JP6650582B2 - 水素生成システム及びその運転方法 - Google Patents

水素生成システム及びその運転方法 Download PDF

Info

Publication number
JP6650582B2
JP6650582B2 JP2017007184A JP2017007184A JP6650582B2 JP 6650582 B2 JP6650582 B2 JP 6650582B2 JP 2017007184 A JP2017007184 A JP 2017007184A JP 2017007184 A JP2017007184 A JP 2017007184A JP 6650582 B2 JP6650582 B2 JP 6650582B2
Authority
JP
Japan
Prior art keywords
hydrogen
reformer
water
supply
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017007184A
Other languages
English (en)
Other versions
JP2018115089A (ja
Inventor
田口 清
清 田口
繁 飯山
繁 飯山
麻生 智倫
智倫 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017007184A priority Critical patent/JP6650582B2/ja
Publication of JP2018115089A publication Critical patent/JP2018115089A/ja
Application granted granted Critical
Publication of JP6650582B2 publication Critical patent/JP6650582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、炭化水素系の原料を改質して水素含有ガスを生成する水素生成装置を複数台連携させた水素生成システムおよびその運転方法に関する。
燃料電池の発電時の燃料として用いる水素含有ガスは、未だ、一般的なインフラガスとして整備されていない。このため、現在の燃料電池システムは、改質器を有する水素生成装置や、水素生成装置を複数台連携させた水素生成システムを備える。改質器は、一般的なインフラである都市ガス、液化石油ガス、あるいは天然ガス等の炭化水素から、水素含有ガスを、改質反応により生成する。
改質反応として、一般的に用いられている水蒸気改質反応では、原料となる炭化水素と水蒸気とをNi系、Ru系またはRh系等の改質触媒を用いて、600〜700℃程度の高温で反応させることにより、水素を主成分とした水素含有ガスを生成する。
また、改質器を水蒸気改質反応に必要な温度にするため、燃焼器で改質器を加熱する。燃焼器は、改質器から排出され燃料電池で利用されなかった可燃ガスを含むオフガスや、炭化水素を燃料として供給して燃焼させる。
従来、この種の水素生成システムは、原料と水から水素含有ガスを生成する改質器を備えた複数台の水素生成装置において、生成された水素含有ガスを合流して水素利用機器である燃料電池に供給する構成が示されている。この構成の水素生成システムでは、複数台の水素生成装置のうちの一部のものを起動停止させることで、水素含有ガスの生成量を増減することが出来る(例えば、特許文献1参照)。
特開2013−105706号公報
しかしながら、前記従来の構成の水素生成システムでは、一部の水素生成装置から水素利用機器に水素含有ガスを供給する運転中に、他の水素生成装置を起動する場合には、起動中の水素生成装置から運転中よりも原料ガスや水蒸気の比率が高く水素濃度が低いガスが排出される。
具体的には、改質器への水供給開始前の改質器内には、水素含有ガスを供給する運転中よりも水素濃度が低いガスが存在し、水供給後に発生した水蒸気によって改質器内のガスは、改質器の下流側の流路に押し出される。
そして、改質器から押し出された水素濃度が低いガスは、水素利用機器に供給されている水素含有ガスと合流して、水素利用機器に供給される。また、改質器への水供給開始時は水が不安定に蒸発する場合もあり、改質器から押し出されるガスの流量が一時的に変動する場合もある。
このような理由から、一部の水素生成装置から水素利用機器に水素含有ガスを供給する運転中に、他の水素生成装置を起動する場合には、水素利用機器に供給される水素含有ガ
