JP6649057B2 - Differential device - Google Patents
Differential device Download PDFInfo
- Publication number
- JP6649057B2 JP6649057B2 JP2015232391A JP2015232391A JP6649057B2 JP 6649057 B2 JP6649057 B2 JP 6649057B2 JP 2015232391 A JP2015232391 A JP 2015232391A JP 2015232391 A JP2015232391 A JP 2015232391A JP 6649057 B2 JP6649057 B2 JP 6649057B2
- Authority
- JP
- Japan
- Prior art keywords
- gear
- differential
- pinion
- oil
- case
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003921 oil Substances 0.000 claims description 123
- 239000010687 lubricating oil Substances 0.000 claims description 111
- 230000002093 peripheral effect Effects 0.000 claims description 45
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 description 62
- 230000008859 change Effects 0.000 description 41
- 230000009467 reduction Effects 0.000 description 31
- 230000007246 mechanism Effects 0.000 description 29
- 230000002829 reductive effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 238000005461 lubrication Methods 0.000 description 9
- 101150017059 pcd1 gene Proteins 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Retarders (AREA)
- General Details Of Gearings (AREA)
Description
本発明は、デフケースの回転力を一対の出力軸に分配して伝達する差動装置に関する。 The present invention relates to a differential device that distributes and transmits the rotational force of a differential case to a pair of output shafts.
デフケース内に配置されたピニオン(差動ギヤ)と、デフケースに支持され且つピニオンを回転自在に貫通支持するピニオンシャフト(差動ギヤ支持部)と、ピニオンに噛合するギヤ部を外周部に各々有すると共にピニオンシャフトを挟んで相対向し且つ一対の出力軸にそれぞれ接続される一対のサイドギヤ(出力ギヤ)とを備え、デフケースの回転力を一対の出力軸に分配して伝達する差動装置に関し、従来より例えばピニオンとピニオンシャフトとの対向部分に、ピニオンの、サイドギヤの径方向で内方側の端面に隣接する空間に臨む油溜部を設け、サイドギヤの内周軸部と出力軸との間に設けた潤滑油供給路から一対のサイドギヤの相対向面間に潤滑油を導入し、導入した潤滑油の一部を上記油溜部に供給できるようにした差動装置が、たとえば特許文献1に記載されているように公知である。
A pinion (differential gear) disposed in the differential case, a pinion shaft (differential gear support portion) supported by the differential case and rotatably penetrating and supporting the pinion, and a gear portion meshing with the pinion are provided on the outer peripheral portion. And a pair of side gears (output gears) opposed to each other across a pinion shaft and connected to a pair of output shafts, respectively, for distributing and transmitting the rotational force of the differential case to the pair of output shafts. Conventionally, for example, at an opposing portion of a pinion and a pinion shaft, an oil sump portion facing a space adjacent to a radially inward end surface of the side gear of the pinion is provided, and between the inner peripheral shaft portion of the side gear and the output shaft. A lubricating oil is introduced between the opposing surfaces of a pair of side gears from a lubricating oil supply passage provided in the differential gear, and a part of the introduced lubricating oil can be supplied to the oil reservoir. For example, it is known as described in
ところが従来装置では、一対のサイドギヤの相対向面間に導入された潤滑油が、相対向面を遠心力で径方向外方側に伝って流れ易いことから、導入した潤滑油の大部分が相対向面に連なるサイドギヤの外周のギヤ部側にそのまま流れてしまう。このため、サイドギヤとピニオンとの噛合部に対する潤滑効果は十分に得られる反面、上記油溜部への供給油量が比較的少なくなってしまい、ピニオンとピニオンシャフトとの間の嵌合部、即ち回転摺動部に対する潤滑効果が十分ではないという問題がある。 However, in the conventional device, the lubricating oil introduced between the opposing surfaces of the pair of side gears easily flows radially outward on the opposing surfaces by centrifugal force, so that most of the introduced lubricating oil is relatively It flows directly to the gear portion side on the outer periphery of the side gear connected to the facing surface. For this reason, the lubricating effect on the meshing portion between the side gear and the pinion is sufficiently obtained, but the amount of oil supplied to the oil reservoir is relatively small, and the fitting portion between the pinion and the pinion shaft, that is, There is a problem that the lubricating effect on the rotary sliding portion is not sufficient.
そして、このようなピニオンとピニオンシャフトの間の回転摺動部に対する潤滑不足の問題は、例えばサイドギヤの歯数をピニオンの歯数よりも十分大きく設定し得るようサイドギヤをピニオンに対し十分大径化してデフケースの出力軸の軸方向での幅狭化を図った場合等のように、特にピニオンが高速回転する過酷な運転状況でより顕著に現れる可能性がある。 The problem of insufficient lubrication of the rotary sliding portion between the pinion and the pinion shaft is, for example, that the side gear has a sufficiently large diameter with respect to the pinion so that the number of teeth of the side gear can be set sufficiently larger than the number of teeth of the pinion. In particular, such as in the case where the width of the output shaft of the differential case is reduced in the axial direction, there is a possibility that the difference will appear more remarkably in a severe operating condition in which the pinion rotates at high speed.
本発明は、斯かる事情に鑑みてなされたもので、簡単な構造で上記問題を解決し得る差動装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a differential device that can solve the above problem with a simple structure.
上記目的を達成するために、本発明に係る差動装置は、デフケースの回転力を一対の出力軸に分配して伝達する差動装置であって、前記デフケース内に配置されたピニオンと、前記デフケースに支持され且つ前記ピニオンを回転自在に貫通支持するピニオンシャフトと、前記ピニオンに噛合するギヤ部を外周部に各々有すると共に前記ピニオンシャフトを挟んで相対向し且つ前記一対の出力軸にそれぞれ接続される一対のサイドギヤと、前記一対のサイドギヤの相対向面に潤滑油を導入する油導入経路と、前記一対のサイドギヤの相対向面に形成される窪みと前記ピニオンの、前記サイドギヤの径方向で内方側の端面との間に挟まれた空間と、該空間に臨むように前記ピニオンと前記ピニオンシャフトとの対向部間に形成され且つ前記ピニオンと前記ピニオンシャフトとの相互に回転摺動可能な嵌合部に連通する油溜部と、を備え、前記一対のサイドギヤの相対向面のうちの少なくとも一方の対向面には、前記空間の前記径方向で内周端に位置して前記窪みの開口縁を構成する段部が形成され、前記段部は、前記サイドギヤの軸方向に垂直な前記対向面と前記窪みの側面とが直交するエッジ状に形成される(これを第1の特徴とする)。 In order to achieve the above object, a differential device according to the present invention is a differential device that distributes and transmits the rotational force of a differential case to a pair of output shafts, and a pinion disposed in the differential case, A pinion shaft supported by a differential case and rotatably penetrating and supporting the pinion; and a gear portion meshing with the pinion on an outer peripheral portion, and opposed to each other with the pinion shaft interposed therebetween and connected to the pair of output shafts, respectively. a pair of side gears to be an oil introduction path for introducing the lubricating oil to opposite surfaces of the pair of side gears, depression and of the pinion is formed on the opposite surface of the front Symbol pair of side gears, a radial direction of said side gears And a space formed between the pinion and the pinion shaft so as to face the space. Wherein the oil reservoir communicating with each other rotatably sliding fit portion of the pinion shaft, provided with on at least one of the opposing surfaces of the opposing surfaces of the pair of side gears, said of said space and A step portion is formed at an inner peripheral end in a radial direction to form an opening edge of the recess, and the step portion is an edge in which the opposed surface perpendicular to the axial direction of the side gear and a side surface of the recess are orthogonal to each other. Jo the Ru is formed (the first feature of this).
また好適には、前記サイドギヤは、前記一対の出力軸にそれぞれ接続される軸部と、前記軸部から径方向外方に離間した前記ギヤ部と、前記軸部の内端部から径方向外方に延びる扁平な中間壁部とを備え、前記段部は、前記軸部から径方向外方に離れた前記中間壁部の外周部に形成される(これを第2の特徴とする)。 Also preferably, the side gears include a shaft portion connected to the pair of output shafts, the gear portion radially outwardly spaced from the shaft portion, and a gear portion radially outward from an inner end of the shaft portion. A flat intermediate wall portion extending in the direction of the axis, and the step portion is formed on an outer peripheral portion of the intermediate wall portion distant radially outward from the shaft portion (this is a second feature).
また上記目的を達成するために、本発明に係る差動装置は、デフケースの回転力を一対の出力軸に分配して伝達する差動装置であって、前記デフケース内に配置された差動ギヤと、前記デフケースに支持され且つ前記差動ギヤを回転自在に貫通支持する差動ギヤ支持部と、前記差動ギヤに噛合するギヤ部を外周部に各々有すると共に前記差動ギヤ支持部を挟んで相対向し且つ前記一対の出力軸にそれぞれ接続される一対の出力ギヤと、前記一対の出力ギヤの相対向面に潤滑油を導入する油導入経路と、前記一対の出力ギヤの相対向面に形成される窪みと前記差動ギヤの、前記出力ギヤの径方向で内方側の端面との間に挟まれた空間と、前記空間に臨むように前記差動ギヤと前記差動ギヤ支持部との対向部分に形成され且つ前記差動ギヤと前記差動ギヤ支持部との相互に回転摺動可能な嵌合部に連通する油溜部とを備え、前記一対の出力ギヤの相対向面のうちの少なくとも一方の対向面には、前記空間の前記径方向で内周端に位置して前記窪みの開口縁を構成する段部が形成され、前記出力ギヤの歯数をZ1とし、前記差動ギヤの歯数をZ2とし、前記差動ギヤ支持部の直径をd2とし、ピッチ円錐距離をPCDとしたときに、 In order to achieve the above object, a differential gear according to the present invention is a differential gear that distributes and transmits the rotational force of a differential case to a pair of output shafts, wherein the differential gear is disposed in the differential case. A differential gear supporting portion supported by the differential case and rotatably penetrating and supporting the differential gear; and a gear portion meshing with the differential gear on an outer peripheral portion, and sandwiching the differential gear supporting portion. A pair of output gears facing each other and respectively connected to the pair of output shafts, an oil introduction path for introducing lubricating oil to the facing surfaces of the pair of output gears, and a facing surface of the pair of output gears And a space between the differential gear and a radially inward end face of the output gear of the differential gear, and the differential gear and the differential gear support facing the space. And the differential gear and the An oil reservoir communicating with a fitting portion slidable with respect to the dynamic gear supporting portion, and at least one of the opposing surfaces of the pair of output gears has the above-described space of the space. A stepped portion is formed at an inner peripheral end in the radial direction and constitutes an opening edge of the recess. The number of teeth of the output gear is Z1, the number of teeth of the differential gear is Z2, and the differential gear support is provided. When the diameter of the part is d2 and the pitch cone distance is PCD,
を満たし、
且つZ1/Z2>2を満たす(これを第3の特徴とする)。
The filling,
And Z1 / Z2> 2 is satisfied (this is a third feature) .
好適には、Z1/Z2≧4を満たす(これを第4の特徴とする)。 Good The suitable (and this fourth feature) satisfies the Z1 / Z2 ≧ 4.
好適には、Z1/Z2≧5.8を満たす(これを第5の特徴とする)。 Preferably, Z1 / Z2 ≧ 5.8 is satisfied (this is a fifth feature).
好適には、前記段部は、該段部の頂面を通り且つ前記デフケースの回転軸線と直交する仮想平面が前記油溜部の内部空間又は開口縁を通るように形成される(これを第6の特徴とする)。 Preferably, the step portion is formed such that an imaginary plane passing through the top surface of the step portion and orthogonal to the rotation axis of the differential case passes through the internal space or the opening edge of the oil sump portion (this is referred to as a second step). 6 ).
第1の特徴によれば、一対のサイドギヤの相対向面のうちの少なくとも一方の対向面に形成した段部は、遠心力で対向面を伝ってサイドギヤの径方向外方に流れてサイドギヤのギヤ部に向かう潤滑油流から一部の潤滑油を効果的に分離させることができ、分離された潤滑油を、ピニオンの、サイドギヤの径方向で内方側の端面に隣接する空間に誘導して、飛散させることができるため、飛散した潤滑油を、上記空間に臨むようにピニオンとピニオンシャフトとの対向部分に形成した油溜部に効率よく捕捉貯溜させることができる。これにより、ピニオン及びピニオンシャフトの間の嵌合部、即ち回転摺動部への潤滑油の供給が十分に行われるので、ピニオンが高速回転するような過酷な運転状況等であっても、ピニオンとサイドギヤとの噛合部への潤滑は元より、ピニオンとピニオンシャフトの間の回転摺動部への潤滑も十分に行うことができて、噛合部及び回転摺動部の焼付きを簡単な構造で効果的に防止可能となる。 According to the first feature, a stepped portion formed on at least one of the opposing surfaces of the opposing surfaces of the pair of side gears, the side gears flows along the opposing surface by centrifugal force radially outward of the side gears gear Part of the lubricating oil can be effectively separated from the lubricating oil flow toward the part, and the separated lubricating oil is guided to the space adjacent to the radially inward end face of the side gear of the pinion. Since the lubricating oil can be scattered, the scattered lubricating oil can be efficiently captured and stored in an oil reservoir formed at a portion facing the pinion and the pinion shaft so as to reach the space. As a result, the lubricating oil is sufficiently supplied to the fitting portion between the pinion and the pinion shaft, that is, the rotary sliding portion, so that even in a severe operating condition in which the pinion rotates at a high speed, etc. In addition to the lubrication of the meshing part between the shaft and the side gear, the lubrication of the rotating sliding part between the pinion and the pinion shaft can be sufficiently performed, and the seizing of the meshing part and the rotating sliding part is simple. Can be effectively prevented.
また第2の特徴によれば、サイドギヤは、一対の出力軸にそれぞれ接続される軸部と、軸部から径方向外方に離間したギヤ部と、軸部内端から径方向外方に延びる扁平な中間壁部とを備えるので、サイドギヤの歯数をピニオンの歯数よりも十分大きく設定し得るようにサイドギヤをピニオンに対し極力大径化でき、ピニオンシャフトの荷重負担を軽減、延いては小径化が図られて、デフケースの出力軸の軸方向での幅狭化が図られる。また上記のようにサイドギヤを大径化すれば、上記対向面(即ち径方向に比較的幅広の中間壁部)を伝ってサイドギヤの径方向外方に流れる潤滑油流が大きな遠心力を受けるため、潤滑油流からの上記段部による潤滑油の分離飛散効果が大きくなり、飛散した潤滑油を油溜部に一層効果的に捕捉させることができる。According to the second feature, the side gear includes a shaft portion connected to each of the pair of output shafts, a gear portion radially outwardly separated from the shaft portion, and a flat portion extending radially outward from the inner end of the shaft portion. The intermediate gear has a large intermediate wall, so the side gear can be made as large as possible with respect to the pinion so that the number of teeth of the side gear can be set sufficiently larger than the number of teeth of the pinion, reducing the load on the pinion shaft and extending the diameter The width of the output shaft of the differential case in the axial direction is reduced. Also, if the diameter of the side gear is increased as described above, the lubricating oil flow flowing radially outward of the side gear along the facing surface (that is, the intermediate wall portion that is relatively wide in the radial direction) receives a large centrifugal force. In addition, the effect of separating and scattering the lubricating oil by the step portion from the lubricating oil flow is increased, and the scattered lubricating oil can be more effectively captured in the oil reservoir.
