるかによって該当SFがPEndであるかFullであるかが分かる。
(4)方式4:端末はBDによって該当SFがFullであるかPEndであるかを区別することができる。例えば、二つのEPDCCH集合のそれぞれに対してFull用途のEPDCCH(相対的に長い長さのEPDCCH)とPEnd用途のEPDCCH(相対的に短い長さのEPDCCH)を共に設定して置き、どの長さのEPDCCHに対してデコーディングが成功したかによって該当SFがFullであるかPEndであるかを区別することができる。
(5)方式5:基地局はDM−RSパターン別にEPDCCHを設定することができる。例えば、PEndが特別SFであるDwPTS構造に従うとすると、PEndの長さによって図24のように4種のDM−RSパターンが構成されることができる。図24はDM−RSパターン別にEPDCCHが構成される方法を説明するための図である。図24は一例示であり、他の特別SFの構造が用いられるか、あるいは新形態のDM−RSパターンが構成されることができる。
方式5で、基地局は各DM−RSパターンをサポートするDwPTSの終了OFDMシンボル(end OFDM symbol)の最小OFDMシンボルでEPDCCHが終わるように設定することができる。例えば、DLバーストの終了pSFを構成するOFDMシンボルの個数が11〜13個である場合は図24(b)のようなDM−RSパターンに従い、LTE−Aシステム(Rel−12)においてDwPTSの長さが11OFDMシンボルであるとき、DwPTS構成3又は8に定義されたEPDCCH構成(例えば、Number of EREGs per ECCE、supported EPDCCH formats、 EPDCCH candidates monitored by a UEなど)に従うように設定することができる。
方式5の他の例として、DLバーストの終了pSF(PEnd)を構成するOFDMシンボルの個数が9〜10個である場合は図24(c)のようなDM−RSパターンに従い、既存のRel−12 LTEシステムにおいてDwPTSの長さが9OFDMシンボルであるとき、DwPTS構成1又は6に定義されたEPDCCH構成に従うように設定することができる。
方式5のさらに他の例として、DLバーストのPEndを構成するOFDMシンボルの個数が6〜8個である場合は図24(d)のようなDM−RSパターンに従い、既存のRel−12 LTEシステムにおいてDwPTSの長さが6OFDMシンボルであるとき、DwPTS構成9に定義されたEPDCCH構成に従うように設定することができる。
この際、基地局は前もって設定されたDM−RSパターンの個数だけ(又はそれ以下の個数だけ)のEPDCCH集合を構成することができ、端末はどのEPDCCH集合をデコードするかによってDM−RSパターンを決定することができる。
若しくは、基地局は各DM−RSパターン別に(又は、一部のDM−RSパターンに対して)最大2個のEPDCCH集合を設定することができ、UEは明示的なシグナリング又はブラインドデコーディングによって認知したDM−RSパターンによって適切なEPDCCH集合に対するデコーディングを試みることができる。
このように、図24に示したようにSFごとに4種のDM−RSパターン候補に対してEPDCCHデコーディング(又は、DM−RS BD)を試みる場合、UE実装の側面で複雑度が非常に大きくなることができる。これを解決するために、以下に提案する方法の少なくとも一つ以上の方法を活用することができる。
(A)方式5−1:Full SF又はpSFを知らせる共用シグナリングと組合せ
共用シグナリングによって該当SFがFull SFであることを認知した端末は図24(a)のようなDM−RSパターンを仮定し、pSFであることを認知したUEは図24の(b)、(c)又は(d)の中でどのDM−RSパターンが送信されるかを検出することによって該当PEndをデコードすることができる。
(B)方式5−2:DM−RSパターンを知らせる共用シグナリングと組合せ
共用シグナリングによって該当SFがどのDM−RSパターンであるかを検出した端末は図24の(a)〜(d)の中で特定のDM−RSパターンを仮定し、各DM−RSパターンに対応して設定されたEPDCCH集合に対するデコーディングを試みることができる。
例えば、図24(b)のようなDM−RSパターンが送信されることが共用シグナリングによって端末に知られた場合、該当端末はEPDCCH終了シンボルが11番目のOFDMシンボルに(又はそれ以下のOFDMシンボルに)設定されたEPDCCH集合(等)に対するデコーディングを遂行することができる。
(C)方式5−3:SFが何個のOFDMシンボルで構成されるかを知らせる共用シグナリングと組合せ
共用シグナリングによって該当SFの終了OFDMシンボルが何番目のOFDM symbolであるかが分かることになったUEは、該当OFDMシンボルで終わるように設定されるか、該当OFDMシンボルより短く終わるように設定されるか及び/又は該当OFDMシンボルより短く終わるように設定されたEPDCCH集合の中で一番遅く終わるように設定されたEPDCCH集合に対してデコーディングを遂行することができる。
(D)方式5−4:特定のDM−RSパターンを排除する方式
LAAシステムのSCellで一部のDM−RSパターンは使わないように前もって設定することができる。若しくは、上位層シグナリングによって特定のUセル又は特定の端末は一部のDM−RSパターンを使わないように設定することができる。
例えば、6個のOFDM symbolで構成されたDwPTS構造を有するpSFがLAAシステムの特定のSCell又は特定のUEに許されなければ、図24(d)のようなDM−RSパターンは使わないように前もって設定することができる。すなわち、端末は該当DM−RSパターンはデコーディング時に仮定しないように設定することができる。
他の例として、端末はFull SFであると言っても、図24の(b)又は(c)のようなDM−RSパターンを仮定してデコードするように設定することができる。
さらに他の例として、11個〜13個のOFDMシンボルで構成されたpSFの場合、図24(b)のDM−RSパターンを使うものではなくて、図24(c)のDM−RSパターンを使うように設定することができる。
(E)方式5−5:特定のDM−RSパターンの変形
6OFDMシンボルで構成されたDwPTS構造をLAA SCellでサポートしなく、その代わりに7OFDMシンボルで構成された新しいDwPTS構成を導入し、該当DwPTSの場合、図24の(c)のようなDM−RSパターンを仮定するように設定することができる。
若しくは、図24の(d)のようなDM−RSパターンを使う場合、既存のとは違うDM−RSシーケンスを使うように設定することができる。例えば、図24の(d)に示したDM−RSのスクランブリングシーケンス(scrambling sequence)を初期化するための疑似ランダムシーケンス生成器(pseudo−random sequence generator)のパラメータの一つであるns値を0〜19ではない他の値(例えば、predefined or configured offset value+ns)に設定するかあるいはNID cell(又は、nID、i EPDCCH)値を上位層シグナリングによって特定の値に前もって設定しておくことができる。基地局及び/又は端末はこのように構成された特定のDM−RSパターンに基づいて該当サブフレームがFullであるかPEndであるかを区分することができる。
4.7.4 G3)PStart、Full及びPEnを全て運用する方法
G3−A)クロスキャリアスケジューリング端末の場合、端末はG2−A)方式のようにFull又はPEndでのみスケジュールされることを期待することができる。
G3−B)セルフキャリアスケジューリング端末でありながらPDCCHを介してスケジュールされるように設定されたUEはG1−B)方式のようにPStart及びFullでのみスケジュールされることを期待することができる。若しくは、該当端末はG2−B)方式のようにFull又はPEndでのみスケジュールされることを期待することができる。若しくは、該当端末はPStart、Full及びPEndの全てでスケジュールされることを期待することができる。
この際、該当端末はSF境界でCRS及び/又はPDCCHデコーディングを遂行し、デコーディングが成功すればDCI情報(又はPCFICH)を活用して該当SFがFullであるかPEndであるかを区別することができる。
仮に、端末がSF境界でデコーディングに失敗すれば、PStartの最初のOFDMシンボルでさらにCRS及び/又はPDCCHデコーディングを遂行することができる。CSR及び/又はPDCCHデコーディングに成功すれば、端末はPStartが始まることを認知することができる。
他の例として、端末がプリアンブルの位置及び/又はプリアンブルのシーケンスによってSF境界から該当SFが始まることを認知すれば、該当端末はSF境界でCRS及び/又はPDCCHデコーディングを遂行し、デコーディングに成功すればDCI情報(又は、PCFICH)を活用して該当SFがFullであるかPEndであるかを区別することができる。
仮に、端末がプリアンブルの位置及び/又はシーケンスによってPStartであることを認知すれば、該当端末はPStartの最初のOFDMシンボルでさらにCRS及び/又はPDCCHデコーディングを遂行することができる。該当端末はデコーディングに成功すればPStartが始まることを認知することができる。
G3−C)セルフキャリアスケジューリング端末でありながらEPDCCHを介してスケジュールされるように設定された端末はG1−C)方式のようにPStart及びFullのみがスケジュールされることを期待することができる。若しくは、該当端末はG2−C)方式のようにFull及びPEndのみがスケジュールされることを期待することができる。若しくは、該当端末はPStart、Full及びPEnの全てがスケジュールされることを期待することができる。若しくは、該当端末はPStart及び/又はPEndでEPDCCHをデコードすることができるかがUE性能に定義され、eNBは該当端末がこのような性能を持っているとシグナルされた端末に対してのみPStart及び/又はPEndのEPDCCHを介してスケジュールするように設定することができる。若しくは、eNBはUE別に及び/又はUセル共通にPStart及び/又はPEndでEPDCCHを介したスケジューリング可否に対して上位層シグナリングによって構成可能である。
若しくは、特定UEの観点でPStartとPEndの両方に対してEPDCCHがサポートされず、PStart及びPEndの一方又はFull SFでのみEPDCCHがサポートされるように制限されることができる。この際、該当UEが該当SFがPStartであるか、FullであるかあるいはPEndであるかを区別する方法は次の一つであってもよい。
(A)方式1:端末はPCell上の共用シグナルによる指示又はLAA SCell上のPCFICHを介して該当SFがFullであるかPEndであるかを先に区別することができる。仮に、該当SFがPEndであればG−2C)方式の(A)方式1を適用することができる。仮に、該当SFがFull又はPEndではないと判断されれば、該当端末は該当SFがPStartであると仮定し、G−1C)方式の(A)〜(D)方式4を適用することができる。
(B)方式2:基地局は明示的シグナリングによって該当SFのタイプを端末に指示することができる。例えば、4.2節で提案した4種のEPDCCHタイプの中で(4)番目のEPDCCH(すなわち、最初の一部のOFDMシンボルと最後の一部のOFDMシンボルが満たされないEPDCCHフォーマット)のみを許し、基地局は該当EPDCCH上で該当SFがPStartであるかFullであるかあるいはPEndであるかを指示するか、あるいは該当SFの長さを指示することができる。
(C)方式3:システム上で三つのEPDCCH集合を定義し、各EPDCCH集合別に用途を前もって設定しておくことができる。この際、UEはどのEPDCCH集合をデコードするかによって該当SFがPStartであるかFullであるかあるいはPEndであるかが分かる。
(D)方式4:明示的シグナリングと黙示的にシグナリングの組合せ
