JP6655265B2 - Method and apparatus for producing Mg2Si1-xSnx crystal - Google Patents

Method and apparatus for producing Mg2Si1-xSnx crystal Download PDF

Info

Publication number
JP6655265B2
JP6655265B2 JP2016013738A JP2016013738A JP6655265B2 JP 6655265 B2 JP6655265 B2 JP 6655265B2 JP 2016013738 A JP2016013738 A JP 2016013738A JP 2016013738 A JP2016013738 A JP 2016013738A JP 6655265 B2 JP6655265 B2 JP 6655265B2
Authority
JP
Japan
Prior art keywords
raw material
crystal
temperature region
crucible
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016013738A
Other languages
Japanese (ja)
Other versions
JP2017132655A (en
Inventor
利男 東海林
利男 東海林
正教 石井
正教 石井
治彦 鵜殿
治彦 鵜殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki University NUC
Shinko Mechatrotech Co Ltd
Original Assignee
Ibaraki University NUC
Shinko Mechatrotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki University NUC, Shinko Mechatrotech Co Ltd filed Critical Ibaraki University NUC
Priority to JP2016013738A priority Critical patent/JP6655265B2/en
Publication of JP2017132655A publication Critical patent/JP2017132655A/en
Application granted granted Critical
Publication of JP6655265B2 publication Critical patent/JP6655265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、赤外線センサの材料に用いられるMgSi1−xSn結晶の製造方法及び製造装置に関する。 The present invention relates to a method and an apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal used for a material of an infrared sensor.

近年、自動車への自動運転機能の搭載、工場等における産業ロボットの導入拡大、人工知能(AI)の様々な分野への適用が進むにつれて、周囲の人物などを検知する赤外線受光デバイスの必要性が高くなっている。また、犯罪防止用として赤外線カメラを搭載した夜間監視カメラの需要も増えている。   In recent years, as autonomous driving functions are installed in automobiles, the introduction of industrial robots in factories and the like, and the application of artificial intelligence (AI) to various fields are progressing, the need for infrared light receiving devices for detecting surrounding persons and the like is increasing. Is getting higher. Also, demand for nighttime surveillance cameras equipped with infrared cameras for crime prevention is increasing.

従来、上記のような赤外線センサの受光部を構成する材料としてPbS(硫化鉛)やInGaAs(インジウム・ガリウム・ヒ素)がよく用いられている。しかし、これらの材料は有害物質やレアメタルを含むため赤外線センサの低価格化は困難であった。一方、最近、MgSi1−xSn単結晶が赤外線センサに利用可能なことが示されている。しかし、この材料は単結晶化が難しいため、MgSi1−xSn単結晶を用いた赤外線センサは、まだ実現されていない。 Conventionally, PbS (lead sulfide) or InGaAs (indium gallium arsenide) has been often used as a material constituting the light receiving portion of the infrared sensor as described above. However, since these materials contain harmful substances and rare metals, it has been difficult to reduce the cost of the infrared sensor. On the other hand, recently, Mg 2 Si 1-x Sn x single crystal is shown to be available to the infrared sensor. However, this material is because it is difficult single crystal, an infrared sensor using Mg 2 Si 1-x Sn x single crystal has not yet been realized.

上記のMgSi1−xSn単結晶は、従来、垂直ブリッジマン法などにより育成の試みが行われてきた。垂直ブリッジマン法は、原料融液を装填した縦型容器を温度勾配を有する育成炉内に配置し、この容器を下方に移動することにより原料融液を下方から順に冷却固化して単結晶を育成する方法である。この方法は誘電体単結晶などの育成に使用されており、縦型容器と同形の円柱状の単結晶を育成することができる。 Conventionally, attempts have been made to grow the Mg 2 Si 1-x Sn x single crystal by a vertical Bridgman method or the like. In the vertical Bridgman method, a vertical vessel loaded with a raw material melt is placed in a growth furnace having a temperature gradient, and by moving the container downward, the raw material melt is cooled and solidified in order from below to form a single crystal. It is a method of nurturing. This method is used for growing a dielectric single crystal or the like, and can grow a columnar single crystal having the same shape as a vertical container.

一方、特許文献1には、熱電変換素子の材料としてMgSi1−xSn多結晶体を得るための製造方法として、アルミナ管の内壁にBN(窒化ホウ素)を離型剤として塗布したカーボンシートを巻き、上部を無機繊維層で蓋をする製造方法が記載されている。 On the other hand, in Patent Literature 1, as a manufacturing method for obtaining a Mg 2 Si 1-x Sn x polycrystal as a material for a thermoelectric conversion element, BN (boron nitride) was applied to the inner wall of an alumina tube as a release agent. A production method is described in which a carbon sheet is wound and an upper part is covered with an inorganic fiber layer.

WO2011/115297号公報WO2011 / 115297

従来、垂直ブリッジマン法によりMgSi1−xSn単結晶を育成しようとする場合、Mg(マグネシウム)は容易に酸化し、蒸発し易いため、原料を石英容器に入れて不活性ガスで封止するなどの対策をして単結晶を育成していた。また、Mgは石英と反応するためBN等の離型剤を容器内面に塗布して育成していた。しかし、その場合でも蒸発したMgと石英が反応するため石英容器の再利用は出来なかった。 Conventionally, when attempting to grow a Mg 2 Si 1-x Sn x single crystal by the vertical Bridgman method, Mg (magnesium) is easily oxidized and easily evaporated, so the raw material is put in a quartz container and inert gas is used. Single crystals were grown by taking measures such as sealing. In addition, since Mg reacts with quartz, a mold release agent such as BN is applied to the inner surface of the container to grow. However, even in that case, the evaporated Mg reacts with the quartz, so that the quartz container could not be reused.

一方、特許文献1に記載の方法を垂直ブリッジマン法に利用しようとする場合、アルミナ管内の残存酸素でMgが酸化されることや、カーボンシートと溶融原料が反応するため、得られた結晶の外周部が使えないという問題があった。また、カーボンシートと溶融原料が反応した部分で核が生じ、その個所から様々な方位の結晶が成長するために単結晶を得るのが困難であった。さらに、この単結晶の育成方法では対流を起こさせて固液界面を凸にすることが難しいため、結晶内に気泡が残ってしまうという問題があった。   On the other hand, when the method described in Patent Document 1 is to be used for the vertical Bridgman method, Mg is oxidized by the residual oxygen in the alumina tube or the carbon sheet reacts with the molten raw material. There was a problem that the outer periphery could not be used. In addition, nuclei are formed at the portions where the carbon sheet and the molten raw material have reacted, and crystals of various orientations grow from these locations, so that it has been difficult to obtain single crystals. Furthermore, in this method for growing a single crystal, it is difficult to cause convection to make the solid-liquid interface convex, so that there is a problem that bubbles remain in the crystal.