また第3の特徴によれば、一対の出力ギヤの相対向面のうちの少なくとも一方の対向面に形成した段部は、遠心力で対向面を伝って出力ギヤの径方向外方に流れて出力ギヤのギヤ部に向かう潤滑油流から一部の潤滑油を効果的に分離させることができ、分離された潤滑油を、差動ギヤの、出力ギヤの径方向で内方側の端面に隣接する空間に誘導して、飛散させることができるため、飛散した潤滑油を、上記空間に臨むように差動ギヤと差動ギヤ支持部との対向部分に形成した油溜部に効率よく捕捉貯溜させることができる。これにより、差動ギヤと出力ギヤとの噛合部への潤滑は元より、差動ギヤと差動ギヤ支持部の間の回転摺動部への潤滑も十分に行われるので、噛合部及び回転摺動部の焼付きを簡単な構造で効果的に防止可能となる。しかも第3の特徴によれば、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を全体として出力軸の軸方向で十分に幅狭化できるから、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で有利となる。
(削除)
また第4及び第5の各特徴によれば、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を出力軸の軸方向で更に十分に幅狭化できる。
According to the third feature, the step formed on at least one of the opposing surfaces of the pair of output gears flows radially outward of the output gear along the opposing surface by centrifugal force. Part of the lubricating oil can be effectively separated from the lubricating oil flow toward the gear section of the output gear, and the separated lubricating oil is applied to the radially inner end face of the differential gear in the radial direction of the output gear. Since the lubricating oil can be guided to the adjacent space and scattered, the scattered lubricating oil can be efficiently captured by the oil reservoir formed in the opposed portion between the differential gear and the differential gear support so as to face the space. Can be stored. As a result, not only the lubrication of the meshing portion between the differential gear and the output gear, but also the lubrication of the rotating sliding portion between the differential gear and the differential gear supporting portion is sufficiently performed. Seizure of the sliding portion can be effectively prevented with a simple structure. Moreover, according to the third feature, the differential device as a whole is sufficiently narrowed in the axial direction of the output shaft while securing the same strength (for example, static torsional load strength) and the maximum torque transmission amount as those of the conventional device. This makes it possible to easily and easily incorporate a differential device with a high degree of freedom into a transmission system that has many layout restrictions around the differential device, and is advantageous in reducing the size of the transmission system. .
(Delete)
Further, according to the fourth and fifth features, the differential device can be more sufficiently moved in the axial direction of the output shaft while securing the same strength (for example, static torsional load strength) and the maximum torque transmission amount as those of the conventional device. Can be narrowed.
また第6の特徴によれば、段部は、段部の頂面を通り且つデフケースの回転軸線と直交する仮想平面が油溜部の内部空間又は開口縁を通るように形成されるので、遠心力で対向面を伝ってサイドギヤ(出力ギヤ)の径方向外方に流れる潤滑油流から段部で分離して上記空間に誘導され、飛散される潤滑油を、油溜部に効果的に捕捉させて十分に貯溜させることができ、これにより、ピニオン(差動ギヤ)とピニオンシャフト(差動ギヤ支持部)の間の回転摺動部に潤滑油をより効率よく供給可能となる。 According to the sixth feature, the step portion is formed so that a virtual plane passing through the top surface of the step portion and orthogonal to the rotation axis of the differential case passes through the internal space or the opening edge of the oil reservoir portion. The lubricating oil that is separated by the step from the lubricating oil flow flowing radially outward of the side gear (output gear) along the opposing surface by force is guided into the space, and the lubricating oil scattered is effectively captured in the oil reservoir. As a result, lubricating oil can be more efficiently supplied to the rotary sliding portion between the pinion (differential gear) and the pinion shaft (differential gear support).
本発明の実施の形態を、添付図面に示す本発明の好適な実施例に基づいて以下に説明する。 Embodiments of the present invention will be described below based on preferred embodiments of the present invention shown in the accompanying drawings.
先ず、図1において、自動車に搭載される動力源としてのエンジン(図示せず)には、減速歯車機構RGを介して差動装置Dが接続される。差動装置Dは、エンジンから減速歯車機構RGを経てデフケースDCに伝達される回転力を、左右一対の車軸にそれぞれ連なる左右一対の出力軸Jに分配して伝達することにより、左右車軸を、左右車軸の差動回転を許容しつつ駆動するためのものであって、例えば車体前部のエンジンの横に配置されたミッションケースM内に、減速歯車機構RGに隣接した状態で減速歯車機構RGと共に収容される。尚、エンジンと減速歯車機構RGとの間には、従来周知の動力断接機構や前後進切換機構(何れも図示せず)が介装される。またデフケースDCの回転軸線(回転中心,中心軸線)Lは、出力軸Jの中心軸線と一致する。 First, in FIG. 1, a differential device D is connected to an engine (not shown) as a power source mounted on an automobile via a reduction gear mechanism RG. The differential device D distributes and transmits the rotational force transmitted from the engine to the differential case DC via the reduction gear mechanism RG to the pair of left and right output shafts J connected to the pair of left and right axles, respectively. This is for driving while permitting the differential rotation of the left and right axles. For example, in a transmission case M arranged beside the engine at the front of the vehicle body, a reduction gear mechanism RG is provided adjacent to the reduction gear mechanism RG. It is housed with. Note that a conventionally known power connection / disconnection mechanism and a forward / reverse switching mechanism (both not shown) are interposed between the engine and the reduction gear mechanism RG. The rotation axis (center of rotation, center axis) L of the differential case DC coincides with the center axis of the output shaft J.
減速歯車機構RGは、図示例ではエンジンのクランクシャフトに連動回転するサンギヤ50と、サンギヤ50を同心状に囲繞してミッションケースMの内壁に固定されるリングギヤ51と、サンギヤ50及びリングギヤ51の間に介装され且つ両ギヤ50,51に噛合する複数のプラネタリギヤ52と、プラネタリギヤ52を回転自在に軸支するキャリア53とを備えた遊星歯車機構より構成される。尚、このような遊星歯車機構に代えて、複数の平歯車の歯車列よりなる減速歯車機構を用いてもよい。
In the illustrated example, the reduction gear mechanism RG includes a
キャリア53は、図示しない軸受を介してミッションケースMに回転自在に支持される。また、キャリア53は、差動装置DのデフケースDCの一端部に一体的に回転するように結合され、デフケースDCの他端部は、軸受2を介してミッションケースMに回転自在に支持される。したがって、相互に一体的に回転するデフケースDC及びキャリア53の結合体が、ミッションケースMに複数の軸受を介して回転自在に安定よく支持される。
The
またミッションケースMには、各出力軸Jが嵌挿される貫通孔Maが形成され、貫通孔Maの内周と各出力軸Jの外周との間には、その間をシールする環状のシール部材3が介装される。またミッションケースMの底部には、ミッションケースMの内部空間1に臨んで所定量の潤滑油を貯溜するオイルパン(図示せず)が設けられており、オイルパンで貯溜した潤滑油がミッションケースMの内部空間1において減速歯車機構RGの可動要素やデフケースDC等の回転によって回転部位の周辺に掻き上げられ飛散することで、デフケースDCの内外に存する機械運動部分を潤滑できるようになっている。尚、潤滑油をオイルポンプ(図示せず)で吸引して、ミッションケースMの内部空間1の特定部位、例えば減速歯車機構RGやデフケースDC、或いは減速歯車機構RG及びデフケースDCの周辺のミッションケースMの内壁に向けて強制的に飛散又は散布させるようにしてもよい。
In the transmission case M, a through-hole Ma into which each output shaft J is inserted is formed, and between the inner periphery of the through-hole Ma and the outer periphery of each output shaft J, an
ところでミッションケースMの天井壁Mtは、図1からも明らかなようにデフケースDCの直上部に向かって下る傾斜部を有している。そして、ミッションケースM内で前述のように飛散する潤滑油の一部は、ミッションケースMの天井壁Mtにも付着して、天井壁Mtの傾斜内面Mtfを伝って低い側に流れ、天井壁Mtの特定部位、例えば傾斜内面Mtfの終端部分(即ち天井壁Mtの水平面との境界部分)から直下のデフケースDCに向けて滴下する。これにより、滴下した潤滑油の一部が、デフケースDCの外周面に開口した後述の油取込み孔H1,H2に取り込み可能である。尚、ミッションケースMの天井壁Mtが上記のような傾斜部を持たない場合でも、天井壁Mtには多量の潤滑油が飛散付着することから、付着した潤滑油は、自重で天井壁Mt内面の各所からランダムに滴下し、その一部は上記油取込み孔H1,H2に取り込み可能である。 By the way, the ceiling wall Mt of the transmission case M has an inclined part which goes down to the upper part of the differential case DC as is clear from FIG. Part of the lubricating oil scattered in the transmission case M as described above also adheres to the ceiling wall Mt of the transmission case M, flows down the inclined inner surface Mtf of the ceiling wall Mt, and flows to the lower side. Mt is dropped from a specific portion of Mt, for example, a terminal portion of the inclined inner surface Mtf (that is, a boundary portion between the ceiling wall Mt and the horizontal plane) toward the differential case DC immediately below. Thereby, a part of the lubricating oil dropped can be taken into the oil intake holes H1 and H2 described later opened on the outer peripheral surface of the differential case DC. Even when the ceiling wall Mt of the transmission case M does not have the above-described inclined portion, a large amount of lubricant oil scatters and adheres to the ceiling wall Mt. , And a part of them can be taken into the oil intake holes H1 and H2.
図2〜図6も併せて参照して、差動装置Dは、デフケースDCと、デフケースDC内に収容される複数のピニオン(差動ギヤ)Pと、デフケースDC内に収容されてピニオンPを回転自在に支持するピニオンシャフト(差動ギヤ支持部)PSと、デフケースDC内に収容されてピニオンPに対し左右両側より噛合し且つ左右一対の出力軸Jにそれぞれ接続される左右一対のサイドギヤ(出力ギヤ)Sとを備える。そして、デフケースDCは、ピニオンシャフトPSと共に回転し得るようピニオンシャフトPSを支持する短円筒状のケース本体部4と、両サイドギヤSの外側をそれぞれ覆い且つケース本体部4と一体に回転する左右一対のカバー部C,C′とを有しており、ケース本体部4がデフケースDCの外周壁を構成する。
Referring also to FIGS. 2 to 6, the differential device D includes a differential case DC, a plurality of pinions (differential gears) P housed in the differential case DC, and a pinion P housed in the differential case DC. A pinion shaft (differential gear supporting portion) PS rotatably supported, and a pair of left and right side gears housed in a differential case DC and engaged with the pinion P from both left and right sides and connected to a pair of left and right output shafts J, respectively. Output gear) S. The differential case DC has a short cylindrical case
ピニオンシャフトPSは、デフケースDC内でデフケースDCの回転軸線Lを通るように配置されるものであって、ケース本体部4にケース本体部4の一直径線上で設けた一対の貫通支持孔4aに、ピニオンシャフトPSの両端部がそれぞれ抜差可能に挿通される。そして、ピニオンシャフトPSは、ピニオンシャフトPSの一端部を貫通してケース本体部4に挿着される抜け止めピン5を以てケース本体部4に固定される。ピニオンシャフトPSがケース本体部4に固定された状態でピニオンシャフトPSの両外端面PSfは、デフケースDCの外周面における開口DCo(即ち貫通支持孔4aの外端開口)を通してミッションケースMの内部空間1に臨んでいる。
The pinion shaft PS is arranged so as to pass through the rotation axis L of the differential case DC in the differential case DC, and is provided in a pair of through-
本実施形態では、ピニオンPを2個とし、ピニオンシャフトPSをケース本体部4の一直径線に沿って延びる直線棒状に形成して、ピニオンシャフトPSの両端部に2個のピニオンPをそれぞれ支持させるようにしたものを示したが、ピニオンPを3個以上設けてもよい。その場合には、ピニオンシャフトPSを、3個以上のピニオンPに対応してデフケースDCの回転軸線Lから三方向以上に枝分かれして放射状に延びる交差棒状(例えばピニオンPが4個の場合には十字状)に形成して、ピニオンシャフトPSの各先端部にピニオンPを各々支持させるようにし、またケース本体部4は二つ割りに分割構成して、その分割要素の相互間にピニオンシャフトPSを挟むようにする。
In the present embodiment, the number of the pinions P is two, and the pinion shaft PS is formed in a linear rod shape extending along one diameter line of the case
またピニオンPは、ピニオンシャフトPSに図示例のように直接嵌合させてもよいし、或いは軸受ブッシュ等の軸受手段(図示せず)を介して嵌合させてもよい。そして、前者の場合には、ピニオンシャフトPSとピニオンPとの間の嵌合部が、ピニオンシャフトPSとピニオンPとの間の回転摺動部rsとなり、また後者の場合には上記軸受手段が回転摺動部rsとなる。尚、ピニオンシャフトPSは、図示例のように全長に亘り略一様等径の軸状としてもよいし、或いは段付き軸状としてもよい。 Further, the pinion P may be directly fitted to the pinion shaft PS as shown in the figure, or may be fitted via a bearing means (not shown) such as a bearing bush. In the former case, the fitting portion between the pinion shaft PS and the pinion P becomes a rotary sliding portion rs between the pinion shaft PS and the pinion P. In the latter case, the bearing means is used. It becomes the rotary sliding part rs. The pinion shaft PS may have a shaft shape having a substantially uniform diameter over the entire length as shown in the illustrated example, or may have a stepped shaft shape.
またピニオンP及びサイドギヤSは、本実施形態ではベベルギヤに形成されており、しかも歯部を含む全体が各々鍛造等の塑性加工で形成されている。そのため、ピニオンP及びサイドギヤSの歯部を切削加工する場合のような機械加工上の制約を受けることなく歯部を任意の歯数比を以て高精度に形成可能である。尚、ベベルギヤに代えて他のギヤを採用してもよく、例えばサイドギヤSをフェースギヤとし且つピニオンPを平歯車又は斜歯歯車としてもよい。 In this embodiment, the pinion P and the side gear S are formed as bevel gears, and the entirety including the teeth is formed by plastic working such as forging. For this reason, the teeth can be formed with an arbitrary ratio of the number of teeth with high precision without being restricted by machining such as when cutting the teeth of the pinion P and the side gear S. Note that another gear may be used instead of the bevel gear. For example, the side gear S may be a face gear and the pinion P may be a spur gear or a bevel gear.