i)方式4A:システム上で二つのEPDCCH集合の一方はFull用途に、他方はPStart又はPEnd用途に設定することができる。基地局は該当SFがPStartであるかPEndであるかを又はSFの長さを該当EPDCCH上で指示することができる。
ii)方式4B:システム上で二つのEPDCCH集合の一方はPStart用途に、他方はFull又はPEnd用途に設定することができる。基地局は該当SFがFullであるかPEndであるかを又はSFの長さを該当EPDCCH上で端末に指示することができる。
iii)方式4C:システム上で二つのEPDCCH集合の一方はPEnd用途に、他方はFull又はPStart用途に設定することができる。基地局は該当SFがFullであるかPStartであるかを又はSFの長さを該当EPDCCH上で端末に指示する。
iv)方式4D:システム上で二つのEPDCCH集合の一方はFull又はPStart用途に設定し、他方はFull又はPEnd用途に設定することができる。基地局は該当SFがFullであるかPStartであるかあるいはFullであるかPEndであるかをEPDCCH上で指示することができる。若しくは、基地局は該当SFの長さを各EPDCCH上でさらに指示することができる。
v)方式4E:システム上で三つのEPDCCHの一つはFull用途に、他の一つはPStart又はFull用途に、さらに他の一つはFull又はPEnd用途に設定することができる。この際、基地局は該当SFがFullであるかPStartであるかあるいはFullであるかPEndであるかを各EPDCCH上で端末に指示することができる。若しくは、端末は該当SFの長さを各EPDCCH上でさらに端末に指示することができる。
vi)方式4F:システム上で三つのEPDCCH集合の一つはFull用途に、他の一つはPStart又はFull用途に、さらに他の一つはPEnd用途に設定することができる。基地局は該当SFがFullであるかPStartであるかを又は該当SFの長さを該当EPDCCHを介して端末に指示することができる。
vii)方式4G:システム上で三つのEPDCCH集合の一つはFull用途に、他の一つはPStart用途に、さらに他の一つはFull又はPEnd用途に設定することができる。基地局は該当SFがFullであるかPEndであるかを又はSFの長さを該当EPDCCHを介して端末に指示することができる。
4.7.5 EPDCCHを介したSFタイプ指示方法
上述した4.7.1節、4.7.3節及び4.7.4節で提案した方法において、基地局はEPDCCHに新しいフィールドを追加して該当SFのタイプを端末に指示することができる。例えば、新しいフィールドは(1)PStartであるかFullであるか、(2)FullであるかPEndであるか、又は(3)PStartであるか、FullであるかあるいはPEndであるかを示すことができる。また、基地局は該当EPDCCHを介して送信される新しいフィールドを定義して該当SFの長さなどを端末に指示することができる。
他の方法としては、セルフキャリアスケジューリングUE又はPUCCH HARQ−ACKフィードバックのためにPUCCHフォーマット3伝送が設定されたUEに対し、基地局はLTE−AシステムのDCIフォーマットに含まれるARO(HARQ−ACK resource offset)フィールドをSFのタイプを指示するための用途に借用することができる。すなわち、該当端末がAROを受信するとき、元のAROが指示する内容ではない該当SFのタイプを認識することができる。
さらに他の方法として、クロスキャリアスケジューリングUEでありながらPUCCH HARQ−ACKフィードバックのためにチャネル選択のためのPUCCHフォーマット1a/1bが設定されたUEに対し、基地局はDCIフォーマットに含まれるTPC(Transmit Power Control)フィールドをSFのタイプを指示するための用途に借用することができる。
さらに他の方法として、セルフキャリアスケジューリングUEであるかあるいはPUCCH HARQ−ACKフィードバックのためにPUCCHフォーマット3伝送が設定されたUEのAROフィールド又はクロスキャリアスケジューリングUEでありながらPUCCH HARQ−ACKフィードバックのためにチャネル選択のためのPUCCHフォーマット1a/1bが設定されたUEに送信されるTPCフィールドは他の用途にも使われることができる。
例えば、基地局は該当SF(又は、DL Tx burst)の参照信号電力値(又は、参照信号に対するデータ電力の比又はデータ電力値)を端末に指示することができる。他の例として、基地局は該当SFに対するディスカバリー参照信号(discovery Reference Signal)伝送可否及び/又はPDSCHレートマッチングパターン(PDSCH rate matching pattern)を端末に指示することができる。
4.7.6 EPDCCHサーチスペース及びBD
前記提案したG1)〜G3)の方法において、EPDCCHの場合(4.7.1節、4.7.3節及び4.7.4節参照)、既存のLTEシステムで定義されたEPDCCHサーチスペースに対するブラインドデコーディング(BD)より多いBDが端末に要求されないようにするために、EPDCCH集合候補(EPDCCH set candidate)別に端末がBDを分けて遂行するように設定することができる。
このような方法は、上述したG1−C)の方法の方式3/4及びG2−C)の方法の方式4/5のようにシステム上にFull用途のEPDCCH(相対的に長い長さのEPDCCH)とpSF用途のEPDCCH(相対的に短い長さのEPDCCH)を共に設定して置き、端末がどの長さのEPDCCHに対してデコーディングが成功したかによって該当SFがFullであるかpartial SFであるかを区別するときに適用することができる。
より詳細に説明すれば、既存のLTEシステムにおいて端末がEPDCCHに対して行うサーチスペースに対するBD回数をNであると仮定するとき、Full用途のEPDCCH(相対的に長い長さのEPDCCH)に対して端末がBDをN回、pSF用途のEPDCCH(相対的に短い長さのEPDCCH)に対しても端末がBDをN回遂行するように設定することができる。しかし、このような場合、UE実装の複雑度が増加することができる。
これを解決するために、端末がFull用途のEPDCCHを検出するために行うBD回数とpSF用途のEPDCCHに対して行うBD回数の総和をN回に維持するように設定することができる。
例えば、端末はFull用途のEPDCCHに対して行うBD回数をN/2回に、pSF用途のEPDCCHに対して行うBD回数をN/2回に均等に分けて遂行するように構成されることができる。他の例として、端末はFull用途のEPDCCHに対して行うBD回数をpSFに対するEPDCCHに対して行うBD回数より多く遂行するように構成するか、その反対に構成することができる。
4.7.7 pSF位置通知方法
上述したG1)〜G3)の方法において、PStart及び/又はPEndの位置は上位層シグナリングによって基地局及び/又は端末に前もって設定することができる。仮に、Full及びPEndでのみスケジュールされるように期待するUEがあれば、該当UEは前もって設定されたFull及びPEnd位置でのみスケジューリングを期待することができる。
4.7.8 スケジューリング制限方法
前記提案した方法G2)及び方法G3)のようにeNBがPEndを運用する場合、DM−RSに基づく伝送モード(TM)を使うUEに対するスケジューリング制限(scheduling restriction)を設定することができる。
例えば、eNBはEPDCCHが構成されたセルフスケジューリングUE又はDM−RSに基づくTMが構成されたUEに該当PEndに対してスケジューリングを遂行しないこともできる。この際、eNBがPEndを運用しても、該当PEnd上でDM−RSを端末に送信しないように設定することができる。
より詳細に説明すれば、DM−RSに基づくTMが構成されたUEに対してPCellの共用シグナリング、PCIFCH又はPDCCHが構成されたセルフ/クロススケジューリング端末の場合、PDCCHなどを介して該当SFがPEndであることを指示することができる場合、該当端末が該当SFに対するスケジューリンググラントを受信すれば、該当スケジューリンググラントはこれ以上有効ではないと見なすことができる。
若しくは、端末は該当SFの長さによってスケジューリンググラントの有効性を異なるように解釈することができる。例えば、UEはどのSFの長さがXOFDMシンボル以上でありながらPEndである場合には、該当SFのスケジューリンググラントは有効であると判断することができ、XOFDMシンボル未満でありながらPEndである場合は、該当SFのスケジューリンググラントが有効ではないと判断することができる。
4.7.9 CSI構成制限方法
EPDCCHが構成されたセルフスケジューリング端末がどのSFでスケジューリンググラントを受信し、仮に該当SFに構成されたCSI−RS/CSI−IMが存在する場合にも、UEは該当SFに有効なCSI−RS/CSI−IMなどが存在しないと仮定することができる。より詳細に説明すれば、該当SFがPEndであり、該当SFに構成されたCSI−RS/CSI−IMが存在するとしても、端末は該当SFに有効なCSI−RS/CSI−IMなどが存在しないと仮定してCSIなどを測定することができる。
若しくは、該当SFがPEndであると言っても、該当SFの長さによって他の端末の動作を定義することができる。例えば、PEndである場合に適用可能なCSI−RS/CSI−IM構成が別に決定されていれば、端末はPEndであると判断されるSFに対しては該当CSI−RS/CSI−IM構成を適用することができる。
このような方法はEPDCCHが構成されたセルフスケジューリング端末に限られず、一般的に適用可能である。例えば、該当SFにCRSが存在することを認知したかスケジューリング情報があることを認知したUEであるとしても、該当SFがPEnd(又は、PStart)であれば、該当SFに構成されたCSI−RS/CSI−IMがあると言っても該当SFに有効なCSI−RS/CSI−IMなどが存在しないと仮定することができる。
若しくは、PEnd(又は、PStart)である場合に適用可能なCSI−RS/CSI−IM構成が別に設定される場合、端末はPEnd(又は、PStart)であると判断されるSFに対してはCSI−RS/CSI−IM構成を適用することができる。
4.7.10 予約信号伝送方法
LAAシステムのSCellでデータ伝送のための時点が制限されているとき(例えば、SF boundary)、LBT終了時点(又は、CCA終了時点、CS終了時点など)と実際のデータ伝送時点の間にタイミングギャップが存在し得る。特に、LAA SCellは該当eNBとUEが独占的に使うことができなく、CSに基づく競争によって用いなければならないので、このようなタイミングギャップの間に他のシステムが情報伝送を試みることもできる。よって、一例として、基地局はLAA SCellでタイミングギャップの間に他のシステムが情報伝送を試みることを防止するために予約信号を送信することが好ましい。
しかし、予約信号を余りにも長い時間の間に送信する場合、LTEシステムの性能が低下するだけでなくWiFiシステムにも予約信号が干渉として作用することができるため、WiFiシステムの性能も低下する。
このような問題を解決するために、システム上で予約信号伝送に対する最大値(すなわち、Kms)を設定しておくことができる。例えば、K=1ms(1SF)又はK=0.5ms(1slot)に設定することができる。この際、AGC/fine synchronization/cell identificationなどの目的で各DL TXバーストの前側にPSS/SSS/CRSなどで構成されたプリアンブルがZ OFDMシンボル長(例えば、Z>=1)の間に送信されなければならないとき、K時間値はZを含んで設定するかあるいはZを除いた時間に設定することができる。