本発明は、係る問題を解決するためになされたものであり、坩堝の再利用が可能であり、気泡が無く結晶性の良好なMgSi1−xSn単結晶の育成を可能にするMgSi1−xSn結晶の製造方法及び製造装置を提供することを目的とする。 The present invention has been made in order to solve such a problem, and it is possible to reuse a crucible and to grow a Mg 2 Si 1-x Sn x single crystal having good crystallinity without bubbles. An object of the present invention is to provide a method and an apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal.

第1の観点では、本発明のMgSi1−xSn結晶の製造方法は、Mg、SiおよびSnからなる原料の融点よりも高い高温度領域と該高温度領域の下部に設けた前記原料の融点よりも低い低温度領域を有する結晶育成炉において、前記原料を前記高温度領域において溶融し、その溶融した融液原料を前記低温度領域に移動することにより結晶の育成を行うMgSi1−xSn結晶の製造方法であって、前記原料は、坩堝内に設置されたカーボンシートよりなる育成容器内に装填され、前記育成容器は、前記原料が接触する内面を、Mg、SiおよびSnからなる原料を溶融した状態の融液原料に一定時間以上接触させることによりその内面に該融液原料を浸み込ませる処理を行った後、その内面に離型材を塗布して構成したことを特徴とする。 In a first aspect, the method for producing a Mg 2 Si 1-x Sn x crystal of the present invention includes a high temperature region higher than the melting point of a raw material made of Mg, Si and Sn, and the lower portion provided below the high temperature region. in the crystal growth furnace having a low temperature region lower than the melting point of the raw material, the raw material melted in the high temperature region, performing growth of crystals by moving the molten melt material in the low temperature region Mg 2 A method for producing a Si 1-x Sn x crystal, wherein the raw material is loaded into a growing container made of a carbon sheet installed in a crucible, and the growing container contacts an inner surface of the growing material with Mg, A process in which a raw material composed of Si and Sn is brought into contact with a molten raw material in a molten state for a certain period of time or more so that the inner surface of the raw material is immersed in the molten raw material, and then a release material is applied to the inner surface. did It is characterized by the following.

MgSi1−xSn単結晶の育成において、坩堝の材料、構成は重要な育成条件である。単結晶の育成では坩堝として石英容器が多く用いられるが、上述のように、BN離型剤を塗布した石英容器に不活性ガスで封止したとしても、蒸発したMgと石英容器が反応するため坩堝の再利用は出来なかった。一方、石英容器の内壁にBN離型剤を塗布したカーボンシートを巻いた場合は、原料のSi(シリコン)がカーボンと反応してその部分から核が生じ、様々な方位の結晶が成長するために単結晶を得にくかった。そこで本発明では、育成容器のカーボンシートの原料が接触する内面を、育成する単結晶の原料を溶融した状態の融液原料に一定時間以上接触させてその内面にあらかじめ融液原料を浸み込ませる処理を行うことにより、上記のSiとカーボンの反応による核の発生を防いでいる。このようにあらかじめ原料と反応させたカーボンシートにBN等の離型材を塗布した育成容器を坩堝に挿入して用いることで、坩堝の再利用を可能とし、さらに上記の核の発生を防いで、気泡が無く結晶性の良好なMgSi1−xSn単結晶の育成を可能としている。 In development of Mg 2 Si 1-x Sn x single crystal, the crucible of the material, the structure is an important growth condition. In growing a single crystal, a quartz container is often used as a crucible, but as described above, even if the quartz container coated with a BN release agent is sealed with an inert gas, the evaporated Mg reacts with the quartz container. The crucible could not be reused. On the other hand, when a carbon sheet coated with a BN release agent is wound on the inner wall of a quartz container, Si (silicon) as a raw material reacts with carbon to generate nuclei from the portion, and crystals of various orientations grow. It was difficult to obtain a single crystal. Therefore, in the present invention, the inner surface of the growing container, which is in contact with the raw material of the carbon sheet, is brought into contact with the molten raw material in a state where the raw material of the single crystal to be grown is melted for a certain period of time or more, and the molten raw material is immersed in the inner surface in advance. By performing the above treatment, the generation of nuclei due to the reaction between Si and carbon is prevented. By inserting the growth container in which the release material such as BN is applied to the carbon sheet previously reacted with the raw material into the crucible and using the crucible, the crucible can be reused, and further, the generation of the above nuclei is prevented. It is possible to grow an Mg 2 Si 1-x Sn x single crystal having no bubbles and good crystallinity.

第2の観点では、本発明は、前記第1の観点のMgSi1−xSn結晶の製造方法において、前記坩堝はカーボンにより構成され、該坩堝に前記育成容器および前記原料を装填した後に、上部にカーボンよりなる蓋を被せて該蓋をカーボン接着材を用いて固定し、前記の結晶の育成は不活性ガス雰囲気中で行うことを特徴とする。本観点の発明では、坩堝として、単結晶育成において一般的に使用され、かつ工業的にも実績のあるカーボン坩堝を用いることにより、MgSi1−xSn結晶を安価に製造することができる。この場合、カーボンの気密性は高くないため、酸素との反応を防ぐためAr(アルゴン)ガスなどの不活性ガス雰囲気中で結晶の育成を行う。更に、Mgの蒸気がカーボン坩堝から漏れないように、上部にカーボンよりなる蓋を被せてその蓋をカーボン接着材を用いて坩堝に固定する。 In a second aspect, the present invention provides the method for producing a Mg 2 Si 1-x Sn x crystal according to the first aspect , wherein the crucible is made of carbon, and the crucible is charged with the growth container and the raw material. Later, a lid made of carbon is put on the upper part, and the lid is fixed using a carbon adhesive, and the crystal is grown in an inert gas atmosphere. In the invention of this aspect, the use of a carbon crucible, which is generally used in single crystal growth and has a proven track record in industry, as the crucible makes it possible to produce Mg 2 Si 1-x Sn x crystals at low cost. it can. In this case, since the airtightness of carbon is not high, the crystal is grown in an atmosphere of an inert gas such as Ar (argon) gas in order to prevent a reaction with oxygen. Further, a lid made of carbon is put on the upper part so that the vapor of Mg does not leak from the carbon crucible, and the lid is fixed to the crucible using a carbon adhesive.