また、一対のサイドギヤSは、一対の出力軸Jの内端部がそれぞれスプライン嵌合6される円筒状の軸部Sjと、軸部SjからデフケースDCの半径方向外方に離れた位置に在ってピニオンPに噛合する円環状の歯部Sgと、出力軸Jの軸線Lと直交する扁平なリング板状に形成されて軸部Sj及び歯部Sgの間を一体に接続する中間壁部Swとを備える。尚、サイドギヤSの軸部Sjは、図示例ではカバー部C,C′のボス部Cbに回転自在に直接嵌合しているが、軸受を介して嵌合させてもよい。 The pair of side gears S are located at a cylindrical shaft portion Sj at which the inner ends of the pair of output shafts J are spline-fitted 6, and at a position radially outward of the differential case DC from the shaft portion Sj. An annular wall portion Sg meshing with the pinion P and an intermediate wall portion formed in a flat ring plate shape orthogonal to the axis L of the output shaft J and integrally connecting the shaft portion Sj and the tooth portion Sg. Sw. Although the shaft portion Sj of the side gear S is rotatably fitted directly to the boss portion Cb of the cover portions C and C 'in the illustrated example, it may be fitted via a bearing.
左右少なくとも一方(本実施形態では両方)のサイドギヤSの中間壁部Swには、中間壁部Swの内側面と外側面とに両端が各々開口して中間壁部Swを横切る貫通油路15が形成される。
In the middle wall portion Sw of at least one of the left and right side gears S (both in the present embodiment), a through
また、サイドギヤSの中間壁部Swは、中間壁部Swの半径方向の幅t1がピニオンPの最大直径d1よりも大きくなり、且つ中間壁部Swの、出力軸Jの軸方向での最大肉厚t2がピニオンシャフトPSの有効直径d2、即ち外径よりも小さくなるように形成(図1参照)される。これにより、後述するように、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようサイドギヤSを十分に大径化することができ、且つ出力軸Jの軸方向でサイドギヤSが十分に薄肉化できる。 The intermediate wall portion Sw of the side gear S has a width t1 in the radial direction of the intermediate wall portion Sw larger than the maximum diameter d1 of the pinion P, and the maximum thickness of the intermediate wall portion Sw in the axial direction of the output shaft J. The thickness t2 is formed so as to be smaller than the effective diameter d2 of the pinion shaft PS, that is, the outer diameter (see FIG. 1). Thereby, as will be described later, the diameter of the side gear S can be made sufficiently large so that the number of teeth Z1 of the side gear S can be set to be sufficiently larger than the number of teeth Z2 of the pinion P, and in the axial direction of the output shaft J, The side gear S can be made sufficiently thin.
またデフケースDCにおける左右一対のカバー部C,C′のうちの何れか一方側、例えば減速歯車機構RGとは反対側のカバー部Cは、ケース本体部4とは別体に形成されてケース本体部4にボルトBを以て着脱可能に結合される。結合手段としては、ネジ手段以外の種々の結合手段、例えば溶接手段やカシメ手段も使用可能である。また他方側のカバー部C′は、図示例ではケース本体部4に一体に形成され且つ減速歯車機構RGのキャリア53に結合されているが、カバー部C′を、一方側のカバー部Cと同様にケース本体部4とは別体に形成して、ケース本体部4にボルトBその他の結合手段を以て結合してもよい。
Further, one of the pair of left and right cover portions C and C ′ in the differential case DC, for example, the cover portion C on the opposite side to the reduction gear mechanism RG is formed separately from the
また各々のカバー部C,C′は、サイドギヤSの軸部Sjを同心状に囲繞して回転自在に嵌合支持する円筒状のボス部Cbと、外側面をデフケースDCの回転軸線Lと直交する平坦面としてボス部Cbの軸方向内端に一体に連設される板状の側壁部Csとを備えており、カバー部C,C′の側壁部Csは、出力軸Jの軸方向でケース本体部4の幅内に収まるように配置される。これにより、カバー部C,C′の側壁部Csがケース本体部4の端面より軸方向外方側に張出すことが抑えられるから、差動装置Dの、出力軸Jの軸方向での幅狭化を図る上で有利になる。
Each of the cover portions C and C ′ has a cylindrical boss portion Cb that surrounds the shaft portion Sj of the side gear S concentrically and rotatably fits and supports, and an outer surface thereof is orthogonal to the rotation axis L of the differential case DC. And a plate-shaped side wall Cs integrally connected to the inner end of the boss Cb in the axial direction as a flat surface to be formed. The side walls Cs of the covers C and C ′ are arranged in the axial direction of the output shaft J. It is arranged to fit within the width of the
また、カバー部C,C′の側壁部Csの内側面により、サイドギヤSの中間壁部Sw及び歯部Sgのうちの少なくとも一方(図示例では中間壁部Sw)の背面がワッシャWを介して回転自在に支持される。尚、このようなワッシャWを省略して、側壁部Csの内側面により、サイドギヤSの背面を回転自在に直接支持させてもよい。 In addition, the back surface of at least one of the intermediate wall portion Sw and the tooth portion Sg (in the illustrated example, the intermediate wall portion Sw) of the side gear S is disposed via the washer W by the inner side surface of the side wall portion Cs of the cover portions C and C ′. It is rotatably supported. Incidentally, such a washer W may be omitted, and the back surface of the side gear S may be directly supported rotatably by the inner surface of the side wall portion Cs.
而して、本実施形態のサイドギヤSは、内周側の軸部Sjと、軸部Sjから径方向外方に離間した外周側のサイドギヤSの歯部Sgとの間に、軸部Sjと歯部Sgとの間を一体に接続する扁平なリング板状の中間壁部Swを有しており、中間壁部Swの半径方向幅t1がピニオンPの最大直径d1よりも長くなっている。このため、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようにサイドギヤSをピニオンPに対し十分大径化できることから、ピニオンPからサイドギヤSへのトルク伝達時におけるピニオンシャフトPSの荷重負担を軽減できてピニオンシャフトPSの有効直径d2の小径化、延いてはピニオンPの、出力軸Jの軸方向での幅狭化(小径化)を図ることができる。 Thus, the side gear S of the present embodiment has a shaft portion Sj between the inner shaft portion Sj and the tooth portion Sg of the outer peripheral side gear S radially outwardly spaced from the shaft portion Sj. It has a flat ring-plate-shaped intermediate wall portion Sw that integrally connects with the tooth portion Sg, and the radial width t1 of the intermediate wall portion Sw is longer than the maximum diameter d1 of the pinion P. Therefore, the side gear S can have a sufficiently large diameter with respect to the pinion P so that the number of teeth Z1 of the side gear S can be set to be sufficiently larger than the number of teeth Z2 of the pinion P. Therefore, when transmitting torque from the pinion P to the side gear S, The load on the pinion shaft PS can be reduced, and the effective diameter d2 of the pinion shaft PS can be reduced, and the pinion P can be narrowed (reduced in diameter) in the axial direction of the output shaft J.
またこのようにピニオンシャフトPSの荷重負担が軽減されると共に、サイドギヤSにかかる反力が低下し、しかもサイドギヤSの中間壁部Swの背面がカバー部C,C′の側壁部Csに支持されることから、中間壁部Swを薄肉化してもサイドギヤSの必要な剛性強度を確保することは容易である。即ち、サイドギヤSに対する支持剛性を確保しつつサイドギヤSの中間壁部Swを十分に薄肉化することが可能となる。更にまた本実施形態では、小径化を可能としたピニオンシャフトPSの有効直径d2よりもサイドギヤSの中間壁部Swの最大肉厚t2が更に小さく形成されるため、サイドギヤSの中間壁部Swの更なる薄肉化が達成可能となる。しかもカバー部C,C′の側壁部Csが、外側面をデフケースDCの回転軸線Lと直交する平坦面とした板状に形成されることで、側壁部Cs自体の薄肉化も達成される。 The support thus with load bearing of the pinion shaft P S is reduced, the reaction force is reduced according to the side gears S, moreover the back of the intermediate wall portion Sw side gears S cover section C, and the side wall portion Cs of C ' Therefore, it is easy to secure the necessary rigidity of the side gear S even when the thickness of the intermediate wall portion Sw is reduced. That is, it is possible to sufficiently reduce the thickness of the intermediate wall portion Sw of the side gear S while securing the support rigidity for the side gear S. Furthermore, in the present embodiment, the maximum thickness t2 of the intermediate wall portion Sw of the side gear S is formed smaller than the effective diameter d2 of the pinion shaft PS capable of reducing the diameter. Further thinning can be achieved. Moreover, since the side wall portion Cs of the cover portions C and C 'is formed in a plate shape whose outer surface is a flat surface orthogonal to the rotation axis L of the differential case DC, the thickness of the side wall portion Cs itself is also reduced.
それらの結果、差動装置Dは、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸Jの軸方向で十分に幅狭化することが可能となるため、差動装置Dの周辺のレイアウト上の制約が多い伝動系に対しても差動装置Dを、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる。 As a result, the differential device D is required to be sufficiently narrow as a whole in the axial direction of the output shaft J while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. Is possible, the differential device D can be easily and easily incorporated with a high degree of freedom into a transmission system having many layout restrictions around the differential device D, and the transmission system can be downsized. It is very advantageous in doing so.
ところで、一方のカバー部Cの側壁部Csは、出力軸Jの軸方向外方から見た側面視で(即ち図2で見て)ピニオンPと重なる領域を含む第1の所定領域でサイドギヤSの背面を覆う油保持部7を備えており、更に上記側面視でピニオンPと重ならない第2の所定領域において、サイドギヤSの背面をデフケースDC外に露出させる肉抜き部8と、油保持部7からケース本体部4の周方向に離間し且つケース本体部4の半径方向に延びてボス部Cb及びケース本体部4の間を連結する連結腕部9とを併せ持つ構造となっている。換言すれば、カバー部Cの基本的に円板状をなす側壁部Csは、側壁部Csに切欠き状をなす肉抜き部8が周方向に間隔をおいて複数形成されることで、肉抜き部8を周方向に挟んで一方側に油保持部7が、他方側に連結腕部9がそれぞれ形成される構造形態となっている。
By the way, the side gear Cs of the side wall portion Cs of the one cover portion C has a first predetermined region including a region overlapping with the pinion P in a side view when viewed from the outside of the output shaft J in the axial direction (that is, as viewed in FIG. 2). And a lightening
このようなカバー部Cの側壁部Csの構造形態、特に油保持部7により、デフケースDCの回転による遠心力で径方向外方側に移動しようとする潤滑油を、油保持部7とケース本体部4とで覆われた空間に滞留させ易くなり、ピニオンP及びピニオンPの周辺部に潤滑油を保持し易くすることができる。
The structure of the side wall portion Cs of the cover portion C, in particular, the
また本実施形態では、図3に示されるように、他方のカバー部C′においても、側壁部Csに一方のカバー部Cと同様に肉抜き部8が形成される。但し、他方のカバー部C′の側壁部Csにおいては、油保持部7及び連結腕部9がケース本体部4に一体に形成される。尚、カバー部C,C′のうちの何れか一方のカバー部の側壁部Csを、肉抜き部を持たない(従ってサイドギヤSの中間壁部Sw及び歯部Sgの背面全面を覆う)円板状に形成してもよい。
In this embodiment, as shown in FIG. 3, the lightening
ところでデフケースDC内において、ピニオンPとピニオンシャフトPSとの対向部分には、図6に明示されるようにピニオンPの、サイドギヤSの径方向内方側の端面Pfiに隣接する空間60に臨んでいて空間60に飛散する潤滑油を捕捉・貯溜し得る油溜部61が、ピニオンPとピニオンシャフトPSとの相互に回転摺動自在な嵌合部(即ち回転摺動部rs)に油溜部61が直接連通するようにして形成される。油溜部61は、図示例ではピニオンPの内周面の、サイドギヤSの径方向内方側の端縁に環状の面取りを施すことで形成される。空間60は、左右一対のサイドギヤSの相対向面(図示例では各サイドギヤSの中間壁部Swの歯部Sg寄りの内側面)に形成される窪みSwaと、ピニオンPの、サイドギヤSの径方向内方側の端面Pfiと、の間に挟まれるように形成され、サイドギヤSの径方向で空間60の内周端に位置して窪みSwaの開口縁を構成するエッジ状の段部Eが、左右一対のサイドギヤSの相対向面に形成される。
Meanwhile, in the differential case DC, the opposing portion between the pinion P and the pinion shaft PS faces the
即ち、左右一対のサイドギヤSの相対向面(図示例では各サイドギヤSの中間壁部Swの歯部Sg寄りの内側面)には、遠心力で中間壁部Swの内側面を伝って径方向外方に流れる潤滑油流から一部の潤滑油を分離させて空間60に誘導して、飛散させ得るエッジ状の環状の段部Eが形成される。段部Eの頂面は、サイドギヤSの径方向で段部Eよりも内方側の中間壁部Swの内側面と同一平面をなして連続する。
That is, on the opposing surfaces of the pair of left and right side gears S (in the illustrated example, the inner surfaces of the intermediate wall portions Sw of the side gears S near the teeth Sg), the radial direction is transmitted along the inner surface of the intermediate wall portion Sw by centrifugal force. A part of the lubricating oil that is separated from the outwardly flowing lubricating oil flow is guided to the
ところでサイドギヤSは、鍛造成形、その他の種々の成形手法で製造可能であるが、例えば、サイドギヤSを鍛造成形する場合には、段部Eの頂面と段部Eに連なる外周面(段差面)との間にいわゆる鍛造ダレに因る丸みが形成されることがある。その場合には、外周面(段差面)に対して機械加工を施すことにより頂面と外周面(段差面)との間に先鋭なエッジを形成可能である。 Incidentally, the side gear S can be manufactured by forging or other various forming methods. For example, when the side gear S is forged, the outer peripheral surface (step surface) connected to the top surface of the step E and the step E is formed. ) May form roundness due to so-called forging. In that case, a sharp edge can be formed between the top surface and the outer peripheral surface (step surface) by performing machining on the outer peripheral surface (step surface).