また、連続したDL TXバーストが送信されるとき、浪費されるSFを最小化するために、DL TXバーストの最後のSF又はDL TXバーストの最初のSFの一部のOFDMシンボルの間にTXギャップを前もって設定しておくことができる。仮に、TXギャップの間にLBTが完了することができれば、1SFが全部浪費されることを避けることができるという利点がある。Uセルの場合、所定の時間が占有された以後には、基地局はさらにLBTを遂行しなければならない。よって、TXギャップは基地局が所定のSFを占有するためのLBT遂行を保証するための時間値に設定することができる。
このようなTXギャップがW OFDMシンボルに設定されている場合、予約信号の最大伝送時間値もW OFDMシンボルに設定することができる。この際、各TXバーストの前側にPSS/SSS/CRSなどで構成されたプリアンブルがZ OFDMシンボルの長さ(例えば、Z>=1)の間に送信されなければならないとき、W OFDMシンボル内にZ値を含んで設定するかあるいはZを除いた時間に設定することができる。
仮に、TXバーストごとにTXギャップの大きさが変化する場合、予約信号の最大値も変化するTXギャップの大きさと同一であってもよく、使用可能なTXギャップの最大値と同一であってもよい。この時の予約信号伝送の最大値もプリアンブルを含む時間に設定するかあるいはプリアンブルを除いた時間に設定することができる。
前記提案した予約信号の長さの最大値制限は下りリンクだけでなく上りリンクにも同じ方法を適用することができ、下りリンク予約信号の長さの最大値と上りリンク予約信号の長さの最大値は同一に設定することもでき、あるいは独立的に設定することもできる。
上りリンクの場合、予約信号の長さはTXギャップの設定に関係なくてもよく、1msより大きい長さの予約信号も許されることができる。
上述した予約信号の長さであるKmsのうちLBT動作に必要な最小キャリアセンシング(CS)時間が除かれた時間を予約信号の長さの最大値に設定することもできる。
4.8 ディスカバリー参照信号伝送のためのpSF
4.1節〜4.7節で提案したpSFはPDSCHが含まれたDL TXバーストの場合に適用することができるだけでなく、ディスカバリー参照信号(DRS:Discovery Reference Signal)が送信されるpSFにも適用することができる。
例えば、DLバーストが始まることができる位置(例えば、CRSアンテナポート0で送信されるOFDMシンボルの中でK個)が前もって設定されていれば、DRSが送信されるpSFもDL TXバーストが始まることができる位置に限ってのみ始まることができるように設定することができる。
若しくは、DRSが送信されるpSFはDL TXバーストが始まることができる位置の一部に限ってのみ始まることができるように設定することができる。
前述した提案方法の実施例も本発明の実現方法の一つとして含まれることができるので、一種の提案方法と見なすことができるのは明らかな事実である。また、前述した提案方式は独立的に実現されることもできるが、一部の提案方式の組合せ(あるいは併合)形態に実現されることもできる。前記提案方法の適用可否についての情報(又は、前記提案方法の規則についての情報)は基地局が端末に前もって定義されたシグナル(例えば、物理層シグナル又は上位層シグナル)によって知らせるように定義されることができる。
4.9 クロスキャリアスケジューリング時の実施例
以下で説明する実施例は4.1.5節で説明した方法を図面に基づいて端末と基地局間のシグナリングの観点でより詳細に説明するためのものである。図25はクロスキャリアスケジューリングが構成された場合、端末がデコードするサブフレームを制限する方法を説明するための図である。
図25はLAAシステムに関するもので、PセルはLTE−Aシステムなどの免許帯域に構成されるセルであり、Uセルは非免許帯域に構成されるセルである。端末はPセルの上位層シグナリングによってクロスキャリアスケジューリングを構成することができる(S2510)。
この際、端末はS2510段階で送信されるクロスキャリアスケジューリング情報によって、キャリアアグリゲーションされるセルが分かる。クロスキャリアスケジューリング情報はUセルを指示するセル識別子(Cell ID)を含むことができる。
その後、基地局はUセル上でキャリアセンシング過程(又はLBT、CCAなど)によってUセルがアイドル状態であるか否かを判断することができる(S2520)。この時、S2520段階では図14で説明した過程(S1410〜S1430)を遂行することができる。
Uセルがアイドル状態である場合、基地局はUセルを介して端末にデータを送信するためのスケジューリング情報を含むPDCCH及び/又はEPDCCHを送信することができる(S2530)。
ただし、先に4.1節で説明した方法において端末にクロスキャリアスケジューリング及びプレスケジューリング方式が構成される場合、端末及び基地局がUセル上で実際にどの時点にCCA動作(又は、CS動作、LBT動作)が完了するかを予測することができない。したがって、端末は設定されたTxOP区間にpSFが含まれてもpSFにはPDSCHがスケジュールされることを期待しないこともできる。例えば、端末はPStartのみスケジュールされることを期待せず、Full SF又はPEndに対してはクロスキャリアスケジューリングを期待することができる。すなわち、端末はFull SF及びPEndに対してはPDSCHがスケジュールされると把握してデータを受信することができる。また、基地局は端末にクロスキャリアスケジューリングが構成された場合にpSFにPDSCHをスケジューリングしないように構成されることができる(S2540)。
S2540段階でpSFにPDSCHがスケジュールされない場合、該当pSFは同期過程、AGC設定及び/又はセル識別のための用途に使われることができる。
4.10 セルフキャリアスケジューリング時の実施例
以下で説明する実施例は4.2節で説明したセルフスケジューリング方式を端末と基地局間のシグナリングの観点で説明するためのものである。
基地局はUセルでCS過程を行ってUセルがアイドル状態であるか否かを判断することができる。CS過程についての説明は図14及び3.1節〜3.3節の内容を参照することができる(S2610)。
Uセルがアイドル状態であると判断されれば、基地局はセルフスケジューリングのために送信するPDCCH及び/又はEPDCCHを構成することができる。この時、PDCCH及び/又はEPDCCHを構成する方法は4.2.1節〜4.2.3.7節を参照することができる。特に、基地局は、TxOP区間(又は、DLバースト区間、RRP区間)にpSFが含まれた場合、PDCCHの場合は4.2.1節、EPDCCHの場合は4.2.3節で説明した方式で構成して送信することができる。EPDCCHの場合、EPDCCHを構成するECCE、一つのECCEを構成するEREG、EPDCCHが送信されるサーチスペースなどはpSFを考慮して設定することができる(S2620)。
端末は、PDCCH及び/又はEPDCCHを受信するためにLAAシステムで定義するサーチスペースをデコードして各制御情報を獲得することができる。
その後、基地局はUセルのTxOP区間で各サブフレームをスケジュールするためにPDCCH及び/又はEPDCCHを端末に送信することができ、PDCCH及び/又はEPDCCHに含まれたスケジューリング情報に基づいて端末にPDSCHを送信することができる(S2630、S2640)。
4.11 pSF構成時のCSI測定及び報告方法
以下では、pSFが端末に構成される場合、CSIを測定及び報告する方法をシグナリングの観点で説明する。
図27はpSFが構成される場合にCSIを測定及び報告する方法を説明するための図である。
以下の説明は基本的に4.4節で説明した内容に基づいて記述する。図27を参照すると、基地局はUセルでCS過程を遂行し、Uセルがアイドル状態の場合、TxOP区間などで端末にPDSCHを送信する。これについての説明は図14及び3.1節〜3.3節の内容を参照することができる(S2710、S2720)。
端末は周期的又は非周期的方式でCSIを測定することができる。この時、端末はUセルで送信されるPDSCHにマッピングされるCSI−RSリソース及びCSI−IMリソースとCRSなどに基づいてCSIを測定することができる(S2730)。
ただし、S2720段階でTxOP区間(又は、RRP、DLバースト)にpSFが含まれた場合、S2730段階で端末がCSIを測定するとき、pSFをCSI測定のための有効な参照リソースとして使うことができるかが問題となる。本発明の実施例では、端末と基地局間のpSFの長さなどに対する不一致問題を解消するために、端末がCSIを測定するときpSFは有効なSFと見なさないことができる。これについての説明は4.4.1節を参照する。
本実施例の他の態様として、pSFも有効なSFと見なすことができるが、これについての詳細な説明は4.4.2節の内容に取り替える。
非周期的方式でCSIを報告する場合には基地局の要請がなければならないので、S2740a又はS2740b段階を遂行する。すなわち、基地局はPセル及び/又はUセルを介して、CSI要請フィールドを含むPDCCH及び/又はEPDCCHを端末に送信してCSIを報告することを指示する(S2740a、S2740b)。
ただし、端末が周期的方式でCSIを報告する場合にはS2740a/b段階を遂行しないこともできる。
端末は周期的に又は非周期的にCSIを測定して基地局に報告することができる(S2750a、S2750b)。
S2740b及びS2750b段階はセルフキャリアスケジューリング時に遂行することができ、クロスキャリアスケジューリングの場合には遂行しないこともできる。
5. 実現装置
図28で説明する装置は、図1乃至図27で説明した方法を実現し得る手段である。
端末(UE:UserEquipment)は、上りリンクでは送信端として動作し、下りリンクでは受信端として動作することができる。また、基地局(eNB:e−NodeB)は、上りリンクでは受信端として動作し、下りリンクでは送信端として動作することができる。
すなわち、端末及び基地局は、情報、データ及び/又はメッセージの送信及び受信を制御するために、それぞれ、送信器(transmitter)2840、2850及び受信器(receiver)2860、2870を備えることができ、情報、データ及び/又はメッセージを送受信するための一つ以上のアンテナ2800、2810などを有することができる。
また、端末及び基地局はそれぞれ、上述した本発明の実施例を実行するためのプロセッサ(Processor)2820、2830、及びプロセッサの処理過程を一時的に又は持続的に記憶し得るメモリ2880、2890を備えることができる。
上述した端末及び基地局装置の構成成分及び機能を用いて本発明の実施例を遂行することができる。例えば、基地局のプロセッサはバックオフカウント値を設定し、各TTI(又は、SF)でバックオフ許容区間であるかを判断することができる。仮に、基地局のプロセッサは、バックオフ許容区間であれば送信機及び/又は受信機を制御してCSを遂行し、CSが遂行されればバックオフカウント値を1ずつ減らすことができる。その後、バックオフカウント値が0となれば、基地局のプロセッサは予約信号及び/又はデータをUセルを介して端末に送信するか端末から受信することができる。
また、上述した端末及び基地局のプロセッサは、上述したクロスキャリアスケジューリング、セルフキャリアスケジューリング、ハイブリッドスケジューリング、pSFに対するCSI測定方法、フローティングTTI構成方法、PDCCH領域及びEPDCCH領域構成方法及びこのための動作をサポートするように構成されている。端末及び基地局のプロセッサはこのために送信機及び受信機と機能的に連結され、これらを制御することができる。
端末及び基地局に含まれた送信モジュール及び受信モジュールは、データ送信のためのパケット変復調機能、高速パケットチャネルコーディング機能、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)パケットスケジューリング、時分割デュプレックス(TDD:Time Division Duplex)パケットスケジューリング及び/又はチャネル多重化機能を実行することができる。また、図28の端末及び基地局は、低電力RF(Radio Frequency)/IF(Intermediate Frequency)モジュールをさらに備えることができる。