第3の観点では、本発明は、前記第1または第2の観点のMgSi1−xSn結晶の製造方法において、前記高温度領域は前記原料の融点より35℃以上高い第1の高温領域とその下部に設けた前記原料の融点近傍の第2の高温領域よりなり、前記坩堝を前記第1の高温領域と前記第2の高温領域との間を1回以上往復させる昇降温工程を行い、前記坩堝を前記高温度領域で前記昇降温工程を含めて1〜2時間保持した後、前記低温度領域に向けて降下させることを特徴とする。本観点の発明では融点付近以上の高温度領域において、上記のような第1の高温領域と第2の高温領域間を上記のように1回以上往復させて一定時間保持することによって強制的に融液原料内に対流を起こさせ、さらに、ゆっくりとした速度で下降させることによって、気泡の無いより高品質の単結晶を得ることができる。 In a third aspect, the present invention provides the method for producing a Mg 2 Si 1-x Sn x crystal according to the first or second aspect, wherein the high-temperature region is at least 35 ° C. higher than the melting point of the raw material. A temperature raising / lowering step comprising a high-temperature region and a second high-temperature region provided below the raw material near the melting point of the raw material, wherein the crucible is reciprocated at least once between the first high-temperature region and the second high-temperature region. And holding the crucible in the high temperature region for 1 to 2 hours including the temperature raising and lowering step, and then lowering the crucible toward the low temperature region. In the invention of this aspect, in the high-temperature region near the melting point or higher, the above-described first and second high-temperature regions are reciprocated one or more times as described above and held for a certain time to forcibly. By causing convection in the melt raw material and lowering it at a slow speed, a single crystal of higher quality without bubbles can be obtained.

第4の観点では、本発明のMgSi1−xSn結晶の製造装置は、Mg、SiおよびSnからなる原料の融点よりも高い高温度領域と該高温度領域の下部に設けた前記原料の融点よりも低い低温度領域を有する結晶育成炉と、該結晶育成炉内に挿入される坩堝とを有し、前記原料を前記高温度領域において溶融し、その溶融した融液原料を前記低温度領域に移動することにより結晶の育成を行うMgSi1−xSn結晶の製造装置であって、前記原料を装填するために前記坩堝内に設置されるカーボンシートよりなる育成容器を有し、前記育成容器は、その内面に、Mg、SiおよびSnからなる原料を溶融した状態の融液原料に一定時間以上接触させることにより形成したMg、SiおよびSnを含む溶融原料含浸領域を有し、該溶融原料含浸領域の上面には離型材を塗布して形成した離型材塗布層を有することを特徴とする。 According to a fourth aspect, the apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal of the present invention includes a high temperature region higher than the melting point of a raw material composed of Mg, Si and Sn, and the lower portion provided below the high temperature region. A crystal growing furnace having a low temperature region lower than the melting point of the raw material, and a crucible inserted into the crystal growing furnace, wherein the raw material is melted in the high temperature region, and the melted raw material is melted. An apparatus for producing a Mg 2 Si 1-x Sn x crystal for growing a crystal by moving to a low temperature region, comprising: a growing container made of a carbon sheet installed in the crucible to load the raw material. The growing container has, on its inner surface, a molten raw material impregnated region containing Mg, Si and Sn formed by contacting a raw material composed of Mg, Si and Sn with a molten raw material in a molten state for a predetermined time or more. Yes A release material application layer formed by applying a release material is provided on the upper surface of the molten raw material impregnated region .

第5の観点では、本発明は、前記第4の観点のMgSi1−xSn結晶の製造装置において、前記坩堝はカーボンにより構成され、該坩堝に前記育成容器および前記原料を装填した後に該坩堝の上部を覆うためのカーボンからなる蓋を有し、前記の結晶の育成を不活性ガス雰囲気中で行うための前記結晶育成炉への不活性ガスの導入手段を有することを特徴とする。 In a fifth aspect, the present invention provides the apparatus for producing a Mg 2 Si 1-x Sn x crystal according to the fourth aspect, wherein the crucible is made of carbon, and the crucible is charged with the growth container and the raw material. Having a lid made of carbon to cover the upper part of the crucible later, and having means for introducing an inert gas into the crystal growing furnace for growing the crystal in an inert gas atmosphere. I do.

以上のように、本発明のMgSi1−xSn結晶の製造方法及び製造装置によれば、坩堝の再利用が可能であり、気泡が無く結晶性の良好なMgSi1−xSn単結晶の育成を可能にするMgSi1−xSn単結晶の製造方法及び製造装置が得られる。 As described above, according to the manufacturing method and the manufacturing apparatus of the Mg 2 Si 1-x Sn x crystal of the present invention, the crucible can be reused, and the Mg 2 Si 1-x having no bubbles and excellent crystallinity can be obtained. sn x single crystal to enable the development of the Mg 2 Si 1-x Sn x single crystal manufacturing method and a manufacturing apparatus can be obtained.

MgSi1−xSn結晶の製造装置の構成の一例を示す模式的な断面図。FIG. 2 is a schematic cross-sectional view illustrating an example of the configuration of an apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal. カーボン坩堝と育成容器および原料の構成を示す模式的な断面図。FIG. 2 is a schematic cross-sectional view showing a configuration of a carbon crucible, a growth container, and raw materials. カーボン保温筒内のカーボン坩堝付近の上下方向の温度分布の一例を示す図。The figure which shows an example of the temperature distribution of the up-down direction near the carbon crucible in a carbon insulated cylinder. 実施例1において作成されたMgSi1−xSn結晶の写真。3 is a photograph of a Mg 2 Si 1-x Sn x crystal created in Example 1. 実施例1において作成されたMgSi1−xSn結晶の断面写真。3 is a cross-sectional photograph of a Mg 2 Si 1-x Sn x crystal prepared in Example 1. 比較例1において作成されたMgSi1−xSn結晶の写真。5 is a photograph of a Mg 2 Si 1-x Sn x crystal created in Comparative Example 1. 比較例2において作成されたMgSi1−xSn結晶の断面写真。 13 is a cross-sectional photograph of a Mg 2 Si 1-x Sn x crystal created in Comparative Example 2.