尚、自動車が前進方向に回転してデフケースDCが正転方向Rに回転駆動される状態では、後述するようにサイドギヤSの貫通油路15を経て潤滑油が中間壁部Swの内側面の径方向での中間部付近に効率よく供給されるので、径方向での中間部付近に供給された潤滑油は、遠心力で中間壁部Swの内側面を伝って径方向外方、即ち歯部Sg側に流れようとし、その途中で段部Eに到達する。
In a state where the vehicle rotates in the forward direction and the differential case DC is driven to rotate in the normal rotation direction R, the lubricating oil flows through the
而して、段部Eは、遠心力で中間壁部Swの内側面を伝って径方向外方に流れる潤滑油流から一部の潤滑油を段部Eのエッジ部分で効果的に分離させて、一部の潤滑油を空間60に誘導し、空間60に飛散させることができる。これにより、飛散した潤滑油を、空間60に臨む油溜部61で効率よく捕捉貯溜させることができるため、油溜部61を経てピニオンP及びピニオンシャフトPSの間の回転摺動部rsに潤滑油が十分に供給される。それと共に、潤滑油流の残部は、段部Eのエッジ部分から飛散せずに段部Eの段差面を伝ってサイドギヤSの歯部Sgに向かう流れとなり、歯部SgとピニオンPとの噛合部を十分に潤滑可能である。これにより、ピニオンPがピニオンPの小径化等に関係して高速回転するような過酷な運転状況となっても、噛合部に対する潤滑と、ピニオンPとピニオンシャフトPSとの間の回転摺動部rsに対する潤滑とが共に十分に行われる。
Thus, the step portion E effectively separates a part of the lubricating oil from the lubricating oil flow flowing radially outward along the inner surface of the intermediate wall portion Sw by centrifugal force at the edge portion of the step portion E. Thus, a part of the lubricating oil can be guided to the
しかも本実施形態のエッジ状の段部Eは、段部Eの頂面を通り且つデフケースDCの回転軸線Lと直交する仮想平面feが油溜部61の内部空間61s又は開口縁61eを通るように形成される。これにより、潤滑油流から段部Eで分離して空間60に誘導され飛散された潤滑油を、油溜部61に効果的に捕捉させて、油溜部61に貯溜させ易くすることができるため、ピニオンP及びピニオンシャフトPSの間の回転摺動部rsに潤滑油をより効率よく供給可能となる。更に本実施形態の差動装置Dにおいては、前述のようにデフケースDCの、出力軸Jの軸方向での幅狭化を図るべくサイドギヤSをピニオンPに対して十分大径化した構造としているが、サイドギヤSの大径化に関係して、中間壁部Swの内側面を伝って径方向外方に流れる潤滑油流がより大きな遠心力を受ける。このため、潤滑油流から一部の潤滑油が段部Eで分離飛散する効果が大きくなるから、飛散した潤滑油を油溜部61に一層効果的に捕捉させることができる。
In addition, the edge-shaped step portion E of the present embodiment passes through the top surface of the step portion E and the imaginary plane fe orthogonal to the rotation axis L of the differential case DC passes through the
ところで、本実施形態では、ピニオンシャフトPSの両外端面PSfが、前述のようにデフケースDCの外周面の開口DCo(即ちケース本体部4の貫通支持孔4aの外端開口)を通してミッションケースMの内部空間1に臨んでいるが、ピニオンシャフトPSの両端部には、図6に明示したように一端が開口し且つ他端が閉塞された有底中空部Tが、ピニオンシャフトPSの両外端面PSfより凹ませるようにして形成される。有底中空部(中空円筒部)Tは、ピニオンシャフトPSの軸線方向に長く延びる有底の円筒孔状に形成され、有底中空部Tの孔の深さは、孔がピニオンシャフトPS及びピニオンPの間の回転摺動部rsを過ぎて更に内方側に延びるように深く設定される。従って、有底中空部Tは、有底中空部Tの少なくとも中間部が回転摺動部rsに同心状に囲繞される配置形態となる。
By the way, in this embodiment, both outer end surfaces PSf of the pinion shaft PS pass through the opening DCo on the outer peripheral surface of the differential case DC (that is, the outer end opening of the through
ピニオンシャフトPSにおける有底中空部Tの周壁には、有底中空部T内に貯溜した潤滑油を遠心力で回転摺動部rsに誘導可能な複数の油誘導孔G…が設けられる。油誘導孔G…は、有底中空部Tの周壁の内周から外周に向かってピニオンシャフトPSの軸方向外方側に傾斜して該周壁を横切るように形成される。複数の油誘導孔G…は、有底中空部Tの長手方向に間隔をおいて配列して形成されるものであり、更にそのような油誘導孔G…の配列群が有底中空部Tの周方向に間隔をおいて複数群、即ち有底中空部Tの中心軸線から放射状に配設される。また、有底中空部Tの周壁の内周への油誘導孔Gの開口端Giは、有底中空部Tの長手方向で有底中空部Tの底面bより離間しているため、有底中空部Tの、開口端Giよりも底面b側の中空部分Taが、必要な油量の潤滑油を貯溜可能な油溜として機能し得るものである。 A plurality of oil guide holes G that can guide the lubricating oil stored in the bottomed hollow portion T to the rotary sliding portion rs by centrifugal force are provided on the peripheral wall of the bottomed hollow portion T of the pinion shaft PS. The oil guide holes G are formed so as to be inclined from the inner periphery to the outer periphery of the peripheral wall of the bottomed hollow portion T toward the outside in the axial direction of the pinion shaft PS so as to cross the peripheral wall. The plurality of oil guide holes G are formed so as to be arranged at intervals in the longitudinal direction of the bottomed hollow portion T. Further, an array group of such oil guide holes G is formed by the bottomed hollow portion T. Are arranged radially from the central axis of the bottomed hollow portion T at intervals in the circumferential direction. The open end Gi of the oil guide hole G to the inner periphery of the peripheral wall of the bottomed hollow portion T is separated from the bottom surface b of the bottomed hollow portion T in the longitudinal direction of the bottomed hollow portion T. The hollow portion Ta of the hollow portion T, which is closer to the bottom surface b than the open end Gi, can function as an oil reservoir capable of storing a required amount of lubricating oil.
このようなピニオンシャフトPSにおける有底中空部Tの特設構造によれば、エンジンの停止時には、停止前の差動装置D等の作動に伴いミッションケースM内で飛散した潤滑油やミッションケースMの天井壁Mtに付着して天井壁Mtから滴下する潤滑油を、停止時に上向き姿勢となった有底中空部Tに貯溜、保持しておくことができる。そして、有底中空部T内に貯溜した潤滑油を差動装置Dの作動開始の際に油誘導孔Gから遠心力でピニオンPとピニオンシャフトPSの間の回転摺動部rsに迅速に供給することができる。この場合、油誘導孔Gは、有底中空部Tの周壁の内周から外周に向かってピニオンシャフトPSの軸方向外方側に傾斜して延びるので、差動装置Dの停止時には有底中空部Tに貯溜保持した潤滑油の流出を効果的に抑制できる一方、貯溜した潤滑油を差動装置Dの作動開始の際には遠心力を利用して油誘導孔Gから回転摺動部rsに対して効率的に供給可能である。 According to such a special structure of the bottomed hollow portion T in the pinion shaft PS, when the engine is stopped, the lubricating oil scattered in the transmission case M due to the operation of the differential device D or the like before the stop or the transmission case of the transmission case M is stopped. The lubricating oil adhering to the ceiling wall Mt and dripping from the ceiling wall Mt can be stored and held in the bottomed hollow portion T that is in the upward posture when stopped. Then, the lubricating oil stored in the bottomed hollow portion T is promptly supplied to the rotary sliding portion rs between the pinion P and the pinion shaft PS from the oil guide hole G by centrifugal force when the operation of the differential device D is started. can do. In this case, the oil guide hole G extends from the inner periphery of the peripheral wall of the bottomed hollow portion T toward the outer periphery in the axially outward direction of the pinion shaft PS. While the lubricating oil stored and held in the portion T can be effectively suppressed, the stored lubricating oil can be removed from the rotary sliding portion rs from the oil guide hole G using centrifugal force when the differential device D starts operating. Can be supplied efficiently.
尚、差動装置Dの停止位置によっては、有底中空部Tが水平姿勢となって潤滑油を貯溜困難な状況も起こり得るが、殆どの場合は、複数ある有底中空部Tの何れかが上向きの鉛直姿勢又は傾斜姿勢となって、上向きの鉛直姿勢又は傾斜姿勢となった有底中空部Tに、ミッションケースM内に飛散された潤滑油やミッションケースMの天井壁Mtから滴下された潤滑油を貯溜可能である。 In addition, depending on the stop position of the differential device D, the bottomed hollow portion T may be in a horizontal position, and it may be difficult to store the lubricating oil. However, in most cases, any one of the plurality of bottomed hollow portions T may be used. Is in the upward vertical posture or the inclined posture, and the lubricating oil scattered in the transmission case M or the ceiling wall Mt of the transmission case M is dropped into the bottomed hollow portion T in the upward vertical posture or the inclined posture. Lubricating oil can be stored.
更に本実施形態においては、デフケースDCの外周壁、即ちケース本体部4に、ケース本体部4の内外を貫通してミッションケースM内の潤滑油、例えばミッションケースMの天井壁Mtから滴下された潤滑油をデフケースDC内に取り込み可能な各複数の第1,第2油取込み孔H1,H2が、横断面円形に且つデフケースDCの周方向に間隔をおいて形成される。しかも第1,第2油取込み孔H1,H2は、図2に明示したように、デフケースDCの周方向で隣り合う2個のピニオンPの中間点mより各ピニオンP側にそれぞれオフセットした位置に配置される。
Further, in the present embodiment, the lubricating oil in the transmission case M, for example, dripping from the ceiling wall Mt of the transmission case M, penetrates through the inside and outside of the case
また各々の油取込み孔H1,H2は、デフケースDCの回転軸線Lと直交する投影面で見て、油取込み孔H1,H2の軸線が油取込み孔H1,H2の内側開口端Hiから外側開口端Hoに向かって車両前進時のデフケースDCの回転方向R前側に傾斜するように形成される。その上、各々のピニオンPは、上記投影面で見て、各々の油取込み孔H1,H2の内側開口端Hiの周方向一端と回転軸線Lとを結ぶ第1仮想線L1と、各々の油取込み孔H1,H2の内側開口端Hiの周方向他端と回転軸線Lとを結ぶ第2仮想線L2とに挟まれた領域Aの外に配置される。 When viewed on a projection plane orthogonal to the rotation axis L of the differential case DC, each of the oil intake holes H1 and H2 has an axis extending from the inner opening end Hi to the outer opening end of the oil intake holes H1 and H2. It is formed to incline toward Ho in the rotation direction R front side of the differential case DC when the vehicle advances. In addition, each of the pinions P includes a first imaginary line L1 connecting one end in the circumferential direction of the inner opening end Hi of each of the oil intake holes H1 and H2 and the rotation axis L, as viewed on the projection plane, and each of the oils. The intake holes H1 and H2 are arranged outside a region A sandwiched between a second imaginary line L2 connecting the other end in the circumferential direction of the inner open end Hi and the rotation axis L.
また本実施形態では前述の如くサイドギヤSに対しピニオンPを十分小径化し得る扁平デフ構造であることから、各油取込み孔H1,H2をデフケースDCの周方向で上記中間点mよりピニオンP側にオフセット(即ちピニオンP寄りに)配置しても、ピニオンPを油取込み孔H1,H2の内側開口端Hiに対応した領域Aの外に無理なく配置可能となる。換言すれば、ピニオンPは、各油取込み孔H1,H2がピニオンP側にオフセット配置されてもピニオンPを領域Aの外に無理なく配置し得るように、サイドギヤSに対して十分小径に形成される。 Further, in the present embodiment, as described above, since the pinion P has a flat differential structure capable of sufficiently reducing the diameter of the pinion P with respect to the side gear S, the oil intake holes H1 and H2 are arranged on the pinion P side from the intermediate point m in the circumferential direction of the differential case DC. Even if the pinion P is arranged offset (that is, closer to the pinion P), the pinion P can be easily arranged outside the region A corresponding to the inner opening ends Hi of the oil intake holes H1 and H2. In other words, the pinion P is formed to have a sufficiently small diameter with respect to the side gear S so that even if the oil intake holes H1 and H2 are offsetly arranged on the pinion P side, the pinion P can be easily arranged outside the area A. Is done.
このようなデフケースDCの外周壁における油取込み孔H1,H2の特設によれば、車両前進時であってデフケースDCが正転方向Rに比較的低速で回転している状態では、ミッションケースMの天井壁Mtから滴下する潤滑油が、特定方向(即ち効率よくデフケースDC内に取込み得る方向)に傾斜した各複数の第1,第2油取込み孔H1,H2を通してデフケースDC内に効率よく取込み可能となる。しかも油取込み孔H1,H2のうち、特に各ピニオンPの正転方向R前側で中間点mよりピニオンP側にオフセット配置された第1油取込み孔H1は、デフケースDC内に取り込まれ滴下された潤滑油を、第1油取込み孔H1の近くのピニオンPとサイドギヤSとの噛合部に効率よく供給可能となる。一方、各ピニオンPの正転方向Rの後側で中間点mよりピニオンP側にオフセット配置された第2油取込み孔H2は、デフケースDC内に取り込まれ滴下された潤滑油を、ピニオンPに邪魔されることなく(即ちピニオンPが障害物となって潤滑油経路に立ちはだかることなく)ピニオンシャフトPSの、デフケースDCの回転中心L寄りの外周部に供給でき、そこからは潤滑油が遠心力でピニオンシャフトPSの外周面を伝って外端側、即ちピニオンシャフトPSとピニオンPとの間の回転摺動部rsへ向かうため、回転摺動部rsに対しても効率よく潤滑油を供給可能である。それらの結果、ミッションケースMの天井壁Mtから滴下された潤滑油を、ピニオンPの、サイドギヤSとの噛合部は元より、ピニオンシャフトPSとの回転摺動部rsにも効率よく供給して全体として潤滑効率を高めることができる。尚、油取込み孔H1,H2からデフケースDC内に取り込まれ滴下された潤滑油の一部は、サイドギヤSの中間壁部Swの内側面にも到達し、中間壁部Swの内側面を伝って遠心力で径方向外方側、即ち歯部Sg側に流れる。 According to the special configuration of the oil intake holes H1 and H2 in the outer peripheral wall of the differential case DC, when the vehicle is moving forward and the differential case DC is rotating at a relatively low speed in the normal rotation direction R, the transmission case M The lubricating oil dropped from the ceiling wall Mt can be efficiently taken into the differential case DC through the plurality of first and second oil intake holes H1 and H2 inclined in a specific direction (that is, a direction that can be efficiently taken into the differential case DC). Becomes In addition, among the oil intake holes H1 and H2, the first oil intake hole H1, which is arranged on the pinion P side from the intermediate point m on the front side in the normal rotation direction R of each pinion P, is taken into the differential case DC and dropped. Lubricating oil can be efficiently supplied to the meshing portion between the pinion P and the side gear S near the first oil intake hole H1. On the other hand, the second oil intake hole H2, which is arranged on the pinion P side from the intermediate point m behind the forward rotation direction R of each pinion P, allows the lubricating oil taken in and dropped into the differential case DC to the pinion P. The pinion shaft PS can be supplied to the outer peripheral portion of the pinion shaft PS near the rotation center L of the differential case DC without obstruction (that is, without the pinion P acting as an obstacle and standing on the lubricating oil path), from which the lubricating oil is centrifugally driven. As it travels along the outer peripheral surface of the pinion shaft PS to the outer end side, that is, the rotary sliding portion rs between the pinion shaft PS and the pinion P, the lubricating oil can be efficiently supplied also to the rotary sliding portion rs. It is. As a result, the lubricating oil dropped from the ceiling wall Mt of the transmission case M is efficiently supplied not only to the meshing portion of the pinion P with the side gear S but also to the rotary sliding portion rs with the pinion shaft PS. Lubrication efficiency can be increased as a whole. In addition, a part of the lubricating oil taken in and dropped into the differential case DC from the oil intake holes H1 and H2 also reaches the inner surface of the intermediate wall portion Sw of the side gear S and travels along the inner surface of the intermediate wall portion Sw. Due to the centrifugal force, it flows to the radially outward side, that is, to the tooth portion Sg side.