一方、本発明で端末として、個人携帯端末機(PDA:Personal Digital Assistant)、セルラーフォン、個人通信サービス(PCS:Personal Communication Service)フォン、GSM(Global System for Mobile)フォン、WCDMA(Wideband CDMA)フォン、MBS(Mobile Broadband System)フォン、ハンドヘルドPC(Hand−Held PC)、ノートパソコン、スマート(Smart)フォン、又はマルチモードマルチバンド(MM−MB:Multi Mode−Multi Band)端末機などを用いることができる。
ここで、スマートフォンは、移動通信端末と個人携帯端末機の長所を組み合わせた端末機であって、移動通信端末に、個人携帯端末機の機能である日程管理、ファックス送受信及びインターネット接続などのデータ通信機能を統合した端末機を意味できる。また、マルチモードマルチバンド端末機は、マルチモデムチップを内蔵し、携帯インターネットシステムでも、その他の移動通信システム(例えば、CDMA2000システム、WCDMAシステムなど)でも動作できる端末機のことを指す。
本発明の実施例は、様々な手段によって実装することができる。例えば、本発明の実施例は、ハードウェア、ファームウェア(firmware)、ソフトウェア又はそれらの結合などによって実装することができる。
ハードウェアによる実装の場合、本発明の実施例に係る方法は、1つ又はそれ以上のASIC(application specific integrated circuit)、DSP(digital signal processor)、DSPD(digital signal processing device)、PLD(programmable logic device)、FPGA(field programmable gate arrays)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサなどによって実装することができる。
ファームウェアやソフトウェアによる実装の場合、本発明の実施例に係る方法は、以上で説明された機能又は動作を実行するモジュール、手順又は関数などの形態として実装することもできる。例えば、ソフトウェアコードは、メモリユニット2880、2890に記憶され、プロセッサ2820、2830によって駆動されてもよい。メモリユニットは、プロセッサの内部又は外部に設けられ、公知の種々の手段によってプロセッサとデータを交換することができる。
本発明は、本発明の精神及び必須の特徴から逸脱しない範囲で他の特定の形態として具体化されてもよい。したがって、上記の詳細な説明は、いずれの面においても制約的に解釈されてはならず、例示的なものとして考慮されなければならない。本発明の範囲は、添付した請求項の合理的解釈によって決定されなければならず、本発明の等価的範囲における変更はいずれも本発明の範囲に含まれる。また、特許請求の範囲で明示的な引用関係にない請求項を結合して実施例を構成してもよく、出願後の補正によって新しい請求項として含めてもよい。
本発明の実施例は、様々な無線接続システムに適用可能である。様々な無線接続システムの一例として、3GPP(3rd Generation Partnership Project)、3GPP2及び/又はIEEE 802.xx(Institute of Electrical and Electronic Engineers 802)システムなどがある。本発明の実施例は、上記の様々な無線接続システムだけでなく、これら様々な無線接続システムを応用したいずれの技術分野にも適用可能である。

Claims (12)

  1. 非免許帯域をサポートする無線接続システムにおいてUE(user equipment)がCSI(channel state information)を報告する方法であって、
    前記非免許帯域内に設定された非免許帯域セル内で下りリンクバーストを受信する段階と、
    前記下りリンクバーストに基づいて前記CSIを測定する段階と、
    前記測定されたCSIを報告する段階と、を含み、
    前記下りリンクバーストは、少なくとも第1のTTI(transmission time interval)及び第2のTTIにおいて受信され、
    前記第1のTTIは、OFDM(orthogonal frequency divisional multiplexing)シンボルの第1の個数として設定され、
    前記第2のTTIは、OFDMシンボルの第2の個数として設定され、
    前記第1の個数は、前記第2の個数より少なく、
    前記第1のTTIは、前記CSIのための有効でない時間リソースであるとみなされる、方法。
  2. 前記第1のTTIはセルフキャリアスケジューリングでスケジュールされ、
    前記第2のTTIはクロスキャリアスケジューリングでスケジュールされる、請求項に記載の方法。
  3. 前記CSIを報告するための要求を免許帯域セル内で受信する段階をさらに含み、
    前記測定されたCSIを送信する段階は、前記要求に応答して、前記測定されたCSIを前記免許帯域セル内で送信する段階を含む、請求項1又は2に記載の方法。
  4. 前記CSIを報告するための要求を前記非免許帯域セル内で受信する段階をさらに含み、
    前記測定されたCSIを送信する段階は、前記要求に応答して、前記測定されたCSIを前記非免許帯域セル内で送信する段階を含む、請求項1又は2に記載の方法。
  5. 前記測定されたCSIを送信する段階は、前記測定されたCSIを周期的に免許帯域セル内で送信する段階を含む、請求項1〜4のいずれか一項に記載の方法。
  6. 前記有効でない時間リソースは、前記CSIのための参照リソースが割り当てられない時間リソースを意味する、請求項1〜5のいずれか一項に記載の方法。
  7. 非免許帯域をサポートする無線接続システムにおいてCSI(channel state information)を報告するUE(user equipment)であって、
    メモリと、
    前記メモリと連結された少なくとも一つのプロセッサと、を含み、
    前記少なくとも一つのプロセッサは、
    前記非免許帯域内に設定された非免許帯域セル内で下りリンクバーストを受信し、
    前記下りリンクバーストに基づいて前記CSIを測定し、
    前記測定されたCSIを報告する、
    ように設定され、
    前記下りリンクバーストは、少なくとも第1のTTI(transmission time interval)及び第2のTTIにおいて受信され、
    前記第1のTTIは、OFDM(orthogonal frequency divisional multiplexing)シンボルの第1の個数として設定され、
    前記第2のTTIは、OFDMシンボルの第2の個数として設定され、
    前記第1の個数は、前記第2の個数より少なく、
    前記第1のTTIは、前記CSIのための有効でない時間リソースであるとみなされる、UE
  8. 前記第1のTTIは、セルフキャリアスケジューリングでスケジュールされ、
    前記第2のTTIは、クロスキャリアスケジューリングでスケジュールされる、請求項7に記載のUE。
  9. 前記少なくとも一つのプロセッサは、
    前記CSIを報告するための要求を免許帯域セル内で受信し、
    前記要求に応答して、前記測定されたCSIを前記免許帯域セル内で送信する、
    ようにさらに設定される、請求項7又は8に記載のUE
  10. 前記少なくとも一つのプロセッサは、
    前記CSIを報告するための要求を前記非免許帯域セル内で受信し、
    前記要求に応答して、前記測定されたCSIを前記非免許帯域セル内で送信する、
    ようにさらに設定される、請求項7又は8に記載のUE
  11. 前記少なくとも一つのプロセッサは、前記測定されたCSIを周期的に免許帯域セル内で送信するようにさらに設定される、請求項7〜10のいずれか一項に記載のUE
  12. 前記有効でない時間リソースは、前記CSIのための参照リソースが割り当てられない時間リソースを意味する、請求項7〜11のいずれか一項に記載のUE
JP2018140342A 2014-12-23 2018-07-26 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置 Active JP6655675B2 (ja)

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
US201462095781P 2014-12-23 2014-12-23
US62/095,781 2014-12-23
US201562105756P 2015-01-21 2015-01-21
US62/105,756 2015-01-21
US201562136366P 2015-03-20 2015-03-20
US62/136,366 2015-03-20
US201562138358P 2015-03-25 2015-03-25
US62/138,358 2015-03-25
US201562142453P 2015-04-02 2015-04-02
US62/142,453 2015-04-02
US201562151361P 2015-04-22 2015-04-22
US62/151,361 2015-04-22
US201562161210P 2015-05-13 2015-05-13
US62/161,210 2015-05-13
US201562165159P 2015-05-21 2015-05-21
US62/165,159 2015-05-21
US201562207898P 2015-08-20 2015-08-20
US62/207,898 2015-08-20
US201562207944P 2015-08-21 2015-08-21
US62/207,944 2015-08-21
US201562222179P 2015-09-22 2015-09-22
US62/222,179 2015-09-22
US201562236147P 2015-10-02 2015-10-02
US62/236,147 2015-10-02
US201562249905P 2015-11-02 2015-11-02
US62/249,905 2015-11-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017531495A Division JP6378440B2 (ja) 2014-12-23 2015-12-23 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020016374A Division JP7008093B2 (ja) 2014-12-23 2020-02-03 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置

Publications (2)

Publication Number Publication Date
JP2018186564A JP2018186564A (ja) 2018-11-22
JP6655675B2 true JP6655675B2 (ja) 2020-02-26

Family

ID=56151057

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2017533589A Active JP6389336B2 (ja) 2014-12-23 2015-12-23 アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP2017531495A Active JP6378440B2 (ja) 2014-12-23 2015-12-23 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置
JP2017530673A Active JP6463480B2 (ja) 2014-12-23 2015-12-23 非免許帯域を支援する無線接続システムにおいて向上した物理下りリンク制御チャネルを送受信する方法及びこれを支援する装置