スの組成や流量が変動して、水素利用機器に供給される水素量が低下し、水素利用機器が安定に運転できない場合があるという課題を有していた。
本発明は、前記従来の課題を解決するもので、水素利用機器に供給される水素含有ガスの組成や流量の変動を抑制した水素生成システムおよびその運転方法を提供することを目的とする。
従来の課題を解決するために、本発明の水素生成システムは、原料と水から水素含有ガスを生成する改質器と、改質器を加熱する燃焼器と、改質器に原料を供給する原料供給器と、改質器に水を供給する水供給器と、燃焼器に酸素含有ガスを供給する酸素含有ガス供給器とを備えた、複数台の水素生成装置と、複数台の水素生成装置のそれぞれの改質器で生成された水素含有ガスを合流して水素利用機器に供給するように、複数の改質器および水素利用機器を接続する水素含有ガス供給流路と、複数台の水素生成装置を制御する制御器と、を備え、制御器は、複数台の水素生成装置を起動させる時に、原料が供給されている改質器への水の供給の開始タイミングが互いにずれるよう水素生成装置が起動動作中の複数台の水供給器を制御するものである。
これによって、改質器への水の供給の開始タイミングが互いにずれているので、改質器への水供給開始時に発生した水蒸気は、改質器内のガスを複数台同時ではなく1台ずつタイミングをずらして押し出す。複数台の改質器内からのガスは、タイミングをずらして1台分ずつ押し出されるため、水素利用機器に供給される水素含有ガスの組成と流量の変動を、複数台同時に水供給開始する場合よりも抑制することができる。
本発明によれば、改質器への水供給開始時に発生した水蒸気が改質器内のガスを一度に押し出す量が減るため、水素利用機器に供給される水素含有ガスの組成や流量の変動を抑制することができ、水素利用機器を安定に運転することができる水素生成システムを構成することが可能となる。
本発明の実施の形態1における水素生成システムの構成を示すブロック図 本発明の実施の形態1における水素生成システムの動作の前段部分を示すフローチャート 本発明の実施の形態1における水素生成システムの動作の後段部分を示すフローチャート 本発明の実施の形態2における水素生成システムの構成を示すブロック図 本発明の実施の形態2における水素生成システムの動作を示すフローチャート
第1の発明は、原料と水から水素含有ガスを生成する改質器と、改質器を加熱する燃焼器と、改質器に原料を供給する原料供給器と、改質器に水を供給する水供給器と、燃焼器に酸素含有ガスを供給する酸素含有ガス供給器とを備えた、複数台の水素生成装置と、複数台の水素生成装置のそれぞれの改質器で生成された水素含有ガスを合流して水素利用機器に供給するように、複数の改質器および水素利用機器を接続する水素含有ガス供給流路と、複数台の水素生成装置を制御する制御器と、を備えた、水素生成システムであって、制御器は、複数台の水素生成装置を起動させる時に、原料が供給されている改質器への水の供給の開始タイミングが互いにずれるよう水素生成装置が起動動作中の複数台の水供給器を制御するものである。
これによって、改質器への水の供給の開始タイミングが互いにずれているので、改質器への水供給開始時に発生した水蒸気は、改質器内のガスを複数台同時ではなく1台ずつタイミングをずらして押し出す。複数台の改質器内からのガスは、タイミングをずらして1台分ずつ押し出されるため、水素利用機器に供給される水素含有ガスの組成と流量の変動を、複数台同時に水供給開始する場合よりも抑制することができる。
第2の発明は、特に、第1の発明の水素生成システムを、水素利用機器から排出される排出ガスを分流して複数台の水素生成装置のそれぞれの燃焼器に供給するように、複数台の燃焼器および水素利用機器を接続する燃焼ガス供給流路を備えたものである。
これによって、改質器への水の供給の開始タイミングが互いにずれているので、改質器への水供給開始時に発生した水蒸気は、改質器内のガスを複数台同時ではなく1台ずつタイミングをずらして押し出す。複数台の改質器内からのガスは、タイミングをずらして1台分ずつ押し出されるため、燃焼器に供給されるガスの組成と流量の変動を、複数台同時に水供給開始する場合よりも抑制することができ、燃焼器で安定に燃焼を継続することができる。
第3の発明は、原料と水から水素含有ガスを生成する改質器と、改質器を加熱する燃焼器と、改質器に原料を供給する原料供給器と、改質器に水を供給する水供給器と、燃焼器に酸素含有ガスを供給する酸素含有ガス供給器とを備えた、複数台の水素生成装置と、複数台の水素生成装置のそれぞれの改質器で生成された水素含有ガスを合流して水素利用機器に供給するように、複数の改質器および水素利用機器を接続する水素含有ガス供給流路と、を備えた、水素生成システムの運転方法であって、複数台の水素生成装置を起動させる時に、原料が供給されている改質器への水の供給の開始タイミングが互いにずれるよう水素生成装置が起動動作中の複数台の水供給器を動作させるものである。
これによって、改質器への水の供給の開始タイミングが互いにずれているので、改質器への水供給開始時に発生した水蒸気は、改質器内のガスを複数台同時ではなく1台ずつタイミングをずらして押し出す。複数台の改質器内からのガスは、タイミングをずらして1台分ずつ押し出されるため、水素利用機器に供給される水素含有ガスの組成と流量の変動を、複数台同時に水供給開始する場合よりも抑制することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における水素生成システムの構成を示すブロック図である。
図1に示すように、実施の形態1の水素生成システム30は、改質器1a〜1cと、燃焼器2a〜2cと、温度検知器3a〜3cと、原料供給器4a〜4cと、水供給器5a〜5cと、燃料供給器10a〜10cと、空気供給器11a〜11cを備えた水素生成装置20a〜20cと、水素供給流路6a〜6cと、原料供給流路7と、水供給流路8と、燃料流路9a〜9cと、水素供給流路封止弁12と、排気流路13と、排気流路封止弁14と、制御器50とを備えている。また、水素供給流路封止弁12の出口は、水素利用機器である燃料電池40の入口側に接続されている。
ここで、これらの構成要素の符号を示す数字に添えた英字(a,b,c)について、改質器1a〜1cを例に挙げて説明する。符号の1aは1つ目の改質器を指し、符号の1cは3つ目の改質器を指す。したがって、改質器1a〜1cと記述した場合は、1つ目から
3つ目までの3台の改質器を指す。また、改質器1b〜1cと記述した場合は、2つ目から3つ目までの2台の改質器を指す。
一方で、今後、符号の添え字(a,b,c)を省略して説明することがあるが、改質器1と記述した場合は、改質器1a〜1cのいずれかの特定しない改質器を指し、いずれの改質器でもよい場合を説明するときに用いる。
改質器1a〜1cは、原料及び水蒸気から改質反応により水素含有ガスを生成する。原料は、本実施の形態では、メタンを主成分とする都市ガスを用いた。本実施の形態の改質反応は、都市ガスと水蒸気を反応させる水蒸気改質を用いた。改質器1a〜1cの内部には改質触媒(図示せず)が搭載さている。また、水を蒸発させる蒸発器(図示せず)も搭載されている。
燃焼器2a〜2cは、改質器1a〜1cをそれぞれ加熱するバーナーである。燃焼器2a〜2cは着火のための点火器(図示せず)を備えている。温度検知器3a〜3cは、改質器1a〜1cの温度を検知する熱電対である。
原料供給器4a〜4cは、都市ガスを改質器1a〜1cにそれぞれ供給するポンプであり、原料供給流路7に接続されている。また、水供給器5a〜5cは、水を改質器1a〜1cにそれぞれ供給するポンプであり、水供給流路8に接続されている。
水素供給流路6a〜6cは、改質器1a〜1cから排出された水素含有ガスを燃料電池40に導く流路であり、水素供給流路6a〜6cは合流した後で電磁弁である水素供給流路封止弁12を経由して、燃料電池40に接続されている。
燃料供給器10a〜10cは、燃料を燃焼器2a〜2cにそれぞれ供給するポンプであり、燃料流路9に接続されている。燃料は、本実施の形態では、メタンを主成分とする都市ガスを用いた。
空気供給器11a〜11cは、燃焼器2a〜2cに燃焼用の空気を供給するファンである。また、排気流路封止弁14は、水素供給流路封止弁12の上流側から分岐された排気流路13の途中に設置されている電磁弁である。
燃料電池40は、水素生成システム30から供給される水素と、空気中の酸素から、電気化学反応によって電力を得る。また、制御器50は、水素生成システム30の運転を制御する。制御器50は、信号入出力部(図示せず)と、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。
以上の様に構成された本実施の形態の水素生成システム30について、以下その動作、作用を説明する。以下の動作は、制御器50が水素生成システム30の水素生成装置20a〜20c、水素供給流路封止弁12、排気流路封止弁14を制御することによって行われる。
