JP6652292B2 - 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置 - Google Patents

制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置 Download PDF

Info

Publication number
JP6652292B2
JP6652292B2 JP2015186265A JP2015186265A JP6652292B2 JP 6652292 B2 JP6652292 B2 JP 6652292B2 JP 2015186265 A JP2015186265 A JP 2015186265A JP 2015186265 A JP2015186265 A JP 2015186265A JP 6652292 B2 JP6652292 B2 JP 6652292B2
Authority
JP
Japan
Prior art keywords
joint
amplitude
control method
transmission
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015186265A
Other languages
English (en)
Other versions
JP2017061001A (ja
JP2017061001A5 (ja
Inventor
裕 土屋
裕 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015186265A priority Critical patent/JP6652292B2/ja
Priority to US15/265,534 priority patent/US10471593B2/en
Publication of JP2017061001A publication Critical patent/JP2017061001A/ja
Publication of JP2017061001A5 publication Critical patent/JP2017061001A5/ja
Application granted granted Critical
Publication of JP6652292B2 publication Critical patent/JP6652292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37209Estimate life of gear, drive
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37337Noise, acoustic emission, sound

Description

本発明は、回転駆動源と、前記回転駆動源の駆動を変速する変速機と、前記変速機の出力の回転角度を検出する第1の角度センサと、を備えた関節を有するロボット装置の制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置に関する。
近年、工業生産の分野で、人間の手のように複雑で高速な物品の製造作業を実現できる多関節のロボット装置(以下ロボット装置という)を利用した生産(製造)装置が普及しつつある。この種の複雑な動作が可能なロボット装置では、ロボットアームの動作の自由度が高くなる分、作業中に、ロボットアームと周囲環境のワークや工具等の他の物体と接触、干渉する可能性がある。例えば、ロボットアームが周囲の物体等と接触するなどしてアームの関節に配置された変速(減速)機に衝撃が加わると、減速機に歯飛び等の故障を引き起こすおそれがある。
この種のロボットアームの関節を駆動するアクチュエータは、例えばサーボモータおよび変速機から構成されている。この種の変速機は、一般にサーボモータのような回転駆動源の回転数領域と、アームのリンクを回転させるための回転数領域の関係から減速機として構成されることが多い。このため、以下では、この種のロボット装置で用いられる変速機を代表するものとして減速機を例示することがある。
この変速機は、サイズや形状に比して大きな減速比を得られる波動歯車機構を用いた変速機が広く用いられる。この波動歯車機構を利用した変速(減速)機では、歯飛びなどの故障によって関節の角度伝達精度が低下し、ロボットアームの作動精度を低下させる可能性がある。
以上のような事情に鑑み、近年、ロボットアームの干渉、衝突に関して様々な技術が提案されている。例えば、ロボットアームの各関節のアクチュエータ(モータおよび変速機)の入力側と出力側に角度検出器を設け、検出される角度差から衝突を判断し、衝突と判断した場合にはロボットアームを逆方向に駆動させる技術が提案されている(特許文献1参照)。また、アームの干渉、衝突後の関節のアクチュエータ(モータおよび変速機)の状態を検出する技術も知られている。例えば各関節のアクチュエータを駆動した際のアームの振動をモータトルク値に基づき算出したトルク変動値を用いて検出し、変動幅を閾値と比較することで交換の要否を判断する技術が提案されている(特許文献2参照)。
特開2010−228028号公報 特開2006−281421号公報
上記の特許文献1に記載の技術は、ロボットアームに接触が発生したことは検知可能であるが、変速機は外部からの視認が困難であるため、接触による変速機の損傷の程度までは知ることができない。そのため、変速機の損傷を判断するには、変速機を分解して歯車の歯面を確認し、交換の要否を判断する必要がある。しかしながら、分解による変速機の損傷判断は、ロボットアームから変速機を取り外す作業が必要であり、多くの時間を必要とするという問題がある。一方、特許文献2に記載の技術は、異常検知に用いる値をモータトルク値より求めていることから自身のサーボ応答性が影響するため、それほど高い検出精度を得られない、という問題がある。
そこで、本発明の課題は、ロボット装置の関節に配置された変速機の状態を高速かつ確実に検出できるようにすることにある。
上記課題を解決するため、本発明においては、回転駆動源と、前記回転駆動源の駆動を変速する変速機と、前記変速機の出力の回転角度を検出する第1の角度センサと、を備えた関節を有するロボット装置の制御方法において、制御装置が、前記回転駆動源を駆動させて、前記変速機を介して前記関節を所定の回転速度で駆動し、前記第1の角度センサから得られる回転角度から前記関節の固有振動の振幅を取得する振幅取得工程と、前記制御装置が、前記振幅取得工程で得た前記関節の振幅に応じて前記変速機の状態を検出する検出工程と、を備えた構成を採用した。
以上の構成によれば、変速機の出力側の回転軸の回転角度を測定する出力側角度センサを介して測定した関節の共振振幅に応じて、ロボット装置の関節に配置された変速機の状態を精度よく迅速に判定することができる。このためロボット装置の部品交換判定などを迅速に行うことができ、ロボット装置の関節(変速機)を適切な状態に維持することができる、という優れた効果がある。
本発明の実施形態に係るロボット装置の全体構成を示した斜視図である。 図1のロボット装置の関節近傍の構成を示した断面図である。 図2のロボット装置の制御装置の構成を示したブロック図である。 図2のロボット装置の制御装置の機能構成をブロック図である。 図1のロボット装置の検査に係る制御手順を示したフローチャート図である。 図1のロボット装置の検査において用いられるロボットアームの姿勢を示した説明図である。 図1のロボット装置の検査時の関節速度の制御を示した説明図である。 図1のロボット装置の検査において、振動検査結果から判定値Aを算出する演算手順を示したフローチャート図である。 (a)、(b)はそれぞれ、図1のロボット装置の診断処理(診断モード)において、判定値Aの生成手法を示した波形図である。 (a)はロボットアームの関節に配置されたエンコーダから取得した位置信号のパルス波形を示した波形図、(b)は(a)の波形から指令動作成分を除去した位置信号のパルス波形を示した波形図である。
以下、添付図面に示す実施例を参照して本発明を実施するための形態につき説明する。なお、以下に示す実施例はあくまでも一例であり、例えば細部の構成については本発明の趣旨を逸脱しない範囲において当業者が適宜変更することができる。また、本実施形態で取り上げる数値は、参考数値であって、本発明を限定するものではない。
本実施形態に係るロボット装置は、組み立て作業等を行う産業用のロボット装置であり、このロボット装置の変速機の劣化状態、特に故障検出および故障防止のための機能(状態を診断可能な機能)を備えている。本実施形態でいう故障とは、変速機の使用不能状態に加え、変速機を通常用途に使用することができない通常使用不能状態を含む。この通常使用不能状態とは、例えば所定の用途に要求される使用条件に対する許容範囲(通常使用可能状態)を超えた状態をいう。