JP2018140342A Active JP6655675B2 (ja) 2014-12-23 2018-07-26 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置
JP2018153230A Active JP6542449B2 (ja) 2014-12-23 2018-08-16 アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP2019109507A Active JP6786665B2 (ja) 2014-12-23 2019-06-12 アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP2020016374A Active JP7008093B2 (ja) 2014-12-23 2020-02-03 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2017533589A Active JP6389336B2 (ja) 2014-12-23 2015-12-23 アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP2017531495A Active JP6378440B2 (ja) 2014-12-23 2015-12-23 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置
JP2017530673A Active JP6463480B2 (ja) 2014-12-23 2015-12-23 非免許帯域を支援する無線接続システムにおいて向上した物理下りリンク制御チャネルを送受信する方法及びこれを支援する装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018153230A Active JP6542449B2 (ja) 2014-12-23 2018-08-16 アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP2019109507A Active JP6786665B2 (ja) 2014-12-23 2019-06-12 アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP2020016374A Active JP7008093B2 (ja) 2014-12-23 2020-02-03 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置

Country Status (7)

Country Link
US (7) US10306662B2 (ja)
EP (5) EP3664354B1 (ja)
JP (7) JP6389336B2 (ja)
KR (3) KR101749118B1 (ja)
CN (3) CN107005355B (ja)
ES (1) ES2773918T3 (ja)
WO (3) WO2016105127A1 (ja)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10085164B2 (en) * 2011-04-28 2018-09-25 Qualcomm Incorporated System and method for managing invalid reference subframes for channel state information feedback
WO2015190883A1 (en) 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for performing blind detection in wireless communication system
KR20170063949A (ko) 2014-10-06 2017-06-08 엑시큐어, 인크. 항-tnf 화합물
KR101749118B1 (ko) 2014-12-23 2017-07-03 엘지전자 주식회사 비면허 대역을 지원하는 무선 접속 시스템에서 채널상태정보를 보고하는 방법 및 이를 지원하는 장치
US10219256B2 (en) * 2015-01-13 2019-02-26 Qualcomm Incorporated Control information feedback for eCC on PCell
CN105992373B (zh) * 2015-01-30 2020-09-15 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
US9888497B2 (en) * 2015-01-30 2018-02-06 Nec Corporation Method and apparatus for performing fractional subframe transmission
US10277366B2 (en) * 2015-01-30 2019-04-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting signal using unlicensed band in cellular system
US10348461B2 (en) * 2015-03-17 2019-07-09 Kyocera Corporation Communication apparatus and communication method
JP6721577B2 (ja) * 2015-05-15 2020-07-15 シャープ株式会社 端末装置、基地局装置、および通信方法
JP6317037B2 (ja) * 2015-05-15 2018-04-25 京セラ株式会社 基地局、ユーザ端末、プロセッサ及び通信方法
US11201688B2 (en) 2015-05-15 2021-12-14 Kyocera Corporation Base station, user terminal, processor, and communication method
US10285117B2 (en) * 2015-05-21 2019-05-07 Qualcomm Incorporated Techniques for coexistence between enhanced component carrier communications and non-enhanced component carrier communications
WO2016197343A1 (zh) * 2015-06-10 2016-12-15 华为技术有限公司 信息发送或接收方法、用户设备及基站
US10200904B2 (en) * 2015-06-24 2019-02-05 Qualcomm Incorporated Techniques for transmitting on multiple carriers of a shared radio frequency spectrum band
WO2017026798A1 (ko) * 2015-08-12 2017-02-16 주식회사 윌러스표준기술연구소 비면허 대역에서 제어 채널 전송 방법, 장치 및 시스템
US10135594B2 (en) * 2015-08-13 2018-11-20 Electronics And Telecommunications Research Institute Scheduling method for communication network supporting unlicensed band
EP3131225B1 (en) 2015-08-14 2019-03-13 Sun Patent Trust Modulation order adaptation for partial subframes
US10172124B2 (en) 2015-09-22 2019-01-01 Comcast Cable Communications, Llc Carrier selection in a multi-carrier wireless network
US10200164B2 (en) 2015-09-22 2019-02-05 Comcast Cable Communications, Llc Carrier activation in a multi-carrier wireless network
US10206227B2 (en) * 2015-09-22 2019-02-12 Mediatek Inc. Device and method of setting clear channel assessment threshold
US10110428B2 (en) * 2015-09-24 2018-10-23 Electronics And Telecommunications Research Institute Method and apparatus for configuring frame of unlicensed band
KR101990753B1 (ko) 2015-10-17 2019-06-20 콤캐스트 케이블 커뮤니케이션스 엘엘씨 부분 서브프레임 및 전체 서브프레임에서의 제어 채널 구성
EP3369202A1 (en) * 2015-10-29 2018-09-05 Intel IP Corporation Design and transmission of (e)pdcch within partial subframe in licensed assisted access (laa)
WO2017132844A1 (en) * 2016-02-02 2017-08-10 Nec Corporation Methods and apparatuses for performing uplink transmission and receiving
US10548121B2 (en) 2016-02-03 2020-01-28 Comcast Cable Communications, Llc Downlink and uplink channel transmission and monitoring in a wireless network
US10194432B2 (en) * 2016-02-03 2019-01-29 Ofinno Technologies, Llc Signal transmissions in one or more subframes in a wireless network
US10257855B2 (en) 2016-02-04 2019-04-09 Comcast Cable Communications, Llc Multi-carrier detection in a wireless network
WO2017132955A1 (zh) * 2016-02-04 2017-08-10 华为技术有限公司 控制信息传输方法及基站与终端
US11452091B2 (en) * 2016-02-04 2022-09-20 Acer Incorporated Device and method of handling hybrid automatic repeat request transmission
EP3414854B1 (en) * 2016-02-08 2020-11-04 Telefonaktiebolaget LM Ericsson (publ) Controlling the channel occupancy measurement quality
CN108702755B (zh) * 2016-02-29 2023-05-30 株式会社Ntt都科摩 终端、基站、系统以及无线通信方法
US10236958B2 (en) * 2016-03-21 2019-03-19 University Of Science And Technology Of China Method for signal transmission to multiple user equipments utilizing reciprocity of wireless channel