まず、水素生成システム30での水素含有ガスの生成動作について説明する。
水素生成システム30は、水素生成装置20a〜20cそれぞれに備えられた原料供給器4a〜4cと水供給器5a〜5cが動作することによって、都市ガスと水が改質器1a〜1cに供給される。
水素生成装置20a〜20cにそれぞれ備えられた燃料供給器10a〜10cを動作さ
せることで、都市ガスが燃焼器2a〜2cに供給されて燃焼し、改質器1a〜1cが所定の温度になるように加熱されるとともに改質器1a〜1cに供給された水は水蒸気となって、100倍以上の体積となる。改質器1a〜1cにおける所定の温度とは、改質反応に適した温度であり、本実施の形態では600℃とした。
水素生成装置20a〜20cで生成した水素含有ガスは、水素供給流路6a〜6cと水素供給流路封止弁12を経由して、燃料電池40に供給され利用される。
燃料電池40に水素含有ガスを供給する場合は、水素供給流路封止弁12を開け、排気流路封止弁14を閉める。逆に燃料電池40に水素含有ガスを供給しない場合は、水素供給流路封止弁12を閉め、排気流路封止弁14を開ける。
なお、水素生成システム30の起動時など排気流路13から可燃ガスが排出される運転時には、排出されたガスは排出ガス燃焼器(図示せず)で可燃ガスが除去される。
次に本発明の実施の形態1における水素生成システム30の動作について図2a及び図2bを参照しながら説明する。
図2a及び図2bは、本発明の実施の形態1における水素生成システムの動作を示すフローチャートを、前段と後段に2分割したものである。
水素生成システム30の起動前は、水素生成装置20a〜20cは停止しており、水素供給流路封止弁12と排気流路封止弁14は閉状態である。
水素生成装置20aを起動するため、ステップS101では、まず燃料供給器10aと空気供給器11aを動作させ燃焼器2aで燃焼させて改質器1aの加熱を開始する。燃料供給器10aと空気供給器11aからは、それぞれ1L/minの都市ガスと20L/minの空気を燃焼器2aに供給した。
ステップS102では、排気流路封止弁14を開状態にする。次のステップS103では、原料供給器4aの動作を開始し、改質器1aへの都市ガスの供給を開始する。原料供給器4aからは4L/minの都市ガスを供給した。
ステップS104では、温度検知器3aで改質器1aの改質温度Taを検知し、改質温度Taが100℃を超えたら、ステップS105に移行する。
改質温度Taが100℃を超えるまでは、ステップS104を繰り返す。ここで100℃とは、予め実験的に取得した改質器1aに水を供給しても蒸発できる温度である。
ステップS105では、水供給器5aを動作させ、改質器1aへの水供給を開始する。水供給器5aからは11cc/minの水を供給した。11cc/minの水の供給量は都市ガス4L/minに対して、水蒸気と炭素の比率が3となる値である。
ステップS106では、温度検知器3aで改質器1aの改質温度Taを検知し、改質温度Taが600℃を超えたら、ステップS107に移行する。
改質温度Taが600℃を超えるまでは、ステップS106を繰り返す。ここで、600℃とは、予め実験的に取得した温度であり、改質器1aで都市ガスから水素含有ガスを所定の転化率で生成でき、燃料電池40で発電するのに必要な水素量が得られる温度である。
続いて、燃料電池40に水素含有ガスを供給するために、水素供給流路封止弁12を開状態にし(ステップS107)、排気流路封止弁14を閉状態にする(ステップS108)。
ステップS109では、燃料電池40で発電を開始し、水素生成装置20aの起動は終了する。この時の燃料電池40の発電出力は1kWである。ここで、1kWとは、都市ガス4L/minを本実施の形態の水素生成装置20に供給した場合に生成する水素量から燃料電池40を発電させるのに適した出力である。
次に水素生成装置20b〜20cを起動するため、燃料供給器10b〜10cと空気供給器11b〜11cを動作させ燃焼器2b〜2cで燃焼させて改質器1b〜1cの加熱を開始する(ステップS110)。燃料供給器10b〜10cと空気供給器11b〜11cからは、それぞれ1L/minの都市ガスと20L/minを燃焼器2b〜2cにそれぞれ供給した。
続いて、原料供給器4b〜4cの動作を開始し、改質器1b〜1cへの都市ガスの供給を開始する(ステップS111)。原料供給器4b〜4cからは、それぞれ4L/minの都市ガスを供給した。
ステップS112では、温度検知器3aで改質器1aの改質温度Taを検知し、改質温度Taが100℃を超えたら、ステップS105に移行する。改質温度Tb〜Tcが100℃を超えるまでは、ステップS112を繰り返す。
ステップS113では、水供給器5bを動作させ、改質器1bへの水供給を開始する。水供給器5bからは、11cc/minの水を供給した。
ステップS114では、水供給器5bの動作開始からの経過時間をカウントし、水供給器5bの動作開始から2分間が経過したら、ステップS115に移行する。水供給器5bの動作開始から2分間が経過するまでは、ステップS114を繰り返す。
ステップS115では、水供給器5cを動作させ、改質器1cへの水供給を開始する。水供給器5cからは、11cc/minの水を供給した。ここで2分とは、予め実験的に取得した時間であり、改質器1bへの水供給開始時に、燃料電池40に供給される水素含有ガスの組成と流量の変動が発生した後に、変動が小さくなるまでに要する時間である。
水供給器5bの動作を開始してから、水供給器5bとタイミングをずらした2分間経過後に水供給器5cは動作開始して改質器1cへの水供給が開始される。
ステップS116では、改質温度Tb〜Tcが600℃を超えたら、ステップS117に移行する。改質温度Tb〜Tcが600℃を超えるまでは、ステップS116を繰り返す。
最後にステップS117では燃料電池40の発電出力を上昇させる。上昇させた後の燃料電池40の発電出力は3kWとした。
以上のように、本実施の形態においては、2台の水素生成装置20b〜20cを起動させる時に、原料が供給されている改質器1への水の供給の開始タイミングが互いにずれるようにしているため、改質器1への水供給開始時に発生した水蒸気が改質器1内のガスを2台同時ではなく、1台ずつタイミングをずらして押し出される。
これによって、一度に改質器1から押し出される都市ガスの量が減り、燃料電池40に供給される水素含有ガスの組成と流量の変動は2台同時に水供給開始する場合よりも小さくなり、燃料電池40は安定に発電を継続することができる。
なお、本実施の形態では、水素生成装置20aの運転中に水素生成装置20b〜20cを起動したが、水素生成装置20bの運転中に水素生成装置20aと水素生成装置20cの2台を起動しても、1台ずつ改質器1への水の供給の開始タイミングをずらせば同様の効果が得られる。
また、水素生成装置20cの運転中に水素生成装置20aと水素生成装置20bの2台を起動しても、1台ずつ改質器1への水の供給の開始タイミングをずらせば同様の効果が得られる。
なお、本実施の形態では、3台の水素生成装置からなる水素生成システムとしたが、起動する水素生成装置が2台以上であれば同様の効果が得られる。例えば、10台の水素生成システムにおいて、5台の水素生成装置で1台ずつ改質器1への水の供給の開始タイミングをずらしても良い。
また、本実施の形態では、改質器1に都市ガスを先に供給しておき、その後水を供給したが、都市ガスと水を同じタイミングで行っても、水の供給を先に行っても、水の蒸発によって改質器1の内部のガスが押し出される場合には、同様の効果が得られる。
また、本実施の形態では、改質器1b〜1cへの水の供給の開始タイミングを2分間ずらして実施したが、水素利用機器である燃料電池40への影響が出ない時間に設定すればよい。
また、本実施の形態では、水の蒸発を改質器1の内部で行うようにしたが、外部に蒸発器を設けて、発生した水蒸気を改質器1に供給した場合も同様の効果が得られる。
(実施の形態2)
図3は、本発明の実施の形態2における水素生成システムの構成を示すブロック図である。
図3に示す実施の形態2における水素生成システム31において、図1に示す実施の形態1における水素生成システム30と同じ構成要素には同じ符号を付与し、重複する説明を省略する。
図3に示すように、実施の形態2の水素生成システム31は、改質器1a〜1cと、燃焼器2a〜2cと、温度検知器3a〜3cと、原料供給器4a〜4cと、水供給器5a〜5cと、空気供給器11a〜11cを備えた水素生成装置21a〜21cと、水素供給流路6a〜6cと、原料供給流路7と、水供給流路8と、燃料流路9a〜9cと、水素供給流路封止弁12と、燃料流路封止弁15a〜15cと、バイパス流量調整弁16と、制御器50とを備えている。また、水素供給流路封止弁12の出口は、水素利用機器である水素貯蔵タンク41に接続されている。
図3に示す実施の形態2における水素生成システム31において、図1に示す実施の形態1における水素生成システム30と異なる点は、水素生成装置21a〜21cから排出されたガスが燃焼器2a〜2cに供給され、さらに燃料流路9a〜9cに燃料流路封止弁15a〜15cと、燃料電池40の代わりに水素貯蔵タンク41が設置され、水素貯蔵タ
ンク41の上流にバイパス流量調整弁16が設置されている点である。
燃料流路封止弁15a〜15cは、燃料流路9a〜9cの途中にある電磁弁である。また、バイパス流量調整弁16は、ニードル弁であり、開閉動作に加えて流量を調整する機能を持っている。また、水素貯蔵タンク41は、水素含有ガスを貯蔵するタンクである。
ここで、これらの構成要素の符号の添え字(a,b,c)を省略して説明する場合と、添え字(a,b,c)を省略ないで説明する場合とを使い分けているルールについては、実施の形態1で説明したものと同じであるので、その説明を省略する。
次に本発明の実施の形態2における水素生成システム31の動作について図4を参照しながら説明する。
図4は、本発明の実施の形態2における水素生成システムの動作を示すフローチャートである。
水素生成システム31の起動前は、水素生成装置21a〜21cは停止しており、水素供給流路封止弁12と燃料流路封止弁15a〜15cとバイパス流量調整弁16は閉状態である。
水素生成装置21a〜21cを起動するため、ステップS201では、まず空気供給器11a〜11cを動作させる。空気供給器11a〜11cからは、それぞれ20L/minの空気を燃焼器2a〜2cに供給した。
ステップS202では、燃料流路封止弁15a〜15cとバイパス流量調整弁16を開状態にする。
ステップS203では、原料供給器4a〜4cを動作させ、燃焼器2a〜2cで燃焼させて、改質器1a〜1cの加熱を開始する。原料供給器4a〜4cからは、それぞれ1L/minの都市ガスを改質器1a〜1cに供給した。改質器1a〜1cに供給した都市ガスは燃料流路9a〜9cを経由して、燃焼器2a〜2cに供給される。
ステップS204では、温度検知器3a〜3cで改質器1a〜1cの改質温度Ta〜Tcを検知し、改質温度Ta〜Tcが100℃を超えたら、ステップS205に移行する。
改質温度Ta〜Tcが100℃を超えるまでは、ステップS204を繰り返す。
ステップS205では、水供給器5aを動作させ、改質器1aへの水供給を開始する。水供給器5aからは2.8cc/minの水を供給した。2.8cc/minの水の供給量は都市ガス1L/minに対して、水蒸気と炭素の比率が3となる値である。
ステップS206では、水供給器5aの動作開始からの経過時間をカウントし、水供給器5aの動作開始から2分間が経過したらステップS207に移行する。水供給器5aの動作開始から2分間が経過するまでは、ステップS206を繰り返す。
ここで、2分間とは、予め実験的に取得した時間であり、改質器1aへの水供給開始時に、燃焼器2a〜2cに供給されるガス流量の変動が発生した後に、変動が小さくなるまでに要する時間である。水供給器5aの動作を開始してから、水供給器5aとタイミングをずらした2分間経過後に水供給器5bは動作開始して改質器1bへの水供給が開始される。
ステップS207では、水供給器5bを動作させ、改質器1bへの水供給を開始する。水供給器5bからは、2.8cc/minの水を供給した。
ステップS208では、水供給器5bの動作開始からの経過時間をカウントし、水供給器5bの動作開始から2分間が経過したらステップS209に移行する。水供給器5bの動作開始から2分間が経過するまでは、ステップS208を繰り返す。
ここで、2分間とは、ステップS206と同様に、改質器1bへの水供給開始時に、燃焼器2a〜2cに供給されるガス流量の変動が発生した後に、変動が小さくなるまでに要する時間である。水供給器5bの動作を開始してから、水供給器5bとタイミングをずらした2分間経過後に水供給器5cは動作開始して改質器1cへの水供給が開始される。
ステップS209では、水供給器5cを動作させ、改質器1cへの水供給を開始する。水供給器5cからは、2.8cc/minの水を供給した。
ステップS210では、改質温度Ta〜Tcが600℃を超えたら、ステップS211に移行する。改質温度Ta〜Tcが600℃を超えるまでは、ステップS210を繰り返す。
ステップS211では、水素供給流路封止弁12を開状態にし、水素貯蔵タンク41に水素の供給を開始する。
最後に、ステップ212では、バイパス流量調整弁16を絞り、燃焼器2a〜2cへの水素含有ガス流量を減少させる。バイパス流量調整弁16を調整することによって、改質器1a〜1cを加熱するのに必要な分だけの水素含有ガスが燃焼器2a〜2cに供給される。
以上のように、本実施の形態においては、3台の水素生成装置20a〜20cを起動させる時に、原料が供給されている改質器1への水の供給の開始タイミングが互いにずれるようにしているため、改質器1への水供給開始時に発生した水蒸気が改質器1内のガスを3台同時ではなく、1台ずつタイミングをずらして押し出される。
これによって、一度に改質器1から押し出されるガスの量が減るため、燃焼器2a〜2cに供給されるガスの組成と流量の変動は3台同時に水供給開始する場合よりも小さくなり、燃焼器2a〜2cは安定に燃焼を継続することができる。
なお、本実施の形態では、水素生成装置21a〜21bの3台を同時に起動し1台ずつ改質器1への水の供給の開始タイミングをずらしたが、起動する水素生成装置が2台以上であれば同様の効果が得られる。
本実施の形態の上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
以上のように、本発明の水素生成システムおよび水素生成システムの起動方法は、改質器への水供給開始時に発生した水蒸気が改質器内のガスを一度に押し出す量が減るため、水素利用機器に供給される水素含有ガスの組成と流量の変動を抑制することができ、水素
利用機器を安定に運転することができる水素生成システムを構成することが可能となるため、炭化水素系の原料を水蒸気改質して水素含有ガスを生成する水素生成装置を複数台連携させた水素生成システムに最適である。
1a,1b,1c 改質器
2a,2b,2c 燃焼器
3a,3b,3c 温度検知器
4a,4b,4c 原料供給器
5a,5b,5c 水供給器
6a,6b,6c 水素供給流路
7 原料供給流路
8 水供給流路
9,9a,9b,9c 燃料流路
10a,10b,10c 燃料供給器
11a,11b,11c 空気供給器
12 水素供給流路封止弁
13 排気流路
14 排気流路封止弁
15a,15b,15c 燃料流路封止弁
16 バイパス流量調整弁
20a,20b,20c,21a,21b,21c 水素生成装置
30、31 水素生成システム
40 燃料電池
41 水素貯蔵タンク
50 制御器

Claims (3)

  1. 原料と水から水素含有ガスを生成する改質器と、前記改質器を加熱する燃焼器と、前記改質器に前記原料を供給する原料供給器と、前記改質器に前記水を供給する水供給器と、前記燃焼器に酸素含有ガスを供給する酸素含有ガス供給器とを備えた、複数台の水素生成装置と、
    複数台の前記水素生成装置のそれぞれの前記改質器で生成された前記水素含有ガスを合流して水素利用機器に供給するように、複数の前記改質器および前記水素利用機器を接続する水素含有ガス供給流路と、
    複数台の前記水素生成装置を制御する制御器と、
    を備えた、水素生成システムであって、
    前記制御器は、複数台の前記水素生成装置を起動させる時に、前記原料が供給されている前記改質器への前記水の供給の開始タイミングが互いにずれるよう前記水素生成装置が起動動作中の複数台の前記水供給器を制御することを特徴とする、水素生成システム。
  2. 前記水素利用機器から排出される排出ガスを分流して複数台の前記水素生成装置のそれぞれの前記燃焼器に供給するように、複数台の前記燃焼器および前記水素利用機器を接続する燃焼ガス供給流路を備えた請求項1記載の水素生成システム。
  3. 原料と水から水素含有ガスを生成する改質器と、前記改質器を加熱する燃焼器と、前記改質器に前記原料を供給する原料供給器と、前記改質器に前記水を供給する水供給器と、前記燃焼器に酸素含有ガスを供給する酸素含有ガス供給器とを備えた、複数台の水素生成装置と、
    複数台の前記水素生成装置のそれぞれの前記改質器で生成された前記水素含有ガスを合流して水素利用機器に供給するように、複数の前記改質器および前記水素利用機器を接続する水素含有ガス供給流路と、
    を備えた、水素生成システムの運転方法であって、
    複数台の前記水素生成装置を起動させる時に、前記原料が供給されている前記改質器への前記水の供給の開始タイミングが互いにずれるよう前記水素生成装置が起動動作中の複数台の前記水供給器を動作させることを特徴とする、水素生成システムの運転方法。
JP2017007184A 2017-01-19 2017-01-19 水素生成システム及びその運転方法 Active JP6650582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017007184A JP6650582B2 (ja) 2017-01-19 2017-01-19 水素生成システム及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017007184A JP6650582B2 (ja) 2017-01-19 2017-01-19 水素生成システム及びその運転方法

Publications (2)

Publication Number Publication Date
JP2018115089A JP2018115089A (ja) 2018-07-26
JP6650582B2 true JP6650582B2 (ja) 2020-02-19

Family

ID=62983826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017007184A Active JP6650582B2 (ja) 2017-01-19 2017-01-19 水素生成システム及びその運転方法

Country Status (1)

Country Link
JP (1) JP6650582B2 (ja)

Also Published As

Publication number Publication date
JP2018115089A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
EP2416428B1 (en) Fuel cell system
JP4887048B2 (ja) 燃料電池の起動方法及び燃料電池システム
JP5064387B2 (ja) 水素生成装置及び燃料電池システム
JP5389167B2 (ja) 水素生成装置及びその運転方法
TWI422095B (zh) A reformer system, a fuel cell system and a method of operation thereof
EP2420473B1 (en) Method of operating a hydrogen generation device
JP2002087802A (ja) 燃料改質装置
JP6512735B2 (ja) 燃料電池システム
EP2455335B1 (en) Method for operating a hydrogen generator
JP2008177058A (ja) 改質器システム、燃料電池システム、及びその運転方法
JPWO2007119736A1 (ja) 水素生成装置、これを備える燃料電池システムおよびその運転方法
JP5366357B2 (ja) 燃料電池システムの起動方法および燃料電池システム
JP2011210686A (ja) 燃料電池発電装置
JP2005174745A (ja) 燃料電池システムの運転方法及び燃料電池システム
JP6650582B2 (ja) 水素生成システム及びその運転方法
US10833339B2 (en) Fuel cell system and method of running fuel cell system
JP2016122629A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2016207308A (ja) 固体酸化物形燃料電池システムおよびその起動方法
US10340537B2 (en) Fuel cell system and control method for the same
US10700368B2 (en) High-temperature operation fuel cell system
JP6458252B2 (ja) 水素生成装置と、それを備えた燃料電池システム、および、それらの運転方法
JP5914837B2 (ja) 水素生成装置
JP7298495B2 (ja) 燃料電池システム
JP2004002154A (ja) 水素生成装置およびそれを備える燃料電池システム
JP6678299B2 (ja) 水素生成装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6650582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151