上記のように、ロボット装置の関節の変速機は、一般にサーボモータのような回転駆動源の回転数領域と、アームのリンクを回転させるための回転数領域の関係から減速機として構成されることが多い。このため、以下では、この種のロボット装置で用いられる変速機を代表するものとして減速機を例示する。
本実施形態では、ロボット装置の関節部に発生する共振現象を介して、特に波動歯車機構を利用した減速機の(劣化)状態を診断する。このロボット装置の関節部の共振現象を介した関節部の変速機の劣化状態の検出は次のような原理に基づく。
上述の緩衝や衝突に起因する減速機の損傷が生じると、歯飛びや損傷により生じた小片の噛み込みなどにより、角度伝達誤差が生じる。この角度伝達誤差は、例えば減速機の1次側の入力角度と、変速比を介して減速機の2次側に得られる出力角度の誤差である。
一方で、波動歯車を利用した減速機を用いたロボットの関節には、次式(1)に示すような共振周波数f(Hz:固有振動数)が存在する。
Figure 0006652292
ここでfは減速機を含む振動系の共振周波数(Hz:固有振動数)、Kは減速機のばね定数、Jは減速機が設けられた関節により駆動される負荷の負荷イナーシャ(Kgm)である。このうち、ばね定数Kは定数項であって、減速機の型式ごとに固有である。また、Jは対象の関節軸にかかる慣性モーメントに相当し、その大きさはロボットアームの姿勢によって変化する。
また、減速機は回転駆動系であり、上記の共振周波数f(Hz:固有振動数)は次式(2)のような回転数R(rpm:1分あたりの回転数)に相当する。
Figure 0006652292
従って、減速機の入力側の回転速度が式(2)を満たす回転数Rになったとき、関節に共振現象が発生する。即ち、当該の関節を駆動すると、式(2)の駆動回転数近傍で上記の共振周波数fに一致する速度ムラが発生する。
このような減速機の角度伝達誤差と共振の大きさには関係がある。たとえば、衝突のような急激な過負荷によって欠けてしまった減速機歯車の歯片を他の歯が周期的に噛みこむことによって角度伝達誤差となり、それが共振周波数に一致した場合、アームは正常な状態よりも大きく共振する。また歯車に損傷がない場合でも、減速機(全体)が楕円状に歪んでしまっていると、減速機の波動歯車機構を構成する部品の1つであるウェブジェネレータが周期的に変形し、同様に大きく共振する。
以上のように、ロボットの関節に発生する共振現象は、減速機の角度伝達誤差が出力側エンコーダ16で検出可能な関節の振動という形で発現しているものと考えることができる。従って、ロボットアームの関節(の減速機)に生じる共振の強度、例えば振幅を測定し、この共振振幅を角度伝達誤差に応じたインデックス(目安)値として予め定めた基準値と比較することにより減速機を診断することができる。
以下、図1〜10に示す実施例を参照し、上記の原理に基づきロボット装置の関節に係る測定および診断につき、具体的に説明する。
図1から図3は、本発明を実施可能なロボットシステム500の構成の一例を示している。図1はロボットシステム500の全体構成を模式的に示している。図2は図1のロボットシステム500の1つの関節近傍の断面構造を示している。また、図3は図1のロボットシステム500の制御装置200の構成を示している。
図1に示すように、ロボットシステム500は、ワークWの組立てを行うロボット装置100、このロボット装置100を制御する制御装置200、および制御装置200に接続されたティーチングペンダント300を備えている。
ロボット装置100は、6軸多関節のロボットアーム101と、ロボットアーム101の先端に接続されたハンド(エンドエフェクタ)102と、ハンド102に作用する力等を検出可能な力センサ(不図示)とを備えている。
ロボットアーム101は、作業台に固定されるベース部103(基台)と、変位や力を伝達する複数のリンク121〜126と、各リンク121〜126を旋回又は回転可能に連結する複数の関節111〜116と、を備えている。本実施形態においては、複数の関節111〜116の構成は基本的には同一である。このため、以下では、関節111〜116に共通する構成については、代表してリンク121とリンク122との間の関節112の構成を説明することとし、他の関節111、113〜116の具体的な説明は省略するものとする。なお、関節112と同じ構成の関節は、ロボットアーム101の複数の関節111〜116のうちの少なくとも1カ所に備えていれば本実施例は実施可能である。
関節112は、図2に示すように、回転駆動源としてのサーボモータ(モータ)1と、サーボモータ1の出力を減速(変速)する減速機11を備えている(変速機)。この関節112の減速機11の出力側の回転角度(出力側回転角度)は出力側エンコーダ16(ロータリエンコーダ)によって検出される。この出力側エンコーダ16、および後述の入力側エンコーダ10は一般的なロータリエンコーダと同様の構成を有し、光学式あるいは磁気式方式のロータリエンコーダデバイスにより構成される。
サーボモータ1は、例えばブラシレスDCモータやACサーボモータなどの電磁モータにより構成することができる。サーボモータ1は、回転軸2とロータマグネット3とで構成された回転部4と、モータハウジング5と、回転軸2を回転自在に支持する軸受6、7と、回転部4を回転させるステータコイル8と、を備えている。軸受6、7はモータハウジング5に設けられ、ステータコイル8はモータハウジング5に取り付けられている。また、サーボモータ1はモータカバー9で囲われている。なお、サーボモータ1には、必要に応じて電源OFF時にロボットアーム101の姿勢を保持するためのブレーキユニットを設けてもよい。
減速機11は、入力部であるウェブジェネレータ12と、出力部であるサーキュラスプライン13と、ウェブジェネレータ12とサーキュラスプライン13との間に配置されたフレックススプライン14と、を備えている。ウェブジェネレータ12は、サーボモータ1の回転軸2の他端側に接続されている。サーキュラスプライン13は、リンク122に接続されている。フレックススプライン14は、リンク121に連結されている。つまり、サーボモータ1の回転軸2とウェブジェネレータ12との結合部が、減速機11の入力側となり、フレックススプライン14とリンク121との結合部が減速機11の出力側となる。そして、サーボモータ1の回転軸2は、減速機11を介して1/Nに減速(減速比Nで減速)され、リンク121とリンク122とが相対的に回転する。このときの減速機11の出力側の回転角度が、実出力角度、即ち関節112の角度となる。
出力側エンコーダ(出力側角度センサ)16は、減速機11の出力側に設けられており、リンク121とリンク122との相対角度を検出する。具体的には、出力側エンコーダ16は、関節112の駆動(リンク121とリンク122との相対移動)に伴って出力側パルス信号を生成し、制御装置200に生成した出力側パルス信号を出力する。リンク121とリンク122との間には、クロスローラベアリング15が設けられており、リンク121とリンク122とは、クロスローラベアリング15を介して回転自在に連結されている。
また、サーボモータ1の回転軸2、すなわち減速機11の入力側には、入力側エンコーダ(入力側角度センサ)10を配置することができる。
ハンド102は、ワークWを把持可能な複数のフィンガと、複数のフィンガを駆動する不図示のアクチュエータと、を備えており、複数のフィンガを駆動することでワークを把持可能に構成されている。力センサは、ハンド102が複数のフィンガでワークWを把持する際等にハンド102に作用する力やモーメントを検出する。
図3に示すように、制御装置200は、CPU(演算部)201と、ROM202と、RAM203と、HDD(記憶部)204と、記録用ディスクドライブ205と、各種のインタフェース211〜215と、を備えている。
CPU201には、ROM202、RAM203、HDD204、記録用ディスクドライブ205および各種のインタフェース211〜215が、バス216を介して接続されている。ROM202には、BIOS等の基本プログラムが格納されている。RAM203はCPU201の演算処理結果を一時的に記憶する記憶領域を構成する。
HDD204は、CPU201の演算処理結果である各種のデータ等を記憶する記憶部であると共に、CPU201に、各種演算処理を実行させるための制御プログラム(:330、例えば、後述する診断プログラムを含む)を記録するものである。CPU201は、このHDD204に記録(格納)された制御プログラムに基づいて各種演算処理を実行する。記録ディスクドライブ205は、記憶ディスク331に記録された各種データやプログラム等を読み出すことができる。
特に、コンピュータ(CPU201)が実行する後述の制御手順に相当する制御プログラム330は、例えば図3のHDD204(あるいはROM202)に格納する。これらのROM202やHDD204のような記憶手段は、コンピュータ読み取り可能な記録媒体を構成する。また、これらのROM202やHDD204のようなコンピュータ読み取り可能な記録媒体(の一部)は、着脱可能なフラッシュメモリデバイスや磁気/光ディスクによって構成されていてもよい。また、コンピュータ(CPU201)が実行する後述の制御手順に相当するプログラムは、ネットワークなどを介してダウンロードされ、例えばHDD204などに導入する、あるいはそこに導入済みのソフトウェアを更新するような構成をとってもよい。
インタフェース211にはユーザによって操作されるティーチングペンダント300が接続されている。ティーチングペンダント300には、LCDパネルのような表示装置やキーボードなどから成るユーザインターフェイスが設けられている。このユーザインターフェイスを用いて、ユーザはロボット装置100の教示操作を行うことができる。これにより、例えばロボットアーム101の手先などに設定された基準点の位置姿勢(教示点)を指定したり、各関節111〜116の関節角度を指定したりすることができる。ティーチングペンダント300は、このようにして入力された各関節111〜116の目標関節角度をインタフェース211およびバス216を介してCPU201に出力する。
インタフェース212には、ロボットアーム101の各関節111〜116の出力側エンコーダ16が接続されている。出力側エンコーダ16は、前述のように関節角度に対応するパルス信号をインタフェース212およびバス216を介してCPU201に出力する。さらに、インタフェース213および214には、モニタ311、および外部記憶装置312(書き換え可能な不揮発性メモリや外付けHDDなど)をそれぞれ接続することができる。モニタ311は例えばLCDパネルなどの表示装置であって、ロボット装置100の制御状態のモニタ表示などに用いられる他、後述の診断処理に関連する情報表示や警告メッセージの表示に用いることができる。
インタフェース215にはサーボ制御装置313が接続されており、CPU201は、サーボモータ1の回転軸2の回転角度の制御量を示す駆動指令のデータを所定間隔でバス216およびインタフェース215を介してサーボ制御装置313に出力する。
サーボ制御装置313は、CPU201から入力を受けた駆動指令に基づき、ロボットアーム101の各関節111〜116のサーボモータ1への電流の出力量を演算する。サーボ制御装置313は、得られた電流値に対応する電流をサーボモータ1に供給し、これによりロボットアーム101の関節111〜116の関節角度が制御される。即ち、CPU201は、サーボ制御装置313を介して関節111〜116の角度が目標関節角度となるようにサーボモータ1による関節111〜116の駆動を制御することができる。
ここで、図4を参照して、本実施例の診断プログラム(例えば後述の図5)を実行する際に制御装置200が実行する機能につき説明する。図4の各機能ブロックは、コンピュータ(CPU201)のハードウェアおよびそのソフトウェアにより実装される。特にそのソフトウェア部分は、ROM202やHDD204などのコンピュータ読み取り可能な記録媒体に格納される。
図4の機能構成は、実出力角演算部402、回転角度から共振による角度伝達誤差を算出する共振振幅演算部404、関節状態判定部406を含む。さらに、図4の機能構成は、関節の減速機11の診断を行うための振幅の基準値記憶部405と、出力側エンコーダ16が検出する出力側回転角度を記憶・蓄積する角度情報記憶部403と、検査用動作を記憶する検査用動作記憶部407を含む。
実出力角演算部402は出力側エンコーダ16から受けた出力側パルス信号(s401)をカウントして出力側回転角度(s402)を求め、サーボ制御装置303と角度情報記憶部403へ出力する。サーボ制御装置303は、検査用動作記憶部407に記憶された検査用動作情報s407に基づき、実出力角演算部402から出力された実出力角情報(s402)を参照しつつサーボモータ1の関節角度制御を行う。
検査用動作情報s407は、関節の診断時の検査用動作を定義する。式(1)、(2)によって示した特性が関節(111〜116)ごとに異なるため、検査用動作情報s407は、診断する関節(111〜116)ごとに異なった内容となる。特に、検査用動作情報s407は、共振振幅取得工程において、対象の関節の特定の姿勢における関節の固有振動数に対応し、関節の共振が最も強く発生する回転速度を含む速度範囲内で、関節を駆動する検査用動作を定義する。
また、後述の制御例(図5)に示されるように、検査用動作情報s407は、上記速度範囲内で、関節を回転速度を段階的に変化させてそれぞれ共振振幅を取得できるよう構成することができる。例えば、この複数速度において得られた共振振幅から最大の共振振幅を求める、例えば関節の特定の姿勢における関節の固有振動数に相当する共振周波数を中心とした周波数成分の振動の最大値を共振振幅として取得することができる。そして得られた最大値を共振振幅として基準値と比較し、その比較結果に基づき、関節の診断を行うことができる。
角度情報記憶部403は、実出力角演算部402から出力された実出力角度情報(s402)を蓄積する。基準値記憶部405は判定に必要な判定用基準値s405を記憶し、関節状態判定部406へ出力する。共振振幅演算部404は、角度情報記憶部403から蓄積された角度情報s403を読み出し、検査に必要な判定値A(s404)を算出し、関節状態判定部406へ出力する。関節状態判定部406は、基準値記憶部405から出力された判定用基準値s405と、共振振幅演算部404から算出された判定値A(s404)を比較し、ロボットの関節状態について判定を行う。
次に、図5を参照して上記構成において行われる関節(111〜116)の診断処理につき説明する。図5は、上記構成において制御装置200、特にCPU201の制御によって実行される本実施例の関節(111〜116)の診断処理(診断モード)の流れを示している。
本実施例では、上述のように対象の関節の特定の姿勢における当該関節の固有振動数に相当する共振周波数を中心とした周波数で生じる共振現象を利用して当該関節の状態を診断する。
図5の診断処理(診断モード)は、ロボットの定期検査時や、および意図しない干渉や衝突などの事象が発生した後に行うことができる。図5の診断処理(診断モード)を実行する契機としては、例えばティーチングペンダント300などのユーザインターフェイスを用いて操作者が診断モードを選択する操作が考えられる。
図5の診断処理(診断モード)は、関節(111〜116)のうち1軸ずつ実施する。操作者(ユーザ)によって診断処理(診断モード)が選択されると、図5のステップS501では検査を行う軸を決定する。図5の診断処理(診断モード)は、特定の軸(関節)から全軸(全関節)について実行するよう構成されているが、1軸のみについて実行したり、操作者(ユーザ)が指定した単数ないし複数の軸のみについて実行したりする制御を行ってもよい。通常は、全軸(全関節)について検査を実施するのが望ましい。検査する関節の順序はベース部103に近い軸から順でもよく、またユーザが任意の順番を指定してもよい。
次に、ステップS502では検査対象の軸の基準値s405と検査用動作情報s407を、基準値記憶部405と検査用動作記憶部407から読み込む。基準値記憶部405と検査用動作記憶部407は、例えばHDD204などにデータファイルなどの形式で配置しておくことができる。これらの判定用基準値s405と検査用動作情報s407は、診断する関節(111〜116)ごとに異なる。例えば、式(1)、(2)によって示した特性が関節(111〜116)ごとに異なるためである。従って、判定用基準値s405と検査用動作情報s407は、基準値記憶部405と検査用動作記憶部407に軸(慣性)別に用意され、検査を実行する段階で当該の関節に対応する情報を個別にRAM203などの作業領域に読み込む。もしくは、診断モードが選択された段階ですべての軸の基準値と検査用動作を一度にRAM203などの作業領域に読み込んでもよい。
ステップS503では、当該関節の検査用動作を行う。即ち、ステップS502で読み込まれた検査用動作情報s407に従いサーボ制御装置303が検査対象の軸を駆動する。この時、一定周期ごとに出力側エンコーダ16から取得されるパルス値(s401)を実出力角演算部402によってカウントし、実出力角情報に変換した値(s402)を角度情報記憶部403に記憶・蓄積していく。
ステップS503の検査用動作の処理は、図5の右列にステップS5031〜5040として詳細に示してある。ここで、ステップS503を構成するステップS5031〜5040につき詳細に説明する。
ステップS5031で検査用動作が開始されると、ステップS5032において、まず、ステップS502で読み込まれた検査用動作情報s407に基きサーボ制御装置303がロボットアーム101を開始姿勢へ移動させる。
次に、ステップS5033において、実出力角情報(s402)を記憶・蓄積させるべく角度情報記憶部403を有効にし、実出力角演算部402から出力される実出力角情報(s402)を記憶する記憶バッファを有効化する。
続いて、ステップS5034で、ステップS502で読み込まれた検査用動作情報s407に応じた特定の動作パターンでサーボ制御装置303が対象関節を駆動する。この間、ステップS5045にて出力側エンコーダから得られたパルス値(s401)は逐次実出力角演算部401にて実出力角情報(s402)へ変換(ステップS5035)され、角度情報記憶部403へ記憶・蓄積していく(ステップS5036)。
検査用動作が終了すると、ステップS5037において角度情報記憶部403の記憶バッファをクローズし、実出力角情報(s402)を保存する。
検査用動作情報s407は、上記のように、対象の関節の特定の姿勢における関節の固有振動数に対応し、関節の共振が最も強く発生する回転速度を含む速度範囲内で、関節を回転速度を段階的に変化させて駆動するよう構成される。
このため、ステップS5038では、検査用動作情報s407で定義された全ての検査速度で検査を行ったか否かを判定する。もし、ステップS5038で未実施の速度がある場合は、ステップS5039で速度を当該の未実施の速度に変更した後、ステップS5032へ戻り、上記の動作を繰り返す。一方、検査用動作情報s407で定義された全ての速度で検査が終了した場合はステップS5040で当該の関節の検査を終了し、ステップS504(図5左側)へ進む。なお、出力側エンコーダ16からパルス値(s401)を読み出す間隔はサーボ制御装置303の制御周期と一致した取得周期とすることが望ましい。これにより、ステップS504の演算負荷を減少させることができる。
ステップS504では、ステップS503で角度情報記憶部403に蓄積された実出力角情報(s402)を処理し、共振による角度の振動幅を判定値s404(A)として算出する。
ステップS505〜S507は、減速機11の状態を診断する診断工程に相当する。まず、ステップS505では、ステップS504にて算出された判定値A(s404)を、ステップS502で読み込んだ基準値Alim(s405)と比較する。ここで、判定値A(s404)が基準値lim(s405)を超えていれば検査軸の減速機11が損傷していると判定する。この判定結果に応じて、ステップS506、S507で「減速機損傷なし」または「減速機損傷あり」(警告メッセージ)の出力を行う。これらの診断メッセージの出力は、例えばモニタ311や、ティーチングペンダント300のディスプレイを用いて行う他、音声出力手段(不図示)を用いて音声出力などによって行うことにしてもよい。
ステップS505が終了すると、ステップS506で検査未実施の関節(軸)が残っているか確認する。検査未実施の関節(軸)が残っている場合はステップ201に戻り、上記と同様の処理を繰り返し、検査対象となっている全ての関節(軸)で検査を行う。
以上のように、図5のような診断処理(診断モード)を関節ごとに実施することができる。図5のような診断処理(診断モード)では、特定の検査対象の関節ごとに共振振幅取得工程を実施する。その際、用いられる検査用動作情報s407は、対象の関節の特定の姿勢における関節の固有振動数に対応し、関節の共振が最も強く発生する回転速度を含む速度範囲内で、関節を駆動する検査用動作を定義する。当該の関節の固有振動数は、式(1)によって予め計算することができ、また、式(2)によって当該関節の共振が最も強く発生する回転速度を含む速度範囲を予め決定することができる。
従って、図5のような診断処理(診断モード)を関節ごとに実施することにより、当該関節の共振振幅の判定値Aを求めることができる。この共振振幅の判定値Aは、例えば共振周波数を中心とした周波数成分の振動の最大値として算出することができる。そして、この判定値Aを、検査用動作情報s407と同様に関節ごとに設定された基準値Alim(s405)と比較することにより、当該関節の診断、例えば、損傷が生じているか(あるいは寿命が到来しているか)などの診断を行うことができる。診断結果は、表示メッセージ(あるいは音声メッセージ)を出力することなどによって、ユーザに通知することができる。これらのメッセージの出力は、例えばモニタ311や、ティーチングペンダント300のディスプレイによる表示出力、音声出力手段(不図示)などを用いた音声出力などによって行うことができる。
本実施例における診断処理(診断モード)の概略は図5に示した通りであるが、以下では上記の診断処理(診断モード)において実施すべきロボット制御の細部についてさらに論証する。
式(1)、(2)から明らかなように、検査時に生じさせるロボット関節部の共振の様相には、ロボットアームの姿勢と、関節の動作(駆動)速度という2つの要素が影響する。検査時のロボットアーム101の姿勢が異なれば、式(1)における負荷イナーシャの大きさが変化し、また、共振事象を介して診断を行おうとすれば、当然ながら関節の駆動速度は式(2)によって定義されるような速度(範囲)を選ぶ必要がある。
ここで、図6を参照して、図5のステップS503で実施する関節の共振を利用した検査用動作における好ましいロボットアーム101の姿勢につき考察する。図6は本実施例において、検査用動作を実施する時の予め定められた姿勢の一例を示している。
本実施例における検査用動作、検査用動作情報s407によって関節ごとに定義された検査用動作には、予め定められた所定の検査姿勢で、故意に共振を発生させる所定の動作を行う点に特徴がある。この検査用動作は1か所の関節に対し、1ないし複数の異なる動作を設定することができる。ここで、複数の異なる動作の場合は、例えば、同じ検査(初期)姿勢および動作態様を用いるが、当該関節の駆動速度のみ複数に異ならせて測定を行う検査用動作が考えられる。
このうち、所定の検査(初期)姿勢は任意であるが、理想的には、検査対象の関節に最大の慣性モーメントがかかる姿勢(最大モーメント姿勢)であることが望ましい。慣性モーメントの大きい姿勢であれば、共振周波数が低くなり、関節の共振現象をとらえやすくなる。
図6は、リンク122を駆動する関節112の最大モーメント姿勢の例を示す。図6の例では、ロボット装置100のアームが水平方向に最大限に腕を伸ばした姿勢(1点鎖線)において、関節112より先のフレームの重心が関節112からもっとも離れる。このため、この水平方向に最大限に腕を伸ばした姿勢(1点鎖線)において、関節112にかかる慣性モーメント(式(1)の負荷イナーシャJ)は最大となる。そして、水平方向に最大限に腕を伸ばした姿勢(1点鎖線)を検査初期姿勢とし、例えば矢印で示すようにリンク122以降が直立する姿勢となるまで、固有振動数に対応する共振周波数を中心とした速度範囲中の異なる速度で関節112を駆動する。このような検査用動作によれば、式(1)から、共振周波数fは低くなり、出力側エンコーダ16を介して共振事象を容易に捉えることができるようになる。同様にして、他の関節(11〜116)についても個別にあらかじめ最大モーメント姿勢を求め、検査(初期)姿勢と当該関節の駆動態様(検査用動作情報s407)を決定しておくことができる。
また、所定の検査用動作とは次の条件を満たしていることが望ましい。例えば、検査速度にて対象の関節が定速動作する区間があること、また、その区間は減速機入力側の回転に換算して1回転以上あることである。ここで検査速度とは、所定の姿勢において式(1)、(2)の条件を満たすモータ回転数Rに最も近い設定(制御)可能な関節駆動速度とする。また、モータ回転速度(R)を中心とした速度範囲Wにおいて、複数の異なる速度も含めて測定を行うことが望ましい。
なぜならば、姿勢のわずかな違い(制御誤差)や経年変化、その他さまざまな要因から、実際に発生する共振周波数は予め式(1)で算出したものと若干ずれを生じる場合があるためである。この時の速度ステップは任意であるが、制御装置200で設定可能な最小幅とすることが望ましい。このように、当該関節について、予め計算した固有振動数に相当する共振周波数に相当する駆動速度を含む速度範囲Wで異る検査速度を用いて測定を行うことにより、制御誤差や経年変化があっても共振事象を介して関節の状態を確実に診断できる。
図7(a)、(b)は、複数の検査速度の取り方の一例を示している。図7(a)の例では、検査速度(関節駆動速度)は、予め計算した固有振動数に相当する共振周波数に相当する駆動速度(モータ回転速度(R))を含む速度範囲Wを均等に約10前後(または他の分割数)で割った速度ポイント(黒丸)から構成されている。701の波形は各検査速度で得られた共振振幅(上記の判定値A)、702は共振振幅(判定値A)と比較される基準値Alim(上記のs405)である。
また、図7(b)のように、より共振振幅の検出精度を高めるため、駆動速度設定は予め計算した固有振動数に相当する共振周波数に相当する駆動速度(モータ回転速度(R))の近傍で細かいステップで変化させてもよい。図7(b)では共振周波数に相当する駆動速度(モータ回転速度(R))を含むある速度範囲Wにおいて、当該の共振周波数に相当する駆動速度(モータ回転速度(R))の近傍では検査速度(関節駆動速度)を変化させるステップ幅を周辺よりも小さく取っている。また、このようにモータ回転速度(回転数R)から離れた速度で速度ステップを粗くすることは、検査の迅速化のために役立つ。なお、図7(b)において703の波形は各検査速度で得られた共振振幅(上記の判定値A)、704は共振振幅(判定値A)と比較される基準値Alim(上記のs405)である。
図6に例示した検査姿勢や、図7(a)、(b)に示すような検査シーケンス(検査用動作)は、検査用動作情報s407によって記述することができ、検査用動作記憶部407に記憶させておく。
次に、図8により、図5のステップS504において角度情報記憶部403に蓄積された実出力角情報(s402)から共振による角度伝達誤差分を算出する処理の構成例につき詳細に説明する。図8は図5の左列のステップS504以降の具体的な処理例を示したもので、ステップS504はステップS5041〜S5046により構成されている。
まず、ステップS5041において、基準値記憶部405から基準値Alim(s405)を読み出した後、ステップS5042〜S5046のループによって検査データを1つずつ処理する。
ステップS5042では、角度情報記憶部403に蓄積された実出力角情報(s402)から、データを1つ読み出す。続いて、ステップS5043、S5044では、読み出した実出力角度情報(s402)から不要な成分を除外する。
即ち、実出力角度情報(s402)には、検査用動作そのものの動きに共振による振動成分が重畳されているため、そこから共振成分のみを取り出す必要がある。
まず、ステップS5043では、実出力角情報(s402)として記録された関節の出力側回転角度から、検査用動作そのものの動作を除外する。このためには、例えば出力側回転角度から検査動作の位置指令値を減じる手法を用いることができる。また、関節に入力側エンコーダ10(図2)が設けられている場合には、入力側エンコーダ10の出力値を出力側エンコーダ16から得た角度情報とともに同期的に実出力角情報(s402)として記録しておく。そして、同期的に記録した出力側エンコーダ16の角度情報から入力側エンコーダ10の出力値を減算する処理を行ってもよい。なお、この減算処理では、当然ながら減速比Nで換算した値同士を減算するのはいうまでもない。
図10(a)、(b)は関節の出力側回転角度から、検査用動作そのものの動作を除外する処理を示している。図10(a)において、実線(1001)は実出力角情報(s402)として記録された関節の出力側回転角度(パルス数単位)を示している。この関節の出力側回転角度(1001)は、検査用動作情報s407で指令された破線(1002)の指令軌道によって実施された検査用動作で蓄積された実軌道(実出力角情報s402)に相当する。この実軌道(1001:出力側回転角度)から指令軌道(1002)を減じることにより、検査用動作そのものの動作に係わる情報が除去され、図10(b)の偏差(1003)が得られる。なお、関節の出力側回転角度から、検査用動作そのものの動作を除外するには、出力側エンコーダ16から得られた回転角度を二階微分して加速度情報に変換する手法を用いてもよい。
さらに、ステップS5044では、検査動作で想定される共振周波数f[Hz]の成分以上の周波数成分を除去する。これは、共振以外のノイズを取り除くための処理である。具体的には、数学的フィルタ(バタワースフィルタなど)を用いてノイズ除去を行う方法がある。このとき、ノイズの大きさに応じて共振周波数f[Hz]の成分が減衰または増幅しない程度でカットオフ周波数およびフィルタ次数を選択する必要がある。たとえば、最大平坦特性を持つバタワースフィルタを用い、2f[Hz]程度をカットオフ周波数として設定すると、共振周波数f[Hz]近傍への影響を最小限にすることができる。また、実出力角情報(s402)として記録された出力側回転角度に対して移動平均処理を実施してもよい。この場合も同様に周波数f[Hz]の成分が減衰・増幅しない程度に平均区間を選択する必要がある。
ステップS5045では、ステップS5043およびS5044の演算結果の波形から1周期分のピークトゥピーク(p−p)の最大値を求め、共振振幅の判定値Aとして算出する。
図9(a)、(b)は、ステップS5045における共振振幅の判定値Aの算出例を示している。この種の関節に用いられる減速機11の場合、ステップS5044の後、得られた共振振幅の波形では、図9(b)のように波形の立上り区間と立下り区間でピーク値が非対象に現れる。このため、共振振幅の波形の1周期に着目し、当該の1周期のp−pとは、図9(a)のように波形の立上り区間のp−pと、立下り区間のp−pのうち大きい方を選び(最大値演算)、その値を判定値Aとして抽出する。
そして、上記のステップS5042〜S5046のループにおいて、全ての周期において立上りp−pおよび立下りp−pの各振幅を求め、そのうちの最大値を当該関節の共振振幅の判定値Aとして算出する。
図8のステップS505以降の処理は、図5で説明したものと同じであり、上記のようにして算出した共振振幅の判定値Aと、基準値Alim(s405)と、を比較してその結果に応じて通知ないし警告メッセージを出力するものである。
この判定(S505)で用いる基準値Alim(s405)としては、出力側エンコーダ16で検出する値は角度情報であるから、例えばこの基準値(許容値)としては許容される角度誤差を用いることが考えられる。具体的には、基準値として減速機11の角度伝達誤差の仕様値を用いることが考えられる。このような角度伝達誤差の仕様値は、減速機11のカタログ仕様などとして公表されている値が利用できる場合がある。その場合にはカタログ公開値などを利用する、あるいは適当なマージンを加減算して、実際にその関節で用いる基準値Alim(s405)を決定することができる。
なお、減速機11は関節ごとに異なる品種を用いる場合があるから、この基準値Alim(s405)もまた関節ごとに用意する必要がある。上記の図8のステップS5041では、当然ながら検査対象の関節について用意された基準値Alim(s405)を基準値記憶部405から読出すことになる。また、基準値Alim(s405)としては、上記の角度伝達誤差の仕様値の他、要求されるロボットアーム101の手先の位置精度から対象の関節に要求される位置偏差を算出し、その位置偏差を基準値として用いてもよい。
以上のようにして、本実施例によれば、変速(減速)機の出力側の回転軸の回転角度を測定する出力側角度センサを介して測定した関節の共振振幅に応じて、ロボット装置の関節に配置された変速機の状態を精度よく迅速に判定することができる。このためロボット装置の部品交換判定などを迅速に行うことができ、ロボット装置の関節(変速機)を適切な状態に維持することができる、という優れた効果がある。
以上では、今回の診断処理(診断モード)で測定した共振振幅を基準値と比較することにより変速(減速)機の状態を診断処理(診断モード)ごとに診断する構成を示した。しかしながら、過去の診断処理で取得した共振振幅と現在(今回)の診断処理で取得した共振振幅との変化の様子(例えば変化率)を用いて変速(減速)機の状態を診断することも考えられる。このためには、例えば診断処理(診断モード)で測定した共振振幅をHDD204などに配置したデータベースに蓄積していく構成とする。そして、今回の診断処理(診断モード)で取得した関節の共振振幅と、過去の診断処理で取得した共振振幅から共振振幅の変化率を算出し、算出した変化率に基づき変速機の状態を診断する。例えば、変化率のしきい値を予め定めておき、このしきい値を超えるような(例えば急峻な)共振振幅の変化率が検出された場合に、変速機が損傷している、あるいは寿命が到来し交換が必要である、といった診断を行うことができる。
上記実施例に示したロボット装置の診断方法は、例えば各種の物品(工業製品)の製造に用いられる各種のロボットシステム(ロボット装置)に適用することができる。ロボットシステム(ロボット装置)の構成、例えばロボットアームの構成などは任意であり、2以上のリンクを結合する関節を有するロボットシステム(ロボット装置)であれば本発明の診断方法を実施することができる。本発明による診断方法を用いてロボットシステムの関節の診断を行えば、確実に関節の変速機の状態(故障や損傷の有無)を診断、確認することができ、関節(変速機)を適切な状態に維持することができる。このため、当該のロボットシステムを用いて、精度よく、また歩留まりよく対象の物品を製造することができる。
また、上記実施例に示したロボット装置の診断方法は、より一般的には、回転駆動源(モータ)と変速機から成る回転駆動装置の診断方法と考えることもできる。その場合、上記実施例に例示した本発明の回転駆動装置の診断方法は、各種の回転駆動源(モータ)と変速機から成る回転駆動装置の診断方法として、種々の機械装置で実施することができる。
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステムまたは装置に供給しそのシステムまたは装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
1…サーボモータ(モータ)、2…回転軸、11…減速機(変速機)、16…出力側エンコーダ(出力側角度検出手段)、100…ロボット装置、111〜116…関節、200…制御装置、201…CPU(演算部)、204…HDD(記憶部)、300…ティーチングペンダント、402…実出力角演算部、403…角度情報記憶部、404…共振振幅演算部、405…基準値記憶部、406…関節状態判定部、407…検査用動作記憶部。

Claims (18)

  1. 回転駆動源と、前記回転駆動源の駆動を変速する変速機と、前記変速機の出力軸の回転角度を検出する第1の角度センサと、を備えた関節を有するロボット装置の制御方法において、
    制御装置が、前記回転駆動源を駆動させて、前記変速機を介して前記関節を所定の回転速度で駆動し、前記第1の角度センサから得られる回転角度から前記関節の固有振動の振幅を取得する振幅取得工程と、
    前記制御装置が、前記振幅取得工程で得た前記関節の振幅に応じて前記変速機の状態を検出する検出工程と、
    を備えたことを特徴とする制御方法。
  2. 請求項1に記載の制御方法において、前記振幅取得工程において、前記制御装置が、前記関節の前記固有振動が最も強く発生する回転速度を含む速度範囲内で、前記関節が回転するよう前記回転駆動源を駆動させ、前記速度範囲内の回転速度で前記ロボット装置を第1の姿勢から第2の姿勢に変化させることを特徴とする制御方法。
  3. 請求項2に記載の制御方法において、前記振幅取得工程において、前記制御装置が、前記速度範囲内で前記関節の回転速度を段階的に変化させ、複数の回転速度で、前記ロボット装置を前記第1の姿勢から前記第2の姿勢に変化させて得た複数の前記固有振動の振幅から、最大の振幅を取得することを特徴とする制御方法。
  4. 請求項2または3に記載の制御方法において、前記振幅取得工程において、前記制御装置が、前記ロボット装置を前記第1の姿勢から前記第2の姿勢に変化させる際における前記関節の前記固有振動の最大の振動幅を振幅として取得することを特徴とする制御方法。
  5. 請求項1から4のいずれか1項に記載の制御方法において、前記回転駆動源の回転軸の回転角度を検出する第2の角度センサが設けられ、前記振幅取得工程において、前記制御装置が、前記第1の角度センサおよび前記第2の角度センサの出力する角度情報の差分に基づき、前記固有振動の振幅を取得することを特徴とする制御方法。
  6. 請求項に記載の制御方法において、前記検出工程において、前記制御装置が、前記振幅取得工程で得た、前記関節における複数の前記固有振動の振幅の内の最大の振幅と、予め定めた基準値を比較し、その比較結果に基づき前記変速機の状態を検出することを特徴とする制御方法。
  7. 請求項から6のいずれか1項に記載の制御方法において、前記検出工程において、前記制御装置が、前記検出工程で予め定めた基準値と比較した前記関節における前記固有振動の振幅と、過去の前記検出工程で前記基準値と比較した過去の前記関節における前記固有振動の振幅から、前記関節における前記固有振動の振幅の変化率を算出し、算出した変化率に基づき前記変速機の状態を検出することを特徴とする制御方法。
  8. 請求項6に記載の制御方法において、前記検出工程において、前記制御装置が、前記振幅取得工程で得た、前記関節における複数の前記固有振動の振幅の内の最大の振幅と、予め定めた前記基準値を比較し、前記最大の振幅の方が、前記基準値よりも大きい場合、前記変速機に損傷が生じている状態として、検出することを特徴とする制御方法。
  9. 請求項6に記載の制御方法において、前記検出工程において、前記制御装置が、前記振幅取得工程で得た、前記関節における複数の前記固有振動の振幅の内の最大の振幅と、予め定めた前記基準値を比較し、前記最大の振幅の方が、前記基準値よりも大きい場合、前記変速機は、寿命が到来している状態として、検出することを特徴とする制御方法。
  10. 請求項7に記載の制御方法において、前記検出工程において、前記制御装置が、前記検出工程で前記基準値と比較した、前記関節における前記固有振動の振幅と、過去の前記検出工程で前記基準値と比較した過去の前記関節における前記固有振動の振幅から、前記関節における前記固有振動の振幅の変化率を算出し、算出した変化率が、所定の閾値よりも大きい場合、前記変速機に損傷が生じている状態として、検出することを特徴とする制御方法。
  11. 請求項7に記載の制御方法において、前記検出工程において、前記制御装置が、前記検出工程で前記基準値と比較した、前記関節における前記固有振動の振幅と、過去の前記検出工程で前記基準値と比較した過去の前記関節における前記固有振動の振幅から、前記関節における前記固有振動の振幅の変化率を算出し、算出した変化率が、所定の閾値よりも大きい場合、前記変速機は、寿命が到来している状態として、検出することを特徴とする制御方法。
  12. 請求項1から請求項11のいずれか1項に記載の制御方法において、
    前記制御装置が、
    前記検出工程で検出した、前記変速機の状態をユーザに通知する通知工程と、を備えていることを特徴とする制御方法。
  13. 請求項1から12のいずれか1項に記載の制御方法を前記制御装置に実行させるための制御プログラム。
  14. 請求項13に記載の制御プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体。
  15. 請求項1から12のいずれか1項に記載の制御方法を実行する前記制御装置、および前記ロボット装置を備えたことを特徴とするロボットシステム。
  16. 請求項15に記載のロボットシステムを用いて物品を製造することを特徴とする物品の製造方法。
  17. 回転駆動源と、前記回転駆動源の駆動を変速する変速機と、前記変速機の出力軸の回転角度を検出する第1の角度センサと、を有する回転駆動装置の制御方法において、
    制御装置が、前記回転駆動源を駆動させて、前記変速機の前記出力軸を所定の回転速度で駆動し、前記第1の角度センサから得られる回転角度から前記回転駆動装置の固有振動の振幅を取得する振幅取得工程と、
    前記制御装置が、前記振幅取得工程で得た振幅に応じて前記回転駆動装置の状態を検出する検出工程と、
    を備えたことを特徴とする回転駆動装置の制御方法。
  18. 回転駆動源と、前記回転駆動源の駆動を変速する変速機と、前記変速機の出力軸の回転角度を検出する第1の角度センサと、を備えた関節を有したロボット装置において、
    制御装置が、前記回転駆動源を駆動させて、前記変速機を介して前記関節を所定の回転速度で駆動し、前記第1の角度センサから得られる回転角度から前記関節の固有振動の振幅を取得し、
    前記制御装置が、取得した前記関節の前記振幅に応じて前記変速機の状態を検出する、ことを特徴とするロボット装置。
JP2015186265A 2015-09-24 2015-09-24 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置 Active JP6652292B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015186265A JP6652292B2 (ja) 2015-09-24 2015-09-24 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置
US15/265,534 US10471593B2 (en) 2015-09-24 2016-09-14 Rotation driving apparatus, robot apparatus, control program, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186265A JP6652292B2 (ja) 2015-09-24 2015-09-24 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020008222A Division JP6840875B2 (ja) 2020-01-22 2020-01-22 制御方法、制御プログラム、記録媒体、ロボットシステム、物品の製造方法、回転駆動装置の制御方法

Publications (3)

Publication Number Publication Date
JP2017061001A JP2017061001A (ja) 2017-03-30
JP2017061001A5 JP2017061001A5 (ja) 2018-11-01
JP6652292B2 true JP6652292B2 (ja) 2020-02-19

Family

ID=58408877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186265A Active JP6652292B2 (ja) 2015-09-24 2015-09-24 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置

Country Status (2)

Country Link
US (1) US10471593B2 (ja)
JP (1) JP6652292B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059122A (ja) * 2020-01-22 2020-04-16 キヤノン株式会社 制御方法、制御プログラム、記録媒体、ロボットシステム、物品の製造方法、回転駆動装置の制御方法、およびロボット装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10751874B2 (en) * 2015-10-14 2020-08-25 Kawasaki Jukogyo Kabushiki Kaisha Method of teaching robot and robotic arm control device
FR3054158B1 (fr) * 2016-07-21 2019-06-28 Comau France Machine-outil d’usinage
DE102017104335A1 (de) * 2017-03-02 2018-09-06 Physik Instrumente (Pi) Gmbh & Co. Kg Vorrichtung zur Bewegungsanalyse und Antriebsvorrichtung
JP6952107B2 (ja) * 2017-03-29 2021-10-20 住友重機械工業株式会社 親機械支援システム、親機械およびサーバ
JP6450806B2 (ja) 2017-06-12 2019-01-09 ファナック株式会社 ロボット機構内のケーブル損傷発見支援装置及びケーブル損傷発見支援方法
JP6915395B2 (ja) * 2017-06-16 2021-08-04 セイコーエプソン株式会社 制御装置、ロボットシステム、テーブル作成方法およびロボット制御方法
JP6649345B2 (ja) 2017-11-10 2020-02-19 ファナック株式会社 ロボット
JP6882719B2 (ja) * 2018-03-07 2021-06-02 オムロン株式会社 ロボット制御装置、異常診断方法、及び異常診断プログラム
JP6858353B2 (ja) * 2018-03-08 2021-04-14 オムロン株式会社 ロボット制御装置、異常診断方法、及び異常診断プログラム
JP6836544B2 (ja) * 2018-05-09 2021-03-03 ファナック株式会社 制御システムおよび被駆動体の制御方法
JP7056733B2 (ja) * 2018-05-11 2022-04-19 日産自動車株式会社 異常検出装置及び異常検出方法
JP7149792B2 (ja) * 2018-09-25 2022-10-07 東京エレクトロン株式会社 搬送装置、半導体製造装置及び搬送方法
JP7267725B2 (ja) * 2018-12-18 2023-05-02 キヤノン株式会社 ロボットの制御方法、プログラム、記録媒体、ロボットシステム、物品の製造方法
JP7278803B2 (ja) * 2019-03-01 2023-05-22 キヤノン株式会社 情報処理方法、情報処理装置、ロボットシステム、ロボットシステムの制御方法、ロボットシステムを用いた物品の製造方法、プログラム及び記録媒体
US11897146B2 (en) * 2018-12-18 2024-02-13 Canon Kabushiki Kaisha Examination method for examining robot apparatus, control apparatus, and storage medium
US11480229B2 (en) * 2019-05-15 2022-10-25 Seoul National University R&Db Foundation Vibration suppression system and method of reducing vibration on flexible bar structure in vibration suppression system
JP7351656B2 (ja) 2019-06-28 2023-09-27 川崎重工業株式会社 減速機の故障診断装置及び故障診断方法
CN110550455A (zh) * 2019-09-16 2019-12-10 杨国燕 一种生产中空玻璃用的夹持机构
CN111152260A (zh) * 2020-01-20 2020-05-15 山东大学 一种串联旋转关节机械臂的关节转角辅助测量系统及方法
US11695354B2 (en) * 2020-05-25 2023-07-04 Canon Kabashiki Kaisha Motor control apparatus, optical apparatus, and robot manipulator apparatus
US11554490B2 (en) 2020-12-09 2023-01-17 Robert Bosch Gmbh Monitoring real-time data of a robotic manipulator

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155423A (en) * 1986-02-18 1992-10-13 Robotics Research Corporation Industrial robot with servo
US4977971A (en) * 1989-05-17 1990-12-18 University Of Florida Hybrid robotic vehicle
JP2770982B2 (ja) * 1989-05-25 1998-07-02 株式会社豊田中央研究所 マニピユレータの位置と力の協調制御装置
DE69216167T2 (de) * 1991-07-06 1997-07-10 Daihen Corp Gerät zur Steuerung eines Industrieroboters zur Durchführung koordinierter Arbeitsvorgänge unter Verwendung eines Playbackteachingverfahrens und dies-bezügliches Verfahren
US5737500A (en) * 1992-03-11 1998-04-07 California Institute Of Technology Mobile dexterous siren degree of freedom robot arm with real-time control system
US6366830B2 (en) * 1995-07-10 2002-04-02 Newport Corporation Self-teaching robot arm position method to compensate for support structure component alignment offset
US5784542A (en) * 1995-09-07 1998-07-21 California Institute Of Technology Decoupled six degree-of-freedom teleoperated robot system
US6364888B1 (en) * 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US7789875B2 (en) * 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US6459926B1 (en) * 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6424885B1 (en) * 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US6594552B1 (en) * 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6519860B1 (en) * 2000-10-19 2003-02-18 Sandia Corporation Position feedback control system
JP3926119B2 (ja) * 2001-08-10 2007-06-06 株式会社東芝 医療用マニピュレータ
US6587750B2 (en) * 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
US7386365B2 (en) * 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
JP2004264060A (ja) * 2003-02-14 2004-09-24 Akebono Brake Ind Co Ltd 姿勢の検出装置における誤差補正方法及びそれを利用した動作計測装置
JP3752494B2 (ja) * 2003-03-31 2006-03-08 株式会社東芝 マスタスレーブマニピュレータ、その制御装置及び制御方法
WO2004096502A1 (en) * 2003-04-28 2004-11-11 Stephen James Crampton Cmm arm with exoskeleton
JP2005073476A (ja) * 2003-08-28 2005-03-17 Yaskawa Electric Corp 機械の特性抽出方法
JP2006281421A (ja) 2005-04-05 2006-10-19 Yaskawa Electric Corp ロボットおよびロボットの異常検出方法
JP2007015037A (ja) * 2005-07-05 2007-01-25 Sony Corp ロボットのモーション編集装置及びモーション編集方法、コンピュータ・プログラム、並びにロボット装置
GB0516276D0 (en) * 2005-08-08 2005-09-14 Crampton Stephen Robust cmm arm with exoskeleton
CN101449229B (zh) * 2006-05-19 2011-10-12 马科外科公司 用于控制触觉装置的方法和设备
DE602007010210D1 (de) * 2006-07-25 2010-12-16 Nsk Ltd Elektrische Servolenkung
JP4801534B2 (ja) * 2006-08-30 2011-10-26 本田技研工業株式会社 ロボット関節機構
JP5557529B2 (ja) * 2006-09-19 2014-07-23 マイオモ インコーポレイテッド 動力で作動する矯正デバイス
US20080109115A1 (en) * 2006-11-03 2008-05-08 Michael Zin Min Lim Dynamic force controller for multilegged robot
DE102007006394B4 (de) * 2006-11-07 2008-08-07 Schleifring Und Apparatebau Gmbh Induktiver Drehübertrager
JP5283401B2 (ja) * 2007-03-22 2013-09-04 国立大学法人 筑波大学 リハビリテーション支援装置
US9050120B2 (en) * 2007-09-30 2015-06-09 Intuitive Surgical Operations, Inc. Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US9895798B2 (en) * 2007-10-19 2018-02-20 Force Dimension Device for movement between an input member and an output member
JP2009249166A (ja) * 2008-04-10 2009-10-29 Seiko Epson Corp パルス信号生成装置、搬送装置、画像形成装置及びパルス生成方法
JP5128375B2 (ja) * 2008-06-12 2013-01-23 本田技研工業株式会社 歩行補助装置の制御装置
JP5475262B2 (ja) * 2008-10-01 2014-04-16 テルモ株式会社 医療用マニピュレータ
US8473103B2 (en) * 2009-01-27 2013-06-25 Fanuc Robotics America, Inc. Secondary position feedback control of a robot
JP2010228028A (ja) 2009-03-26 2010-10-14 Nec Corp ロボットアーム、ロボットアームの接触検知方法、及び、ロボットアームを備えた装置
JP4779032B2 (ja) * 2009-03-30 2011-09-21 ジヤトコ株式会社 歯車の打痕検知装置及び歯車の打痕検知方法
US8244402B2 (en) * 2009-09-22 2012-08-14 GM Global Technology Operations LLC Visual perception system and method for a humanoid robot
US8521331B2 (en) * 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
US8535224B2 (en) * 2010-02-18 2013-09-17 MaryRose Cusimano Reaston Electro diagnostic functional assessment unit (EFA-2)
US20120061155A1 (en) * 2010-04-09 2012-03-15 Willow Garage, Inc. Humanoid robotics system and methods
US9119655B2 (en) * 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
JP5899660B2 (ja) * 2011-06-03 2016-04-06 ソニー株式会社 アクチュエーター装置、多軸駆動装置、並びにロボット装置
JP5895628B2 (ja) * 2012-03-15 2016-03-30 株式会社ジェイテクト ロボットの制御方法及びロボット制御装置、並びにロボット制御システム
WO2014036138A1 (en) * 2012-08-28 2014-03-06 Rethink Robotics, Inc. Monitoring robot sensor consistency
JP6053424B2 (ja) * 2012-09-25 2016-12-27 キヤノン株式会社 ロボット装置、ロボット制御方法、プログラム及び記録媒体
JP6164948B2 (ja) * 2013-06-20 2017-07-19 キヤノン株式会社 ロボット装置及び部品の製造方法
JP6248544B2 (ja) * 2013-10-30 2017-12-20 セイコーエプソン株式会社 ロボット、制御装置、ロボットシステム
CN104669244A (zh) * 2013-12-02 2015-06-03 精工爱普生株式会社 机器人
US9505133B2 (en) * 2013-12-13 2016-11-29 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program and recording medium
US9718187B2 (en) * 2014-06-11 2017-08-01 Canon Kabushiki Kaisha Robot controlling method, robot apparatus, program, recording medium, and method for manufacturing assembly component
US9815202B2 (en) * 2014-07-09 2017-11-14 Canon Kabushiki Kaisha Control method for robot apparatus, computer readable recording medium, and robot apparatus
JP6881886B2 (ja) * 2015-07-14 2021-06-02 キヤノン株式会社 制御方法、ロボット装置、および駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059122A (ja) * 2020-01-22 2020-04-16 キヤノン株式会社 制御方法、制御プログラム、記録媒体、ロボットシステム、物品の製造方法、回転駆動装置の制御方法、およびロボット装置

Also Published As

Publication number Publication date
US10471593B2 (en) 2019-11-12
JP2017061001A (ja) 2017-03-30
US20170087719A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6652292B2 (ja) 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置
JP6164948B2 (ja) ロボット装置及び部品の製造方法
US10486309B2 (en) Robot controlling method, robot apparatus, program, recording medium, and method for manufacturing assembly component
JP6881886B2 (ja) 制御方法、ロボット装置、および駆動装置
JP6512790B2 (ja) ロボット制御方法、ロボット装置、プログラム、記録媒体及び物品の製造方法
JP5365595B2 (ja) 減速機の異常判定方法、異常判定装置、ロボット及びロボットシステム
US20150328774A1 (en) Robot system controlling method, program, recording medium, robot system, and diagnosis apparatus
US9146175B2 (en) Method and a device for detecting abnormal changes in play in a transmission unit of a movable mechanical unit
JP2021160031A (ja) 故障予測方法および故障予測装置
JP2019141967A (ja) 振動解析装置および振動解析方法
JP2015093360A (ja) 駆動装置、ロボット装置、駆動装置の制御方法、プログラム及び記録媒体
JP7267725B2 (ja) ロボットの制御方法、プログラム、記録媒体、ロボットシステム、物品の製造方法
JP7358049B2 (ja) 制御方法、プログラム、記録媒体、ロボットシステム、および物品の製造方法
JP6840875B2 (ja) 制御方法、制御プログラム、記録媒体、ロボットシステム、物品の製造方法、回転駆動装置の制御方法
US11826909B2 (en) Driving mechanism, robot apparatus, method for controlling driving mechanism, method of manufacturing an article using robot arm, and storage medium
JP7278803B2 (ja) 情報処理方法、情報処理装置、ロボットシステム、ロボットシステムの制御方法、ロボットシステムを用いた物品の製造方法、プログラム及び記録媒体
CN111331594B (zh) 用于检查机器人装置的检查方法、控制装置和存储介质
US20240139953A1 (en) Examination method for examining robot apparatus, control apparatus, and storage medium
US20240139948A1 (en) Robot, robot control method, article manufacturing method using robot, and control program and storage medium
WO2022102585A1 (ja) 電動機が出力する回転力を伝達する動力伝達機構の異常を検出する異常検出装置
JP2018099736A (ja) 故障診断装置及び故障診断方法
JP2019217592A (ja) ロボット装置及びその制御方法、プログラム、記録媒体、物品の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R151 Written notification of patent or utility model registration

Ref document number: 6652292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151