CN105682244B (zh) * 2016-03-25 2018-01-09 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
US10200992B2 (en) 2016-05-06 2019-02-05 Comcast Cable Communications, Llc Uplink signal starting position in a wireless device and wireless network
CN107370562A (zh) * 2016-05-13 2017-11-21 华为技术有限公司 传输下行控制信息的方法和装置
CN112887000B (zh) 2016-05-31 2022-07-15 中兴通讯股份有限公司 信息反馈方法、装置及系统
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
EP3461311B1 (en) 2016-07-21 2019-09-04 Telefonaktiebolaget LM Ericsson (publ) Flexible indication for start position of data channel
WO2018021586A1 (ko) * 2016-07-26 2018-02-01 엘지전자 주식회사 무선 통신 시스템에서 단말이 채널 상태 정보를 업데이트하는 방법 및 장치
EP3493580B1 (en) * 2016-07-26 2022-08-31 NTT DoCoMo, Inc. User terminal, base station and wireless communication method
CN107734713B (zh) * 2016-08-12 2023-05-16 中兴通讯股份有限公司 一种数据传输的方法和装置
US11147062B2 (en) 2016-10-14 2021-10-12 Comcast Cable Communications, Llc Dual connectivity power control for wireless network and wireless device
KR102513979B1 (ko) * 2016-10-25 2023-03-27 삼성전자주식회사 전자 장치 및 전자 장치의 통신 방법
US20180124831A1 (en) 2016-10-29 2018-05-03 Ofinno Technologies, Llc Dual connectivity scheduling request for wireless network and wireless device
US10848977B2 (en) 2016-11-02 2020-11-24 Comcast Cable Communications, Llc Dual connectivity with licensed assisted access
US10291451B2 (en) * 2016-11-07 2019-05-14 Qualcomm Incorporated PRACH design for larger cell radius
JP2020504979A (ja) * 2017-01-05 2020-02-13 日本電気株式会社 ネットワーク装置、端末装置、ネットワーク装置の方法、及び端末装置の方法
CN108306720B (zh) * 2017-01-13 2022-06-21 北京三星通信技术研究有限公司 一种传输uci信息的方法和设备
CN112929130A (zh) 2017-01-20 2021-06-08 Oppo广东移动通信有限公司 信息传输方法、设备和计算机可读存储介质
CN108737034B (zh) * 2017-04-13 2021-08-03 华为技术有限公司 发送信息的方法及其装置和接收信息的方法及其装置
CN108809484B (zh) * 2017-04-28 2020-04-21 华为技术有限公司 一种信道状态的指示方法、装置及网络设备
KR102367076B1 (ko) * 2017-05-03 2022-02-24 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 다운링크 제어 채널의 수신, 송신 방법 및 장치
CN112865924A (zh) * 2017-07-05 2021-05-28 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
EP3442148A1 (en) 2017-08-11 2019-02-13 Panasonic Intellectual Property Corporation of America Bandwidth part adaptation in downlink communications
CN109474313B (zh) 2017-09-08 2020-08-04 华硕电脑股份有限公司 非许可频谱中考虑波束成形传送的信道使用的方法
US10985897B2 (en) * 2017-09-11 2021-04-20 Qualcomm Incorporated Methods and apparatus for dynamic time-division duplexing (TDD)
US10848224B2 (en) * 2017-09-29 2020-11-24 Lg Electronics Inc. Method and apparatus for reporting channel state information in a wireless communication system
WO2019071624A1 (zh) * 2017-10-14 2019-04-18 Oppo广东移动通信有限公司 无线通信方法、终端和网络设备
US10659132B2 (en) * 2017-10-24 2020-05-19 Qualcomm Incorporated Beam scanning period configuration
KR20190046479A (ko) 2017-10-26 2019-05-07 에스케이텔레콤 주식회사 대역별 데이터 전송 통계 생성 방법과, 상기 방법이 적용된 기지국
US20200314658A1 (en) * 2017-10-27 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for scheduling in laa
US10805979B2 (en) * 2017-11-21 2020-10-13 Qualcomm Incorporated Dual band discontinuous reception
US11064473B2 (en) * 2018-01-12 2021-07-13 Apple Inc. Transmission downlink control information for new radio (NR) system
US10772132B2 (en) * 2018-02-08 2020-09-08 Qualcomm Incorporated PRACH configuration on NR-U
CN110167152B (zh) 2018-02-12 2022-04-12 大唐移动通信设备有限公司 一种数据传输方法和设备
WO2019157616A1 (en) * 2018-02-13 2019-08-22 Zte Corporation Methods, apparatus and systems for transmitting a wake up signal in a wireless communication
KR102393512B1 (ko) * 2018-02-14 2022-05-04 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
CN110324898B (zh) * 2018-03-29 2021-08-27 北京紫光展锐通信技术有限公司 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
US11039475B2 (en) * 2018-04-06 2021-06-15 Mediatek Inc. Detection of beginning of a transmission session in new radio unlicensed spectrum
US11452098B2 (en) * 2018-04-20 2022-09-20 Qualcomm Incorporated Dual band channel bonding and puncturing
CN110798292B (zh) * 2018-08-02 2021-01-08 维沃移动通信有限公司 映射反馈信息的方法和装置
US11864229B2 (en) * 2018-08-07 2024-01-02 Apple Inc. Contention window size update for NR systems operating on unlicensed band
CN117202401A (zh) * 2018-08-07 2023-12-08 富士通株式会社 接收装置和发送装置
KR102584500B1 (ko) * 2018-08-08 2023-10-04 삼성전자주식회사 무선 통신 시스템에서 비면허대역의 채널을 점유하는 방법 및 장치
KR102385929B1 (ko) * 2018-09-07 2022-04-14 주식회사 케이티 비면허 대역에서 무선 통신을 수행하는 방법 및 장치
CN110933761B (zh) * 2018-09-20 2022-02-15 成都华为技术有限公司 资源调度方法及设备
US11818726B2 (en) * 2018-09-27 2023-11-14 Nokia Technologies Oy Downlink control of unlicensed sub-bands
CN113170511B (zh) * 2018-11-02 2024-06-21 韦勒斯标准与技术协会公司 基于未授权频带的带宽部分(bwp)发送和接收物理信道和信号的方法及使用该方法的设备
EP3855793A4 (en) * 2018-11-08 2021-11-17 LG Electronics Inc. METHOD OF SENDING OR RECEIVING A CHANNEL STATUS INFORMATION REFERENCE SIGNAL IN AN UNLICENSED BAND AND DEVICE FOR DOING THERE
TWI741468B (zh) * 2019-01-08 2021-10-01 財團法人工業技術研究院 未授權頻帶中的下行鏈路接收方法與使用所述方法的使用者設備
US11895698B2 (en) 2019-01-09 2024-02-06 Wilus Institute Of Standards And Technology Inc. Channel access method for carrying out transmission in unlicensed band, and device using same
CN109891948B (zh) * 2019-01-30 2022-02-22 北京小米移动软件有限公司 检测下行传输、传输配置信息和下行传输的方法及装置
US11659402B2 (en) * 2019-03-15 2023-05-23 Apple Inc. Enhanced reservation signal for cellular communication in unlicensed spectrum
WO2020191352A1 (en) * 2019-03-21 2020-09-24 Apple Inc. Time-domain resource allocation for configured grant transmissions in new radio (nr) systems