以下、図面を参照して本発明のMgSi1−xSn結晶の製造方法及び製造装置を実施例により詳細に説明する。なお、図面の説明において同一の要素には同一符号を付し、その重複した説明を省略する。 Hereinafter, a method and an apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal of the present invention will be described in detail with reference to the drawings by way of examples. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

図1は、実施例1に係るMgSi1−xSn結晶の製造方法および製造装置を説明するために示す図であり、MgSi1−xSn結晶の製造装置の構成の一例を示す模式的な断面図である。本実施例は融液原料降下方式によるMgSi1−xSn結晶の製造方法である。すなわち、Mg、SiおよびSnからなる原料の融点よりも高い高温度領域とその高温度領域の下部に設けた原料の融点よりも低い低温度領域を有する結晶育成炉において、原料を高温度領域において溶融し、その溶融した融液原料を低温度領域に移動することにより結晶の育成を行うMgSi1−xSn結晶の製造方法である。図1において、ステンレス製でほぼ円筒型の結晶育成炉1の中に、カーボンにより構成されカーボン坩堝5と、加熱のためのカーボンヒーター4が設置され、その周囲には保温のためのカーボン保温筒2が設けられている。さらに、カーボン保温筒2の上部にはカーボン蓋3が設置されている。中心にはカーボン坩堝5を載せて上下させるための坩堝軸6がある。結晶育成炉1は気密構造を有し、真空引きのための真空ポンプ7とアルゴンガス導入のための配管8などを備えている。 Figure 1 is a view for explaining a method and apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal according to Example 1, an example of a configuration of a manufacturing apparatus of Mg 2 Si 1-x Sn x crystals FIG. The present embodiment is a method for producing an Mg 2 Si 1-x Sn x crystal by a melt raw material descent method. That is, in a crystal growing furnace having a high temperature region higher than the melting point of a raw material composed of Mg, Si and Sn and a low temperature region lower than the melting point of the raw material provided below the high temperature region, This is a method for producing an Mg 2 Si 1-x Sn x crystal in which a crystal is grown by melting and moving the melted raw material to a low temperature region. In FIG. 1, a carbon crucible 5 made of carbon and a carbon heater 4 for heating are installed in a crystal growth furnace 1 made of stainless steel and having a substantially cylindrical shape. 2 are provided. Further, a carbon lid 3 is provided on the upper part of the carbon insulated cylinder 2. At the center is a crucible shaft 6 for placing and raising and lowering the carbon crucible 5. The crystal growing furnace 1 has an airtight structure, and includes a vacuum pump 7 for evacuation and a pipe 8 for introducing argon gas.

図2はカーボン坩堝とその中に設置されたカーボンシートよりなる育成容器および原料の構成を示す模式的な断面図である。図2において、MgSi1−xSn結晶の原料であるSn原料13、Si原料14、Mg原料15は、カーボン坩堝5内に設置されたカーボンシートよりなる育成容器10内に装填されている。育成容器10は、あらかじめ上記の原料が接触する内面を、上記の原料を溶融した状態の融液原料に一定時間以上接触させることによりその内面にその融液原料を浸み込ませる処理を行った後、その内面にBNからなる離型材を塗布して構成したものである。また、カーボン坩堝5の開口部にはカーボンよりなる坩堝蓋11を被せ、その坩堝蓋11をカーボン接着剤12を用いてカーボン坩堝5に固定している。 FIG. 2 is a schematic cross-sectional view showing the structure of a growth container made of a carbon crucible and a carbon sheet installed therein and raw materials. In FIG. 2, a Sn raw material 13, a Si raw material 14, and a Mg raw material 15, which are raw materials of Mg 2 Si 1-x Sn x crystal, are loaded in a growth container 10 made of a carbon sheet installed in a carbon crucible 5. I have. The growth vessel 10 was subjected to a process of infiltrating the melt material into the inner surface of the growth container 10 by bringing the inner surface of the growth material into contact with the melt material in a state in which the raw material was melted for a predetermined time or more. Thereafter, a release material made of BN is applied to the inner surface thereof. The opening of the carbon crucible 5 is covered with a crucible lid 11 made of carbon, and the crucible lid 11 is fixed to the carbon crucible 5 using a carbon adhesive 12.

次に本実施例における各部の形状の一例を説明する。図1において、カーボンヒーター4の形状は、内径160mm×高さ210mmの円筒状であり、その中央に直径30mmの坩堝軸6を配置し、その上にカーボン坩堝5をを設置している。坩堝軸6は上下方向に200mm移動できるように移動機構に結合している。図2において、カーボン坩堝5の外形は外径50mm× 高さ80mmの円柱状であり、カーボン坩堝5の内部は、内径30mmで底部が頂角45度の円錐状となった原料収納室を有し、内面に沿って同形状の育成容器10を有している。   Next, an example of the shape of each part in the present embodiment will be described. In FIG. 1, the shape of the carbon heater 4 is a cylindrical shape having an inner diameter of 160 mm × a height of 210 mm, a crucible shaft 6 having a diameter of 30 mm is arranged at the center thereof, and a carbon crucible 5 is placed thereon. The crucible shaft 6 is connected to a moving mechanism so that it can move up and down by 200 mm. In FIG. 2, the outer shape of the carbon crucible 5 is a cylindrical shape having an outer diameter of 50 mm × a height of 80 mm, and the inside of the carbon crucible 5 has a material storage chamber having an inner diameter of 30 mm and a bottom having a conical shape with a vertex angle of 45 degrees. And it has the growth container 10 of the same shape along the inner surface.

ここで使用する育成容器10を構成するカーボンシートの厚さは0.3mmであり、カーボン坩堝5の内形に合わせて成型して作製した。   The thickness of the carbon sheet constituting the growing container 10 used here was 0.3 mm, and the carbon sheet was formed by molding according to the inner shape of the carbon crucible 5.

次に、本実施例のMgSi1−xSn結晶の製造方法の具体例について詳細に説明する。MgSi1−xSn単結晶の育成において、Mg原料15として純度が5N以上の高純度マグネシウムを、Si原料14として純度が10N以上の高純度シリコンを、Sn原料13として純度が5N以上の高純度スズをそれぞれ所要の比になるように秤量混合した原料30gをカーボン坩堝5内の育成容器10に入れた後、坩堝蓋11とカーボン坩堝5の上端にカーボン接着剤12を塗布し、坩堝蓋11を載せて蓋をした。原料が装填されたカーボン坩堝5を坩堝軸6に載せ1Pa(パスカル)以下の真空状態にしてから150℃まで昇温した。その状態を30分保持した後に温度を270℃に上げてさらに30分保持することによりカーボン接着剤12を固着し、真空封止を行った。 Next, a specific example of the method for manufacturing the Mg 2 Si 1-x Sn x crystal of the present embodiment will be described in detail. In growing a Mg 2 Si 1-x Sn x single crystal, high-purity magnesium having a purity of 5 N or more is used as the Mg raw material 15, high-purity silicon having a purity of 10 N or more is used as the Si raw material 14, and 5 N or more is used as the Sn raw material 13. 30 g of a raw material obtained by weighing and mixing the high-purity tin of each of the above to a required ratio is placed in a growth vessel 10 in a carbon crucible 5, and then a carbon adhesive 12 is applied to the top of the crucible lid 11 and the carbon crucible 5, The crucible lid 11 was placed and covered. The carbon crucible 5 loaded with the raw material was placed on the crucible shaft 6 and evacuated to a pressure of 1 Pa (Pascal) or less and then heated to 150 ° C. After maintaining the state for 30 minutes, the temperature was increased to 270 ° C. and further maintained for 30 minutes, thereby fixing the carbon adhesive 12 and performing vacuum sealing.

その後、以下のような手順で原料を溶かし、融液原料とした。先ず、結晶育成炉1内にArガスを導入し、大気圧まで圧力を上げた後、カーボンヒーター4に所定の電流を流し、カーボン坩堝5の温度を1120℃まで上げた。昇温時間は30分であった。この時のカーボン坩堝5は、中心部が1120℃付近にあり下部の底部は融点付近の1085℃を示す位置にあった。この状態で30分保持後、5mm/分の速度でカーボン坩堝5の底部を1120℃の位置まで上昇させ、30分保持後に初期の位置に5mm/分の速度でカーボン坩堝5を下降させる操作を1回行った後、カーボン坩堝5を0.5mm/分の速度で降下させ結晶育成を行った。なお、カーボン坩堝5の底部を1120℃の位置まで上昇させたとき、カーボン坩堝5の中心部は1085℃付近にあるので、上記の昇降温工程により融液原料を1120℃の第1の高温領域と1085℃の第2の高温領域との間で往復させることになる。図3はカーボン保温筒2内のカーボン坩堝5が置かれる付近の上下方向の温度分布の一例を示す図である。 Thereafter, the raw materials were melted by the following procedure to obtain a melt raw material. First, Ar gas was introduced into the crystal growing furnace 1 and the pressure was raised to the atmospheric pressure. Then, a predetermined current was passed through the carbon heater 4 to raise the temperature of the carbon crucible 5 to 1120 ° C. The heating time was 30 minutes. At this time, the carbon crucible 5 had a center at about 1120 ° C. and a lower bottom at a position showing 1085 ° C. near the melting point. After holding for 30 minutes in this state, the bottom of the carbon crucible 5 is raised to the position of 1120 ° C. at a speed of 5 mm / min, and after holding for 30 minutes, the carbon crucible 5 is lowered to the initial position at a speed of 5 mm / min. After performing once, the crystal was grown by lowering the carbon crucible 5 at a rate of 0.5 mm / min. Incidentally, when raising the bottom of the carbon crucible 5 to the position of 1120 ° C., since the center portion of the carbon crucible 5 is in the vicinity of 1085 ° C., the first high-temperature region of 1120 ° C. The molten material by the above heating and cooling process And a second high-temperature region of 1085 ° C. FIG. 3 is a diagram showing an example of a vertical temperature distribution in the vicinity of the place where the carbon crucible 5 is placed in the carbon insulated cylinder 2.

本実施例のMgSi1−xSn結晶の製造装置を用い、上記の本実施例の製造方法で育成されたMgSi1−xSn結晶では、単結晶領域の広い結晶が得られた。図4は本実施例において作成されたMgSi1−xSn結晶の写真を示す。図4において、この結晶の上面は光沢があり、かつ凸状になっていることから、本実施例においては結晶育成においてカーボンシート表面から原料がはじかれて固液界面が凸状態になっており、Siとカーボンの反応が起きていないことが分かる。図5は作成されたMgSi1−xSn結晶の断面写真を示す。図5からわかるように、本実施例により作成された結晶では気泡もクラックもなく単結晶領域が広い。 Using the Mg 2 Si 1-x Sn x crystal manufacturing apparatus of the present embodiment and the Mg 2 Si 1-x Sn x crystal grown by the above-described manufacturing method of the present embodiment, a crystal having a wide single crystal region can be obtained. Was done. FIG. 4 shows a photograph of the Mg 2 Si 1-x Sn x crystal prepared in this example. In FIG. 4, since the upper surface of this crystal is glossy and convex, the raw material is repelled from the carbon sheet surface during crystal growth in this embodiment, and the solid-liquid interface is convex. It can be seen that no reaction between Si and carbon occurred. FIG. 5 shows a cross-sectional photograph of the prepared Mg 2 Si 1-x Sn x crystal. As can be seen from FIG. 5, the single crystal region of the crystal prepared according to the present embodiment is wide without bubbles and cracks.

(比較例1)
本発明の有効性を確認するため、実施例1の育成容器10の代わりに、実施例1の育成容器10と同じカーボンシートを用いて育成容器10と同形状で成型したままの育成容器、すなわち融液原料に一定時間以上接触させることによりその内面にその融液原料を浸み込ませる処理を行わないでBN離型剤を塗布した育成容器を使用してMgSi1−xSn結晶の育成を行った。
(Comparative Example 1)
In order to confirm the effectiveness of the present invention, in place of the growth container 10 of Example 1, a growth container that has been molded in the same shape as the growth container 10 using the same carbon sheet as the growth container 10 of Example 1, that is, Mg 2 Si 1-x Sn x crystal using a growth vessel coated with a BN release agent without contacting the melt raw material for a certain period of time or more without infiltrating the melt raw material into the inner surface thereof Was trained.

本比較例では、実施例1と同じMgSi1−xSn結晶製造装置を用いた。すなわち、結晶育成炉1、カーボン保温筒2、カーボンヒータ4などはすべて実施例1と同じものを用いた。また、育成容器10以外のカーボン坩堝5、坩堝蓋11なども同じものを使用した。 In this comparative example, the same Mg 2 Si 1-x Sn x crystal manufacturing apparatus as in Example 1 was used. That is, the same crystal growing furnace 1, carbon heat retaining cylinder 2, carbon heater 4, etc. as in Example 1 were used. The same carbon crucible 5 and crucible lid 11 other than the growth container 10 were used.

本比較例のMgSi1−xSn結晶の製造方法も上記の実施例1の具体例と全く同一の条件とした。すなわち、使用原料、その装填方法、カーボン坩堝5と坩堝蓋11の封止方法、温度設定の手順、カーボン坩堝5の移動手順などもすべて同じとた。 The manufacturing method of the Mg 2 Si 1-x Sn x crystal of the present comparative example was also made under the exact same conditions as those of the specific example of the first embodiment. That is, the raw materials used, the loading method, the sealing method for the carbon crucible 5 and the crucible lid 11, the procedure for setting the temperature, the procedure for moving the carbon crucible 5, and the like were all the same.

本比較例で育成した結晶を取りだして界面状態を観察した。図6は本比較例において作成されたMgSi1−xSn結晶の写真を示す。図4に示した実施例1の結晶と比較すると、本比較例では図6に示す通り表面が凹状になっており、Siとカーボンの反応が起きていることが確認された。これにより、実施例1でのカーボンシートの育成容器においては、融液原料に一定時間以上接触させることによりその内面にその融液原料を浸み込ませる処理を行うことが非常に有効であることがわかる。 The crystal grown in this comparative example was taken out and the interface state was observed. FIG. 6 shows a photograph of the Mg 2 Si 1-x Sn x crystal produced in this comparative example. In comparison with the crystal of Example 1 shown in FIG. 4, in this comparative example, the surface was concave as shown in FIG. 6, and it was confirmed that a reaction between Si and carbon occurred. Accordingly, in the growing container for the carbon sheet in Example 1, it is very effective to perform the treatment of infiltrating the melt material into the inner surface thereof by contacting the melt material with the melt material for a certain period of time or more. I understand.

(比較例2)
本発明の有効性を確認するための第2の比較例として、実施例1の育成容器10を使用せず、また、育成条件として、カーボン坩堝5の高温度領域での昇降温工程を行わないでMgSi1−xSn結晶の育成を行った。
(Comparative Example 2)
As a second comparative example for confirming the effectiveness of the present invention, the growth container 10 of Example 1 was not used, and as a growth condition, the temperature raising / lowering step in the high temperature region of the carbon crucible 5 was not performed. in was grown of Mg 2 Si 1-x Sn x crystal.

本比較例では、実施例1と同じMgSi1−xSn結晶製造装置を用いた。すなわち、結晶育成炉1、カーボン保温筒2、カーボンヒータ4などはすべて実施例1と同じものを用いた。また、育成容器10以外のカーボン坩堝5、坩堝蓋11なども同じものを使用した。 In this comparative example, the same Mg 2 Si 1-x Sn x crystal manufacturing apparatus as in Example 1 was used. That is, the same crystal growing furnace 1, carbon heat retaining cylinder 2, carbon heater 4, etc. as in Example 1 were used. The same carbon crucible 5 and crucible lid 11 other than the growth container 10 were used.

本比較例のMgSi1−xSn結晶の製造方法は、カーボン坩堝5の底部を1120℃の位置まで上昇させて下げる昇降温工程を行わない以外の工程は、上記の実施例1の具体例と全く同一の条件とした。すなわち、使用原料、その装填方法、カーボン坩堝5と坩堝蓋11の封止方法、上記以外の温度設定の手順などもすべて同じとた。具体的には、結晶育成炉1内にArガスを導入し、大気圧まで圧力を上げた後、カーボンヒーター4に所定の電流を流し、カーボン坩堝5の温度を1120℃まで上げた。その後、そのまま1120℃の状態で2時間保持した後、カーボン坩堝5を0.5mm/分の速度で降下させ結晶育成を行った。 The manufacturing method of the Mg 2 Si 1-x Sn x crystal of the present comparative example is the same as that of the above-mentioned Example 1 except that the temperature raising / lowering step of raising and lowering the bottom of the carbon crucible 5 to the position of 1120 ° C. is not performed. The conditions were exactly the same as in the specific example. That is, the raw materials to be used, the loading method, the sealing method of the carbon crucible 5 and the crucible lid 11, and the procedure of temperature setting other than the above were all the same. Specifically, Ar gas was introduced into the crystal growing furnace 1 and the pressure was raised to the atmospheric pressure. Then, a predetermined current was applied to the carbon heater 4 to raise the temperature of the carbon crucible 5 to 1120 ° C. Thereafter, the temperature was maintained at 1120 ° C. for 2 hours, and then the carbon crucible 5 was lowered at a rate of 0.5 mm / min to grow crystals.

図7は本比較例により作成されたMgSi1−xSn結晶の断面写真を示す。図5に示した実施例1の結晶と比較すると、本比較例で得られた結晶は、図7に示す通り、気泡とクラックが発生した多結晶体であった。 FIG. 7 shows a cross-sectional photograph of the Mg 2 Si 1-x Sn x crystal prepared according to this comparative example. As compared with the crystal of Example 1 shown in FIG. 5, the crystal obtained in this comparative example was a polycrystal having bubbles and cracks as shown in FIG.

以上のように、実施例1の製造方法では、比較例1、2に比べて優れた外観形状の高品質のMgSi1−xSn結晶が得られることがわかる。なお、本発明の育成容器を坩堝内に設けることにより従来の製造方法に比べて大きな改善効果が得られ、カーボンヒーターや保温筒の形状、坩堝の形状などの選択や温度分布などの最適設計により、坩堝の材料はカーボン以外の材料でも、また第1の高温領域と第2の高温領域との間の昇降温工程を行わなくても、従来の製造方法に比べて高品質なMgSi1−xSn結晶を得ることができる。
As described above, it can be seen that the manufacturing method of Example 1 can provide a high-quality Mg 2 Si 1-x Sn x crystal having an excellent appearance compared to Comparative Examples 1 and 2 . By providing the growth container of the present invention in a crucible, a great improvement effect can be obtained as compared with the conventional manufacturing method, and the shape of the carbon heater and the heat retaining cylinder, the selection of the shape of the crucible, and the optimal design of the temperature distribution and the like are improved. The crucible may be made of a material other than carbon, and may be made of Mg 2 Si 1 having a higher quality than the conventional manufacturing method without performing a temperature raising / lowering step between the first high temperature region and the second high temperature region. can be obtained -x Sn x crystals.

本発明は上記の実施例に限定されるものではないことは言うまでもなく、目的とするMgSi1−xSn結晶の特性や形状などに応じて変更可能である。製造装置の各部の構造、形状、材質なども目的とするMgSi1−xSn結晶の特性、形状に合わせて変更可能であり、使用する製造装置の各部の構造や形状などによって、各部の温度などの育成条件も最適化することが望ましい。 Needless to say, the present invention is not limited to the above-described embodiments, and can be changed according to the characteristics and shape of the target Mg 2 Si 1-x Sn x crystal. The structure, shape, material, and the like of each part of the manufacturing apparatus can be changed according to the characteristics and shape of the target Mg 2 Si 1-x Sn x crystal. It is desirable to optimize the growth conditions such as the temperature.

本発明は、工場設備や発電設備などから生じる廃熱を利用した発電システムに用いることが可能なMgSi多結晶体やMgSi1−xSn多結晶体などの熱電変換材料の製造方法にも適用することができる。 The present invention is directed to the production of thermoelectric conversion materials such as Mg 2 Si polycrystals and Mg 2 Si 1-x Sn x polycrystals that can be used in power generation systems utilizing waste heat generated from factory facilities and power generation facilities. The method can also be applied.

1 結晶育成炉
2 カーボン保温筒
3 カーボン蓋
4 カーボンヒーター
5 カーボン坩堝
6 坩堝軸
7 真空ポンプ
8 配管
10 育成容器
11 坩堝蓋
12 カーボン接着剤
13 Sn原料
14 Si原料
15 Mg原料
REFERENCE SIGNS LIST 1 crystal growing furnace 2 carbon warming cylinder 3 carbon lid 4 carbon heater 5 carbon crucible 6 crucible shaft 7 vacuum pump 8 piping 10 growing vessel 11 crucible lid 12 carbon adhesive 13 Sn raw material 14 Si raw material 15 Mg raw material

Claims (5)

Mg、SiおよびSnからなる原料の融点よりも高い高温度領域と該高温度領域の下部に設けた前記原料の融点よりも低い低温度領域を有する結晶育成炉において、前記原料を前記高温度領域において溶融し、その溶融した融液原料を前記低温度領域に移動することにより結晶の育成を行うMgSi1−xSn結晶の製造方法であって、前記原料は、坩堝内に設置されたカーボンシートよりなる育成容器内に装填され、前記育成容器は、前記原料が接触する内面を、Mg、SiおよびSnからなる原料を溶融した状態の融液原料に一定時間以上接触させることによりその内面に該融液原料を浸み込ませる処理を行った後、その内面に離型材を塗布して構成したことを特徴とするMgSi1−xSn結晶の製造方法。 In a crystal growing furnace having a high temperature region higher than the melting point of a raw material made of Mg, Si and Sn and a low temperature region provided below the high temperature region and lower than the melting point of the raw material, the raw material is mixed with the high temperature region. melted, a process for the preparation of the molten melt material the low temperature region in the development of crystalline performing Mg 2 Si 1-x Sn x crystal by moving in, the material is placed in a crucible The growth container is loaded into a growth container made of a carbon sheet, and the growth container is brought into contact with a melt raw material in a state in which a raw material made of Mg, Si and Sn is melted for a predetermined time or more by contacting the inner surface with which the raw material comes into contact. A method for producing a Mg 2 Si 1-x Sn x crystal, characterized in that a treatment for infiltrating the melt material into the inner surface is performed, and then a release material is applied to the inner surface. 前記坩堝はカーボンにより構成され、該坩堝に前記育成容器および前記原料を装填した後に、上部にカーボンよりなる蓋を被せて該蓋をカーボン接着材を用いて固定し、前記の結晶の育成は不活性ガス雰囲気中で行うことを特徴とする請求項1に記載のMgSi1−xSn結晶の製造方法。 The crucible is made of carbon. After the crucible is charged with the growth container and the raw material, a lid made of carbon is put on the crucible and the lid is fixed using a carbon adhesive, so that the crystal growth is not possible. method for producing a Mg 2 Si 1-x Sn x crystal according to claim 1, characterized in that in the active gas atmosphere. 前記高温度領域は前記原料の融点より35℃以上高い第1の高温領域とその下部に設けた前記原料の融点近傍の第2の高温領域よりなり、前記坩堝を前記第1の高温領域と前記第2の高温領域との間を1回以上往復させる昇降温工程を行い、前記坩堝を前記高温度領域で前記昇降温工程を含めて1〜2時間保持した後、前記低温度領域に向けて降下させることを特徴とする請求項1または請求項2に記載のMgSi1−xSn結晶の製造方法。 The high-temperature region is composed of a first high-temperature region higher than the melting point of the raw material by 35 ° C. or more and a second high-temperature region provided below the first high-temperature region near the melting point of the raw material. performs heating and cooling step of reciprocating one or more times between the second high temperature region, after the crucible was held for 1-2 hours including the temperature raising and lowering step at the high temperature region, toward the low temperature region method for producing a Mg 2 Si 1-x Sn x crystal according to claim 1 or claim 2, wherein the lowering. Mg、SiおよびSnからなる原料の融点よりも高い高温度領域と該高温度領域の下部に設けた前記原料の融点よりも低い低温度領域を有する結晶育成炉と、該結晶育成炉内に挿入される坩堝とを有し、前記原料を前記高温度領域において溶融し、その溶融した融液原料を前記低温度領域に移動することにより結晶の育成を行うMgSi1−xSn結晶の製造装置であって、前記原料を装填するために前記坩堝内に設置されるカーボンシートよりなる育成容器を有し、前記育成容器は、その内面に、Mg、SiおよびSnからなる原料を溶融した状態の融液原料に一定時間以上接触させることにより形成したMg、SiおよびSnを含む溶融原料含浸領域を有し、該溶融原料含浸領域の上面には離型材を塗布して形成した離型材塗布層を有することを特徴とするMgSi1−xSn結晶の製造装置。 A crystal growth furnace having a high temperature region higher than the melting point of a raw material made of Mg, Si and Sn and a low temperature region provided below the high temperature region and lower than the melting point of the raw material, and inserted into the crystal growth furnace; Of the Mg 2 Si 1-x Sn x crystal, which melts the raw material in the high temperature region and moves the melted raw material to the low temperature region to grow the crystal. A production apparatus, comprising a growing container made of a carbon sheet installed in the crucible to load the raw material, wherein the growing container has an inner surface on which a raw material made of Mg, Si, and Sn is melted. A molten material impregnated region containing Mg, Si and Sn formed by being brought into contact with the molten raw material in a state for a predetermined time or more, and a release material applied by applying a release material on the upper surface of the molten material impregnated region Apparatus for producing Mg 2 Si 1-x Sn x crystals characterized by having a. 前記坩堝はカーボンにより構成され、該坩堝に前記育成容器および前記原料を装填した後に該坩堝の上部を覆うためのカーボンからなる蓋を有し、前記の結晶の育成を不活性ガス雰囲気中で行うための前記結晶育成炉への不活性ガスの導入手段を有することを特徴とする請求項4に記載のMgSi1−xSn結晶の製造装置。 The crucible is made of carbon, and has a lid made of carbon for covering the upper part of the crucible after the crucible is charged with the growth container and the raw material. The crystal is grown in an inert gas atmosphere. the apparatus for manufacturing a Mg 2 Si 1-x Sn x crystal according to claim 4, characterized in that it comprises a means for introducing inert gas into the crystal growth furnace for.
JP2016013738A 2016-01-27 2016-01-27 Method and apparatus for producing Mg2Si1-xSnx crystal Expired - Fee Related JP6655265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013738A JP6655265B2 (en) 2016-01-27 2016-01-27 Method and apparatus for producing Mg2Si1-xSnx crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013738A JP6655265B2 (en) 2016-01-27 2016-01-27 Method and apparatus for producing Mg2Si1-xSnx crystal

Publications (2)

Publication Number Publication Date
JP2017132655A JP2017132655A (en) 2017-08-03
JP6655265B2 true JP6655265B2 (en) 2020-02-26

Family

ID=59503377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013738A Expired - Fee Related JP6655265B2 (en) 2016-01-27 2016-01-27 Method and apparatus for producing Mg2Si1-xSnx crystal

Country Status (1)

Country Link
JP (1) JP6655265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859791A4 (en) * 2018-11-13 2022-07-27 Ibaraki University Semiconductor material, infrared light receiving element, and method for manufacturing semiconductor material
WO2022064735A1 (en) * 2020-09-25 2022-03-31 国立大学法人茨城大学 Mg2Si SINGLE CRYSTAL, Mg2Si SINGLE CRYSTAL SUBSTRATE, INFRARED RAY-RECEIVING ELEMENT, AND METHOD FOR MANUFACTURING Mg2Si SINGLE CRYSTAL

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035825A (en) * 2003-07-18 2005-02-10 Nikon Corp Crucible and method for manufacturing fluoride crystal
JP2008160077A (en) * 2006-11-30 2008-07-10 Fdk Corp Mg INTERMETALLIC COMPOUND, AND DEVICE APPLYING THE SAME
JP2010050185A (en) * 2008-08-20 2010-03-04 Fdk Corp Mg INTERMETALLIC COMPOUND, AND DEVICE APPLYING THE SAME
EP2548845A4 (en) * 2010-03-17 2015-12-09 Univ Ibaraki Production apparatus and method for producing mg2si1-xsnx polycrystals
JP5765776B2 (en) * 2011-06-22 2015-08-19 国立大学法人茨城大学 Mg2Si1-xSnx polycrystal and method for producing the same
JP2015218083A (en) * 2014-05-16 2015-12-07 株式会社フルヤ金属 Production method of alkali halide single crystal

Also Published As

Publication number Publication date
JP2017132655A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP5304600B2 (en) SiC single crystal manufacturing apparatus and manufacturing method
US20040211496A1 (en) Reusable crucible for silicon ingot growth
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
JP6655265B2 (en) Method and apparatus for producing Mg2Si1-xSnx crystal
JP4416040B2 (en) Compound semiconductor crystal
JP2008239480A5 (en)
EP2554720B1 (en) Method for synthesizing group ii-vi compound semiconductor polycrystals
US20140202377A1 (en) Crucible for producing compound crystal, apparatus for producing compound crystal, and method for producing compound crystal using crucible
JP2010260747A (en) Method for producing semiconductor crystal
JP5637778B2 (en) Method for producing polycrystalline gallium arsenide compound semiconductor
CN111809241B (en) Method for preparing cadmium telluride or cadmium zinc telluride polycrystal material
CN111809243A (en) Method for preparing cadmium telluride or cadmium zinc telluride polycrystal material
JP4498457B1 (en) Crystal growth method
JP2011026176A (en) Method for production of groups iii-v compound crystal
CN213286758U (en) Device for preparing polycrystalline material
JP4549111B2 (en) GaAs polycrystal production furnace
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JP2009155137A (en) Manufacturing method of compound semiconductor crystal and manufacturing apparatus of single crystal
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JPH10203891A (en) Growth of single crystal and device therefor
JP2003335598A (en) Apparatus for preparing compound semiconductor single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP2830307B2 (en) Method for producing high dissociation pressure single crystal
JP5352245B2 (en) Compound semiconductor single crystal manufacturing method and crystal growth apparatus
JPH10139597A (en) Growth vessel for iii-v group compound semiconductor single crystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200201

R150 Certificate of patent or registration of utility model

Ref document number: 6655265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees