WO2021138802A1 - 激活或去激活可靠传输的方法和装置 - Google Patents

激活或去激活可靠传输的方法和装置 Download PDF

Info

Publication number
WO2021138802A1
WO2021138802A1 PCT/CN2020/070680 CN2020070680W WO2021138802A1 WO 2021138802 A1 WO2021138802 A1 WO 2021138802A1 CN 2020070680 W CN2020070680 W CN 2020070680W WO 2021138802 A1 WO2021138802 A1 WO 2021138802A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
channel quality
time
reliable
quality threshold
Prior art date
Application number
PCT/CN2020/070680
Other languages
English (en)
French (fr)
Inventor
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202311363752.XA priority Critical patent/CN117528640A/zh
Priority to CN202080089453.XA priority patent/CN114846757A/zh
Priority to EP20912536.8A priority patent/EP4084379A4/en
Priority to PCT/CN2020/070680 priority patent/WO2021138802A1/zh
Publication of WO2021138802A1 publication Critical patent/WO2021138802A1/zh
Priority to US17/849,019 priority patent/US20220321249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • This application relates to the field of communications, and in particular to a method and device for activating or deactivating reliable transmission.
  • the 5th generation (5G) mobile communication system supports the industrial internet of things (IIoT). Based on the transmission requirements of delay and reliability, IIoT introduces time sensitive network (TSN) or Concepts such as time sensitive communication (TSC).
  • TSN time sensitive network
  • TSC time sensitive communication
  • the duration during which the application uses the communication service and may not receive the expected message may be referred to as survival time.
  • survival time For an application or business, when the survival time is equal to a business cycle, after the transmission of the previous data packet fails, the next data packet must be transmitted correctly.
  • the survival time is a parameter of positive significance for the TSC service. How to use the survival time to meet the transmission requirements of the TSC service is a problem that needs to be solved at present.
  • This application provides a method and device for activating or deactivating reliable transmission, which can use the survival time to meet the transmission requirements of the TSC service.
  • a method for activating or deactivating reliable transmission including: obtaining the maximum transmission time;
  • the reliable transmission is activated or deactivated according to the maximum transmission time, and the reliable transmission includes at least one of the following: copy transmission, repeated transmission, and transmission mode including the target MCS.
  • the terminal device can activate reliable transmission when the data transmission fails and the transmission time does not exceed the maximum transmission time, which can increase the probability of successful data transmission within the maximum transmission time, and will not affect other data outside the maximum transmission time. Transmission.
  • another method for activating or deactivating reliable transmission including: sending a maximum transmission time to a first terminal device, the maximum transmission time being used by the first terminal device to activate or deactivate reliable transmission,
  • the reliable transmission includes at least one of the following: replication transmission, repeated transmission, and a transmission mode including the target MCS.
  • the terminal device can activate reliable transmission when the data transmission fails and the transmission time does not exceed the maximum transmission time, which can increase the probability of successful data transmission within the maximum transmission time, and will not affect other data outside the maximum transmission time. Transmission.
  • a device for activating or deactivating reliable transmission can realize the function corresponding to the method in the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the device is a terminal device or a chip.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the terminal device executes the method described in the first aspect.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to include the
  • the terminal device of the chip executes the method described in the first aspect, and the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device located outside the chip (for example, , Read-only memory, random access memory, etc.).
  • a device for activating or deactivating reliable transmission can realize the function corresponding to the method in the second aspect.
  • the function can be realized by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the device is a network device or chip.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the network device executes the method described in the second aspect.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to include the
  • the network device of the chip executes the method described in the second aspect, and the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the network device located outside the chip (for example, , Read-only memory, random access memory, etc.).
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
  • the processor executes the method described in the first aspect.
  • a computer-readable storage medium stores a computer program.
  • the processor executes the method described in the second aspect.
  • a computer program product including computer program code, which when the computer program code is executed by a processor, causes the processor to execute the method described in the first aspect.
  • a computer program product including computer program code, and when the computer program code is executed by a processor, the processor executes the method described in the second aspect.
  • a computer program which when running on a computer, causes the computer to execute the method described in the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic diagram of a communication system suitable for this application
  • Fig. 2 is a schematic diagram of a method of copy transmission applicable to the present application
  • Figure 3 is a schematic diagram of a method for activating or deactivating reliable transmission provided by the present application
  • Fig. 4 is a schematic diagram of a method for obtaining survival time provided by the present application.
  • Figure 5 is a schematic diagram of a method for activating reliable transmission provided by the present application.
  • Fig. 6 is a schematic diagram of another method for activating reliable transmission provided by the present application.
  • FIG. 7 is a schematic diagram of yet another method for activating reliable transmission provided by this application.
  • FIG. 8 is a schematic diagram of yet another method for activating reliable transmission provided by this application.
  • FIG. 9 is a schematic diagram of a device for activating or deactivating reliable transmission provided by the present application.
  • FIG. 10 is a schematic diagram of another device for activating or deactivating reliable transmission provided by the present application.
  • Fig. 11 is a schematic diagram of a communication device for activating or deactivating reliable transmission provided by the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the terminal device 120 may include a variety of handheld devices, in-vehicle device having a wireless communication function, wearable device, computing device, or other processing device connected to a wireless modem, for example, the Third Generation Partnership Project (3 rd Generation partnership project, 3GPP) defined user equipment (user equipment, UE), mobile station (mobile station, MS), soft terminal, home gateway, set-top box, etc.
  • 3GPP Third Generation Partnership Project
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (gNB) in a 5G mobile communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (AG).
  • the network device 110 may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and other types of devices.
  • the communication system 100 is only an example, and the communication system applicable to the present application is not limited to this.
  • the number of network devices and terminal devices included in the communication system 100 may also be other numbers.
  • Reliable transmission may include one or more of: duplication transmission, repetition transmission, and transmission methods including a target modulation and coding strategy (MCS).
  • MCS target modulation and coding strategy
  • Repeated transmission means that the original packet and at least one copy of the same packet are transmitted, or the same data packet is transmitted multiple times, and the redundancy versions used for the multiple transmissions may be the same or different.
  • the target MCS is the MCS preset or pre-configured or changed by the network or indicated by the network. Specifically, the reliability of the MCS is high, or the MCS index (index) is low.
  • Copy transmission means to transmit multiple identical data packets.
  • the replication transmission is performed at the packet data convergence protocol (PDCP) layer, and the same PDCP packet data unit (PDU) is mapped to different radio link control (RLC) entities.
  • the medium access control (MAC) layer needs to transmit the replicated data of different RLC entities to different carriers, which can be carried out using carrier aggregation (CA) and/or dual-connectivity (DC) Copy transmission.
  • CA carrier aggregation
  • DC dual-connectivity Copy transmission.
  • the total number of copies (copies) corresponding to one PDCP PDU can be up to 4.
  • the replicated PDCP PDUs are respectively transmitted to two RLC entities (two different logical channels), and finally it is ensured that the replicated PDCP PDUs can be transmitted on different aggregated carriers, thereby achieving frequency diversity gain to improve data transmission reliability.
  • Data radio bearer (DRB) 1 and DRB3 in Figure 2 are shown.
  • the replicated PDCP PDUs are respectively transmitted to two RLC entities.
  • the two RLC entities correspond to two MAC entities, namely, a master cell group (MCG) MAC entity and a secondary cell group (secondary cell group).
  • MCG master cell group
  • SCG secondary cell group
  • DRB2 DRB2 in Figure 2.
  • Figure 3 shows a method for activating or deactivating reliable transmission provided by this application.
  • the method includes:
  • the terminal device In order to ensure the maintenance or activation of high-level applications, the terminal device needs to obtain the maximum transmission time so as to successfully send at least one data packet to the network device within the maximum transmission time.
  • the maximum transmission time can be interpreted as: the maximum time a service or flow is allowed to transmit, or the maximum time a service or flow can continuously transmit errors, or a service or flow is allowed to not receive packets or instructions The longest time.
  • An example of the maximum transmission time is the survival time. In the following, unless otherwise specified, these two concepts are common.
  • the survival time can be preset, or configured or instructed by the first node.
  • the first node can be a network device or another terminal device.
  • the network device includes at least one of the following devices: gNB, central network control (center network control, CNC), and TSN node.
  • the session management function (session management function, SMF) obtains configuration information from the CNC, and the configuration information is used to configure the lifetime of a PDU session.
  • SMF sends this configuration information to gNB.
  • the gNB sends the above survival time to the UE through dedicated radio resource control (RRC) and/or broadcast messages.
  • RRC radio resource control
  • the gNB may configure the survival time for a specific DRB or quality of service (QoS) flow or PDU session or TSC flow or UE in the RRC reconfiguration message, that is, the granularity corresponding to the survival time may be DRB Or QoS flow or PDU session or TSC flow or UE.
  • QoS quality of service
  • the source base station can send the survival time to the target base station.
  • the target base station can obtain the survival time through the source base station. Further, the target base station sends the survival time to the UE in the handover command.
  • the terminal device can activate or deactivate the reliable transmission function according to the maximum transmission time.
  • whether the terminal device activates or deactivates reliable transmission according to the maximum transmission time may be preset, or may be network configuration or control. For example, if the network configures or instructs the UE to activate or deactivate reliable transmission according to the maximum transmission time, the UE activates or deactivates reliable transmission according to the maximum transmission time. For another example, if the UE obtains the maximum transmission time, the UE activates or deactivates reliable transmission according to the maximum transmission time.
  • the terminal device can perform the following steps.
  • S320 Activate or deactivate reliable transmission according to the maximum transmission time, where the reliable transmission includes at least one of the following: duplicate transmission, repeated transmission, and a transmission mode including the target MCS.
  • the transmission mode including the target MCS can also be understood as a configuration for achieving reliable transmission, or a parameter for reliable transmission.
  • the configuration of duplicate transmission/repetitive transmission can be understood as a configuration for achieving reliable transmission, or a parameter for reliable transmission.
  • the terminal device can activate or deactivate the reliable transmission according to the maximum transmission time.
  • deactivation can also be understood as inactivation. Or, in the inactive state, it is determined not to use reliable transmission, it is in the inactive state, and in the active state, it is determined not to use the reliable transmission, it is in the deactivated state, etc.
  • S320 may include at least one of the following situations:
  • the reliable transmission is deactivated. Further, the UE reports that the maximum transmission time is exceeded, or the transmission fails.
  • the target data is data corresponding to a specific DRB or quality of service (QoS) flow or PDU session or TSC flow or UE.
  • QoS quality of service
  • the target data is specific data determined according to the maximum transmission time.
  • the target data can be indicated by the network or determined according to rules.
  • the target data can be data to be transmitted or transmitted data. If the transmission time of the target data is less than the survival time, the terminal device can activate reliable transmission when the target data transmission fails, or the terminal device can When the target data transmission is successful, the reliable transmission is deactivated. If the transmission time of the target data is greater than or equal to the survival time, the terminal device deactivates reliable transmission.
  • the survival time is 1 TSC service cycle
  • the target data is a packet with a transmission error, or the first packet with a transmission error, or the first packet received unsuccessfully, or the first packet with a continuous transmission error, or The first packet that was not received consecutively successfully. If there is target data, the terminal device activates reliable transmission.
  • the survival time is 2 TSC service cycles
  • the target data is the second packet with transmission error, or the second packet with consecutive transmission errors, or the second packet with unsuccessfully received consecutively. If there is target data, the terminal device activates reliable transmission.
  • the survival time is 3 TSC service cycles
  • the target data is the first packet with a transmission error, or the first packet that is not successively received successfully. If there is target data, start the first timer or count to obtain the first value N. When the first timer expires, or when the first value is greater than or equal to the first numerical threshold, the terminal device activates reliable transmission.
  • An example of the threshold of the number of packet transmission errors that can be tolerated by the first numerical threshold may be determined based on the survival time. For example, if the terminal device can send data once in a TSC service cycle, and the survival time is 3 TSC service cycles, the first numerical threshold can be 1 or 2; when the first numerical threshold is 1, the target data transmission error once or Reliable transmission can be activated twice; when the first numerical threshold is 2, the reliable transmission can be activated by the target data transmission error twice, and the reliable transmission can be deactivated by the target data transmission error once; the first numerical threshold can also be the maximum number of transmissions , In this example, the maximum number of transmissions is 3.
  • the terminal device can start a second timer to determine whether the transmission time exceeds the survival time.
  • the second timer is started or restarted, where the first data is any piece of data.
  • the duration of the second timer is related to the survival time.
  • the second timer may be configured as the length of the survival time.
  • reliable transmission can be activated.
  • the network may indicate or configure a timer (first timer or second timer), the timer is used to activate reliable transmission, that is, the reliable transmission can be activated once the timer expires; or, the timer is used to avoid The data transmission does not meet the requirements of the maximum transmission time.
  • the data is, for example, target data or n error packets, where n is a positive integer. For example, after n error packets occur and the timer has not expired, reliable transmission is activated; or For example, when n error packets occur, the timer is started, and when the timer expires, reliable transmission is activated; or, for example, after n error packets occur, reliable transmission is activated. If the timer expires, reliable transmission is activated. Before the timer expires, if data transmission is successful, the timer is stopped. The timer is started at the first moment, or when there is target data.
  • the second value M is re-counted, where the first data is any piece of data.
  • reliable transmission can be activated.
  • This threshold is related to the survival time. Specifically, the threshold can be configured as the survival time and the service transmission period, or the number of packet transmissions, or the maximum number of consecutive errors in packet transmission.
  • reliable transmission can be deactivated based on the survival time. For example, when reliable transmission is activated, and the first packet transmitted is correctly transmitted, the reliable transmission is deactivated. For example, after the reliable transmission is activated, N packets or N consecutive packets are transmitted correctly, the reliable transmission is deactivated. For example, after activating reliable transmission, after a packet is transmitted correctly, deactivate reliable transmission.
  • the terminal device can activate reliable transmission when the data transmission fails and the transmission time does not exceed the maximum transmission time, which can increase the probability of successful data transmission within the maximum transmission time, and will not affect other data outside the maximum transmission time. Transmission.
  • the terminal device may also consider other factors when activating or deactivating reliable transmission. That is, when the target data transmission fails and certain conditions are met, the reliable transmission is activated. Specifically, under the premise that reliable transmission is not activated and the transmission time of the target data is less than the maximum transmission time, the terminal device may activate or deactivate reliable transmission under certain conditions, such as trigger conditions, where S320 may include the following At least one of the situations:
  • the reliable transmission is deactivated.
  • Reliable transmission is activated or deactivated based on the trigger condition, which improves the transmission reliability within the survival time while avoiding the waste of reliable transmission resources.
  • the aforementioned transmission parameters may include at least one of the following parameters:
  • target data that is, whether the target data exists
  • the number of consecutive packet transmission failures for example, the number of consecutive failed transmissions of target data, the number of consecutive packet transmission failures belonging to an object (the object may be a TSC stream, DRB, PDU session, QoS flow, etc.)
  • the time at which the reliable transmission is activated channel quality
  • timer or its running status ie, timer status. Specifically, such as whether the timer is running, whether it is on, whether it has timed out, Wait).
  • the trigger condition may include: the number of failed transmissions of the target data is greater than or equal to the number threshold.
  • the current reliable transmission is not activated, the transmission time of the target data is less than the survival time, and the threshold of the number of times in the trigger condition is 2; if the target data transmission fails twice, the terminal device can activate the reliable transmission; if the target data transmission fails 1 Then, the terminal device can deactivate reliable transmission.
  • the terminal device can activate the reliable transmission; if there is only 1 packet transmission failure corresponding to a TSC stream, Or if there are no two consecutive packet transmission failures, or there is a correctly transmitted packet before the number of consecutively transmitted error packets does not reach the threshold, the terminal device can deactivate reliable transmission.
  • the terminal device can record the number of transmission failures through a counter. Each time the target data fails to be transmitted, the value of the counter is increased by 1. When the target data is successfully transmitted, the counter is reset to 0.
  • the aforementioned transmission failure is, for example, a packet transmission error or a packet continuous transmission error.
  • the terminal device may record the number of transmission failures through a counter, and the initial number is 0.
  • the counter is incremented by 1.
  • the counter is reset.
  • the aforementioned transmission failure is, for example, a packet transmission error or a packet continuous transmission error.
  • the network can indicate or configure a threshold for the number of times.
  • the trigger condition may include: the transmission time of the target data coincides with the time when the reliable transmission is activated.
  • the trigger condition for the activation of reliable transmission is the second TSC service cycle after the start of the transmission time. If the transmission time of the target data reaches the second The TSC service cycle (that is, the transmission time coincides with the reliable transmission time), and the target data transmission fails, the terminal device can activate the reliable transmission; if the target data transmission time has not reached the second TSC service cycle, the terminal device Reliable transmission can be deactivated.
  • the foregoing transmission time may be counted from the first moment, and the foregoing 2 TSC service cycles are offset values from the first moment, and the offset value may be preset or configured by the network device or indicated by the network device.
  • the trigger condition may include: a comparison result of the channel quality and the channel quality threshold. Specifically, the trigger condition may include: the channel quality is less than or equal to the first channel quality threshold, and/or the channel quality is greater than or equal to the second channel quality threshold.
  • the channel quality can be represented by reference receiving power (RSRP) or other parameters.
  • the first channel quality threshold is a preset or a channel quality threshold configured by a network device, for example, it may be an RSRP threshold.
  • the first channel quality threshold may be the channel quality threshold of the current serving cell and/or other cells.
  • the first channel quality threshold is the channel quality threshold of the current serving cell.
  • reliable transmission is activated; for another example, the first channel quality threshold is the channel quality threshold of the neighboring cell
  • the first channel quality threshold is the channel quality threshold of the current serving cell and the channel quality threshold of the neighboring cell.
  • Reliable transmission is copy transmission, the transmission time of the target data does not exceed the survival time, and other transmission parameters meet the trigger conditions for activating reliable transmission.
  • the terminal device can first determine whether multiple channel quality thresholds are currently configured.
  • the terminal device activates the replication transmission, and the number of RLC entities corresponding to the replication transmission is the first number,
  • the first number is, for example, 2 shown in FIG. 5.
  • the first number can be preset or configured by the network device; when the channel quality is greater than the first channel quality threshold, the terminal device can deactivate the copy transmission.
  • the terminal device can execute the following method.
  • the terminal device can deactivate the copy transmission
  • the terminal device can activate the replication transmission, and the number of RLC entities corresponding to the replication transmission is the second number.
  • the number is, for example, 2 shown in FIG. 5, and the second number may be preset or configured by the network device.
  • the terminal device can activate the replication transmission, and the number of RLC entities corresponding to the replication transmission is the third number, and the third The number is, for example, 3 as shown in FIG. 5, and the third number may be preset or configured by the network device.
  • the terminal device can activate the replication transmission, and the number of RLC entities corresponding to the replication transmission is a fourth number, for example, 4 as shown in FIG. 5, and the fourth number can be
  • the preset can also be configured by the network device.
  • the terminal device After the terminal device activates the copy transmission, it can use the corresponding number of RLC entities to transmit the target data. Among them, the terminal device may select several RLC entities with the best channel quality for replication transmission according to the channel quality of the carrier corresponding to each RLC entity.
  • activating the copy transmission can enhance the reliability of the copy transmission, for example, increase the number of data packets that are copied and transmitted; deactivate the copy transmission can reduce the reliability of the copy transmission, that is, reduce the number of data packets that are copied and transmitted Quantity.
  • Reliable transmission is a transmission method that is repeated transmission and/or includes the target MCS, the transmission time of the target data does not exceed the survival time, and other transmission parameters meet the trigger conditions for activating the reliable transmission.
  • the terminal device can first determine whether multiple channel quality thresholds are currently configured.
  • the terminal device activates the repeated transmission and/or the transmission mode containing the target MCS, and the repeated transmission is repeated
  • the number of transmissions is the first number of retransmissions
  • the index of the target MCS is the first index, where the first number of retransmissions is, for example, 2 shown in FIG. 6, and the first index is, for example, 5 shown in FIG. 6; when the channel quality is greater than When the first channel quality threshold is reached, the terminal device can deactivate the copy transmission.
  • the terminal device can execute the following method.
  • the terminal device can deactivate the copy transmission
  • the terminal device can activate the repeated transmission and/or the transmission mode containing the target MCS, and the number of retransmissions of the repeated transmission Is the second number of retransmissions, and the index of the target MCS is the second index, where the second number of retransmissions is, for example, 2 as shown in FIG. 6, and the second index is, for example, 5 as shown in FIG.
  • the second index may be preset or configured by the network device.
  • the terminal device can activate the repeated transmission and/or the transmission mode containing the target MCS, and the number of retransmissions of the repeated transmission Is the third number of retransmissions, and the index of the target MCS is the third index, where the third number of retransmissions is, for example, 4 shown in FIG. 6, the first index is, for example, 3 shown in FIG. 6, and the third number of retransmissions is sum
  • the third index can be preset or configured by the network device.
  • the terminal device can activate the repeated transmission and/or the transmission mode containing the target MCS, and the number of retransmissions of the repeated transmission is the fourth retransmission number, and the index of the target MCS is the fourth index ,
  • the fourth number of retransmissions is, for example, 8 as shown in FIG. 6, and the fourth index is, for example, 1 as shown in FIG. 6, and the fourth number of retransmissions and the fourth index can be preset or network device configuration. of.
  • the terminal device After the terminal device activates the repeated transmission and/or the transmission mode containing the target MCS, it can use the corresponding number of repeated transmissions and/or the target MCS to transmit the target data.
  • the network equipment can also configure more channel quality thresholds for the terminal equipment.
  • activating repetitive transmission can enhance the reliability of repetitive transmission, for example, increasing the number of data packets that are repeatedly transmitted; deactivating repetitive transmission can reduce the reliability of repetitive transmission, that is, reducing the reliability of repeated transmission of data packets. Quantity.
  • repeated transmission includes the transmission mode of the target MCS.
  • the copy transmission can be used alone, or at least two of the three can be used or configured together.
  • the complexity of activating reliable transmission can be reduced; if the terminal device is configured with multiple channel quality thresholds, the waste of transmission resources can be reduced.
  • the network device can configure different channel quality thresholds for the terminal device according to the actual situation (for example, the processing capability of the terminal device).
  • the network device may also send first indication information to the terminal device, where the first indication information is used to indicate the trigger condition used when the terminal device activates reliable transmission.
  • the first indication information may indicate that the trigger condition includes only the first channel quality threshold, or the trigger condition includes the first channel quality threshold, the second channel quality threshold, and the third channel quality threshold.
  • the network device may also send second indication information to the terminal device, where the second indication information indicates whether to activate the reliable transmission function.
  • the first indication information and the second indication information are the same indication information.
  • the content of the first indication information and/or the second indication information may also be determined by the UE or predefined.
  • the transmission time is the time starting from the first moment, and the first moment may be one of the following moments:
  • the arrival time or transmission time of the first data packet that failed transmission the start time of the transmission period, the end time of the transmission period, and the time when the transmission failed;
  • the tolerable arrival time or transmission time of the Nth transmission failure data packet, the start time of the transmission period, the end time of the transmission period, and the time when the transmission fails, N is a positive integer.
  • the above arrival time or transmission time may be: MAC PDU grouping time, data packet grouping completion time, delivery to the physical layer, physical layer sending time, or antenna sending data packet time.
  • the start time of the transmission period is related to the start time of the TSC service period or the packet arrival time.
  • the start time of the transmission period is the start time of the TSC service period Or the packet arrival time +/-delta, or the start time of the TSC service cycle or the time within a period of time near the packet arrival time.
  • the end time of the transmission period is related to the end time of the TSC service period or the arrival time of the next packet.
  • the end time of the transmission period is the end time of the TSC service period or the arrival time of the next packet +/-delta, or the end time of the TSC service period or the time within a time period near the arrival time of the next packet.
  • the moment of transmission failure can be the moment when the terminal device receives a negative knowledge (NACK) sent by the network device, such as the moment when it receives 1 or N NACKs, or it can be a preset moment, for example, the terminal device After sending the data packet for a period of time, if the feedback information is still not received, the terminal device can determine that the end of the period of time is the moment of transmission failure.
  • NACK negative knowledge
  • the last tolerable transmission failure packet can be the last transmission failure packet within the survival time.
  • the survival time is 3 TSC service cycles, and the terminal device can transmit 1 data packet in each TSC service cycle. Data packets in the first TSC service period and the second TSC service period both fail to be transmitted, and the last tolerable transmission failure packet may be the data packet in the third TSC service period.
  • the terminal device can activate reliable transmission.
  • the terminal device can transmit 1 data packet in each TSC business cycle, and the data packet transmission in the first TSC business cycle fails, the tolerable Nth transmission The failed packet can be the second data packet.
  • the terminal device can activate reliable transmission.
  • the network device may also send instruction information to the terminal device to indicate the transmission time or the first time.
  • the first embodiment is to activate or deactivate duplication based on survival time. As shown in Figure 7.
  • DRB DRB
  • QoS flow etc.
  • the invention is as follows:
  • the UE determines whether to activate or deactivate duplication transmission based on survival time.
  • UE-survival time based duplication activation/deactivation function is network configuration.
  • the network Based on 1, the network indicates the time point of duplication transmission, or the trigger condition.
  • the network when instructing survival time configuration, the network further configures the threshold for activating duplication.
  • the UE determines the number of activated RLC entities or copies based on survival time and threshold.
  • the threshold for the number of copies or RLC entities is determined.
  • the UE determines the number of activated RLC entities or copies based on the threshold.
  • the base station obtains auxiliary information of TSN services, such as PDU session or QoS flow or survival time corresponding to DRB
  • the base station sends RRC configuration information to the UE, including the following:
  • survival time is configured corresponding to PDU session or QoS flow or DRB.
  • survival time is 1 TSC service cycle.
  • the threshold for activating duplication is configured for the corresponding PDU session or QoS flow or DRB. It further includes the threshold for activating 3 RLC entities and 4 RLC entities. Specifically, the threshold is a comparison threshold with the channel quality of the current serving cell or a specific cell.
  • duplication transmission is not activated.
  • the duplication transmission is activated.
  • the number of RLC entities of duplication can correspond to two or the configured number.
  • duplication transmission is not activated.
  • the channel quality is less than threshold 1, but greater than or equal to threshold 2
  • duplication transmission is activated and two RLC entities are used.
  • the channel quality is less than the threshold 2 and greater than or equal to the threshold 3
  • the duplication transmission of 3 RLC entities is activated, and when the channel quality is less than the threshold 3, the duplication transmission of 4 RLC entities is activated.
  • the time point at which duplication is activated, or the triggering condition (such as N consecutive packet transmission failures. Specifically, you can start counting from the first transmission failure packet. After the counting starts, there are data packets correctly transmitted, then the count Reset to 0). Specifically, the time point or trigger condition is configured for the corresponding PDU session or QoS flow or DRB.
  • the UE is instructed to activate duplication based on the second offset time of the first time.
  • the first moment is: the packet arrival time of the first failed transmission packet, the packet transmission time, before the packet transmission cycle, the end point of the packet transmission cycle, the time at which the packet transmission fails, and the last tolerable failed transmission packet ( If survival time is 3 cycles, the last packet that can be tolerated is the third packet with continuous transmission errors; of course, it can also be a specific number of packets. This number can be predefined or determined by the UE. , It can also be the packet arrival time, packet transmission time, before the packet transmission period, the end point of the packet transmission period, and the time when the packet transmission fails.
  • the so-called second offset refers to the offset value corresponding to the first moment. When the second offset moment of the first moment is reached, the UE determines that a condition for activating duplication is satisfied.
  • the first moment and the second offset can also be pre-configured or determined by the UE itself.
  • the UE receives the configuration information from the base station.
  • the UE determines according to the threshold, survival time, first moment, second offset, etc.
  • the UE when the UE sends each packet, it starts or restarts the corresponding survival time timer; or, if the previous packet is successfully transmitted, the UE starts or restarts the corresponding survival time when it sends the next continuous packet.
  • Timer when the UE sends each packet, it starts or restarts the corresponding survival time timer; or, if the previous packet is successfully transmitted, the UE starts or restarts the corresponding survival time when it sends the next continuous packet.
  • the UE activates duplication transmission when the third consecutive packet transmission fails. If the RSRP of the current serving cell is less than threshold 1 and greater than threshold 2, the UE determines to activate 3 RLC entities to transmit duplication, that is, activate 3 copies. Correspondingly, the UE further selects three RLC entities with the best channel quality to perform duplication transmission according to the channel quality of the carrier corresponding to each RLC entity.
  • duplication transmission can be activated directly at the time when duplication is activated or when the trigger condition is met; it can also be further judged at the time point when duplication is activated or when the trigger condition is met. For example, when the channel quality (such as RSRP) is less than the threshold, duplication transmission is activated.
  • the channel quality such as RSRP
  • the second embodiment (based on survival time, activate repetition transmission/use specific MCS). As shown in Figure 8.
  • the invention is as follows:
  • the UE determines whether to activate or deactivate repetition transmission and/or use a specific MCS based on survival time.
  • UE-survival time based repetition transmission and/or specific MCS activation/deactivation functions are configured by the network.
  • the network indicates the time point of using repetition transmission and/or a specific MCS, or trigger condition.
  • the network configures repetition parameters, including at least the number of repetitions. Further, multiple thresholds and multiple repetition times can also be given. Specifically, the UE may determine which number of repetitions to use for transmission according to the comparison between the channel quality and the threshold.
  • the network configures MCS parameters, such as MSC index or MCS table. Further, multiple thresholds and multiple MCS parameters can also be given. Specifically, the UE may determine which MCS parameter to use for transmission according to the comparison between the channel quality and the threshold.
  • the base station obtains auxiliary information of TSN services, such as PDU session or QoS flow or survival time corresponding to DRB
  • the base station sends RRC configuration information to the UE, including the following:
  • survival time parameter ( 1) Indicate the survival time parameter.
  • the specific parameter is configured corresponding to PDU session or QoS flow or DRB.
  • survival time is 1 TSC service period.
  • the repetition parameter is configured for the corresponding PDU session or QoS flow or DRB.
  • multiple thresholds and multiple repetition times can also be given.
  • the UE may determine which number of repetitions to use for transmission according to the comparison between the channel quality and the threshold.
  • the threshold is a comparison threshold with the channel quality of the current serving cell or a specific cell.
  • repetition transmission is not activated.
  • repetition transmission is activated. Use the only given number of repetitions to transmit.
  • repetition transmission is not activated.
  • repetition transmission is activated and the first repetition times are used.
  • the second repetition times are used for repetition transmission, and when the channel quality is less than the threshold 3, the third repetition times are used for repetition transmission.
  • the MCS parameter is configured for the corresponding PDU session or QoS flow or DRB.
  • multiple thresholds and multiple MCS times can also be given.
  • the UE may determine which MCS to use for transmission according to the comparison between the channel quality and the threshold.
  • the threshold is a comparison threshold with the channel quality of the current serving cell or a specific cell.
  • the time point of activating repetition transmission and/or using a specific MCS, or triggering conditions (such as N consecutive packet transmission failures. Specifically, you can start counting from the first transmission failure packet. When the counting starts, there is If the data packet is transmitted correctly, the count is reset to 0.).
  • the time point or trigger condition is configured for the corresponding PDU session or QoS flow or DRB.
  • the UE is instructed to activate the repetition and/or the specific MCS based on the second offset time of the first time.
  • the first moment is: the packet arrival time of the first failed transmission packet, the packet transmission time, before the packet transmission cycle, the end point of the packet transmission cycle, and the last tolerable failed transmission packet (for example, the survival time is 3 Period, the last packet that can be tolerated is the third packet with continuous transmission errors; of course, it can also be a specific number of packets. This number can be predefined, UE-determined, or network configuration
  • the so-called second offset refers to the offset value corresponding to the first moment. When the second offset moment of the first moment is reached, the UE determines that a condition for activating repetition and/or a specific MCS is satisfied.
  • the first moment and the second offset can also be pre-configured or determined by the UE itself.
  • the UE receives the configuration information from the base station.
  • the UE determines according to the threshold, number of repetitions, MCS, first moment, second offset, etc.
  • the UE when the UE sends each packet, it starts or restarts the corresponding survival time timer; or, if the previous packet is successfully transmitted, the UE starts or restarts the corresponding survival time when it sends the next continuous packet.
  • Timer when the UE sends each packet, it starts or restarts the corresponding survival time timer; or, if the previous packet is successfully transmitted, the UE starts or restarts the corresponding survival time when it sends the next continuous packet.
  • the UE activates repetition and/or specific MCS. If the RSRP of the current serving cell is less than threshold 1 and greater than threshold 2, the UE determines to use repetition transmission, the number of repetitions is 4, the specific MCS index is used, and the MCS index is 5.
  • the extension scheme 1 of the second embodiment when repetition and/or specific MCS are triggered based on survival time, the repetition and/or specific MCS can be used for transmission directly at the time point when the repetition and/or specific MCS is activated, or when the trigger condition is met; also When the repetition and/or specific MCS can be activated at the time point or when the trigger condition is met, the threshold is further determined. For example, when the channel quality (for example, RSRP) is less than the threshold, repetition and/or specific MCS transmission is used.
  • the channel quality for example, RSRP
  • the device for activating or deactivating reliable transmission includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • This application can divide functional units of devices that activate or deactivate reliable transmission according to the above method examples.
  • each function can be divided into functional units, or two or more functions can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 9 is a schematic structural diagram of a device for activating or deactivating reliable transmission provided by the present application.
  • the device 900 includes a processing unit 910.
  • the processing unit 910 is configured to: obtain a maximum transmission time; activate or deactivate reliable transmission according to the maximum transmission time, and the reliable transmission includes at least one of the following: copy transmission, repeated transmission, and transmission mode including the target MCS.
  • the processing unit 910 is specifically configured to: activate the reliable transmission when the target data exists; or, when the target data transmission fails, activate the reliable transmission.
  • the processing unit 910 is specifically configured to: deactivate the reliable transmission when the target data does not exist; or, when the target data transmission is successful, deactivate the Reliable transmission.
  • the processing unit 910 is further configured to determine a threshold of the number of tolerable packet transmission errors according to the maximum transmission time.
  • the processing unit 910 is specifically configured to activate the reliable transmission when a packet transmission error or the number of consecutive packet transmission errors is greater than or equal to the threshold.
  • the processing unit 910 is specifically configured to: when a packet transmission error or the number of consecutive packet transmission errors is less than or equal to the threshold, deactivate the reliable transmission.
  • the processing unit 910 is specifically configured to activate the reliable transmission when the target data exists or the target data transmission fails, and when a trigger condition is met.
  • the processing unit 910 is specifically configured to: when the target data does not exist or the target data transmission is successful, and when the trigger condition is not met, deactivate the reliable transmission.
  • the trigger condition includes at least one of the following: whether the target data exists, the number of consecutive packet transmission failures, the time at which the reliable transmission is activated, channel quality, and timer status.
  • the channel quality threshold when the channel quality threshold is one, the channel quality threshold includes a first channel quality threshold, and when the channel quality is less than or equal to the first channel quality threshold,
  • the number of radio link control RLC entities corresponding to the replicated transmission is a first number; and/or,
  • the number of retransmissions corresponding to the repeated transmission is the first number of retransmissions; and/or,
  • the index of the target MCS is the first index.
  • At least one of the first number, the first number of retransmissions, and the first index is configured by a network device.
  • the channel quality threshold includes a first channel quality threshold and a second channel quality threshold, and the first channel quality threshold is greater than the second channel quality threshold, when When the channel quality is greater than or equal to the second channel quality threshold and less than the first channel quality threshold,
  • the number of RLC entities corresponding to the replicated transmission is a second number; and/or,
  • the number of retransmissions corresponding to the repeated transmission is the second number of retransmissions.
  • the index of the target MCS is the second index.
  • the channel quality thresholds include a first channel quality threshold, a second channel quality threshold, and a third channel quality
  • the first channel quality threshold is greater than the second channel quality Threshold
  • the second channel quality threshold is greater than the third channel quality threshold
  • the number of RLC entities corresponding to the replicated transmission is a third number; and/or,
  • the number of retransmissions corresponding to the repeated transmission is the third number of retransmissions, and/or;
  • the index of the target MCS is the third index.
  • the channel quality threshold includes a first channel quality threshold, a second channel quality threshold, and a third channel quality
  • the first channel quality threshold is greater than the second channel quality Threshold
  • the second channel quality threshold is greater than the third channel quality threshold
  • the number of RLC entities corresponding to the replicated transmission is a fourth number; and/or,
  • the number of retransmissions corresponding to the repeated transmission is the fourth number of retransmissions.
  • the index of the target MCS is the fourth index.
  • the apparatus 900 further includes a receiving unit, configured to: receive first indication information, the first indication information being used to indicate the trigger condition; and/or, receive second indication information, the second indication information Used to indicate whether to activate the reliable transmission function.
  • a receiving unit configured to: receive first indication information, the first indication information being used to indicate the trigger condition; and/or, receive second indication information, the second indication information Used to indicate whether to activate the reliable transmission function.
  • the transmission time of the target data is less than the maximum transmission time
  • the transmission time is a time starting from a first moment, and the first moment is one of the following moments:
  • the arrival time or transmission time of the first data packet that failed transmission the start time of the transmission period, the end time of the transmission period, and the time when the transmission failed;
  • the tolerable arrival time or transmission time of the Nth transmission failure data packet, the start time of the transmission period, the end time of the transmission period, and the time when the transmission fails, N is a positive integer.
  • the processing unit 910 is further configured to: start or restart a timer, the timer is used to activate the reliable transmission, or the timer is used to prevent the data transmission from not meeting the requirement of the maximum transmission duration.
  • the running duration of the timer is related to the duration of the maximum transmission time.
  • the running duration of the timer is the duration of the maximum transmission time.
  • processing unit 910 is specifically configured to:
  • the timer is started or restarted, where the first data and the target data are two data with adjacent sending times.
  • processing unit 910 is specifically configured to:
  • the first node includes: a terminal and/or a network device.
  • the network equipment includes at least one of the following equipment: a base station, a CNC, and a TSN node.
  • the maximum transmission time is carried in a dedicated radio resource control RRC message and/or a broadcast message.
  • the granularity corresponding to the maximum transmission time is one of the following granularities: DRB, QoS flow, TSC flow, PDU session.
  • the device 900 further includes a receiving unit configured to receive configuration information, where the configuration information is used to configure the function of activating or deactivating reliable transmission according to the maximum transmission time.
  • the maximum transmission time is the survival time.
  • Fig. 10 is a schematic structural diagram of a device for activating or deactivating reliable transmission provided by the present application.
  • the device 1000 includes a sending unit 1010.
  • the sending unit 1010 is configured to send a maximum transmission time to the first terminal device, where the maximum transmission time is used for the first terminal device to activate or deactivate reliable transmission, and the reliable transmission includes at least one of the following: copy transmission, Repeated transmission, including the transmission mode of the target MCS.
  • the sending unit 1010 is specifically configured to send the maximum transmission time to the first terminal device through SMF.
  • the sending unit 1010 is specifically configured to send the maximum transmission time to the first terminal device through a base station.
  • the sending unit 1010 is specifically configured to send the maximum transmission time to the first terminal device through the second terminal device.
  • the apparatus 1000 further includes a sending unit, configured to send instruction information to the first terminal device, where the instruction information is used to indicate a trigger condition, and the trigger condition is used to activate or deactivate the first terminal device. Activate the reliable transmission.
  • a sending unit configured to send instruction information to the first terminal device, where the instruction information is used to indicate a trigger condition, and the trigger condition is used to activate or deactivate the first terminal device. Activate the reliable transmission.
  • the apparatus 1000 further includes a sending unit configured to send configuration information to the first terminal device, where the configuration information is used to configure the function of activating or deactivating reliable transmission according to the maximum transmission time.
  • a sending unit configured to send configuration information to the first terminal device, where the configuration information is used to configure the function of activating or deactivating reliable transmission according to the maximum transmission time.
  • the maximum transmission time is the survival time.
  • Fig. 11 shows a schematic structural diagram of a communication device provided by the present application.
  • the dotted line in Figure 11 indicates that the unit or the module is optional.
  • the device 1100 may be used to implement the methods described in the foregoing method embodiments.
  • the device 1100 may be a terminal device or a network device or a chip.
  • the device 1100 includes one or more processors 1101, and the one or more processors 1101 can support the device 1100 to implement the methods in the method embodiments corresponding to FIGS. 2 to 6.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor.
  • the processor 1101 may be a central processing unit (CPU).
  • the CPU can be used to control the device 1100, execute a software program, and process data of the software program.
  • the device 1100 may also include a communication unit 1105 to implement signal input (reception) and output (transmission).
  • the device 1100 may be a chip, and the communication unit 1105 may be an input and/or output circuit of the chip, or the communication unit 1105 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication device made of.
  • the device 1100 may be a terminal device or a network device
  • the communication unit 1105 may be a transceiver of the terminal device or the network device
  • the communication unit 1105 may be a transceiver circuit of the terminal device or the network device.
  • the device 1100 may include one or more memories 1102 with a program 1104 stored thereon.
  • the program 1104 can be run by the processor 1101 to generate instructions 1103 so that the processor 1101 executes the methods described in the foregoing method embodiments according to the instructions 1103.
  • data may also be stored in the memory 1102.
  • the processor 1101 may also read data stored in the memory 1102. The data may be stored at the same storage address as the program 1104, or the data may be stored at a different storage address from the program 1104.
  • the processor 1101 and the memory 1102 may be provided separately or integrated together, for example, integrated on a system-on-chip (SOC) of the terminal device.
  • SOC system-on-chip
  • the device 1100 may also include an antenna 1106.
  • the communication unit 1105 is used to implement the transceiver function of the device 1100 through the antenna 1106.
  • each step of the foregoing method embodiment may be completed by a logic circuit in the form of hardware or instructions in the form of software in the processor 1101.
  • the processor 1101 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • This application also provides a computer program product, which, when executed by the processor 1101, implements the method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 1102, such as a program 1104.
  • the program 1104 is finally converted into an executable object file that can be executed by the processor 1101 through processing processes such as preprocessing, compilation, assembly, and linking.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the method described in any method embodiment in the present application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 1102.
  • the memory 1102 may be a volatile memory or a non-volatile memory, or the memory 1102 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the disclosed system, device, and method can be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship that describes associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, alone There are three cases of B.
  • the character “/" in this text generally indicates that the associated objects before and after are in an "or" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种激活或去激活可靠传输的方法,包括:获取最大传输时间;根据所述最大传输时间激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标MCS的传输方式。基于上述方案,终端设备可以在数据传输失败以及传输时间未超出最大传输时间的情况下激活可靠传输,能够提高最大传输时间内数据传输成功的概率,并且,不会影响其它数据在最大传输时间以外的传输。

Description

激活或去激活可靠传输的方法和装置 技术领域
本申请涉及通信领域,具体涉及一种激活或去激活可靠传输的方法和装置。
背景技术
第五代(5th generation,5G)移动通信系统支持工业物联网(industrial internet of things,IIoT),基于时延和可靠性等传输需求,IIoT引入了时间敏感性网络(time sensitive network,TSN)或时间敏感性通信(time sensitive communication,TSC)等概念。
应用使用通信服务且可能不会收到预期的消息的持续时间可以被称为存活时间(survival time)。对于一个应用或业务来说,当存活时间等于一个业务周期时,前一个数据包传输失败后,后一个数据包一定要正确传输。存活时间对于TSC业务是一个有积极意义的参数,如何使用存活时间满足TSC业务的传输需求是当前需要解决的问题。
发明内容
本申请提供了一种激活或去激活可靠传输的方法和装置,能够利用存活时间满足TSC业务的传输需求。
第一方面,提供了一种激活或去激活可靠传输的方法,包括:获取最大传输时间;
根据所述最大传输时间激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标MCS的传输方式。
基于上述方案,终端设备可以在数据传输失败以及传输时间未超出最大传输时间的情况下激活可靠传输,能够提高最大传输时间内数据传输成功的概率,并且,不会影响其它数据在最大传输时间以外的传输。
第二方面,提供了另一种激活或去激活可靠传输的方法,包括:向第一终端设备发送最大传输时间,所述最大传输时间用于所述第一终端设备激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标MCS的传输方式。
基于上述方案,终端设备可以在数据传输失败以及传输时间未超出最大传输时间的情况下激活可靠传输,能够提高最大传输时间内数据传输成功的概率,并且,不会影响其它数据在最大传输时间以外的传输。
第三方面,提供了一种激活或去激活可靠传输的装置,该装置可以实现第一方面中的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置为终端设备或芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面所述的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使包含该芯片的终端设备执行第一方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供了一种激活或去激活可靠传输的装置,该装置可以实现第二方面中的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置为网络设备或芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器; 该网络设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行第二方面所述的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使包含该芯片的网络设备执行第二方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面所述的方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第二方面所述的方法。
第七方面,提供了一种计算机程序产品,包括计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面所述的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第二方面所述的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行第一方面所述的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行第二方面所述的方法。
附图说明
图1是适用于本申请的一种通信系统的示意图;
图2是适用于本申请的一种复制传输的方法的示意图;
图3是本申请提供的一种激活或去激活可靠传输的方法的示意图;
图4是本申请提供的一种获取存活时间的方法的示意图;
图5是本申请提供的一种激活可靠传输的方法的示意图;
图6是本申请提供的另一种激活可靠传输的方法的示意图;
图7是本申请提供的再一种激活可靠传输的方法的示意图;
图8是本申请提供的再一种激活可靠传输的方法的示意图;
图9是本申请提供的一种激活或去激活可靠传输的装置的示意图;
图10是本申请提供的另一种激活或去激活可靠传输的装置的示意图;
图11是是本申请提供的一种激活或去激活可靠传输的通信设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3 rd generation partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等。
网络设备110可以是3GPP所定义的基站,例如,5G移动通信系统中的基站(gNB)。 网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AG)。网络设备110还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
通信系统100仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统100中包含的网络设备和终端设备的数量还可以是其它的数量。
为了提高传输可靠性,通信系统可以采用可靠性较高的传输方式,即,可靠传输。可靠传输可以包括:复制(duplication)传输、重复(repetition)传输和包含目标调制编码策略(modulation and coding scheme,MCS)的传输方式中的一种或多种。
重复传输即传输同一个包的原包和其至少一个副本,或者,多次传输同一个数据包,该多次传输使用的冗余版本可以相同或不同。
目标MCS即预设的或预先配置的或网络更改或网络指示的MCS。具体的,该MCS的可靠性较高,或者MCS索引(index)较低。
复制传输即传输多个相同的数据包。复制传输在分组数据汇聚协议(packet data convergence protocol,PDCP)层进行,相同的PDCP分组数据单元(packet data unit,PDU)分别映射到不同的无线链路控制(radio link control,RLC)实体。介质接入控制(medium access control,MAC)层需要将不同的RLC实体的复制数据传输到不同的载波,可以使用载波聚合(carrier aggregation,CA)和/或双连接(dual-connectivity,DC)进行复制传输。一个PDCP PDU对应的复制(copies)总数最多可以是4。
对于CA复制传输,复制的PDCP PDU分别被传输到两个RLC实体(两个不同的逻辑信道),并最终保证复制的PDCP PDU能够在不同聚合载波上传输,从而达到频率分集增益以提高数据传输可靠性。如图2中的数据无线承载(data radio bearer,DRB)1和DRB3所示。
对于DC复制传输,复制的PDCP PDU分别被传输到两个RLC实体,两个RLC实体对应两个MAC实体,即,一个主小区组(master cell group,MCG)MAC实体和一个辅小区组(secondary cell group,SCG)MAC实体,如图2中的DRB2所示。
下面,以通信系统100为IIoT为例对本申请实施例进行说明。
图3示出了本申请提供的一种激活或去激活可靠传输的方法。该方法包括:
S310,获取最大传输时间。
为了保证高层应用的维持或激活,终端设备需要获取最大传输时间,以便于在最大传输时间内向网络设备成功发送至少一个数据包。最大传输时间可以被解释为:一个业务或流被允许传输的最长时间,或者,一个业务或流可以连续传输错误的最长时间,或者,一个业务或流被允许没有收到包或指示信息的最长时间。最大传输时间的一个示例即存活时间,下文中,在没有特别说明的情况下,这两个概念是通用的。
存活时间可以是预设的,也可以是第一节点配置或指示的。第一节点可以是网络设备,也可以是另外一个终端设备。该网络设备包括以下设备中的至少一个:gNB,中央网络控制(center network control,CNC),TSN节点。
终端设备通过网络设备获取存活时间的一种方法如图4所示。
会话管理功能(session management function,SMF)从CNC获取配置信息,该配置信息用于配置一个PDU会话的存活时间。
SMF将该配置信息发送至gNB。
gNB通过专用无线资源控制(radio resource control,RRC)和/或广播消息将上述存活时间发送至UE。可选地,gNB可以在RRC重配消息中,对特定的DRB或服务质量(quality of service,QoS)流或PDU会话或TSC流或UE配置存活时间,即,存活时间对应的粒度可以是DRB或QoS流或PDU会话或TSC流或UE。
此外,在切换过程中,源基站可以将存活时间发送至目标基站。也就是说,目标基站可以通过源基站获取存活时间。进一步的,目标基站在切换命令中将存活时间发送至 UE。
终端设备可以根据最大传输时间激活或去激活可靠传输的功能。
具体的,终端设备是否根据最大传输时间激活或去激活可靠传输,可以是预设的,也可以是网络配置或控制的。例如,若网络配置或指示UE根据最大传输时间激活或去激活可靠传输,则UE根据最大传输时间激活或去激活可靠传输。又例如,若UE获取到最大传输时间,则UE根据最大传输时间激活或去激活可靠传输。
可选的,终端设备可以执行下列步骤。
S320,根据所述最大传输时间激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标MCS的传输方式。
需要说明的是,包含目标MCS的传输方式也可以理解为实现可靠传输的配置,或者可靠传输的参数。
需要说明的是,复制传输/重复传输的配置,可以理解为实现可靠传输的配置,或者可靠传输的参数。
当可靠传输未激活时,终端设备可以根据最大传输时间激活或去激活可靠传输。其中,去激活也可以理解为不激活。或者,在未激活状态下,确定不使用可靠传输,则为不激活状态,在激活状态下,确定不使用可靠传输,则为去激活状态,等。
具体的,S320可以包括以下情况中的至少一种:
当目标数据传输失败时,激活所述可靠传输;
当目标数据传输成功时,去激活所述可靠传输;
当目标数据的传输时间小于所述最大传输时间时,并且,当所述目标数据传输失败时,激活所述可靠传输;
当目标数据的传输时间小于所述最大传输时间时,并且,当所述目标数据传输成功时,去激活所述可靠传输;
当目标数据的传输时间大于或等于所述最大传输时间时,去激活所述可靠传输。进一步的,UE上报超过最大传输时间,或者传输失败。
其中,目标数据为对应特定的DRB或服务质量(quality of service,QoS)流或PDU会话或TSC流或UE的数据。
其中,目标数据为根据最大传输时间确定的特定数据。目标数据可以是网络指示的,也可以是根据规则确定的。
其中,目标数据可以为待传输的数据,也可以为已传输的数据,若目标数据的传输时间小于存活时间,则终端设备可以在目标数据传输失败的情况下激活可靠传输,或者,终端设备可以在目标数据传输成功的情况下去激活可靠传输。若目标数据的传输时间大于或等于存活时间,则终端设备去激活可靠传输。
例如,存活时间为1个TSC业务周期,目标数据为传输错误的包,或传输错误的第一个包,或者未成功接收到的第一个包,或连续传输错误的第一个包,或者未连续成功接收到的第一个包。若存在目标数据,则终端设备激活可靠传输。
例如,存活时间为2个TSC业务周期,目标数据为第二个传输错误的包,或连续传输错误的第二个包,或者未连续成功接收到的第二个包。若存在目标数据,则终端设备激活可靠传输。
例如,存活时间为3个TSC业务周期,目标数据为第一个传输错误的包,或未连续成功接收到的第一个包。若存在目标数据,则启动第一定时器,或进行计数得到第一值N,当第一定时器超时,或当第一值大于或等于第一数值门限时,则终端设备激活可靠传输。
上述第一数值门限即可容忍的包传输错误次数的门限的一个示例,其可以是基于存活时间确定的。例如,终端设备能够在一个TSC业务周期内发送一次数据,存活时间为3个TSC业务周期,则第一数值门限可以是1或2;当第一数值门限为1时,目标数据 传输错误一次或两次即可激活可靠传输;当第一数值门限为2时,目标数据传输错误两次即可激活可靠传输,目标数据传输错误一次可以去激活可靠传输;第一数值门限也可以是最大传输次数,在本示例中,最大传输次数为3。
在另一种实现中,终端设备可以启动第二定时器,确定传输时间是否超出存活时间。
例如,当第一数据发送完成时,或第一数据发送成功时,启动或重启所述第二定时器,其中,第一数据为任意一个数据。第二定时器的时长与存活时间相关。具体的,第二定时器可以配置为存活时间的长度。相应的,当第二定时器超时时,可以激活可靠传输。
此外,网络可以指示或配置定时器(第一定时器或第二定时器),所述定时器用于激活可靠传输,即,定时器一旦超时即可激活可靠传输;或者,所述定时器用于避免数据传输不满足最大传输时长的要求,该数据例如是目标数据或n个错误的包,n为正整数,例如,当出现n个错误的包之后,定时器尚未超时,则激活可靠传输;或者,例如,当出现n个错误的包之后,开启定时器,在定时器超时时,激活可靠传输;或者,例如,当出现n个错误的包之后,则激活可靠传输。若所述定时器超时,则激活可靠传输。所述定时器超时前,有数据传输成功,停止定时器。所述定时器在第一时刻开启,或存在目标数据时开启。
例如,当第一数据发送完成时,或第一数据发送成功时,重新计数得到第二值M,其中,第一数据为任意一个数据。当第二值大于或等于门限时,可以激活可靠传输。该门限与存活时间相关。具体的,该门限可以配置为存活时间与业务传输周期,或包发送的次数,或包传输最大连续错误的次数。
在另一种实现中,可以基于存活时间去激活可靠传输。例如,当激活可靠传输后,传输的第一个包传输正确后,去激活可靠传输。例如,当激活可靠传输后,N个包或连续N个包传输正确后,去激活可靠传输。例如,当激活可靠传输后,有一个包传输正确后,去激活可靠传输。
基于上述方案,终端设备可以在数据传输失败以及传输时间未超出最大传输时间的情况下激活可靠传输,能够提高最大传输时间内数据传输成功的概率,并且,不会影响其它数据在最大传输时间以外的传输。
上述示例的一个特点是:一旦目标数据传输失败,即触发可靠传输的激活。具体的,在目标数据的传输时间小于最大传输时间的前提下,一旦目标数据传输失败,即触发可靠传输的激活。可选地,终端设备还可以在激活或去激活可靠传输时考虑其它因素。即,当目标数据传输失败且满足一定条件时,激活所述可靠传输。具体的,在可靠传输未激活以及目标数据的传输时间小于所述最大传输时间的前提下,终端设备可以在一定条件下,如根据触发条件,激活或去激活可靠传输,其中,S320可以包括以下情况中的至少一种:
当目标数据传输失败时,并且,当传输参数满足触发条件时,激活可靠传输;
当目标数据传输失败时,并且,当传输参数不满足触发条件时,去激活可靠传输;
当目标数据传输成功时,并且,当传输参数满足触发条件时,去激活可靠传输;
当目标数据传输成功时,并且,当传输参数不满足触发条件时,去激活可靠传输。
基于触发条件激活或去激活可靠传输,在提高存活时间内的传输可靠性的同时,避免了可靠传输资源被浪费。
上述传输参数可以包括一下参数中的至少一个:
目标数据的存在性(即,目标数据是否存在),连续包传输失败的次数(例如,目标数据连续传输失败的次数,属于一个对象的连续包传输失败的次数(所述对象可以为TSC stream,DRB,PDU session,QoS flow等)),激活所述可靠传输的时刻,信道质量,定时器或其运行情况(即,定时器状态。具体的,如定时器是否运行,是否开启,是否超时,等)。
当传输参数包括目标数据传输失败的次数时,触发条件可以包括:目标数据传输失败的次数大于或等于次数阈值。
例如,当前可靠传输未激活,目标数据的传输时间小于存活时间,触发条件中的次数阈值为2;若目标数据传输失败了2次,则终端设备可以激活可靠传输;若目标数据传输失败了1次,则终端设备可以去激活可靠传输。
例如,当前可靠传输未激活,触发条件中的次数阈值为2,对应一个TSC stream有连续两个包传输失败,则终端设备可以激活可靠传输;若对应一个TSC stream有仅1个包传输失败,或没有连续2个包传输失败,或在连续传输错误的包个数未达到次数阈值前存在传输正确的包,则终端设备可以去激活可靠传输。
终端设备可以通过一个计数器记录传输失败的次数,目标数据每传输失败一次,计数器的数值加1,当目标数据传输成功后,该计数器重置为0。上述传输失败例如是包传输错误或包连续传输错误。
或者,终端设备可以通过一个计数器记录传输失败的次数,初始次数为0。当每有一个包传输错误时,该计数器加1。当未到达次数阈值前有成功传输的包,则该计数器重置。上述传输失败例如是包传输错误或包连续传输错误。
此外,网络可以指示或配置次数阈值。
当传输参数包括激活所述可靠传输的时刻时,触发条件可以包括:所述目标数据的传输时间与所述激活所述可靠传输的时刻重合。
例如,当前可靠传输未激活,目标数据的传输时间小于存活时间,触发条件中激活可靠传输的时刻为从传输时间开始计时后的第2个TSC业务周期,若目标数据的传输时间到达第2个TSC业务周期(即,传输时间与可靠传输的时刻重合),并且,目标数据传输失败,则终端设备可以激活可靠传输;若目标数据的传输时间还未到达第2个TSC业务周期,则终端设备可以去激活可靠传输。上述传输时间可以从第一时刻开始计时,上述2个TSC业务周期为从第一时刻开始的偏移值,该偏移值可以是预设的或网络设备配置的或网络设备指示的。
当传输参数包括信道质量时,触发条件可以包括:所述信道质量与信道质量门限的比较结果。具体的,触发条件可以包括:所述信道质量小于或等于第一信道质量门限,和/或,所述信道质量大于或等于第二信道质量门限。
信道质量可以通过参考信号接收功率(reference receiving power,RSRP)或其它参数来表示。第一信道质量门限是预设的或网络设备配置的一个信道质量门限,例如可以是RSRP门限。第一信道质量门限可以是与当前服务小区和/或其它小区的信道质量门限。
例如,第一信道质量门限为当前服务小区的信道质量门限,当信道质量小于或等于当前服务小区的信道质量门限时,激活可靠传输;又例如,第一信道质量门限为邻小区的信道质量门限,当信道质量大于或等于邻小区的信道质量门限时,激活可靠传输;又例如,第一信道质量门限为当前服务小区的信道质量门限和邻小区的信道质量门限,当信道质量小于或等于当前服务小区的信道质量门限,且,当信道质量大于或等于邻小区的信道质量门限时,激活可靠传输。
下面给出两个基于信道质量激活或去激活可靠传输的例子。
示例一,如图5所示。
可靠传输为复制传输,目标数据的传输时间未超出存活时间,其它传输参数均满足激活可靠传输的触发条件。终端设备可以首先确定当前是否配置了多个信道质量门限。
若第一信道质量门限为唯一配置的信道质量门限,则,当信道质量小于或等于第一信道质量门限时,终端设备激活复制传输,并且,复制传输对应的RLC实体的数量为第一数量,第一数量例如是图5所示的2,第一数量可以是预设的,也可以是网络设备配置的;当信道质量大于第一信道质量门限时,终端设备可以去激活复制传输。
若第一信道质量门限不是唯一配置的信道质量门限,例如,终端设备被配置了3个 信道质量门限,则终端设备可以执行下述方法。
当信道质量大于第一信道质量门限时,终端设备可以去激活复制传输;
当信道质量小于第一信道质量门限时,并且,当信道质量大于或等于第二信道质量门限时,终端设备可以激活复制传输,并且,复制传输对应的RLC实体的数量为第二数量,第二数量例如是图5所示的2,第二数量可以是预设的,也可以是网络设备配置的。
当信道质量小于第二信道质量门限时,并且,当信道质量大于或等于第三信道质量门限时,终端设备可以激活复制传输,并且,复制传输对应的RLC实体的数量为第三数量,第三数量例如是图5所示的3,第三数量可以是预设的,也可以是网络设备配置的。
当信道质量小于第三信道质量门限时,终端设备可以激活复制传输,并且,复制传输对应的RLC实体的数量为第四数量,第四数量例如是图5所示的4,第四数量可以是预设的,也可以是网络设备配置的。
终端设备激活复制传输后,可以使用对应的RLC实体的数量传输目标数据。其中,终端设备可以根据每个RLC实体对应的载波的信道质量,选择信道质量最好的几个RLC实体进行复制传输。
示例一中,激活复制传输可以是增强复制传输的可靠性,例如,增加复制传输的数据包的数量;去激活复制传输可以是减小复制传输的可靠性,即,减少复制传输的数据包的数量。
示例二,如图6所示。
可靠传输为重复传输和/或包含目标MCS的传输方式,目标数据的传输时间未超出存活时间,其它传输参数均满足激活可靠传输的触发条件。终端设备可以首先确定当前是否配置了多个信道质量门限。
若第一信道质量门限为唯一配置的信道质量门限,则,当信道质量小于或等于第一信道质量门限时,终端设备激活重复传输和/或包含目标MCS的传输方式,并且,重复传输的重传次数为第一重传次数,目标MCS的索引为第一索引,其中,第一重传次数例如是图6所示的2,第一索引例如是图6所示的5;当信道质量大于第一信道质量门限时,终端设备可以去激活复制传输。
若第一信道质量门限不是唯一配置的信道质量门限,例如,终端设备被配置了3个信道质量门限,则终端设备可以执行下述方法。
当信道质量大于第一信道质量门限时,终端设备可以去激活复制传输;
当信道质量小于第一信道质量门限时,并且,当信道质量大于或等于第二信道质量门限时,终端设备可以激活重复传输和/或包含目标MCS的传输方式,并且,重复传输的重传次数为第二重传次数,目标MCS的索引为第二索引,其中,第二重传次数例如是图6所示的2,第二索引例如是图6所示的5,第二重传次数和第二索引可以是预设的,也可以是网络设备配置的。
当信道质量小于第二信道质量门限时,并且,当信道质量大于或等于第三信道质量门限时,终端设备可以激活重复传输和/或包含目标MCS的传输方式,并且,重复传输的重传次数为第三重传次数,目标MCS的索引为第三索引,其中,第三重传次数例如是图6所示的4,第一索引例如是图6所示的3,第三重传次数和第三索引可以是预设的,也可以是网络设备配置的。
当信道质量小于第三信道质量门限时,终端设备可以激活重复传输和/或包含目标MCS的传输方式,并且,重复传输的重传次数为第四重传次数,目标MCS的索引为第四索引,其中,第四重传次数例如是图6所示的8,第四索引例如是图6所示的1,第四重传次数和第四索引可以是预设的,也可以是网络设备配置的。
终端设备激活重复传输和/或包含目标MCS的传输方式后,可以使用对应的重复传输次数和/或目标MCS传输目标数据。
网络设备还可以为终端设备配置更多的信道质量门限。
示例二中,激活重复传输可以是增强重复传输的可靠性,例如,增加重复传输的数据包的数量;去激活重复传输可以是减小重复传输的可靠性,即,减少重复传输的数据包的数量。
需要说明的是,重复传输,包含目标MCS的传输方式,复制传输可以单独使用,也可以三者中的至少两个一起使用或配置。
在上述示例中,若终端设备被配置了一个信道质量门限,可以减小激活可靠传输的复杂度;若终端设备被配置了多个信道质量门限,则可以减小传输资源的浪费。网络设备可以根据实际情况(例如,终端设备的处理能力)为终端设备配置不同的信道质量门限。
此外,网络设备还可以向终端设备发送第一指示信息,该第一指示信息用于指示终端设备激活可靠传输时使用的触发条件。例如,该第一指示信息可以指示:触发条件仅包括第一信道质量门限,或者,触发条件包括第一信道质量门限、第二信道质量门限和第三信道质量门限。网络设备还可以向终端设备发送第二指示信息,第二指示信息指示是否激活可靠传输功能。可选地,第一指示信息和第二指示信息为同一个指示信息。
当然,第一指示信息和/或第二指示信息的内容,也可以是UE确定的,或预定义的。
在本申请中,传输时间为从第一时刻开始的时间,第一时刻可以是以下时刻中的一个:
第一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
可容忍的最后一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
可容忍的第N个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻,N为正整数。
上述到达时刻或传输时刻可以是:MAC PDU组包时刻,数据包组包完成的时刻,deliver到物理层的时刻,物理层发送时刻,或者天线发送数据包的时刻。
若一个数据包的传输周期是一个TSC业务周期,则传输周期的起始时刻与该TSC业务周期的起始时刻或包到达时刻相关,如传输周期的起始时刻为TSC业务周期的起始时刻或包到达时刻+/-delta,或TSC业务周期的起始时刻或包到达时刻附近的一个时段内的时刻。传输周期的结束时刻与该TSC业务周期的结束时刻或下一个包到达时刻相关。如传输周期的结束时刻为TSC业务周期的结束时刻或下一个包到达时刻+/-delta,或TSC业务周期的结束时刻或下一个包到达时刻附近的一个时段内的时刻。
传输失败的时刻可以是终端设备接收到网络设备发送的否定应答(negative knowledge,NACK)的时刻,如接收到1次或N次NACK的时刻,也可以是一个预设的时刻,例如,终端设备发送数据包一段时间之后,仍未收到反馈信息,则终端设备可以确定该段时间的结束时刻为传输失败的时刻。
可容忍的最后一个传输失败的包可以是存活时间内最后一个传输失败的包,例如,存活时间为3个TSC业务周期,终端设备在每个TSC业务周期内能够传输1个数据包,第1个TSC业务周期和第2个TSC业务周期内的数据包均传输失败,则可容忍的最后一个传输失败的包可以是第3个TSC业务周期内的数据包。在第3个TSC业务周期的起始时刻,或者,在第3个TSC业务周期内的数据包的达到时刻或传输时刻或传输失败时刻,终端设备可以激活可靠传输。
类似地,若存活时间为3个TSC业务周期,终端设备在每个TSC业务周期内能够传输1个数据包,第一个TSC业务周期内的数据包传输失败,则可容忍的第N个传输失败的包可以是第2个数据包。在第2个TSC业务周期的起始时刻或结束时刻,或者,在第2个TSC业务周期内的数据包的达到时刻或传输时刻或传输失败时刻,终端设备可以激活可靠传输。
此外,网络设备还可以向终端设备发送指示信息指示传输时刻或第一时刻。
下面,再举出两个激活或去激活可靠传输的方法的示例。
实施例一,基于survival time,激活或去激活duplication。如图7所示。
实施例一产生的原因和有益效果推导:为了保证survival time的需求,即一定时间内,至少一个包正确完成端到端传输。具体的,对一个应用或业务来说,当survival time=周期时,当前一个包传输失败后,后一个包一定要正确传输,因此可以基于survival time,确定对特定对象(DRB,QoS flow等)的duplication的激活或去激活,以保证业务的可靠性传输的同时保证资源的有效利用率。
发明点如下:
1.UE基于survival time,确定是否激活或去激活duplication传输。
2.基于1,UE-survival time based duplication activation/deactivation功能是网络配置的。
3.基于1,网络指示使用duplication传输的时间点,或触发条件。
4.基于1,在指示survival time配置时,网络进一步配置激活duplication的门限。UE基于survival time和门限,确定激活的RLC实体或copies数。
5.基于1,网络配置激活duplication传输时,确定copies或RLC实体数的门限。UE基于门限,确定激活的RLC实体或copies数。
本方案的具体过程例如见下:
1.基站获取TSN业务的辅助信息,如PDU session或QoS flow或DRB对应的survival time
2.基站向UE发送RRC配置信息,包括以下:
1)UE-survival time based duplication activation/deactivation的功能是否开启的指示,如指示或配置。
2)配置survival time。具体的,survival time是对应PDU session或QoS flow或DRB配置的,如survival time为1个TSC业务周期。
3)激活duplication的门限。具体的,该门限是针对对应PDU session或QoS flow或DRB配置的。进一步的包括,激活3个RLC实体,4个RLC实体的门限。具体的,门限为与当前服务小区,或特定小区的信道质量的比较门限。
例如:(给一个门限,或不给门限)
当信道质量大于或等于门限1时,不激活duplication传输。当信道质量小于门限1时,激活duplication传输。此时,duplication的RLC实体对应的可以是2个,或配置的个数。
又例如:(给多个门限,门限与duplication copies数有mapping关系)
当信道质量大于或等于门限1时,不激活duplication传输。当信道质量小于门限1,但大于等于门限2时,激活duplication传输,使用两个RLC实体。当信道质量小于门限2,大于或等于门限3时,激活3个RLC实体的duplication传输,当信道质量小于门限3时,激活4个RLC实体的duplication传输。
4)激活duplication的时间点,或触发条件(如N个连续的包传输失败。具体的,可以从第一个传输失败的包开始计数,当计数开始后,有数据包正确传输,则该计数重置为0)。具体的,该时间点或触发条件是针对对应PDU session或QoS flow或DRB配置的。
对时间点,具体的,指示UE基于第一时刻的第二偏移时刻激活duplication。所述第一时刻为:第一个失败传输的包的包到达时刻,包传输时刻,包传输周期之前,包传输周期结束点,包传输失败的时刻,可容忍的最后一个失败传输的包(如survival time为3个周期,可容忍的最后一个包为连续 传输错误的第3个包;当然,也可以是一个特定个数的包,这个个数可以是预定义的,也可以是UE确定的,也可是网络配置的)的包到达时刻,包传输时刻,包传输周期之前,包传输周期结束点,包传输失败的时刻。所谓第二偏移为,对应第一时刻的offset值,当达到第一时刻的第二偏移时刻时,UE确定满足激活duplication的一个条件。
说明:第一时刻,第二偏移,也可以是预配置的,或UE自行确定的。
3.UE接收来自基站的配置信息。UE根据门限,survival time,第一时刻,第二偏移等,确定
1)是否激活duplication
2)激活duplication的时间点
3)在duplication时激活的copies数
4)选择duplication传输的RLC实体。
特别的,UE在发送每一个包时,均启动或重启对应的survival time的定时器;或者,若前一个包成功传输,UE在发送下一个连续的包时,启动或重启对应的survival time的定时器
例如,当survival time为3个周期时,UE在第三个连续的包传输失败时,激活duplication传输。若当前服务小区的RSRP小于门限1且大于门限2时,UE确定激活3个RLC实体传输duplication,即激活3个copies。相应的,UE进一步根据每个RLC实体对应的载波的信道质量,选择信道质量最好的三个RLC实体,进行duplication传输。
实施例一之扩展方案1:基于survival time触发duplication时,可以直接在激活duplication的时间点,或满足触发条件时,激活duplication传输;也可以激活duplication的时间点或满足触发条件时,进一步判断门限,如当信道质量(例如RSRP)小于门限时,才激活duplication传输。
实施例二(基于survival time,激活repetition传输/使用特定的MCS)。如图8所示。
实施例产生的原因和有益效果推导:为了保证survival time的需求,即一定时间内,至少一个包正确完成端到端传输。具体的,对一个应用或业务来说,当survival time=周期时,当前一个包传输失败后,后一个包一定要正确传输,因此可以基于survival time,确定对特定对象(DRB,QoS flow等)的repetition的激活或去激活,和/或,使用低MCS,以保证业务的可靠性传输的同时保证资源的有效利用率。
发明点如下:
1.UE基于survival time,确定是否激活或去激活repetition传输和/或使用特定的MCS。
2.基于1,UE-survival time based repetition传输和/或特定的MCS activation/deactivation功能是网络配置的。
3.基于1,网络指示使用repetition传输和/或特定的MCS的时间点,或触发条件。
4.基于1,网络配置repetition参数,至少包括repetition的次数。进一步的,还可以给的多个门限和多个repetition的次数。具体的,UE可以根据信道质量与门限的比较,确定使用哪个repetition的次数进行传输。
5.基于1,网络配置MCS参数,如MSC index或MCS table。进一步的,还可以给的多个门限和多个MCS参数。具体的,UE可以根据信道质量与门限的比较,确定使用哪个MCS参数进行传输。
本方案的具体过程例如见下:
1.基站获取TSN业务的辅助信息,如PDU session或QoS flow或DRB对应的survival time
2.基站向UE发送RRC配置信息,包括以下:
1)UE-survival time based repetition传输和/或特定的MCS activation/deactivation 的功能是否开启的指示,如指示或配置。
2)指示survival time参数。具体的该参数是对应PDU session或QoS flow或DRB配置的,如survival time为1个TSC业务周期。
3)配置repetition的参数,包括repetition传输的时频资源,repetition传输的次数,如2,4,8。具体的,该repetition参数是针对对应PDU session或QoS flow或DRB配置的。进一步的,还可以给的多个门限和多个repetition的次数。具体的,UE可以根据信道质量与门限的比较,确定使用哪个repetition的次数进行传输。具体的,门限为与当前服务小区,或特定小区的信道质量的比较门限。
例如:(给一个门限,或不给门限)
当信道质量大于或等于门限1时,不激活repetition传输。当信道质量小于门限1时,激活repetition传输。使用唯一给的的repetition次数传输。
又例如:(给多个门限,门限与repetition次数有mapping关系)
当信道质量大于或等于门限1时,不激活repetition传输。当信道质量小于门限1,但大于等于门限2时,激活repetition传输,使用第一repetition次数。当信道质量小于门限2,大于或等于门限3时,使用第二repetition次数进行repetition传输,当信道质量小于门限3时,使用第三repetition次数进行repetition传输。
4)配置MCS的参数,如MCS table,MCS index,MCS value等。具体的,该MCS参数是针对对应PDU session或QoS flow或DRB配置的。进一步的,还可以给的多个门限和多个MCS的次数。具体的,UE可以根据信道质量与门限的比较,确定使用哪个MCS进行传输。具体的,门限为与当前服务小区,或特定小区的信道质量的比较门限。
具体确定过程,同3)。
5)激活repetition传输和/或使用特定的MCS的时间点,或触发条件(如N个连续的包传输失败。具体的,可以从第一个传输失败的包开始计数,当计数开始后,有数据包正确传输,则该计数重置为0.)。具体的,该时间点或触发条件是针对对应PDU session或QoS flow或DRB配置的。
对时间点,具体的,指示UE基于第一时刻的第二偏移时刻激活repetition和/或特定的MCS。所述第一时刻为:第一个失败传输的包的包到达时刻,包传输时刻,包传输周期之前,包传输周期结束点,可容忍的最后一个失败传输的包(如survival time为3个周期,可容忍的最后一个包为连续传输错误的第3个包;当然,也可以是一个特定个数的包,这个个数可以是预定义的,也可以是UE确定的,也可是网络配置的)的包到达时刻,包传输时刻,包传输周期之前,包传输周期结束点。所谓第二偏移为,对应第一时刻的offset值,当达到第一时刻的第二偏移时刻时,UE确定满足激活repetition和/或特定的MCS的一个条件。
说明:第一时刻,第二偏移,也可以是预配置的,或UE自行确定的。
3.UE接收来自基站的配置信息。UE根据门限,repetition次数,MCS,第一时刻,第二偏移等,确定
1)是否激活repetition和/或特定MCS
2)激活repetition和/或特定MCS的时间点
特别的,UE在发送每一个包时,均启动或重启对应的survival time的定时器;或者,若前一个包成功传输,UE在发送下一个连续的包时,启动或重启对应的survival time的定时器
例如,当survival time为3个周期时,UE在第三个连续的包传输失败时,激活激活repetition和/或特定MCS。若当前服务小区的RSRP小于门限1且大于门限2时,UE确 定使用repetition传输,repetition的次数为4,使用特定MCS index,MCS index为5。
实施例二之扩展方案1:基于survival time触发repetition和/或特定MCS时,可以直接在激活repetition和/或特定MCS的时间点,或满足触发条件时,使用repetition和/或特定MCS传输;也可以激活repetition和/或特定MCS的时间点或满足触发条件时,进一步判断门限,如当信道质量(例如RSRP)小于门限时,才使用repetition和/或特定MCS传输。
上文详细介绍了本申请提供的激活或去激活可靠传输的方法的示例。可以理解的是,激活或去激活可靠传输的装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对激活或去激活可靠传输的装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图9是本申请提供的一种激活或去激活可靠传输的装置的结构示意图。该装置900包括处理单元910。
处理单元910用于:获取最大传输时间;根据所述最大传输时间激活或去激活可靠传输,所述可靠传输包括以下至少一个:复制传输,重复传输,包含目标MCS的传输方式。
可选地,当所述可靠传输未激活或去激活时,处理单元910具体用于:当目标数据存在时,激活所述可靠传输;或者,当目标数据传输失败时,激活所述可靠传输。
可选地,当所述可靠传输未激活或去激活时,处理单元910具体用于:当目标数据不存在时,去激活所述可靠传输;或者,当目标数据传输成功时,去激活所述可靠传输。
可选地,处理单元910还用于:根据所述最大传输时间,确定可容忍的包传输错误次数的门限。
可选地,当所述可靠传输未激活或去激活时,处理单元910具体用于:当包传输错误或包连续传输错误的次数大于或等于所述门限时,激活所述可靠传输。
可选地,当所述可靠传输未激活或去激活时,处理单元910具体用于:当包传输错误或包连续传输错误的次数小于或等于所述门限时,去激活所述可靠传输。
可选地,处理单元910具体用于:当所述目标数据存在或所述目标数据传输失败时,并且,当满足触发条件时,激活所述可靠传输。
可选地,处理单元910具体用于:当所述目标数据不存在或所述目标数据传输成功时,并且,当不满足触发条件时,去激活所述可靠传输。
可选地,所述触发条件包括以下至少之一:是否存在所述目标数据,连续包传输失败的次数,激活所述可靠传输的时刻,信道质量,定时器状态。
可选地,在信道质量门限为一个的情况下,所述信道质量门限包括第一信道质量门限,当所述信道质量小于或等于所述第一信道质量门限时,
当所述可靠传输包括所述复制传输时,所述复制传输对应的无线链路控制RLC实体的数量为第一数量;和/或,
当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第一重传次数;和/或,
当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第 一索引。
可选地,所述第一数量、所述第一重传次数和所述第一索引中的至少一个是网络设备配置的。
可选地,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限和第二信道质量门限,所述第一信道质量门限大于所述第二信道质量门限,当所述信道质量大于或等于所述第二信道质量门限且小于所述第一信道质量门限时,
当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第二数量;和/或,
当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第二重传次数;和/或,
当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第二索引。
可选地,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限、第二信道质量门限和第三信道质量,所述第一信道质量门限大于第二信道质量门限,所述第二信道质量门限大于第三信道质量门限,当所述信道质量大于或等于所述第三信道质量门限且小于所述第二信道质量门限时,
当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第三数量;和/或,
当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第三重传次数,和/或;
当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第三索引。
可选地,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限、第二信道质量门限和第三信道质量,所述第一信道质量门限大于第二信道质量门限,所述第二信道质量门限大于第三信道质量门限,当所述信道质量小于所述第三信道质量门限时,
当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第四数量;和/或,
当所述可靠传输包括所述重复传输,所述重复传输对应的重传次数为第四重传次数;和/或,
当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第四索引。
可选地,装置900还包括接收单元,用于:接收第一指示信息,所述第一指示信息用于指示所述触发条件;和/或,接收第二指示信息,所述第二指示信息用于指示是否激活可靠传输功能。
可选地,所述目标数据的传输时间小于所述最大传输时间
可选地,所述传输时间为从第一时刻开始的时间,所述第一时刻为以下时刻中的一个:
第一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
可容忍的最后一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
可容忍的第N个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻,N为正整数。
可选地,处理单元910还用于:启动或重启定时器,所述定时器用于激活所述可靠传输,或者,所述定时器用于避免数据传输不满足最大传输时长的要求。
可选地,所述定时器的运行时长与所述最大传输时间的时长相关。
可选地,所述定时器的运行时长为所述最大传输时间的时长。
可选地,处理单元910具体用于:
当第一数据发送完成时,启动或重启所述定时器;或者,
在第一数据发送成功后,并且,在目标数据开始发送时,启动或重启所述定时器,其中,所述第一数据和所述目标数据为发送时间相邻的两个数据。
可选地,处理单元910具体用于:
从第一节点获取所述最大传输时间。
可选地,所述第一节点包括:终端和/或网络设备。
可选地,所述网络设备包括以下设备中的至少一个:基站,CNC,TSN节点。
可选地,当从所述网络设备获取所述最大传输时间时,所述最大传输时间承载于专用无线资源控制RRC消息和/或广播消息中。
可选地,所述最大传输时间对应的粒度为以下粒度中的一个:DRB,QoS流,TSC流,PDU会话。
可选地,装置900还包括接收单元,用于:接收配置信息,所述配置信息用于配置根据所述最大传输时间激活或去激活可靠传输的功能。
可选地,所述最大传输时间为存活时间。
装置900执行激活或去激活可靠传输的方法的具体方式以及产生的有益效果可以参见方法实施例中的相关描述。
图10是本申请提供的一种激活或去激活可靠传输的装置的结构示意图。该装置1000包括发送单元1010。
发送单元1010用于:向第一终端设备发送最大传输时间,所述最大传输时间用于所述第一终端设备激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标MCS的传输方式。
可选地,发送单元1010具体用于:通过SMF向所述第一终端设备发送所述最大传输时间。
可选地,发送单元1010具体用于:通过基站向所述第一终端设备发送所述最大传输时间。
可选地,发送单元1010具体用于:通过第二终端设备向所述第一终端设备发送所述最大传输时间。
可选地,装置1000还包括发送单元,用于:向所述第一终端设备发送指示信息,所述指示信息用于指示触发条件,所述触发条件用于所述第一终端设备激活或去激活所述可靠传输。
可选地,装置1000还包括发送单元,用于:向所述第一终端设备发送配置信息,所述配置信息用于配置根据所述最大传输时间激活或去激活可靠传输的功能。
可选地,所述最大传输时间为存活时间。
装置1000执行激活或去激活可靠传输的方法的具体方式以及产生的有益效果可以参见方法实施例中的相关描述。
图11示出了本申请提供的一种通信设备的结构示意图。图11中的虚线表示该单元或该模块为可选的。设备1100可用于实现上述方法实施例中描述的方法。设备1100可以是终端设备或网络设备或芯片。
设备1100包括一个或多个处理器1101,该一个或多个处理器1101可支持设备1100实现图2至图6对应的方法实施例中的方法。处理器1101可以是通用处理器或者专用处理器。例如,处理器1101可以是中央处理器(central processing unit,CPU)。CPU可以用于对设备1100进行控制,执行软件程序,处理软件程序的数据。设备1100还可以包括通信单元1105,用以实现信号的输入(接收)和输出(发送)。
例如,设备1100可以是芯片,通信单元1105可以是该芯片的输入和/或输出电路,或者,通信单元1105可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
又例如,设备1100可以是终端设备或网络设备,通信单元1105可以是该终端设备或该网络设备的收发器,或者,通信单元1105可以是该终端设备或该网络设备的收发电路。
设备1100中可以包括一个或多个存储器1102,其上存有程序1104,程序1104可被处理器1101运行,生成指令1103,使得处理器1101根据指令1103执行上述方法实施例中描述的方法。可选地,存储器1102中还可以存储有数据。可选地,处理器1101还可以读取存储器1102中存储的数据,该数据可以与程序1104存储在相同的存储地址,该数据也可以与程序1104存储在不同的存储地址。
处理器1101和存储器1102可以单独设置,也可以集成在一起,例如,集成在终端设备的系统级芯片(system on chip,SOC)上。
设备1100还可以包括天线1106。通信单元1105用于通过天线1106实现设备1100的收发功能。
处理器1101执行激活或去激活可靠传输的方法的具体方式可以参见方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器1101中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1101可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1101执行时实现本申请中任一方法实施例所述的方法。
该计算机程序产品可以存储在存储器1102中,例如是程序1104,程序1104经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器1101执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1102。存储器1102可以是易失性存储器或非易失性存储器,或者,存储器1102可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和设备的具体工作过程以及产生的技术效果,可以参考前述方法实施例中对应的过程和技术效果,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方 式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (76)

  1. 一种激活或去激活可靠传输的方法,其特征在于,包括:
    获取最大传输时间;
    根据所述最大传输时间激活或去激活可靠传输,所述可靠传输包括以下至少一个:复制传输,重复传输,包含目标调制与编码策略MCS的传输方式。
  2. 根据权利要求1所述的方法,其特征在于,当所述可靠传输未激活或去激活时,所述根据所述最大传输时间激活或去激活可靠传输,包括:
    当目标数据存在时,激活所述可靠传输;或者,
    当目标数据传输失败时,激活所述可靠传输。
  3. 根据权利要求1所述的方法,其特征在于,当所述可靠传输未激活或去激活时,所述根据所述最大传输时间激活或去激活可靠传输,包括:
    当目标数据不存在时,去激活所述可靠传输;或者,
    当目标数据传输成功时,去激活所述可靠传输。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述最大传输时间,确定可容忍的包传输错误次数的门限。
  5. 根据权利要求4所述的方法,其特征在于,当所述可靠传输未激活或去激活时,所述根据所述最大传输时间激活或去激活可靠传输,包括:
    当包传输错误或包连续传输错误的次数大于或等于所述门限时,激活所述可靠传输。
  6. 根据权利要求4所述的方法,其特征在于,当所述可靠传输未激活或去激活时,所述根据所述最大传输时间激活或去激活可靠传输,包括:
    当包传输错误或包连续传输错误的次数小于或等于所述门限时,去激活所述可靠传输。
  7. 根据权利要求2或5所述的方法,其特征在于,当所述目标数据存在或所述目标数据传输失败时,所述激活所述可靠传输,包括:
    当满足触发条件时,激活所述可靠传输。
  8. 根据权利要求3或6所述的方法,其特征在于,当所述目标数据不存在或所述目标数据传输成功时,所述去激活所述可靠传输,包括:
    当不满足触发条件时,去激活所述可靠传输。
  9. 根据权利要求7或8所述的方法,其特征在于,所述触发条件包括以下至少之一:
    是否存在所述目标数据,连续包传输失败的次数,激活所述可靠传输的时刻,信道质量,定时器状态。
  10. 根据权利要求9所述的方法,其特征在于,在信道质量门限为一个的情况下,所述信道质量门限包括第一信道质量门限,当所述信道质量小于或等于所述第一信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的无线链路控制RLC实体的数量为第一数量;和/或,
    当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第一重传次数;和/或,
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第一索引。
  11. 根据权利要求10所述的方法,其特征在于,所述第一数量、所述第一重传次数和所述第一索引中的至少一个是网络设备配置的。
  12. 根据权利要求9所述的方法,其特征在于,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限和第二信道质量门限,所述第一信道质量门限大于所述第二信道质量门限,当所述信道质量大于或等于所述第二信道质量门限且小于所述第一信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第二数量;和/或,
    当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第二重传次数;和/或,
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第二索引。
  13. 根据权利要求9所述的方法,其特征在于,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限、第二信道质量门限和第三信道质量,所述第一信道质量门限大于第二信道质量门限,所述第二信道质量门限大于第三信道质量门限,当所述信道质量大于或等于所述第三信道质量门限且小于所述第二信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第三数量;和/或,
    当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第三重传次数,和/或;
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第三索引。
  14. 根据权利要求9所述的方法,其特征在于,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限、第二信道质量门限和第三信道质量,所述第一信道质量门限大于第二信道质量门限,所述第二信道质量门限大于第三信道质量门限,当所述信道质量小于所述第三信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第四数量;和/或,
    当所述可靠传输包括所述重复传输,所述重复传输对应的重传次数为第四重传次数;和/或,
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第四索引。
  15. 根据权利要求7至9中任一项所述的方法,其特征在于,还包括:
    接收第一指示信息,所述第一指示信息用于指示所述触发条件;和/或,
    接收第二指示信息,所述第二指示信息用于指示是否激活可靠传输功能。
  16. 根据权利要求2、3、7、8、9中任一项所述的方法,其特征在于,所述目标数据的传输时间小于所述最大传输时间。
  17. 根据权利要求16所述的方法,其特征在于,所述传输时间为从第一时刻开始的时间,所述第一时刻为以下时刻中的一个:
    第一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
    可容忍的最后一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
    可容忍的第N个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻,N为正整数。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    启动或重启定时器,所述定时器用于激活所述可靠传输,或者,所述定时器用于避免数据传输不满足最大传输时长的要求。
  19. 根据权利要求18所述的方法,其特征在于,所述定时器的运行时长与所述最大传输时间的时长相关。
  20. 根据权利要求19所述的方法,其特征在于,所述定时器的运行时长为所述最大传输时间的时长。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述启动或重启定时器,包括:
    当第一数据发送完成时,启动或重启所述定时器;或者,
    在第一数据发送成功后,并且,在目标数据开始发送时,启动或重启所述定时器,其中,所述第一数据和所述目标数据为发送时间相邻的两个数据。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述获取最大传输时间,包括:
    从第一节点获取所述最大传输时间。
  23. 根据权利要求22所述的方法,其特征在于,所述第一节点包括:终端和/或网络设备。
  24. 根据权利要求23所述的方法,其特征在于,所述网络设备包括以下设备中的至少一个:基站,中央网络控制CNC,时间敏感性网络TSN节点。
  25. 根据权利要求23或24所述的方法,其特征在于,当从所述网络设备获取所述最大传输时间时,所述最大传输时间承载于专用无线资源控制RRC消息和/或广播消息中。
  26. 根据权利要求1至25中任一项所述的方法,其特征在于,所述最大传输时间对应的粒度为以下粒度中的一个:
    数据无线承载DRB,服务质量QoS流,时间敏感性通信TSC流,分组数据单元PDU会话。
  27. 根据权利要求1至26中任一项所述的方法,其特征在于,还包括:
    接收配置信息,所述配置信息用于配置根据所述最大传输时间激活或去激活可靠传输的功能。
  28. 根据权利要求1至27中任一项所述的方法,其特征在于,所述最大传输时间为存活时间。
  29. 一种激活或去激活可靠传输的方法,其特征在于,包括:
    向第一终端设备发送最大传输时间,所述最大传输时间用于所述第一终端设备激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标调制与编码策略MCS的传输方式。
  30. 根据权利要求29所述的方法,其特征在于,所述向所述第一终端设备发送最大传输时间,包括:
    通过会话管理功能SMF向所述第一终端设备发送所述最大传输时间。
  31. 根据权利要求29或30所述的方法,其特征在于,所述向所述第一终端设备发送最大传输时间,包括:
    通过基站向所述第一终端设备发送所述最大传输时间。
  32. 根据权利要求29至31中任一项所述的方法,其特征在于,所述向所述第一终端设备发送最大传输时间,包括:
    通过第二终端设备向所述第一终端设备发送所述最大传输时间。
  33. 根据权利要求29至32中任一项所述的方法,其特征在于,还包括:
    向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示触发条件,所述触发条件用于所述第一终端设备激活或去激活所述可靠传输;和/或,
    向所述第一终端设备发送第二指示信息,所述第二指示信息用于指示是否激活可靠传输功能。
  34. 根据权利要求29至33中任一项所述的方法,其特征在于,还包括:
    向所述第一终端设备发送配置信息,所述配置信息用于配置根据所述最大传输时间激活或去激活可靠传输的功能。
  35. 根据权利要求29至34中任一项所述的方法,其特征在于,所述最大传输时间 为存活时间。
  36. 一种激活或去激活可靠传输的装置,其特征在于,包括处理单元,用于:
    获取最大传输时间;
    根据所述最大传输时间激活或去激活可靠传输,所述可靠传输包括以下至少一个:复制传输,重复传输,包含目标调制与编码策略MCS的传输方式。
  37. 根据权利要求36所述的装置,其特征在于,当所述可靠传输未激活或去激活时,所述处理单元具体用于:
    当目标数据存在时,激活所述可靠传输;或者,
    当目标数据传输失败时,激活所述可靠传输。
  38. 根据权利要求36所述的装置,其特征在于,当所述可靠传输未激活或去激活时,所述处理单元具体用于:
    当目标数据不存在时,去激活所述可靠传输;或者,
    当目标数据传输成功时,去激活所述可靠传输。
  39. 根据权利要求36所述的装置,其特征在于,所述处理单元还用于:
    根据所述最大传输时间,确定可容忍的包传输错误次数的门限。
  40. 根据权利要求39所述的装置,其特征在于,当所述可靠传输未激活或去激活时,所述处理单元具体用于:
    当包传输错误或包连续传输错误的次数大于或等于所述门限时,激活所述可靠传输。
  41. 根据权利要求39所述的装置,其特征在于,当所述可靠传输未激活或去激活时,所述处理单元具体用于:
    当包传输错误或包连续传输错误的次数小于或等于所述门限时,去激活所述可靠传输。
  42. 根据权利要求37或40所述的装置,其特征在于,当所述目标数据存在或所述目标数据传输失败时,所述处理单元具体用于:
    当满足触发条件时,激活所述可靠传输。
  43. 根据权利要求38或41所述的装置,其特征在于,当所述目标数据不存在或所述目标数据传输成功时,所述处理单元具体用于:
    当不满足触发条件时,去激活所述可靠传输。
  44. 根据权利要求42或43所述的装置,其特征在于,所述触发条件包括以下至少之一:
    是否存在所述目标数据,连续包传输失败的次数,激活所述可靠传输的时刻,信道质量,定时器状态。
  45. 根据权利要求44所述的装置,其特征在于,在信道质量门限为一个的情况下,所述信道质量门限包括第一信道质量门限,当所述信道质量小于或等于所述第一信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的无线链路控制RLC实体的数量为第一数量;和/或,
    当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第一重传次数;和/或,
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第一索引。
  46. 根据权利要求45所述的装置,其特征在于,所述第一数量、所述第一重传次数和所述第一索引中的至少一个是网络设备配置的。
  47. 根据权利要求44所述的装置,其特征在于,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限和第二信道质量门限,所述第一信道质量门限大于所述第二信道质量门限,当所述信道质量大于或等于所述第二信道质量门限且小于 所述第一信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第二数量;和/或,
    当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第二重传次数;和/或,
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第二索引。
  48. 根据权利要求44所述的装置,其特征在于,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限、第二信道质量门限和第三信道质量,所述第一信道质量门限大于第二信道质量门限,所述第二信道质量门限大于第三信道质量门限,当所述信道质量大于或等于所述第三信道质量门限且小于所述第二信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第三数量;和/或,
    当所述可靠传输包括所述重复传输时,所述重复传输对应的重传次数为第三重传次数,和/或;
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第三索引。
  49. 根据权利要求44所述的装置,其特征在于,在信道质量门限为多个的情况下,所述信道质量门限包括第一信道质量门限、第二信道质量门限和第三信道质量,所述第一信道质量门限大于第二信道质量门限,所述第二信道质量门限大于第三信道质量门限,当所述信道质量小于所述第三信道质量门限时,
    当所述可靠传输包括所述复制传输时,所述复制传输对应的RLC实体的数量为第四数量;和/或,
    当所述可靠传输包括所述重复传输,所述重复传输对应的重传次数为第四重传次数;和/或,
    当所述可靠传输包括所述包含目标MCS的传输方式时,所述目标MCS的索引为第四索引。
  50. 根据权利要求42至44中任一项所述的装置,其特征在于,还包括接收单元,用于:
    接收第一指示信息,所述第一指示信息用于指示所述触发条件;和/或,
    接收第二指示信息,所述第二指示信息用于指示是否激活可靠传输功能。
  51. 根据权利要求37、38、42、43、44中任一项所述的装置,其特征在于,所述目标数据的传输时间小于所述最大传输时间。
  52. 根据权利要求51所述的装置,其特征在于,所述传输时间为从第一时刻开始的时间,所述第一时刻为以下时刻中的一个:
    第一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
    可容忍的最后一个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻;
    可容忍的第N个传输失败的数据包的到达时刻或传输时刻,传输周期的起始时刻,传输周期的结束时刻,传输失败的时刻,N为正整数。
  53. 根据权利要求36至52中任一项所述的装置,其特征在于,所述处理单元还用于:
    启动或重启定时器,所述定时器用于激活所述可靠传输,或者,所述定时器用于避免数据传输不满足最大传输时长的要求。
  54. 根据权利要求53所述的装置,其特征在于,所述定时器的运行时长与所述最大 传输时间的时长相关。
  55. 根据权利要求54所述的装置,其特征在于,所述定时器的运行时长与所述最大传输时间的时长相关,包括:
    所述定时器的运行时长为所述最大传输时间的时长。
  56. 根据权利要求53至55中任一项所述的装置,其特征在于,所述处理单元具体用于:
    当第一数据发送完成时,启动或重启所述定时器;或者,
    在第一数据发送成功后,并且,在目标数据开始发送时,启动或重启所述定时器,其中,所述第一数据和所述目标数据为发送时间相邻的两个数据。
  57. 根据权利要求36至56中任一项所述的装置,其特征在于,所述处理单元具体用于:
    从第一节点获取所述最大传输时间。
  58. 根据权利要求57所述的装置,其特征在于,所述第一节点包括:终端和/或网络设备。
  59. 根据权利要求58所述的装置,其特征在于,所述网络设备包括以下设备中的至少一个:基站,中央网络控制CNC,时间敏感性网络TSN节点。
  60. 根据权利要求58或59所述的装置,其特征在于,当从所述网络设备获取所述最大传输时间时,所述最大传输时间承载于专用无线资源控制RRC消息和/或广播消息中。
  61. 根据权利要求36至60中任一项所述的装置,其特征在于,所述最大传输时间对应的粒度为以下粒度中的一个:
    数据无线承载DRB,服务质量QoS流,时间敏感性通信TSC流,分组数据单元PDU会话。
  62. 根据权利要求36至61中任一项所述的装置,其特征在于,还包括接收单元,用于:
    接收配置信息,所述配置信息用于配置根据所述最大传输时间激活或去激活可靠传输的功能。
  63. 根据权利要求36至62中任一项所述的装置,其特征在于,所述最大传输时间为存活时间。
  64. 一种激活或去激活可靠传输的装置,其特征在于,包括发送单元,用于:
    向第一终端设备发送最大传输时间,所述最大传输时间用于所述第一终端设备激活或去激活可靠传输,所述可靠传输包括以下中的至少一个:复制传输,重复传输,包含目标调制与编码策略MCS的传输方式。
  65. 根据权利要求64所述的装置,其特征在于,所述发送单元具体用于:
    通过会话管理功能SMF向所述第一终端设备发送所述最大传输时间。
  66. 根据权利要求64或65所述的装置,其特征在于,所述发送单元具体用于:
    通过基站向所述第一终端设备发送所述最大传输时间。
  67. 根据权利要求64至66中任一项所述的装置,其特征在于,所述发送单元具体用于:
    通过第二终端设备向所述第一终端设备发送所述最大传输时间。
  68. 根据权利要求64至67中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示触发条件,所述触发条件用于所述第一终端设备激活或去激活所述可靠传输;和/或,
    向所述第一终端设备发送第二指示信息,所述第二指示信息用于指示是否激活可靠传输功能。
  69. 根据权利要求64至68中任一项所述的装置,其特征在于,所述发送单元具体用于:
    向所述第一终端设备发送配置信息,所述配置信息用于配置根据所述最大传输时间激活或去激活可靠传输的功能。
  70. 根据权利要求64至69中任一项所述的装置,其特征在于,所述最大传输时间为存活时间。
  71. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至28中任一项所述的方法。
  72. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求29至35中任一项所述的方法。
  73. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行:如权利要求1至28中任一项所述的方法,或者,如权利要求29至35中任一项所述的方法。
  74. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行:如权利要求1至28中任一项所述的方法,或者,如权利要求29至35中任一项所述的方法。
  75. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行:如权利要求1至28中任一项所述的方法,或者,如权利要求29至35中任一项所述的方法。
  76. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行:如权利要求1至28中任一项所述的方法,或者,如权利要求29至35中任一项所述的方法。
PCT/CN2020/070680 2020-01-07 2020-01-07 激活或去激活可靠传输的方法和装置 WO2021138802A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202311363752.XA CN117528640A (zh) 2020-01-07 2020-01-07 激活或去激活可靠传输的方法和装置
CN202080089453.XA CN114846757A (zh) 2020-01-07 2020-01-07 激活或去激活可靠传输的方法和装置
EP20912536.8A EP4084379A4 (en) 2020-01-07 2020-01-07 METHOD AND APPARATUS FOR ACTIVATING OR DEACTIVATING RELIABLE TRANSMISSION
PCT/CN2020/070680 WO2021138802A1 (zh) 2020-01-07 2020-01-07 激活或去激活可靠传输的方法和装置
US17/849,019 US20220321249A1 (en) 2020-01-07 2022-06-24 Method and apparatus for activating or deactivating reliable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070680 WO2021138802A1 (zh) 2020-01-07 2020-01-07 激活或去激活可靠传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,019 Continuation US20220321249A1 (en) 2020-01-07 2022-06-24 Method and apparatus for activating or deactivating reliable transmission

Publications (1)

Publication Number Publication Date
WO2021138802A1 true WO2021138802A1 (zh) 2021-07-15

Family

ID=76788536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070680 WO2021138802A1 (zh) 2020-01-07 2020-01-07 激活或去激活可靠传输的方法和装置

Country Status (4)

Country Link
US (1) US20220321249A1 (zh)
EP (1) EP4084379A4 (zh)
CN (2) CN114846757A (zh)
WO (1) WO2021138802A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679755A (zh) * 2022-04-28 2022-06-28 上海顺舟智能科技股份有限公司 一种工作模式切换方法、装置、设备和存储介质
WO2023010387A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Method and apparatus for application and resource allocation with survival time

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235399A1 (en) * 2020-01-23 2021-07-29 Nokia Technologies Oy Survival time monitoring and status transfer for time sensitive wireless communication
WO2022041125A1 (zh) * 2020-08-28 2022-03-03 Oppo广东移动通信有限公司 数据传输方法、网络设备和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147479A (zh) * 2017-04-27 2017-09-08 电信科学技术研究院 一种进行重复传输控制的方法和设备
CN109644369A (zh) * 2018-01-19 2019-04-16 Oppo广东移动通信有限公司 数据传输的方法和终端设备
US20190253926A1 (en) * 2018-02-13 2019-08-15 Samsung Electronics Co., Ltd. Method and apparatus for efficient operation upon packet duplication activation and deactivation in next generation wireless communication system
US20190349139A1 (en) * 2018-05-10 2019-11-14 Comcast Cable Communications, Llc Packet Duplication Control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788509B (zh) * 2017-11-15 2023-03-10 华为技术有限公司 连续数据包传输失败的规避方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147479A (zh) * 2017-04-27 2017-09-08 电信科学技术研究院 一种进行重复传输控制的方法和设备
CN109644369A (zh) * 2018-01-19 2019-04-16 Oppo广东移动通信有限公司 数据传输的方法和终端设备
US20190253926A1 (en) * 2018-02-13 2019-08-15 Samsung Electronics Co., Ltd. Method and apparatus for efficient operation upon packet duplication activation and deactivation in next generation wireless communication system
US20190349139A1 (en) * 2018-05-10 2019-11-14 Comcast Cable Communications, Llc Packet Duplication Control

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Enhancement of resource efficiency for PDCP duplication", 3GPP DRAFT; R2-1905751 ENHANCEMENT OF RESOURCE EFFICIENCY FOR PDCP DUPLICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729250 *
CATT: "Survival time triggered PDCP duplication", 3GPP DRAFT; R2-1905752 SURVIVAL TIME TRIGGERED PDCP DUPLICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729251 *
CMCC: "Selective duplication in PDCP duplication", 3GPP DRAFT; R2-1905915 SELECTIVE DUPLICATION IN PDCP DUPLICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. RENO, NEVADA, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729408 *
SAMSUNG, NOKIA, NOKIA SHANGHAI BELL, HUAWE, HISILICON, QUALCOMM INC.: "Key issue on QoS Enhancement for Deterministic Applications in 5GS", 3GPP DRAFT; S2-1911960, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Reno, USA; 20191118 - 20191122, 19 November 2019 (2019-11-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051827075 *
See also references of EP4084379A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010387A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Method and apparatus for application and resource allocation with survival time
CN114679755A (zh) * 2022-04-28 2022-06-28 上海顺舟智能科技股份有限公司 一种工作模式切换方法、装置、设备和存储介质
CN114679755B (zh) * 2022-04-28 2023-09-26 上海顺舟智能科技股份有限公司 一种工作模式切换方法、装置、设备和存储介质

Also Published As

Publication number Publication date
EP4084379A4 (en) 2023-01-04
CN114846757A (zh) 2022-08-02
US20220321249A1 (en) 2022-10-06
EP4084379A1 (en) 2022-11-02
CN117528640A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2021138802A1 (zh) 激活或去激活可靠传输的方法和装置
US20220174780A1 (en) Method for configuring drx parameter for sidelink, and terminal device
WO2020029886A1 (zh) 反馈信息的传输方法和装置
WO2021027574A1 (zh) 混合自动重传请求harq进程反馈的控制方法、终端及网络设备
JP5351329B2 (ja) 無線通信システムにおいて1対多サービスを受信する方法及び端末
WO2021170136A1 (zh) 一种通信方法及装置
US11778689B2 (en) Method and device for processing data
WO2021000783A1 (zh) 指示数据传输情况的方法和装置
WO2021035535A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020063443A1 (zh) Pdcp重复的配置方法和终端设备
WO2021233400A1 (zh) 数据传输方法、终端设备和网络设备
WO2020147053A1 (zh) 数据传输的方法和通信设备
WO2021160101A1 (zh) 一种数据传输方法、装置和系统
WO2020177680A1 (zh) 通信方法和通信装置
WO2020155124A1 (zh) 复制数据的传输方法、终端设备及接入网设备
WO2021026728A1 (zh) 数据的传输方法、装置、设备及存储介质
JP4896073B2 (ja) 無線通信システムにおいてデータ伝送状態をポーリングする方法及び装置
WO2021238941A1 (zh) Harq-ack反馈方法、终端设备和网络设备
US11310103B2 (en) Method for handling radio link failure (RLF) and terminal device
WO2021016790A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021051284A1 (zh) 一种上行重传处理方法、电子设备及存储介质
WO2024012149A1 (zh) 直接通信接口重复传输控制方法、终端及网络设备
US20210392675A1 (en) Feedback information sending method and apparatus and feedback information receiving method and apparatus
WO2023011326A1 (zh) Mac pdu的传输处理方法及装置
WO2021057076A1 (zh) 一种数据传输的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020912536

Country of ref document: EP

Effective date: 20220729

NENP Non-entry into the national phase

Ref country code: DE