KR20220030215A (ko) * 2019-07-09 2022-03-10 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 제어 정보를 전송하는 방법, 단말 장치 및 네트워크 장치
EP4057537A4 (en) * 2019-11-06 2022-12-07 LG Electronics Inc. METHOD AND DEVICE FOR TRANSMITTING OR RECEIVING A SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
KR20220103115A (ko) * 2019-11-20 2022-07-21 엘지전자 주식회사 Nr v2x에서 csi를 요청하는 방법 및 장치
WO2021138802A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 激活或去激活可靠传输的方法和装置
US11595987B2 (en) * 2020-01-22 2023-02-28 Qualcomm Incorporated Techniques for physical downlink control channel (PDCCH) limits for multiple cells scheduling one cell in a wireless communication system
US11800518B2 (en) * 2020-01-22 2023-10-24 Qualcomm Incorporated Techniques for physical downlink control channel (PDCCH) limits for multiple cells scheduling one cell in a wireless communication system
CN113517966B (zh) * 2020-04-10 2023-08-29 展讯通信(上海)有限公司 下行参考信号处理方法、装置及可读存储介质
WO2022006763A1 (en) * 2020-07-08 2022-01-13 Qualcomm Incorporated Techniques for scheduling cross-component carriers in unlicensed bands
US12058690B2 (en) * 2020-07-30 2024-08-06 Qualcomm Incorporated Downlink control information size configuration for multiple carrier scheduling scenarios
CN115915099A (zh) * 2021-08-05 2023-04-04 维沃移动通信有限公司 控制资源监控方法、设备及可读存储介质
CN116017501A (zh) * 2021-10-22 2023-04-25 维沃移动通信有限公司 信息配置方法、装置、网络侧设备及终端
US20230171053A1 (en) * 2021-11-30 2023-06-01 Lenovo (Singapore) Pte. Ltd. Sensing reference signal configuration
US11700100B2 (en) 2021-11-30 2023-07-11 Lenovo (Singapore) Pte. Ltd. Configuring a sensing reference signal

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902499B1 (ko) * 2005-08-02 2009-06-15 삼성전자주식회사 광대역 무선통신시스템에서 프레임 통신 장치 및 방법
EP2291697A1 (en) * 2008-06-19 2011-03-09 Corning Cable Systems LLC Fiber optic cables and assemblies and the performance thereof
CN102484552B (zh) * 2009-08-23 2016-04-13 Lg电子株式会社 无线通信系统中的下行链路信号的传送方法及其传送设备
KR20110061507A (ko) 2009-12-01 2011-06-09 엘지전자 주식회사 경쟁기반 물리 상향링크 데이터 채널을 통한 데이터의 송수신 방법 및 이를 위한 장치
CN102118189B (zh) * 2009-12-31 2016-07-27 华为技术有限公司 一种基于竞争资源的配置方法和装置
CN101790190B (zh) 2010-01-08 2014-12-10 中兴通讯股份有限公司 下行控制信息的检测方法和装置
US20130094456A1 (en) 2010-04-06 2013-04-18 Nec Corporation Method of configuring cross-carrier cfi
US9084240B2 (en) * 2010-04-15 2015-07-14 Qualcomm Incorporated Multiplexing of peer-to-peer (P2P) communication and wide area network (WAN) communication
US8750887B2 (en) 2010-07-16 2014-06-10 Texas Instruments Incorporated Multi-cell signaling of channel state information-reference signal and physical downlink shared channel muting
CN101958772B (zh) 2010-09-29 2016-03-02 中兴通讯股份有限公司 用于跨载波调度的物理下行控制信道发送方法和基站
US10051624B2 (en) * 2010-12-06 2018-08-14 Interdigital Patent Holdings, Inc. Wireless operation in license exempt spectrum
KR101955516B1 (ko) * 2010-12-07 2019-03-07 엘지전자 주식회사 무선 통신 시스템에서 단말 간의 통신 방법 및 장치
US9119101B2 (en) * 2010-12-17 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for periodic channel state reporting in a wireless network
US10505680B2 (en) 2011-02-11 2019-12-10 Interdigital Patent Holdings, Inc. Systems and methods for an enhanced control channel
CN103430467B (zh) 2011-03-11 2016-05-11 Lg电子株式会社 终端在应用了载波聚合技术的无线通信系统中发送/接收信号的方法和装置
CN102158976B (zh) * 2011-04-02 2013-06-26 电信科学技术研究院 一种调度和接收数据的方法、系统及设备
US9693264B2 (en) * 2011-04-18 2017-06-27 Lg Electronics Inc. Signal transmission method and device in a wireless communication system
US9392464B2 (en) * 2011-05-04 2016-07-12 Google Technology Holdings LLC Method and apparatus for providing user equipment access to TV white space resources by a broadband cellular network
WO2012157869A2 (ko) 2011-05-16 2012-11-22 엘지전자 주식회사 무선 통신 시스템에서 단말이 상향링크 harq 동작을 수행하는 방법 및 이를 위한 장치
US9763230B2 (en) 2011-05-18 2017-09-12 Lg Electronics Inc. Method and apparatus for receiving and transmitting channel state information based on carrier sensing
US8675605B2 (en) 2011-06-02 2014-03-18 Broadcom Corporation Frequency hopping in license-exempt/shared bands
US9473988B2 (en) 2011-06-06 2016-10-18 Lg Electronics Inc. Multiplexing method for signals related to a plurality of terminals in a wireless communication system applying carrier aggregation techniques and apparatus therefor
US9848415B2 (en) 2011-07-06 2017-12-19 Nokia Solutions And Networks Oy DM RD based LTE downlink physical layer
US9854446B2 (en) 2011-07-07 2017-12-26 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
JP5961282B2 (ja) 2011-12-22 2016-08-02 インターデイジタル パテント ホールディングス インコーポレイテッド Lteキャリアアグリゲーションでの制御シグナリング
CN113225172B (zh) 2012-01-27 2024-05-24 交互数字专利控股公司 由WTRU执行的用于ePDCCH的方法
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9143984B2 (en) 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
KR101911457B1 (ko) 2012-04-30 2018-10-24 엘지이노텍 주식회사 무선충전 라디에이터 기능을 갖는 자성 필름, 그 제조방법 및 이를 이용한 무선충전 디바이스
CN103457710B (zh) * 2012-06-01 2017-02-08 华为技术有限公司 一种增强型物理下行控制信道的使能方法、设备及系统
US20140019253A1 (en) * 2012-07-10 2014-01-16 Richard Ricasata Systems and methods for selecting and displaying interactive advertising content with a lock screen
CN104620523B (zh) * 2012-08-10 2018-03-27 Lg 电子株式会社 在无线通信系统中支持突发传输的方法和设备
US9521665B2 (en) 2012-09-16 2016-12-13 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink signal considering antenna port relationship in wireless communication system
US9167574B2 (en) 2012-09-28 2015-10-20 Intel Corporation Blind decoding for an enhanced physical downlink control channel (EPDCCH)
US9955463B2 (en) 2012-11-01 2018-04-24 Blackberry Limited Method and system for battery energy savings for carrier aggregation
WO2014069601A1 (ja) 2012-11-05 2014-05-08 シャープ株式会社 端末装置、集積回路、無線通信方法、および、基地局装置
US10149288B2 (en) * 2012-11-07 2018-12-04 Lg Electronics Method and device for receiving or transmitting downlink data in wireless communication system
US9692569B2 (en) 2013-04-03 2017-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for control channel resource allocations in constrained and unconstrained subframes in a wireless communication network
US9780941B2 (en) 2013-04-04 2017-10-03 Sharp Kabushiki Kaisha Terminal device, integrated circuit, and radio communication method
CN104113397B (zh) 2013-04-16 2019-09-24 北京三星通信技术研究有限公司 灵活tdd重配置系统中非周期csi反馈的方法及设备
US9355966B2 (en) * 2013-07-08 2016-05-31 Avago Technologies General Ip (Singapore) Pte. Ltd. Substrate warpage control using external frame stiffener
US9584284B2 (en) 2013-09-26 2017-02-28 Qualcomm Incorporated Simplified FDD-TDD carrier aggregation
US20150223075A1 (en) 2014-01-31 2015-08-06 Intel IP Corporation Systems, methods and devices for channel reservation
US9839049B2 (en) 2014-02-24 2017-12-05 Intel IP Corporation Scheduling for an unlicensed carrier type
US9774429B2 (en) 2014-03-12 2017-09-26 Qualcomm Incorporated Techniques for transmitting positioning reference signals in an unlicensed radio frequency spectrum band
US10420054B2 (en) 2014-03-28 2019-09-17 Qualcomm Incorporated Wireless communications in a system that supports a first subframe type having a first symbol duration and a second subframe type having a second symbol duration
CN106465172A (zh) 2014-05-15 2017-02-22 株式会社Ntt都科摩 用户终端、无线基站、无线通信方法以及无线通信系统
US9509486B2 (en) * 2014-08-04 2016-11-29 Qualcomm Incorporated Techniques for indicating a frame format for transmissions using unlicensed radio frequency spectrum bands
EP3195508A1 (en) 2014-09-08 2017-07-26 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations
US20160095114A1 (en) 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for managing allocation and usage of radio resource, method and apparatus for transmitting data through unlicensed band channel, and method and apparatus for managing access of radio resource
CN107079305B (zh) 2014-10-10 2020-09-08 三星电子株式会社 用于在无线通信系统中配置小区的方法和装置
JP6426840B2 (ja) 2014-11-07 2018-11-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America アンライセンスキャリアで送信するための改良されたリソース割当て
KR101749118B1 (ko) 2014-12-23 2017-07-03 엘지전자 주식회사 비면허 대역을 지원하는 무선 접속 시스템에서 채널상태정보를 보고하는 방법 및 이를 지원하는 장치
US20170009452A1 (en) * 2015-07-10 2017-01-12 Mark Holtzapple Retaining wall system using interlocking concrete masonry units
EP4084567A1 (en) 2015-08-14 2022-11-02 Electronics and Telecommunications Research Institute Operating method of communication node in network supporting licensed and unlicensed bands
JP2019004194A (ja) 2015-11-05 2019-01-10 シャープ株式会社 端末装置、基地局装置および方法

Also Published As

Publication number Publication date
EP3664354A1 (en) 2020-06-10
EP3240348A1 (en) 2017-11-01
EP3664354B1 (en) 2021-10-20
KR101882279B1 (ko) 2018-07-26
JP7008093B2 (ja) 2022-01-25
CN107005386A (zh) 2017-08-01
US20170367106A1 (en) 2017-12-21
EP3240224B1 (en) 2019-08-28
US20170367092A1 (en) 2017-12-21
US11368968B2 (en) 2022-06-21
US20190327752A1 (en) 2019-10-24
EP3240348A4 (en) 2018-08-22
US20170311322A1 (en) 2017-10-26
KR101749118B1 (ko) 2017-07-03
JP2018201236A (ja) 2018-12-20
EP3240207A4 (en) 2018-08-01
US10306662B2 (en) 2019-05-28
JP6786665B2 (ja) 2020-11-18
US20200022156A1 (en) 2020-01-16
KR20160106092A (ko) 2016-09-09
JP6463480B2 (ja) 2019-02-06
JP2020099063A (ja) 2020-06-25
JP2018500829A (ja) 2018-01-11
JP2019176501A (ja) 2019-10-10
EP3240224A1 (en) 2017-11-01
EP3240224A4 (en) 2018-08-29
US20200267743A1 (en) 2020-08-20
KR101813037B1 (ko) 2017-12-28
KR20160106093A (ko) 2016-09-09
CN107005355B (zh) 2020-07-03
WO2016105126A1 (ko) 2016-06-30
US11357021B2 (en) 2022-06-07
EP3633908A1 (en) 2020-04-08
US10477565B2 (en) 2019-11-12
KR20160106094A (ko) 2016-09-09
ES2773918T3 (es) 2020-07-15
WO2016105132A1 (ko) 2016-06-30
US10708932B2 (en) 2020-07-07
JP2018503300A (ja) 2018-02-01
EP3240207B1 (en) 2020-02-05
EP3633908B1 (en) 2021-08-11
US20190246409A1 (en) 2019-08-08
US11197307B2 (en) 2021-12-07
CN107113143A (zh) 2017-08-29
JP2018504810A (ja) 2018-02-15
US10492210B2 (en) 2019-11-26
JP6389336B2 (ja) 2018-09-12
CN107005355A (zh) 2017-08-01
CN107005386B (zh) 2020-11-03
EP3240348B1 (en) 2020-02-05
EP3240207A1 (en) 2017-11-01
WO2016105127A1 (ko) 2016-06-30
JP6378440B2 (ja) 2018-08-22
JP2018186564A (ja) 2018-11-22
CN107113143B (zh) 2020-06-05
JP6542449B2 (ja) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6655675B2 (ja) 非免許帯域をサポートする無線接続システムにおいてチャネル状態情報を報告する方法及びこれをサポートする装置
JP6945602B2 (ja) 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置
US10887141B2 (en) Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
JP6637163B2 (ja) 非免許帯域を支援する無線接続システムにおいてマルチキャリア上でlbt過程を行う方法及び装置
US9225503B2 (en) Method for transmitting/receiving data in wireless communication system and base station for same
US10142914B2 (en) Signal transmission method for MTC and apparatus for same
US20180019836A1 (en) Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same
KR20180088732A (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6655675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250