ところで、デフケースDCにおけるカバー部C,C′の側壁部Csの内側面と、サイドギヤSの外側面との間には、前述のようにワッシャWが介装されるが、ワッシャWを、貫通油路15への潤滑油経路を考慮した適切な定位置に位置決め保持するために、側壁部Csの内側面とサイドギヤSの外側面との相対向面の少なくとも一方(図示例ではサイドギヤSの外側面)には環状のワッシャ保持溝16が形成され、ワッシャ保持溝16にはワッシャWが嵌合される。そして、ワッシャWの内周部が貫通油路15の、中間壁部Swの外側面への開口部に臨むように、ワッシャW及び貫通油路15の相対位置が設定される。これにより、カバー部C,C′の側壁部Csの内側面とサイドギヤSの外側面との間隙において遠心力で半径方向外方に流出しようとする潤滑油の流動がワッシャWで抑制されて、ワッシャWの内周側から貫通油路15を経てサイドギヤSの内方側に誘導できるため、貫通油路15を通過してサイドギヤSの内側面を径方向外方に伝って歯部Sg側へ向かう潤滑油量を増やすことができる。
By the way, the washer W is interposed between the inner surface of the side wall Cs of the cover portions C and C 'and the outer surface of the side gear S in the differential case DC as described above. In order to position and maintain the lubricating oil path to the
また図4,図5を併せて参照して、カバー部C,C′の側壁部Csの内側面には、デフケースDCの回転時に肉抜き部8の周縁からワッシャW及び貫通油路15への潤滑油の流入を誘導し得る油ガイド溝17が凹設される。油ガイド溝17は、肉抜き部8の周縁から油保持部7の接線方向に対し斜めに(より具体的に言えば、デフケースDCの後述する正転方向後方に向かって中心軸線L側に)傾斜して延びる第1内側壁17aと、肉抜き部8の周縁から油保持部7の接線方向に延びる第2内側壁17bと、両内側壁17a,17bの内端間を接続する奥壁部17cとによって、概ね三角形状に形成される。しかも油ガイド溝17の、奥壁部17cが臨む内奥溝部17iは、デフケースDCの回転軸線Lと直交する投影面で見てワッシャWの一部と常にオーバラップし、且つデフケースDCの回転に伴い貫通油路15の、中間壁部Swの外側面への開口部とも一時的にオーバラップし得る位置に配置される。
4 and 5, the inner surface of the side wall portion Cs of the cover portions C and C 'is connected to the washer W and the through
而して、自動車を前進させるべくエンジンから減速歯車機構RGを介して伝達される回転力でデフケースDCが正転方向Rに回転される場合には、ミッションケースM内でデフケースDCの周囲を飛散する潤滑油が、潤滑油と回転中のカバー部C,C′との相対速度差により肉抜き部8の周縁から油保持部7内(即ち油ガイド溝17)に流入する。この場合、油ガイド溝17に流入した潤滑油は、特に第1内側壁17aの案内作用により油ガイド溝17の、回転方向での最後方位置の内奥溝部17iに向けて効率よく集められて、内奥溝部17iからワッシャW及び貫通油路15側へ効率よく誘導される。そして、貫通油路15を通過してサイドギヤSの中間壁部Swの内側面に達した潤滑油は、前述の如く遠心力で中間壁部Swの内側面を伝って径方向外方側に流動する。上記した肉抜き部8から油ガイド溝17を経て貫通油路15に至る一連の油路が、サイドギヤSの中間壁部Swの内側面(即ち一対のサイドギヤSの相対向面)に潤滑油を導入する油導入経路Osを構成する。
Thus, when the differential case DC is rotated in the normal rotation direction R by the rotational force transmitted from the engine via the reduction gear mechanism RG to advance the vehicle, the differential case DC scatters around the differential case DC in the transmission case M. The lubricating oil flows into the oil holding portion 7 (that is, the oil guide groove 17) from the periphery of the lightening
更に本実施形態のカバー部C,C′は、肉抜き部8の周縁部において、デフケースDCの回転時にケース本体部4の内方側への潤滑油の流入を誘導し得る油誘導斜面fを有している。また、油ガイド溝17の入口は油誘導斜面fに開口している。そして、油誘導斜面fは、油保持部7及び連結腕部9をデフケースDCの周方向に横切る横断面(図4,5の部分断面図を参照)で見て、油保持部7及び連結腕部9の各々の外側面から内側面に向かって油保持部7及び連結腕部9の各々の周方向中央側に傾斜した斜面より構成される。而して、油誘導斜面fの油誘導作用によれば、デフケースDCの回転に伴いカバー部C,C′の外側から内側へ潤滑油がスムーズに流入可能となり、特に油ガイド溝17には、油誘導斜面fに開口する入口から潤滑油を効率よく流入させることができる。
Further, the cover portions C and C ′ of the present embodiment have an oil guiding slope f at the peripheral edge of the lightening
次に、上記した実施形態の作用について説明する。本実施形態の差動装置Dは、デフケースDCにエンジンから減速歯車機構RGを介して回転力を受けた場合に、ピニオンPがピニオンシャフトPS回りに自転しないでデフケースDCと共にデフケースDCの回転軸線L回りに公転するときは、左右のサイドギヤSが同速度で回転駆動されて、駆動力が均等に左右の出力軸Jに伝達される。また、自動車の旋回走行等により左右の出力軸Jに回転速度差が生じるときは、ピニオンPが自転しつつ公転することで、ピニオンPから左右のサイドギヤSに対して差動回転を許容しつつ回転駆動力が伝達される。以上は、従来周知の差動装置の作動と同様である。 Next, the operation of the above embodiment will be described. When the differential device D of this embodiment receives rotational force from the engine via the reduction gear mechanism RG to the differential case DC, the pinion P does not rotate around the pinion shaft PS, and the rotational axis L of the differential case DC together with the differential case DC. When revolving around, the left and right side gears S are driven to rotate at the same speed, and the driving force is transmitted evenly to the left and right output shafts J. Further, when a rotational speed difference occurs between the left and right output shafts J due to turning of the automobile or the like, the pinion P revolves while rotating, thereby allowing differential rotation from the pinion P to the left and right side gears S. The rotational driving force is transmitted. The above is the same as the operation of the conventionally known differential.
ところで自動車の前進走行状態でエンジンの動力が減速歯車機構RG及び差動装置Dを介して左右の出力軸Jに伝達される場合に、減速歯車機構RGの各可動要素及びデフケースDCの回転に伴いミッションケースM内の各所で潤滑油が勢いよく飛散するが、飛散した潤滑油の一部は、前述のようにカバー部C,C′の内側に肉抜き部8から流入する。
By the way, when the power of the engine is transmitted to the left and right output shafts J via the reduction gear mechanism RG and the differential device D in the forward running state of the automobile, the rotation of each movable element of the reduction gear mechanism RG and the differential case DC is accompanied. Although the lubricating oil scatters vigorously at various points in the transmission case M, a part of the scattered lubricating oil flows into the inside of the cover portions C and C 'from the lightening
この場合、カバー部C,C′の側壁部Csの内側面に形成される油ガイド溝17に流入した潤滑油は、前述のように第1内側壁17aの案内作用により内奥溝部17iに向けて効率よく集められて、そこからワッシャW及び貫通油路15側へ効率よく誘導される。そのため、ワッシャWに対する潤滑効果が高められることは元より、貫通油路15を通過してサイドギヤSの中間壁部Swの内側面に到達する潤滑油量を十分に確保可能である。そして、到達した潤滑油は、前述のように遠心力で中間壁部Swの内側面を伝って径方向外方側に流動し、潤滑油流の一部は、エッジ状の段部Eから空間60に飛散して油溜部61に捕捉貯溜され、ピニオンシャフトPSとピニオンPとの間の回転摺動部rsを潤滑するが、潤滑油流の残部は、段部Eの段差面を伝ってサイドギヤSの歯部Sgに到達し、歯部SgとピニオンPとの噛合部を潤滑する。その結果、サイドギヤSの大径化でサイドギヤSの歯部Sgが出力軸Jから遠く離れる場合やピニオンPが高速回転する過酷な運転状況の場合でも、上記した噛合部や回転摺動部rsへ潤滑油を効率よく供給可能となるから、噛合部や回転摺動部rsの焼付きを効果的に防止できる。
In this case, the lubricating oil that has flowed into the
また本実施形態では、ピニオンシャフトPSの外端面PSfに、ミッションケースMの内部空間1に開口して油溜として機能し得る有底中空部Tが凹設されるため、エンジンの停止時には、停止前の差動装置D等の作動に伴いミッションケースM内で飛散した潤滑油やミッションケースMの天井壁Mtに付着して天井壁Mtから滴下する潤滑油を、上向き姿勢にある有底中空部Tに貯溜、保持しておくことができる。従って、有底中空部T内に貯溜した潤滑油を、差動装置Dの作動開始の際に有底中空部Tの周壁の油誘導孔Gから遠心力でピニオンPとピニオンシャフトPSの間の回転摺動部rsに迅速に供給できるから、作動開始の当初よりピニオンPとピニオンシャフトPSの間の回転摺動部rsを遅れなく十分に潤滑することができる。
Further, in the present embodiment, since the bottom end hollow portion T which is open to the
更に本実施形態においては、デフケースDCの外周壁に、ミッションケースMの天井壁Mtから滴下された潤滑油をデフケースDC内に取り込み可能な複数の第1,第2油取込み孔H1,H2が形成され、第1,第2油取込み孔H1,H2の形成位置や向きは、上記した通りである。そのため、車両前進時であってデフケースDCが正転方向Rに比較的低速で回転している状態では、ミッションケースMの天井壁Mtから滴下する潤滑油が第1,第2油取込み孔H1,H2を通してデフケースDC内に効率よく取込み可能となり、しかも各ピニオンPの正転方向R前側で且つ相隣なるピニオンP間の中間点mよりピニオンP側にオフセット配置された第1油取込み孔H1は、デフケースDC内に取り込まれた潤滑油を、第1油取込み孔H1の近くのピニオンPとサイドギヤSとの噛合部に効率よく供給可能となる。一方、各ピニオンPの正転方向Rの後側で且つ中間点mよりピニオンP側にオフセット配置された第2油取込み孔H2は、デフケースDC内に取り込まれ滴下された潤滑油を、ピニオンPに邪魔されずにピニオンシャフトPSの、デフケースDCの回転中心L寄りの外周部に供給でき、そこからは潤滑油が遠心力でピニオンシャフトPSの外周面を伝って外端側に流動することで、ピニオンシャフトPSとピニオンPとの間の回転摺動部rsに対しても効率よく潤滑油を供給可能である。それらの結果、ミッションケースMの天井壁Mtから滴下された潤滑油を、ピニオンPのサイドギヤSとの噛合部は元より、ピニオンシャフトPSとの回転摺動部rsにも効率よく供給して全体として潤滑効率を更に高めることができる。 Further, in the present embodiment, a plurality of first and second oil intake holes H1 and H2 are formed on the outer peripheral wall of the differential case DC so that the lubricating oil dropped from the ceiling wall Mt of the transmission case M can be taken into the differential case DC. The formation positions and directions of the first and second oil intake holes H1 and H2 are as described above. Therefore, when the vehicle is moving forward and the differential case DC is rotating at a relatively low speed in the normal rotation direction R, the lubricating oil dripping from the ceiling wall Mt of the transmission case M receives the first and second oil intake holes H1, The first oil intake hole H1 that can be efficiently taken into the differential case DC through H2 and that is offset toward the pinion P side from the intermediate point m between the adjacent pinions P in the forward direction R of each pinion P and The lubricating oil taken into the differential case DC can be efficiently supplied to the meshing portion between the pinion P and the side gear S near the first oil intake hole H1. On the other hand, the second oil intake hole H2, which is disposed behind the pinion P in the forward rotation direction R and offset from the intermediate point m to the pinion P side, allows the lubricating oil taken in and dropped into the differential case DC to pass through the pinion P The lubricating oil can be supplied to the outer peripheral portion of the pinion shaft PS near the rotation center L of the differential case DC without being disturbed by the lubricating oil flowing from the outer peripheral surface of the pinion shaft PS to the outer end side by centrifugal force. Also, it is possible to efficiently supply the lubricating oil to the rotary sliding portion rs between the pinion shaft PS and the pinion P. As a result, the lubricating oil dropped from the ceiling wall Mt of the transmission case M is efficiently supplied not only to the meshing portion of the pinion P with the side gear S but also to the rotary sliding portion rs with the pinion shaft PS. As a result, the lubrication efficiency can be further increased.
尚、本実施形態のデフケースDCは、デフケースDCの外周部の一部をミッションケースMの内底部に貯溜された潤滑油の油面下に浸漬させてもよいし或いは浸漬させなくてもよい。そして、特に油面下に浸漬させる場合には、車両前進時であってデフケースDCが正転方向Rに回転している状態で第1,第2油取込み孔H1,H2からデフケースDC内に貯溜された潤滑油を効率よく掬い上げることができるから、デフケースDC内の各部の潤滑を一層効率よく行うことができる。 In the differential case DC of the present embodiment, a part of the outer peripheral portion of the differential case DC may or may not be immersed below the oil level of the lubricating oil stored in the inner bottom of the transmission case M. In particular, when the vehicle is immersed below the oil level, the vehicle is stored in the differential case DC from the first and second oil intake holes H1 and H2 while the differential case DC is rotating in the normal rotation direction R when the vehicle is moving forward. Since the lubricating oil thus obtained can be efficiently scooped up, each part in the differential case DC can be more efficiently lubricated.
ところで上記した特許文献2,3で例示したような従来の差動装置(特にデフケース内にピニオン(差動ギヤ)と、ピニオン(差動ギヤ)に噛合する一対のサイドギヤ(出力ギヤ)とを備えた従来の差動装置)では、通常、サイドギヤ(出力ギヤ)の歯数Z1とピニオン(差動ギヤ)の歯数Z2として、例えば特許文献3に示される14×10、或いは16×10または13×9が用いられている。この場合、差動ギヤに対する出力ギヤの歯数比率Z1/Z2は、それぞれ1.4 、1.6 、1.44となっている。また従来の差動装置では、歯数Z1,Z2の、その他の組合わせとして、例えば15×10、17×10、18×10、19×10、または20×10となっているものも知られており、この場合の歯数比率Z1/Z2は、それぞれ1.5 、1.7 、1.8 、1.9 、2.0 となっている。
By the way, a conventional differential device as exemplified in
一方、今日では、差動装置周辺でのレイアウト上の制約を伴う伝動装置も増えており、差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)することが市場で要求されている。しかしながら従来の既存の差動装置では、上記歯数比率の組み合わせからも明らかなように出力軸の軸方向で幅広の構造形態となっているため、上記した市場の要求を満たすことが困難な状況にある。 On the other hand, today, the number of power transmission devices accompanied by layout restrictions around the differential device is increasing, and the differential device is sufficiently narrowed in the axial direction of the output shaft while securing the gear strength of the differential device (ie, Flattening) is required in the market. However, the conventional existing differential has a structure that is wide in the axial direction of the output shaft, as is clear from the combination of the above-mentioned tooth number ratios. It is in.
そこで差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)し得る差動装置Dの構成例を、上記した実施形態とは異なる観点より、以下に具体的に特定する。尚、この構成例に係る差動装置Dの各構成要素の構造は、図1〜図6で説明した上記実施形態の差動装置Dの各構成要素と同様であるので、各構成要素の参照符号は、上記実施形態のそれと同じ符号を使用し、構造説明は省略する。 Therefore, a configuration example of the differential device D capable of sufficiently narrowing (ie, flattening) the differential device in the axial direction of the output shaft while securing the gear strength of the differential device will be described from a viewpoint different from the above-described embodiment. , Are specified below. Note that the structure of each component of the differential device D according to this configuration example is the same as each component of the differential device D of the above embodiment described with reference to FIGS. The reference numerals are the same as those in the above embodiment, and the description of the structure is omitted.
先ず、差動装置Dを出力軸Jの軸方向に十分に幅狭化(即ち扁平化)するための基本的な考え方を、図7を併せて参照して説明すると、それは、
[1]ピニオンP即ち差動ギヤに対するサイドギヤS即ち出力ギヤの歯数比率Z1/Z2を従来既存の差動装置の歯数比率よりも増大させる。(これにより、ギヤのモジュール(従って歯厚)が減少してギヤ強度が低下する一方で、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するが、全体としては後述する如くギヤ強度は低下する。)
[2]ピニオンPのピッチ円錐距離PCDを従来既存の差動装置のピッチ円錐距離よりも増やす。(これにより、ギヤのモジュールが増加してギヤ強度が増大すると共に、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するため、全体としては後述する如くギヤ強度は大幅に増大する。)
従って、上記[1]によるギヤ強度低下の量と、上記[2]によるギヤ強度増大の量とが等しくなるか、或いは上記[1]によるギヤ強度低下の量よりも、上記[2]によるギヤ強度増大の量の方が上回るように、歯数比率Z1/Z2及びピッチ円錐距離PCDを設定することにより、全体としてギヤ強度を従来既存の差動装置と比べて同等もしくは増大させることができる。
First, the basic concept for sufficiently narrowing (ie, flattening) the differential device D in the axial direction of the output shaft J will be described with reference to FIG.
[1] The ratio of the number of teeth Z1 / Z2 of the pinion P, that is, the side gear S, that is, the output gear to the differential gear, is made larger than that of the conventional differential. (Thus, while the gear module (and thus the tooth thickness) decreases and the gear strength decreases, the pitch circle diameter of the side gear S increases and the transmission load at the gear meshing portion decreases and the gear strength increases. As a whole, the gear strength decreases as described later.)
[2] The pitch cone distance PCD of the pinion P is increased more than the pitch cone distance of the conventional differential. (Thus, the number of gear modules increases, the gear strength increases, and the pitch circle diameter of the side gear S increases, the transmission load at the gear meshing portion decreases, and the gear strength increases. The gear strength is greatly increased like this.)
Therefore, the amount of reduction in gear strength due to [1] is equal to the amount of increase in gear strength according to [2], or the amount of reduction in gear strength according to [2] is greater than the amount of reduction in gear strength according to [1]. By setting the tooth number ratio Z1 / Z2 and the pitch cone distance PCD so that the amount of increase in strength is greater, the gear strength can be made equal to or greater than that of a conventional differential device as a whole.
次に上記[1][2]に基づくギヤ強度の変化態様を数式により具体的に検証する。尚、検証は、以下の実施形態で説明する。先ず、サイドギヤSの歯数Z1を14、ピニオンPの歯数Z2を10とした時の差動装置D′を「基準差動装置」とする。また「変化率」とは、基準差動装置D′を基準(即ち100 %)とした場合の各種変数の変化率である。
[1]について
サイドギヤSのモジュールをMO、ピッチ円直径をPD1 、ピッチ角をθ1 、ピッチ円錐距離をPCD、ギヤ噛合部での伝達荷重をF、伝達トルクをTOとした場合に、ベベルギヤの一般的な公式より、
MO=PD1 /Z1
PD1 =2PCD・ sinθ1
θ1 = tan-1(Z1/Z2)
これら式から、ギヤのモジュールは、
MO=2PCD・ sin{ tan-1(Z1/Z2)}/Z1 ・・・(1)
となり、
また基準差動装置D′のモジュールは、2PCD・ sin{ tan-1(7/5)}/14
となる。
Next, the manner in which the gear strength changes based on the above [1] and [2] will be specifically verified by mathematical expressions. The verification will be described in the following embodiment. First, the differential D 'when the number of teeth Z1 of the side gear S is 14 and the number of teeth Z2 of the pinion P is 10 is referred to as a "reference differential". The "rate of change" is the rate of change of various variables when the reference differential D 'is used as a reference (that is, 100%).
[1] When the module of the side gear S is MO, the pitch circle diameter is PD 1 , the pitch angle is θ 1 , the pitch cone distance is PCD, the transmission load at the gear meshing portion is F, and the transmission torque is TO, the bevel gear From the general formula of
MO = PD 1 / Z1
PD 1 = 2PCD · sin θ 1
θ 1 = tan -1 (Z1 / Z2)
From these equations, the gear module is
MO = 2PCD · sin {tan -1 (Z1 / Z2)} / Z1 (1)
Becomes
The module of the reference differential D 'is 2PCD · sin {tan -1 (7/5)} / 14
Becomes
従って、この両式の右項を除算することにより、基準差動装置D′に対するモジュール変化率は、次の(2)式のようになる。 Therefore, by dividing the right term in both equations, the module change rate with respect to the reference differential D 'is as shown in the following equation (2).
また、ギヤ強度(即ち歯部の曲げ強度)に相当する歯部の断面係数は、歯厚の二乗に比例する関係にあり、一方、その歯厚は、モジュールMOと略リニアな関係にある。従って、モジュール変化率の二乗は、歯部の断面係数変化率、延いてはギヤ強度の変化率に相当する。即ち、そのギヤ強度変化率は、(2)式に基づいて次の(3)式のように表される。(3)式は、ピニオンPの歯数Z2が10の時には図8のL1で示され、これにより、歯数比率Z1/Z2が増えるにつれてモジュール減少によりギヤ強度が低下することが判る。 Further, the section modulus of the tooth portion corresponding to the gear strength (that is, the bending strength of the tooth portion) has a relationship proportional to the square of the tooth thickness, and the tooth thickness has a substantially linear relationship with the module MO. Therefore, the square of the module change rate corresponds to the change rate of the section modulus of the tooth portion, and hence the change rate of the gear strength. That is, the gear strength change rate is expressed by the following equation (3) based on the equation (2). Equation (3) is indicated by L1 in FIG. 8 when the number of teeth Z2 of the pinion P is 10, which indicates that the gear strength decreases as the number of teeth Z1 / Z2 increases due to a decrease in the number of modules.
ところで上記したベベルギヤの一般的な公式より、サイドギヤSのトルク伝達距離は、次の(4)式のようになる。 By the way, according to the general formula of the bevel gear described above, the torque transmission distance of the side gear S is expressed by the following equation (4).
PD1 /2=PCD・ sin{ tan-1(Z1/Z2)}・・・(4)
そして、トルク伝達距離PD1 /2による伝達荷重Fは、F=2TO/PD1 である。従って、基準差動装置D′のサイドギヤSにおいて、トルクTOを一定とすれば、伝達荷重Fとピッチ円直径PD1 とが反比例の関係となる。また伝達荷重Fの変化率は、ギヤ強度の変化率とも反比例の関係にあることから、ギヤ強度の変化率は、ピッチ円直径PD1
の変化率と等しくなる。
PD 1/2 = PCD · sin {tan -1 (Z1 / Z2)} ··· (4)
The transmission load F based on the torque transmission distance PD 1/2 is F = 2TO / PD 1 . Thus, the side gears S standard differential D ', if constant torque TO, the transmitted load F and pitch circle diameter PD 1 is the inverse relationship. Further, since the change rate of the transmission load F is inversely proportional to the change rate of the gear strength, the change rate of the gear strength is the pitch circle diameter PD 1.
Change rate.
その結果、ピッチ円直径PD1 の変化率は、(4)の式を用いて、次の(5)式のようになる。 As a result, the change rate of the pitch circle diameter PD 1, using the equation becomes: (5) formula (4).
(5)式は、ピニオンPの歯数Z2が10の時には図8のL2で示され、これにより歯数比率Z1/Z2が増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。 Equation (5) is indicated by L2 in FIG. 8 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength increases by reducing the transmission load as the number of teeth Z1 / Z2 increases.
結局のところ、歯数比率Z1/Z2が増えることに伴うギヤ強度の変化率は、モジュールMOの減少によるギヤ強度の減少変化率(上記した(3)式の右項)と、伝達荷重低減によるギヤ強度の増加変化率(上記した(5)式の右項)との掛け合わせにより、次の(6)式として表される。 After all, the change rate of the gear strength due to the increase in the tooth number ratio Z1 / Z2 is the decrease rate of the gear strength due to the decrease in the module MO (the right term of the above-mentioned equation (3)) and the reduction rate of the transmission load. By multiplying with the increase change rate of the gear strength (the right term of the above-mentioned equation (5)), it is expressed as the following equation (6).
(6)式は、ピニオンPの歯数Z2が10の時には図8のL3で示され、これにより、歯数比率Z1/Z2が増えるにつれて全体としてギヤ強度が低下することが判る。
[2]について
ピニオンPのピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離よりも増やすと、変更前のPCDをPCD1、変更後のPCDをPCD2とした場合には、PCDの変更前後のモジュール変化率は、上記したベベルギヤの一般的な公式より、歯数を一定とすれば、(PCD2/PCD1)となる。
Equation (6) is indicated by L3 in FIG. 8 when the number of teeth Z2 of the pinion P is 10, which indicates that the gear strength decreases as the number of teeth Z1 / Z2 increases.
[2] When the pitch cone distance PCD of the pinion P is increased beyond the pitch cone distance of the reference differential device D ′, if the PCD before the change is PCD1 and the PCD after the change is PCD2, before and after the change of the PCD Is given by (PCD2 / PCD1) from the general formula of the bevel gear described above, when the number of teeth is fixed.
一方、サイドギヤSのギヤ強度の変化率は、(3)式を導いた過程からも明らかなように、モジュール変化率の二乗に相当するため、結局のところ、
モジュール増大によるギヤ強度変化率=(PCD2/PCD1)2 ・・・(7)
(7)式は、図9のL4で示され、これにより、ピッチ円錐距離PCDが増えるにつれてモジュール増加によりギヤ強度が増加することが判る。
On the other hand, the change rate of the gear strength of the side gear S is equivalent to the square of the module change rate, as is clear from the process of deriving the equation (3).
Gear strength change rate due to module increase = (PCD2 / PCD1) 2 (7)
Equation (7) is indicated by L4 in FIG. 9, and it can be seen from this that the gear strength increases as the pitch cone distance PCD increases as the number of modules increases.
また、ピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離PCD1よりも増やした場合に、伝達荷重Fが低減されるが、これによる、ギヤ強度の変化率は、前述のようにピッチ円直径PD1 の変化率と等しくなる。またサイドギヤSのピッチ円直径PD1 とピッチ円錐距離PCDとは比例関係にある。従って、
伝達荷重低減によるギヤ強度変化率=PCD2/PCD1 ・・・(8)
(8)式は、図9のL5で示され、これにより、ピッチ円錐距離PCDが増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。
When the pitch cone distance PCD is increased beyond the pitch cone distance PCD1 of the reference differential D ', the transmission load F is reduced. As a result, the change rate of the gear strength is reduced by the pitch circle as described above. equal to the rate of change of the diameter PD 1. Also there is a proportional relationship with the pitch diameter PD 1 and a pitch cone distance PCD side gear S. Therefore,
Gear strength change rate due to transmission load reduction = PCD2 / PCD1 (8)
The equation (8) is indicated by L5 in FIG. 9, and it can be seen that the gear strength increases due to the reduction of the transmission load as the pitch cone distance PCD increases.
そして、ピッチ円錐距離PCDが増えることに伴うギヤ強度の変化率は、モジュールMOの増大によるギヤ強度の増加変化率(上記した(7)式の右項)と、ピッチ円直径PDの増加に伴う伝達荷重低減によるギヤ強度の増加変化率(上記した(8)式の右項)との掛け合わせにより、次の(9)式として表される。 The rate of change in gear strength with an increase in pitch cone distance PCD is the rate of change in gear strength with the increase in module MO (the right term in equation (7) above) and with the increase in pitch circle diameter PD. By multiplying the change rate of the gear strength by the transmission load reduction (the right term of the above-mentioned equation (8)), it is expressed as the following equation (9).
ピッチ円錐距離増大によるギヤ強度変化率=(PCD2/PCD1)3 ・・(9)
(9)式は、図9のL6で示され、これにより、ピッチ円錐距離PCDが増えるにつれてギヤ強度が大幅に高められることが判る。
Gear strength change rate due to increase in pitch cone distance = (PCD2 / PCD1) 3 ··· (9)
Equation (9) is indicated by L6 in FIG. 9, and it can be seen that the gear strength is greatly increased as the pitch cone distance PCD increases.
そして、[1]の手法(歯数比率増大)によるギヤ強度の低下分を、[2]の手法(ピッチ円錐距離増大)によるギヤ強度の増大分で十分補うようにして全体として差動装置のギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とするように、歯数比率Z1/Z2及びピッチ円錐距離PCDの組み合わせを決定する。 Then, the decrease in gear strength due to the method [1] (increase in the number of teeth) is sufficiently compensated for by the increase in gear strength according to the method [2] (increase in pitch cone distance), so that the differential device as a whole is improved. The combination of the tooth ratio Z1 / Z2 and the pitch cone distance PCD is determined so that the gear strength is equal to or higher than the gear strength of the conventional differential.
例えば、基準差動装置D′のサイドギヤSのギヤ強度を100%維持する場合には、[1]で求めた歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、[2]で求めたピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが100%となるように設定すればよい。これより、基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係は、次の(10)式で求められる。(10)式は、ピニオンPの歯数Z2が10の時には図10のL7で示される。 For example, when maintaining the gear strength of the side gear S of the reference differential device D 'at 100%, the change rate of the gear strength accompanying the increase in the number of teeth determined in [1] (the right term of the above equation (6)) ) Is multiplied by the gear strength change rate due to the increase in the pitch cone distance obtained in [2] (the above-mentioned right item of (9)). Thus, the relationship between the ratio of the number of teeth Z1 / Z2 and the rate of change of the pitch cone distance PCD when the gear strength of the reference differential device D 'is maintained at 100% is obtained by the following equation (10). Equation (10) is represented by L7 in FIG. 10 when the number of teeth Z2 of the pinion P is 10.
このように(10)式は、歯数比率Z1/Z2=14/10とした基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係(図10参照)を示すものであるが、図10の縦軸のピッチ円錐距離PCDの変化率は、ピニオンPを支持するピニオンシャフトPS(即ちピニオン支持部)のシャフト径をd2とした場合にはd2/PCDの比率に変換可能である。 As described above, the equation (10) shows the change in the tooth number ratio Z1 / Z2 and the pitch cone distance PCD when maintaining the gear strength of the reference differential device D 'with the tooth number ratio Z1 / Z2 = 14/10 at 100%. 10 shows the relationship with the ratio (see FIG. 10). The rate of change of the pitch cone distance PCD on the vertical axis in FIG. 10 is obtained by setting the shaft diameter of the pinion shaft PS (that is, the pinion support) supporting the pinion P to d2. Can be converted to a ratio of d2 / PCD.
すなわち、従来既存の差動装置において、ピッチ円錐距離PCDの増大変化は、上記表1のようにd2の増大変化と相関があり、且つd2を一定としたときはd2/PCDの比率の低下として表現可能である。しかも、従来既存の差動装置においては、上記表1のように、基準差動装置D′の時にはd2/PCDが40〜45%の範囲に収まっている関係と、PCDを増やすとギヤ強度が増大することとから、基準差動装置D′の時には少なくともd2/PCDが45%以下となるように、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを決めれば、ギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とすることができる。つまり、基準差動装置D′の場合には、
d2/PCD≦0.45を満たせばよい。この場合、基準差動装置D′のピッチ円錐距離PCD1に対して、増減変更後のPCDをPCD2とすれば、
d2/PCD2≦0.45/(PCD2/PCD1)・・・(11)
を満たせばよいということになる。そして、(11)式を、上記した(10)式に適用すれば、d2/PCDと、歯数比率Z1/Z2との関係が、次の(12)式のように変換可能である。
That is, in the conventional existing differential device, the increase change of the pitch cone distance PCD is correlated with the increase change of d2 as shown in Table 1 above, and when d2 is fixed, the ratio of d2 / PCD decreases. It is expressible. Moreover, in the conventional differential device, as shown in Table 1 above, d2 / PCD is in the range of 40 to 45% in the case of the reference differential device D ', and the gear strength is increased by increasing the PCD. Therefore, if the shaft diameter d2 of the pinion shaft PS and the pitch cone distance PCD are determined so that at least d2 / PCD is 45% or less in the case of the reference differential device D ', the gear strength can be reduced by the conventional difference. It can be equal to or higher than the gear strength of the moving device. That is, in the case of the reference differential device D ',
It is sufficient that d2 / PCD ≦ 0.45 is satisfied. In this case, if the PCD after the increase / decrease is changed to PCD2 with respect to the pitch cone distance PCD1 of the reference differential device D ′,
d2 / PCD2 ≦ 0.45 / (PCD2 / PCD1) (11)
It suffices to satisfy If the equation (11) is applied to the above-described equation (10), the relationship between d2 / PCD and the tooth number ratio Z1 / Z2 can be converted as in the following equation (12).
(12)式の等号が成立する時において、ピニオンPの歯数Z2が10の時には図11のL8のように表すことができる。(12)式の等号が成立する時が、基準差動装置D′のギヤ強度を100%維持する場合のd2/PCDと歯数比率Z1/Z2との関係である。 When the equation (12) holds, when the number of teeth Z2 of the pinion P is 10, it can be expressed as L8 in FIG. The time when the equality of the equation (12) is satisfied is the relationship between d2 / PCD and the gear ratio Z1 / Z2 when the gear strength of the reference differential D 'is maintained at 100%.
ところで従来既存の差動装置では、上述したように、通常、基準差動装置D′のような歯数比率Z1/Z2を1.4とするものだけでなく、歯数比率Z1/Z2を1.6とするものや、歯数比率Z1/Z2を1.44とするものも採用されている。この事実を踏まえて、基準差動装置D′(Z1/Z2=1.4)で必要十分な、即ち100%のギヤ強度が得られると想定した場合には、従来既存の差動装置において歯数比率Z1/Z2が16/10の差動装置では、図8から明らかなようにギヤ強度が基準差動装置D′に比べ87%に低下していることが判る。しかしながら、この程度に低下したギヤ強度は、従来既存の差動装置では実用強度として許容され、実用されている。そこで、軸方向に扁平な差動装置においても、基準差動装置D′に対し少なくとも87%のギヤ強度があれば、ギヤ強度が十分に確保、許容されると考えられる。 By the way, in the conventional existing differential device, as described above, the tooth number ratio Z1 / Z2 is usually not only 1.4 like the reference differential device D ', but also the tooth number ratio Z1 / Z2 is 1 as described above. .6, and a tooth number ratio Z1 / Z2 of 1.44. Based on this fact, if it is assumed that the reference differential D ′ (Z1 / Z2 = 1.4) can provide a necessary and sufficient gear strength, that is, 100% of the gear strength, the conventional differential can be used in the conventional differential. As can be seen from FIG. 8, in the differential having the number ratio Z1 / Z2 of 16/10, the gear strength is reduced to 87% as compared with the reference differential D '. However, the gear strength reduced to this extent is conventionally accepted as a practical strength in the existing differential, and is practically used. Therefore, it is considered that even in a differential device that is flat in the axial direction, if the gear strength is at least 87% of that of the reference differential device D ', the gear strength is sufficiently secured and allowed.
このような観点から、基準差動装置D′のギヤ強度を87%維持する場合における歯数比率Z1/Z2と、ピッチ円錐距離PCDの変化率との関係を先ず求めると、その関係は、(10)式を導く過程に倣って演算(即ち、歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、ピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが87%となるように演算)することにより、次の(10′)式のように表すことができる。 From this point of view, the relationship between the tooth number ratio Z1 / Z2 and the rate of change of the pitch cone distance PCD when maintaining the gear strength of the reference differential device D 'at 87% is first obtained. Following the process of deriving the equation (10), the calculation (that is, the change rate of the gear strength with the increase in the number of teeth ratio (the right term of the above-mentioned equation (6))) and the change rate of the gear strength due to the increase of the pitch cone distance (the above 9) is calculated by multiplying the right term by 9) with 87% to obtain the following equation (10 ').
そして、前述の(11)式を、上記した(10′)式に適用すれば、基準差動装置D′のギヤ強度を87%以上維持する場合におけるd2/PCDと、歯数比率Z1/Z2との関係が、次の(13)式のように変換可能である。但し、計算の過程において、変数を用いて表される項を除き、有効数字を3桁で計算し、それ以外の桁は切り捨てで対応する都合上、実際には計算誤差によりほぼ等しいとなる場合でも、式の表現では等号で表すこととする。 Applying the above equation (11) to the above equation (10 '), d2 / PCD when the gear strength of the reference differential device D' is maintained at 87% or more, and the tooth number ratio Z1 / Z2 Can be converted as in the following equation (13). However, in the calculation process, except for terms expressed using variables, significant figures are calculated in three digits, and the remaining digits are rounded down. However, it is expressed by an equal sign in the expression.
(13)式の等号が成立する場合において、ピニオンPの歯数Z2が10の時には図11のように(より具体的には、図11のL9ラインのように)表すことができ、この場合に(13)式に対応する領域は、図11でL9ライン上及びL9ラインよりも下側の領域となる。そして、(13)式を満たし、且つ図11でL10ラインよりも右側となる歯数比率Z1/Z2が2.0を超えることを満たす特定領域(図11のハッチング領域)が、特にピニオンPの歯数Z2が10で歯数比率Z1/Z2が2.0を超える軸方向に扁平な差動装置において、基準差動装置D′に対し少なくとも87%のギヤ強度を確保可能なZ1/Z2及びd2/PCDの設定領域である。尚、参考までに、歯数比率Z1/Z2を40/10と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図11において例示すれば、菱形点のようになり、また歯数比率Z1/Z2を58/10と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図11において例示すれば、三角点のようになり、これらは上記の特定領域に収まっている。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。 In the case where the equality of the equation (13) is satisfied, when the number of teeth Z2 of the pinion P is 10, it can be expressed as shown in FIG. 11 (more specifically, like the L9 line in FIG. 11). In this case, the region corresponding to the expression (13) is a region above the line L9 and below the line L9 in FIG. A specific area (hatched area in FIG. 11) satisfying the expression (13) and satisfying that the tooth number ratio Z1 / Z2 on the right side of the line L10 in FIG. In an axially flat differential having a tooth count Z2 of 10 and a tooth count ratio Z1 / Z2 exceeding 2.0, Z1 / Z2 and G1 / Z2 capable of securing at least 87% gear strength with respect to the reference differential D '; d2 / PCD setting area. For reference, FIG. 11 shows an example in which the ratio of the number of teeth Z1 / Z2 is set to 40/10 and d2 / PCD is set to 20.00%. FIG. 11 shows an example in which the tooth number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 16.67%. Fits. As a result of performing a simulation-based strength analysis on these examples, a gear strength equal to or higher than the conventional one (more specifically, a gear strength of 87% or more with respect to the reference differential D ′) was obtained. ) Was obtained.
而して、上記特定領域にある扁平な差動装置は、従来既存の非扁平な差動装置と同程度のギヤ強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸の軸方向で十分に幅狭化な差動装置として構成されるものであり、そのため、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる等の効果を達成可能である。 Thus, the flat differential device in the specific region as a whole can secure the same gear strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional non-flat differential device, and as a whole, It is configured as a differential device with a sufficiently narrow width in the axial direction of the output shaft. Therefore, the differential device has a high degree of freedom even for a transmission system with many layout restrictions around the differential device. Accordingly, it is possible to easily and easily install the power transmission system, and it is possible to achieve effects such as extremely advantageous in reducing the size of the transmission system.
また、上記特定領域にある扁平な差動装置の構造が、例えば、上述した実施形態の構造(より具体的には、図1〜図6で示される構造)となる場合には、上記特定領域にある扁平な差動装置は、上述した実施形態で示した構造に伴う効果も併せて達成可能である。 When the structure of the flat differential device in the specific area is, for example, the structure of the above-described embodiment (more specifically, the structure shown in FIGS. 1 to 6), the specific area The flat differential device described above can also achieve the effects of the structure shown in the above-described embodiment.
尚、前述の説明(特に図8,10,11に関する説明)は、ピニオンPの歯数Z2を10とした時の差動装置について行っているが、本発明は、これに限定されるものではない。例えば、ピニオンPの歯数Z2を6,12,20とした場合にも、上記効果を達成可能な扁平な差動装置は、図12,13,14のハッチングで示されるように、(13)式で表すことができる。即ち、前述のようにして導出された(13)式は、ピニオンPの歯数Z2の変化に関わらず適用できるものであって、例えばピニオンPの歯数Z2を6,12,20とした場合でも、ピニオンPの歯数Z2を10とした場合と同様、(13)式を満たすようにサイドギヤSの歯数Z1、ピニオンPの歯数Z2、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを設定すれば上記効果が得られる。 Although the above description (especially the description relating to FIGS. 8, 10, and 11) has been made with respect to the differential device when the number of teeth Z2 of the pinion P is 10, the present invention is not limited to this. Absent. For example, even when the number of teeth Z2 of the pinion P is set to 6, 12, and 20, the flat differential device capable of achieving the above-mentioned effect is, as shown by hatchings in FIGS. It can be represented by an equation. That is, the equation (13) derived as described above can be applied regardless of a change in the number of teeth Z2 of the pinion P. For example, when the number of teeth Z2 of the pinion P is 6, 12, 20 However, similarly to the case where the number of teeth Z2 of the pinion P is set to 10, the number of teeth Z1 of the side gear S, the number of teeth Z2 of the pinion P, the shaft diameter d2 of the pinion shaft PS, and the pitch cone distance PCD so as to satisfy Expression (13). Is set, the above effect can be obtained.
また、参考までに、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図13に菱形点で、歯数比率Z1/Z2を70/12と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図13に三角点で例示する。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。また、これらの実施例は、図13に示されるように上記特定領域に収まっている。 For reference, FIG. 13 shows an example in which the number of teeth Z2 of the pinion P is set to 12 and the ratio of the number of teeth Z1 / Z2 is set to 48/12 and d2 / PCD is set to 20.00%. FIG. 13 illustrates an example in which the ratio of the number of teeth Z1 / Z2 is set to 70/12, and the ratio of d2 / PCD is set to 16.67%. As a result of performing a simulation-based strength analysis on these examples, a gear strength equal to or higher than the conventional one (more specifically, a gear strength of 87% or more with respect to the reference differential D ′) was obtained. ) Was obtained. In addition, these embodiments fall within the specific area as shown in FIG.
比較例として、上記特定範囲に収まらない実施例、例えばピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を58/10と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図11に星形点で、ピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を40/10と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図11に丸点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を70/12と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図13の星形点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図13の丸点で示す。これらの実施例についてシミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られなかったことが確認できた。つまり、上記特定範囲に収まらない実施例では上記効果が得られないことが確認できた。 As a comparative example, in an embodiment that does not fall within the above specific range, for example, when the number of teeth Z2 of the pinion P is set to 10, the ratio of the number of teeth Z1 / Z2 is set to 58/10 and d2 / PCD is set to 27.50%. FIG. 11 shows an example in which the number of teeth Z2 of the pinion P is set to 10, and the ratio of the number of teeth Z1 / Z2 is set to 40/10, and the ratio of d2 / PCD is set to 34.29%. In the case where the number of teeth Z2 of the pinion P is 12, the ratio of the number of teeth Z1 / Z2 is set to 70/12, and the ratio of d2 / PCD is set to 27.50% when the example shown in FIG. When the number of teeth Z2 of the pinion P is set to 12 at the star point of FIG. 13 in the example at the time, the ratio of the number of teeth Z1 / Z2 is set to 48/12 and d2 / PCD is set to 34.29%, respectively. The embodiment at the time is indicated by a dot in FIG.As a result of simulation-based strength analysis of these examples, the same or higher gear strength (more specifically, 87% or higher gear strength with respect to the reference differential D ') was obtained. Could not be obtained. In other words, it was confirmed that the effects described above cannot be obtained in the examples that do not fall within the specific range.
以上、本発明の実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。 The embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the gist of the present invention.
例えば、上述した実施形態では、デフケースDCの一側に、遊星歯車機構より成る減速歯車機構RGを隣接配置し且つ減速歯車機構RGの出力側要素(キャリア53)をデフケースDC(カバー部C′)に結合して、減速歯車機構RGを介して動力源からの動力をデフケースDCに伝達するようにしたものを示したが、遊星歯車機構以外の減速歯車機構の出力側要素をデフケースDCに結合するようにしてもよい。 For example, in the above-described embodiment, the reduction gear mechanism RG including the planetary gear mechanism is disposed adjacent to one side of the differential case DC, and the output side element (carrier 53) of the reduction gear mechanism RG is connected to the differential case DC (cover portion C ′). And the power from the power source is transmitted to the differential case DC via the reduction gear mechanism RG, but the output side elements of the reduction gear mechanism other than the planetary gear mechanism are coupled to the differential case DC. You may do so.
また、上記のような減速歯車機構に代えて、動力源からの動力を受ける入力歯部(ファイナルドリブンギヤ)をデフケースDCの外周部に一体に形成又は後付けで固定して、入力歯部を介して動力源からの動力をデフケースDCに伝達するようにしてもよい。この場合、デフケースDCの外周面の特定部位、例えば中空円筒部Tの開口部や第1,第2油取込み孔H1,H2の開口部は、入力歯部で覆われずにミッションケースMの内部空間1に常時露出させるようにする。
Further, instead of the reduction gear mechanism as described above, an input tooth portion (final driven gear) for receiving power from a power source is integrally formed or fixed to the outer peripheral portion of the differential case DC, and is fixed via the input tooth portion. The power from the power source may be transmitted to the differential case DC. In this case, specific portions of the outer peripheral surface of the differential case DC, for example, the openings of the hollow cylindrical portion T and the openings of the first and second oil intake holes H1 and H2 are not covered with the input teeth portion but are inside the transmission case M. It is always exposed to the
また上述した実施形態では、サイドギヤSの中間壁部Swの内側面(即ち一対のサイドギヤSの相対向面)まで潤滑油が導かれる油導入経路Osとして、例えばカバー部C,C′の側壁部Csに形成した肉抜き部8から油ガイド溝17を経て貫通油路15に至る油経路を説明したが、このような油経路に代えて、又は加えて、他の油導入経路も実施可能である。他の油導入経路Osとしては、例えば、デフケースDCのカバー部C,C′のボス部CbをサイドギヤSの軸部Sjよりも軸方向外方に延長させて、ボス部Cbの延長部の内周面に出力軸Jを回転自在に嵌合させ、その嵌合面の少なくとも一方(例えばボス部Cbの延長部の内周面)に螺旋溝を凹設すれば、ボス部Cbの延長部の周辺でミッションケースMの内部空間1に存する潤滑油を、ボス部Cbと出力軸Jとの相対回転時に螺旋溝を通してサイドギヤSの軸部Sjと出力軸Jとの間のスプライン嵌合部6、延いては中間壁部Swの内側面側に効率よく供給可能である。この場合、スプライン嵌合部6のスプライン歯の一部を欠歯とすることで軸方向の潤滑油路を形成するようにすれば、サイドギヤSの中間壁部Swの内側面まで潤滑油を更に効率よく供給可能である。
Further, in the above-described embodiment, as the oil introduction path Os through which the lubricating oil is guided to the inner side surface of the intermediate wall portion Sw of the side gear S (that is, the opposing surfaces of the pair of side gears S), for example, the side wall portions of the cover portions C and C ′ Although the oil path from the lightening
尚また、螺旋溝に代えて又は加えて、サイドギヤSの軸部Sjと出力軸Jとの間のスプライン嵌合部6にオイルポンプから潤滑油を圧送・供給するようにし、圧送・供給された潤滑油をスプライン嵌合部6を経てサイドギヤSの中間壁部Swの内側面に供給するようにしてもよい。
Further, instead of or in addition to the spiral groove, lubricating oil is fed and supplied from the oil pump to the spline
また上述した実施形態では、一対のサイドギヤSの背面を一対のカバー部C,C′でそれぞれ覆うものを示したが、本発明では、一方のサイドギヤSの背面にのみカバー部を設けるようにしてもよい。この場合、例えば、カバー部が設けられない側に、動力伝達経路の上流側に位置する駆動部材(例えば減速歯車機構RGのキャリア53)を配設して、駆動部材とデフケースDCとを結合させるようにしてもよい。
In the above-described embodiment, the rear surfaces of the pair of side gears S are respectively covered with the pair of cover portions C and C ′. However, in the present invention, the cover portions are provided only on the rear surface of the one side gear S. Is also good. In this case, for example, a drive member (for example, the
また上述した実施形態において、差動装置Dは、左右車軸の回転速度差を許容するものであったが、前輪と後輪の回転速度差を吸収するセンターデフにも本発明の差動装置を実施可能である。 Further, in the above-described embodiment, the differential device D allows the rotational speed difference between the left and right axles, but the differential device of the present invention is also applied to a center differential that absorbs the rotational speed difference between the front wheel and the rear wheel. It is feasible.
また上述した前記実施形態では、複数のピニオンPを1つのピニオンシャフトPSで支持するものであったが、各ピニオンをそれぞれ別体のピニオンシャフトで個別に支持するものにも本発明を適用可能である。 In the above-described embodiment, a plurality of pinions P are supported by one pinion shaft PS. However, the present invention is also applicable to a case in which each pinion is individually supported by a separate pinion shaft. is there.
D・・・・・差動装置
DC・・・・デフケース
d2・・・・ピニオンシャフトの直径、支持軸部の直径(ピニオン支持部の直径,差動ギヤ支持部の直径)
E・・・・・段部
fe・・・・仮想平面
J・・・・・出力軸
P・・・・・ピニオン(差動ギヤ)
PCD・・・ピッチ円錐距離
Pfi・・・ピニオンの、サイドギヤの径方向での内方側の端面
PS・・・・ピニオンシャフト(ピニオン支持部,差動ギヤ支持部)
PS′・・・支持軸部(ピニオン支持部,差動ギヤ支持部)
S・・・・・サイドギヤ(出力ギヤ)
Sg・・・・歯部
Sj・・・・軸部
Sw・・・・中間壁部
Swa・・・窪み
rs・・・・嵌合部(回転摺動部)
60・・・・空間
61・・・・油溜部
61s・・・油溜部の内部空間
61e・・・油溜部の開口縁
D: Differential device DC: Differential case d2: Diameter of pinion shaft, diameter of support shaft (diameter of pinion support, diameter of differential gear support)
E ···· Step fe ··· Virtual plane J ····· Output shaft P ····· Pinion (differential gear)
PCD: pitch cone distance Pfi: radially inner end surface PS of the pinion in the side gear PS: pinion shaft (pinion support, differential gear support)
PS ': Support shaft (pinion support, differential gear support)
S ... side gear (output gear)
Sg: Tooth Sj: Shaft Sw: Intermediate wall
Swa: recess rs: fitting part (rotary sliding part)
60
Claims (6)
前記デフケース(DC)内に配置されたピニオン(P)と、前記デフケース(DC)に支持され且つ前記ピニオン(P)を回転自在に貫通支持するピニオンシャフト(PS)と、前記ピニオン(P)に噛合するギヤ部(Sg)を外周部に各々有すると共に前記ピニオンシャフト(PS)を挟んで相対向し且つ前記一対の出力軸(J)にそれぞれ接続される一対のサイドギヤ(S)と、前記一対のサイドギヤ(S)の相対向面に潤滑油を導入する油導入経路(Os)と、前記一対のサイドギヤ(S)の相対向面に形成される窪み(Swa)と前記ピニオン(P)の、前記サイドギヤ(S)の径方向で内方側の端面(Pfi)との間に挟まれた空間(60)と、該空間(60)に臨むように前記ピニオン(P)と前記ピニオンシャフト(PS)との対向部間に形成され且つ前記ピニオン(P)と前記ピニオンシャフト(PS)との相互に回転摺動可能な嵌合部(rs)に連通する油溜部(61)と、を備え、
前記一対のサイドギヤ(S)の相対向面のうちの少なくとも一方の対向面には、前記空間(60)の前記径方向で内周端に位置して前記窪み(Swa)の開口縁を構成する段部(E)が形成され、前記段部(E)は、前記サイドギヤ(S)の軸方向に垂直な前記対向面と前記窪み(Swa)の側面とが直交するエッジ状に形成されることを特徴とする差動装置。 A differential device that distributes and transmits the rotational force of a differential case (DC) to a pair of output shafts (J),
A pinion (P) arranged in the differential case (DC), a pinion shaft (PS) supported by the differential case (DC) and rotatably penetrating and supporting the pinion (P); and a pinion (P). A pair of side gears (S) each having an engaging gear portion (Sg) on an outer peripheral portion thereof and opposed to each other across the pinion shaft (PS) and connected to the pair of output shafts (J); An oil introduction path (Os) for introducing lubricating oil to the opposing surfaces of the side gears (S), a depression (Swa) formed on the opposing surfaces of the pair of side gears (S), and the pinion (P). A space (60) sandwiched between a radially inward end surface (Pfi) of the side gear (S), and the pinion (P) and the pinion shaft (PS) facing the space (60). )When Oil reservoir communicating with each other rotatably sliding fit portion of and the pinion is formed between the opposing portions (P) and said pinion shaft (PS) (rs) and (61), provided with,
At least one of the opposing surfaces of the pair of side gears (S) is located at the radially inner end of the space (60) and forms an opening edge of the depression (Swa). A step (E) is formed, and the step (E) is formed in an edge shape in which the facing surface perpendicular to the axial direction of the side gear (S) and the side surface of the recess (Swa) are orthogonal to each other. A differential device characterized by the above-mentioned.
前記段部(E)は、前記軸部(Sj)から径方向外方に離れた前記中間壁部(Sw)の外周部に形成されることを特徴とする、請求項1に記載の差動装置。 The side gear (S) includes a shaft portion (Sj) connected to the pair of output shafts (J), the gear portion (Sg) spaced radially outward from the shaft portion (Sj), and A flat intermediate wall portion (Sw) extending radially outward from the inner end of the shaft portion (Sj);
The stepped portion (E) is characterized Rukoto formed on the outer peripheral portion of the shaft portion and the intermediate wall portion remote from (Sj) in the radially outward (Sw), the differential of claim 1 apparatus.
前記デフケース(DC)内に配置された差動ギヤ(P)と、前記デフケース(DC)に支持され且つ前記差動ギヤ(P)を回転自在に貫通支持する差動ギヤ支持部(PS)と、前記差動ギヤ(P)に噛合するギヤ部(Sg)を外周部に各々有すると共に前記差動ギヤ支持部(PS)を挟んで相対向し且つ前記一対の出力軸(J)にそれぞれ接続される一対の出力ギヤ(S)と、前記一対の出力ギヤ(S)の相対向面に潤滑油を導入する油導入経路(Os)と、前記一対の出力ギヤ(S)の相対向面に形成される窪み(Swa)と前記差動ギヤ(P)の、前記出力ギヤ(S)の径方向で内方側の端面(Pfi)との間に挟まれた空間(60)と、前記空間(60)に臨むように前記差動ギヤ(P)と前記差動ギヤ支持部(PS)との対向部分に形成され且つ前記差動ギヤ(P)と前記差動ギヤ支持部(PS)との相互に回転摺動可能な嵌合部(rs)に連通する油溜部(61)とを備え、
前記一対の出力ギヤ(S)の相対向面のうちの少なくとも一方の対向面には、前記空間(60)の前記径方向で内周端に位置して前記窪み(Swa)の開口縁を構成する段部(E)が形成され、
前記出力ギヤ(S)の歯数をZ1とし、前記差動ギヤ(P)の歯数をZ2とし、前記差動ギヤ支持部(PS)の直径をd2とし、ピッチ円錐距離をPCDとしたときに、
且つZ1/Z2>2を満たすことを特徴とする差動装置。 A differential device for distributing and transmitting the rotational force of a differential case (DC) to a pair of output shafts (J),
A differential gear (P) arranged in the differential case (DC), and a differential gear support (PS) supported by the differential case (DC) and rotatably penetrating and supporting the differential gear (P). A gear portion (Sg) meshing with the differential gear (P) is provided on an outer peripheral portion, and is opposed to each other with the differential gear support portion (PS) interposed therebetween and connected to the pair of output shafts (J). A pair of output gears (S), an oil introduction path (Os) for introducing lubricating oil to opposing surfaces of the pair of output gears (S), and an opposing surface of the pair of output gears (S). depression is formed in the (S w a) and the differential gear (P), and space (60) sandwiched between the end face of the radially inner side of said output gear (S) (Pfi), Opposing portion between the differential gear (P) and the differential gear support (PS) so as to face the space (60) Comprising oil reservoir communicating with the formed and differential gear (P) and the differential gear support portion mutually rotatable sliding fit portion between the (PS) (rs) and (61),
At least the one of the opposing surfaces, the opening edge of said space (60) located on the inner peripheral end in the radial direction recess wherein the (S w a) of the opposing surfaces of the pair of output gears (S) A step (E) is formed,
When the number of teeth of the output gear (S) is Z1, the number of teeth of the differential gear (P) is Z2, the diameter of the differential gear support (PS) is d2, and the pitch cone distance is PCD. To
A differential device characterized by satisfying Z1 / Z2> 2.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/082,897 US9856972B2 (en) | 2015-03-31 | 2016-03-28 | Differential device |
DE102016205228.4A DE102016205228A1 (en) | 2015-03-31 | 2016-03-30 | differential device |
CN201610192228.4A CN106015534B (en) | 2015-03-31 | 2016-03-30 | Differential gear |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071295 | 2015-03-31 | ||
JP2015071295 | 2015-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016194363A JP2016194363A (en) | 2016-11-17 |
JP6649057B2 true JP6649057B2 (en) | 2020-02-19 |
Family
ID=57323767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015232391A Active JP6649057B2 (en) | 2015-03-31 | 2015-11-27 | Differential device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6649057B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5546898U (en) * | 1978-09-22 | 1980-03-27 | ||
JPH0583508U (en) * | 1992-04-09 | 1993-11-12 | 栃木富士産業株式会社 | Differential |
JP2967396B2 (en) * | 1994-12-16 | 1999-10-25 | 本田技研工業株式会社 | Lubrication structure in differential equipment |
JP2014190374A (en) * | 2013-03-26 | 2014-10-06 | Yanagawa Seiki Co Ltd | Differential device |
-
2015
- 2015-11-27 JP JP2015232391A patent/JP6649057B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016194363A (en) | 2016-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106015534B (en) | Differential gear | |
DE112014004524B4 (en) | Vehicle propulsion transmission device | |
US9863519B2 (en) | Differential device | |
US20160290486A1 (en) | Differential device | |
US9677664B2 (en) | Vehicle differential device | |
DE112014004547T5 (en) | planet carrier | |
US9587730B2 (en) | Differential device | |
US20160138702A1 (en) | Differential device | |
DE7931710U1 (en) | Planetary gear for a drive system | |
WO2012139820A2 (en) | Drive device comprising a rotor arrangement that can be cooled | |
DE112015000919B4 (en) | Lubricating structure for a transmission | |
FR3052836A1 (en) | GEAR FOR CHANGING SPEED FOR VEHICLES | |
DE102016216195A1 (en) | planetary gear | |
JP2016080152A (en) | Differential gear | |
JP6621298B2 (en) | Differential | |
US9739364B2 (en) | Differential device | |
JP6742715B2 (en) | Differential | |
JP2017009109A (en) | Differential device | |
JP6683460B2 (en) | Differential | |
JP6649057B2 (en) | Differential device | |
JP2016194362A (en) | Differential gear for vehicle | |
CN111577855B (en) | Differential device | |
JP6587892B2 (en) | Differential | |
JP6827752B2 (en) | Differential | |
JP2016102587A (en) | Differential device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6649057 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |