JP6827752B2 - Differential - Google Patents

Differential Download PDF

Info

Publication number
JP6827752B2
JP6827752B2 JP2016189118A JP2016189118A JP6827752B2 JP 6827752 B2 JP6827752 B2 JP 6827752B2 JP 2016189118 A JP2016189118 A JP 2016189118A JP 2016189118 A JP2016189118 A JP 2016189118A JP 6827752 B2 JP6827752 B2 JP 6827752B2
Authority
JP
Japan
Prior art keywords
gear
differential
shaft
carrier
pinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189118A
Other languages
Japanese (ja)
Other versions
JP2017116092A (en
Inventor
森 裕之
裕之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to US15/377,743 priority Critical patent/US10221928B2/en
Priority to DE102016225139.2A priority patent/DE102016225139A1/en
Priority to CN201611169495.6A priority patent/CN106895127B/en
Publication of JP2017116092A publication Critical patent/JP2017116092A/en
Application granted granted Critical
Publication of JP6827752B2 publication Critical patent/JP6827752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Description

本発明は、例えば自動車などの車両に好適な差動装置に関する。 The present invention relates to a differential device suitable for a vehicle such as an automobile.

従来の差動装置、特にデフケース(入力部材)が、遊星ギヤ支持用のシャフトを支持するキャリアプレートを兼ねる差動装置において、デフケースに支持されて差動機構のピニオン(差動ギヤ)を支持する差動ギヤ支持用のシャフトと、遊星ギヤ支持用のシャフトとがデフケースの周方向で同一の位置に配置されたものが、例えば特許文献1に開示されている。 A conventional differential device, particularly a differential case (input member), is supported by the differential case to support a pinion (differential gear) of a differential mechanism in a differential device that also serves as a carrier plate that supports a shaft for supporting planetary gears. For example, Patent Document 1 discloses a shaft for supporting a differential gear and a shaft for supporting a planetary gear arranged at the same position in the circumferential direction of the differential case.

特開2001−121980号公報Japanese Unexamined Patent Publication No. 2001-121980 特許第4803871号公報Japanese Patent No. 4803871 特開2002−364728号公報JP-A-2002-364728

ところでピニオン(即ち差動ギヤ)及び該ピニオンと噛合する一対のサイドギヤ(即ち出力ギヤ)を含む差動装置において、サイドギヤの歯数をピニオンの歯数よりも十分大きく設定し得るようにサイドギヤをピニオンに対し十分大径化することで、軸方向に扁平な差動装置とすることが考えられる。 By the way, in a differential device including a pinion (that is, a differential gear) and a pair of side gears (that is, output gears) that mesh with the pinion, the side gear is pinioned so that the number of teeth of the side gear can be set sufficiently larger than the number of teeth of the pinion. It is conceivable to make the differential device flat in the axial direction by increasing the diameter sufficiently.

この場合、扁平な差動装置に、特許文献1に開示の上述したようなシャフトの配置構成をそのまま適用すると、扁平なデフケースにおいて、差動ギヤ支持用のシャフトと遊星ギヤ支持用シャフトの周方向位置が一致する部分に荷重が集中し易くなって、デフケースの耐久性が低下する虞れがある。
In this case, if the above-described shaft arrangement configuration disclosed in Patent Document 1 is applied to the flat differential device as it is, the circumferential direction of the shaft for supporting the differential gear and the shaft for supporting the planetary gear in the flat differential case. The load tends to be concentrated on the parts where the positions match, and the durability of the differential case may decrease.

本発明は、斯かる事情に鑑みてなされたもので、簡単な構造で上記問題を解決し得る差動装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a differential device capable of solving the above problems with a simple structure.

上記目的を達成するために、本発明に係る差動装置は、複数の遊星ギヤを各々支持する複数の第1シャフトを介して該複数の遊星ギヤを支持するキャリアと結合可能な入力部材と、前記入力部材に少なくとも1つの第2シャフトを介して支持されて、前記入力部材に対し自転可能であると共に前記入力部材の回転中心回りに公転可能な差動ギヤと、前記差動ギヤに噛合する一対の出力ギヤと、を備え、前記入力部材は、前記キャリアとの対向壁における前記出力ギヤと径方向でオーバラップする位置に、前記第1シャフトをそれぞれ嵌合可能な複数の凹部を有すると共に、前記複数の凹部は、全ての前記第2シャフトに対し、前記入力部材の周方向でずれた位置に配置される。 好適には、前記一対の出力ギヤは、一対の出力軸に接続される軸部を有し、前記入力部材は、前記軸部を同心状に囲繞するボス部と、外側面を前記出力軸と直交する平坦面として前記ボス部に連設された側壁部とを有する。
In order to achieve the above object, the differential device according to the present invention includes an input member that can be coupled to a carrier that supports the plurality of planetary gears via a plurality of first shafts that each support the plurality of planetary gears. A differential gear that is supported by the input member via at least one second shaft, is rotatable with respect to the input member, and can revolve around the center of rotation of the input member, and meshes with the differential gear. The input member includes a pair of output gears, and the input member has a plurality of recesses into which the first shaft can be fitted, at positions that overlap with the output gears in the radial direction on the wall facing the carrier. The plurality of recesses are arranged at positions deviated from all the second shafts in the circumferential direction of the input member. Preferably, the pair of output gears has a shaft portion connected to the pair of output shafts, and the input member has a boss portion that concentrically surrounds the shaft portions and an outer surface of the output shaft. It has a side wall portion connected to the boss portion as an orthogonal flat surface.

好適には、前記一対の出力ギヤは、一対の出力軸に接続される軸部を有し、前記入力部材は、前記軸部を同心状に囲繞するボス部と、外側面を前記出力軸と直交する平坦面として前記ボス部に連設された側壁部とを有する。 Preferably, the pair of output gears has a shaft portion connected to the pair of output shafts, and the input member has a boss portion that concentrically surrounds the shaft portions and an outer surface of the output shaft. It has a side wall portion connected to the boss portion as an orthogonal flat surface.

好適には、前記複数の凹部は、前記キャリアと前記入力部材とを結合する溶接部に対し、前記入力部材の周方向でずれた位置に配置される。 Preferably, the plurality of recesses are arranged at positions shifted in the circumferential direction of the input member with respect to the welded portion connecting the carrier and the input member.

好適には、前記複数の凹部は、前記キャリアと前記入力部材とを結合する溶接部に対し、前記入力部材の周方向でずれた位置に配置される。
また、上記目的を達成するために、本発明に係る差動装置は、複数の遊星ギヤを各々支持する複数の第1シャフトの一端部を支持するキャリアカバーに隣接するキャリア本体部および前記キャリア本体部と一体に形成される壁部を備える一方のカバー部と、前記一方のカバー部と結合可能な他方のカバー部と、を有する入力部材と、前記入力部材に少なくとも1つの第2シャフトを介して支持されて、前記入力部材に対し自転可能であると共に前記入力部材の回転中心回りに公転可能な差動ギヤと、前記差動ギヤに噛合する一対の出力ギヤと、を備え、前記一方のカバー部は、前記壁部における前記出力ギヤと径方向でオーバラップする位置に、前記複数の第1シャフトの他端部の各々を挿入可能な複数の凹部を有し、前記複数の凹部は、全ての前記第2シャフトに対し、前記入力部材の周方向でずれた位置に配置される。
Preferably, the plurality of recesses are arranged at positions shifted in the circumferential direction of the input member with respect to the welded portion connecting the carrier and the input member.
Further, in order to achieve the above object, the differential device according to the present invention includes a carrier main body adjacent to a carrier cover that supports one end of a plurality of first shafts that each support a plurality of planetary gears, and the carrier main body. An input member having one cover portion having a wall portion integrally formed with the portion and the other cover portion that can be coupled to the one cover portion, and the input member via at least one second shaft. A differential gear that is supported by the input member and can rotate with respect to the input member and revolves around the center of rotation of the input member, and a pair of output gears that mesh with the differential gear. The cover portion has a plurality of recesses in which each of the other ends of the plurality of first shafts can be inserted at a position on the wall portion that overlaps with the output gear in the radial direction . It is arranged at a position deviated from all the second shafts in the circumferential direction of the input member.

好適には、前記一対の出力ギヤは、一対の出力軸に接続される軸部を有し、前記一方のカバー部及び前記他方のカバー部の各々は、前記軸部を同心状に囲繞するボス部と、外側面を前記出力軸と直交する平坦面として前記ボス部に連設された側壁部とを有する。 Preferably, the pair of output gears has a shaft portion connected to the pair of output shafts, and each of the one cover portion and the other cover portion concentrically surrounds the shaft portion. It has a portion and a side wall portion connected to the boss portion with the outer surface as a flat surface orthogonal to the output axis.

好適には、前記出力ギヤの歯数をZ1とし、前記差動ギヤの歯数をZ2とし、前記第2シャフトの直径をd2とし、ピッチ円錐距離をPCDとしたときに、 Preferably, when the number of teeth of the output gear is Z1, the number of teeth of the differential gear is Z2, the diameter of the second shaft is d2, and the pitch cone distance is PCD,

Figure 0006827752
を満たし、
且つZ1/Z2>2を満たしている。
Figure 0006827752
The filling,
And Z1 / Z2> 2 is satisfied.

また、好適には、Z1/Z2≧4を満たしている。 Further, preferably, Z1 / Z2 ≧ 4 is satisfied.

また、好適には、Z1/Z2≧5.8を満たしている。 Further, preferably, Z1 / Z2 ≧ 5.8 is satisfied.

本発明によれば、差動装置の軸方向での扁平化によりデフケースが扁平化された場合でも、凹部の形成に因るデフケースの耐久性低下を効果的に抑制可能となる。 According to the present invention, even when the differential case is flattened due to the flattening of the differential device in the axial direction, it is possible to effectively suppress a decrease in durability of the differential case due to the formation of recesses.

本発明の第1実施形態に係る差動装置及び減速歯車機構のスケルトン図Skeleton diagram of the differential device and reduction gear mechanism according to the first embodiment of the present invention. 本発明の第1実施形態に係る差動装置及び減速歯車機構の要部縦断面図Longitudinal sectional view of a main part of the differential device and the reduction gear mechanism according to the first embodiment of the present invention. 本発明の第1実施形態に係る差動装置をその中心部から第1カバー部側に見た横断面図(図2のA3−A3線断面図)Cross-sectional view of the differential device according to the first embodiment of the present invention as viewed from the center thereof to the first cover portion side (A3-A3 line sectional view of FIG. 2). 図2のA4−A4線断面図A4-A4 line sectional view of FIG. キャリアを結合する前のデフケース(第1カバー部)をキャリア側から見た側面図Side view of the differential case (first cover portion) before joining the carriers as viewed from the carrier side. 図2のA6矢視部を拡大して示す拡大断面図An enlarged cross-sectional view showing an enlarged view of the A6 arrow-viewing portion of FIG. 本発明の第2実施形態に係る差動装置の要部を示す拡大断面図An enlarged cross-sectional view showing a main part of the differential device according to the second embodiment of the present invention. 本発明の第3実施形態に係る差動装置及び減速歯車機構の要部縦断面図(図2対応図)Longitudinal sectional view of a main part of the differential device and the reduction gear mechanism according to the third embodiment of the present invention (corresponding to FIG. 2). 本発明の第4実施形態に係る差動装置及び減速歯車機構の要部縦断面図(図2対応図)Longitudinal sectional view of a main part of the differential device and the reduction gear mechanism according to the fourth embodiment of the present invention (corresponding to FIG. 2). 本発明の第5実施形態に係る差動装置及び減速歯車機構の要部縦断面図(図2対応図)Longitudinal sectional view of a main part of the differential device and the reduction gear mechanism according to the fifth embodiment of the present invention (corresponding to FIG. 2). 従来の差動装置の一例を示す縦断面図Longitudinal section showing an example of a conventional differential device ピニオンの歯数を10とした時の歯数比率に対するギヤ強度変化率の関係を示すグラフA graph showing the relationship between the rate of change in gear strength and the ratio of the number of teeth when the number of teeth of the pinion is 10. ピッチ円錐距離の変化率に対するギヤ強度変化率の関係を示すグラフGraph showing the relationship between the rate of change in gear strength and the rate of change in pitch cone distance ピニオンの歯数を10とした時のギヤ強度を100%維持する場合における歯数比率に対するピッチ円錐距離の変化率の関係を示すグラフA graph showing the relationship between the rate of change of the pitch cone distance and the ratio of the number of teeth when the gear strength is maintained at 100% when the number of teeth of the pinion is 10. ピニオンの歯数を10とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 10 and the ratio of the shaft diameter / pitch cone distance. ピニオンの歯数を6とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 6 and the ratio of the shaft diameter / pitch cone distance. ピニオンの歯数を12とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 12 and the ratio of the shaft diameter / pitch cone distance. ピニオンの歯数を20とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 20 and the ratio of the shaft diameter / pitch cone distance.

本発明の実施の形態を、図面を基に説明する。 Embodiments of the present invention will be described with reference to the drawings.

先ず、図1〜図6を参照して、本発明の第1実施形態を説明する。図1において、自動車に搭載される動力源としてのエンジン(図示せず)には、減速歯車機構RGを介して差動装置Dが接続される。差動装置Dは、エンジンから減速歯車機構RGを経てデフケースDCに伝達される回転力を、車幅方向に並列する図示しない一対の車軸にそれぞれ連なる出力軸J1,J2に分配して伝達することにより、両車軸を、両車軸の差動回転を許容しつつ駆動するためのものであって、例えば、車体前部のエンジンの横に配置されたミッションケースM内に、減速歯車機構RGを隣接させた状態で減速歯車機構RGと共に収容される。尚、エンジンと減速歯車機構RGとの間には、従来周知の動力断接機構や前後進切換機構(何れも図示せず)が介装される。またデフケースDCの回転軸線Lは、出力軸J1,J2の中心軸線と一致する。 First, the first embodiment of the present invention will be described with reference to FIGS. 1 to 6. In FIG. 1, a differential device D is connected to an engine (not shown) as a power source mounted on an automobile via a reduction gear mechanism RG. The differential device D distributes and transmits the rotational force transmitted from the engine to the differential case DC via the reduction gear mechanism RG to the output shafts J1 and J2 connected to a pair of axles parallel to each other in the vehicle width direction (not shown). Therefore, both axles are driven while allowing differential rotation of both axles. For example, the reduction gear mechanism RG is adjacent to the transmission case M arranged next to the engine at the front of the vehicle body. It is housed together with the reduction gear mechanism RG in the state of being moved. A power disconnection / disconnection mechanism and a forward / reverse advance switching mechanism (neither of which is shown), which are well known in the art, are interposed between the engine and the reduction gear mechanism RG. Further, the rotation axis L of the differential case DC coincides with the central axis of the output axes J1 and J2.

尚、本明細書において、「軸方向」とは、出力軸J1,J2の中心軸線(即ちデフケースDC及びサイドギヤSの回転軸線L)や減速歯車機構RGの各ギヤの軸線に沿う方向をいい、また「径方向」とは、デフケースDC及びサイドギヤSの径方向をいう。 In the present specification, the "axial direction" refers to a direction along the central axis of the output shafts J1 and J2 (that is, the rotation axis L of the differential case DC and the side gear S) and the axis of each gear of the reduction gear mechanism RG. Further, the "diametrical direction" means the radial direction of the differential case DC and the side gear S.

減速歯車機構RGは、例えば、デフケースDCの一端部に同心状に回転自在に嵌合支持されるサンギヤ20と、サンギヤ20を同心状に囲繞してミッションケースMの内壁に固定される大径のリングギヤ21と、サンギヤ20及びリングギヤ21間に介装されて両ギヤ20,21に噛合する複数(例えば4個)の遊星ギヤ22と、遊星ギヤ22を軸支するキャリア23とを備えている。サンギヤ20は、例えば、図示しない連動機構を介してエンジンのクランク軸に連結されており、該サンギヤ20に入力された動力が、遊星ギヤ22及びキャリア23を順次経てデフケースDCに減速して伝達される。 The reduction gear mechanism RG has, for example, a sun gear 20 that is concentrically rotatably fitted and supported at one end of a differential case DC, and a large diameter that concentrically surrounds the sun gear 20 and is fixed to the inner wall of the mission case M. It includes a ring gear 21, a plurality of (for example, four) planetary gears 22 interposed between the sun gear 20 and the ring gears 21 and meshing with the gears 20 and 21, and a carrier 23 that pivotally supports the planetary gears 22. The sun gear 20 is connected to the crankshaft of the engine via, for example, an interlocking mechanism (not shown), and the power input to the sun gear 20 is sequentially decelerated and transmitted to the differential case DC via the planetary gear 22 and the carrier 23. To.

キャリア23は、例えば、デフケースDCよりも小径の円形リング状に形成されたキャリアベース23bと、キャリアベース23bの端面に互いに周方向に間隔をおいて一体に連設されて軸方向に各々延びる複数(例えば4個)のアーム部(キャリア本体部)23aとを有する。各々のアーム部23aは、例えば、デフケースDCの回転軸線Lと直交する投影面で見て扇形状に形成されており、各々のアーム部23aの先端部(即ちキャリア23の軸方向端部)が、後述するようにデフケースDCと溶接wにより結合される。 The carriers 23 are, for example, a plurality of carrier bases 23b formed in a circular ring shape having a diameter smaller than that of the differential case DC, and a plurality of carriers 23 that are integrally connected to the end faces of the carrier bases 23b at intervals in the circumferential direction and extend in the axial direction. It has (for example, four) arm portions (carrier main body portions) 23a. Each arm portion 23a is formed in a fan shape when viewed from a projection plane orthogonal to the rotation axis L of the differential case DC, for example, and the tip end portion (that is, the axial end portion of the carrier 23) of each arm portion 23a is formed. , As will be described later, it is connected to the differential case DC by welding w.

遊星ギヤ22は、例えば、キャリア23の周方向に隣り合うアーム部23aの相互間の空間に配置される。また遊星ギヤ22は、上記空間を縦通する第1シャフトとしての枢軸PLに回転自在に貫通支持される。枢軸PLの一端部(枢軸PLの他端部)は、例えば、キャリア23(より具体的にはキャリアベース23b)に設けた貫通孔H2に嵌合支持され、嵌合支持された嵌合支持部が適当な結合手段(例えば、溶接、接着、カシメ、圧入等)で結合されることで枢軸PLの一端部がキャリア23に固定される。また、枢軸PLのキャリア23への固定は、後述する第4実施形態のように、抜け止め用のピンを用いて固定させてもよい。 The planetary gears 22 are arranged, for example, in the space between the arm portions 23a adjacent to each other in the circumferential direction of the carrier 23. Further, the planetary gear 22 is rotatably and supported by the pivot PL as the first shaft passing through the space. One end of the Axis PL (the other end of the Axis PL) is fitted and supported by, for example, a through hole H2 provided in the carrier 23 (more specifically, the carrier base 23b), and the fitting and supporting portion is fitted and supported. Is bonded by an appropriate bonding means (for example, welding, bonding, caulking, press fitting, etc.) so that one end of the Axis PL is fixed to the carrier 23. Further, the pivot PL may be fixed to the carrier 23 by using a pin for preventing the pivot PL from coming off, as in the fourth embodiment described later.

また、枢軸PLの他端部(枢軸PLの一端部)は、後述するようにデフケースDCのキャリア23との対向壁(即ち後述する第1カバー部C1の側壁部Cs)における、サイドギヤSと径方向でオーバラップする位置に設けた凹部としての有底の凹孔H1に嵌合支持される。これにより、枢軸PLは、キャリア23のキャリアベース23bとデフケースDCとにより両持ち支持される。
Further, the other end of the pivot PL (one end of the pivot PL) has a diameter with the side gear S on the wall facing the carrier 23 of the differential case DC (that is, the side wall Cs of the first cover portion C1 described later) as described later. It is fitted and supported in a bottomed concave hole H1 as a concave portion provided at a position where it overlaps in the direction . As a result, the pivot PL is supported by the carrier base 23b of the carrier 23 and the differential case DC.

デフケースDCの一端部(本実施形態では、図2の紙面上で見て右端部)は、例えば、軸受2を介してミッションケースMに回転自在に支持される。一方、デフケースDCの他端部側では、図示はしないが、例えば、サンギヤ20、キャリア23又は出力軸J1のうちの少なくとも1つが、ミッションケースMに回転自在に支持される。これにより、相互に一体的に回転するデフケースDC及びキャリア23の結合体が、ミッションケースMに回転自在に支持される。 One end of the differential case DC (in this embodiment, the right end when viewed on the paper in FIG. 2) is rotatably supported by the mission case M via, for example, a bearing 2. On the other hand, on the other end side of the differential case DC, for example, at least one of the sun gear 20, the carrier 23, or the output shaft J1 is rotatably supported by the mission case M, although not shown. As a result, the coupling of the differential case DC and the carrier 23 that rotate integrally with each other is rotatably supported by the mission case M.

またミッションケースMには、各出力軸J1,J2が嵌挿される貫通孔Maが形成される。貫通孔Maの内周と各出力軸J1,J2の外周との間には、その間をシールする環状のシール部材3が介装される。またミッションケースMの底部には、例えば、ミッションケースMの内部空間1に臨んで所定量の潤滑油を貯溜するオイルパン(図示せず)が設けられている。そして、オイルパンに貯溜した潤滑油が、ミッションケースMの内部空間1において減速歯車機構RGの可動要素やデフケースDC等の回転により周辺に掻き上げられ飛散することで、デフケースDCの内外に存する機械運動部分を潤滑できるようになっている。尚、オイルパンに貯溜した潤滑油をオイルポンプ(図示せず)で吸引して、ミッションケースMの内部空間1の特定部位、例えば、減速歯車機構RGやデフケースDC、或いはその周辺のミッションケースMの内壁に向けて強制的に噴射又は散布させるようにしてもよい。 Further, the mission case M is formed with through holes Ma into which the output shafts J1 and J2 are fitted. An annular sealing member 3 for sealing between the inner circumference of the through hole Ma and the outer circumference of the output shafts J1 and J2 is interposed. Further, at the bottom of the mission case M, for example, an oil pan (not shown) that faces the internal space 1 of the mission case M and stores a predetermined amount of lubricating oil is provided. Then, the lubricating oil stored in the oil pan is scraped up and scattered around by the rotation of the movable element of the reduction gear mechanism RG and the differential case DC in the internal space 1 of the mission case M, so that the machine exists inside and outside the differential case DC. It is designed to lubricate moving parts. The lubricating oil stored in the oil pan is sucked by an oil pump (not shown), and a specific part of the internal space 1 of the mission case M, for example, the reduction gear mechanism RG, the differential case DC, or the mission case M around it. It may be forced to spray or spray toward the inner wall of the.

差動装置Dは、例えば、デフケースDCと、デフケースDC内に収容される複数のピニオンPと、デフケースDC内に収容されてピニオンPを回転自在に支持するピニオンシャフトPSと、デフケースDC内に収容されてピニオンPに対し左右両側より噛合し、且つ一対の出力軸J1,J2にそれぞれ接続される一対のサイドギヤSとを備える。また、サイドギヤSは出力ギヤの一例であり、ピニオンPは差動ギヤの一例であり、ピニオンシャフトPSは差動ギヤ支持部の一例であり、デフケースDCは、入力部材の一例である。 The differential device D includes, for example, a differential case DC, a plurality of pinions P housed in the differential case DC, a pinion shaft PS housed in the differential case DC and rotatably supporting the pinion P, and a differential case DC. It is provided with a pair of side gears S that mesh with the pinion P from both the left and right sides and are connected to the pair of output shafts J1 and J2, respectively. Further, the side gear S is an example of an output gear, the pinion P is an example of a differential gear, the pinion shaft PS is an example of a differential gear support portion, and the differential case DC is an example of an input member.

ピニオン(ピニオンギヤ)Pは、デフケースDCに収容支持されており、デフケースDCに対し径方向の軸線回りに自転可能であると共にデフケースDCの回転に伴いデフケースDCの回転中心回りに公転可能である。 The pinion (pinion gear) P is housed and supported by the differential case DC, and can rotate around the axial axis in the radial direction with respect to the differential case DC, and can revolve around the center of rotation of the differential case DC as the differential case DC rotates.

デフケースDCは、例えば、ピニオンシャフトPSと共に回転し得るようピニオンシャフトPSを支持する短円筒状(筒状)のケース部(周壁部)4と、一対のサイドギヤSの外側をそれぞれ覆い且つケース部4と一体的に回転する一対のカバー部C1,C2とを有する。 The differential case DC covers, for example, a short cylindrical (cylindrical) case portion (circumferential wall portion) 4 that supports the pinion shaft PS so that it can rotate together with the pinion shaft PS, and a case portion 4 that covers the outside of the pair of side gears S, respectively. It has a pair of cover portions C1 and C2 that rotate integrally with the cover portion C1 and C2.

一対のカバー部C1,C2のうち、減速歯車機構RG側の第1カバー部C1は、例えば、ケース部4と一体に形成されている。第1カバー部C1は、例えば、溶接wによってキャリア23と連結される。また第2カバー部C2は、例えば、ケース部4にボルトB等の結合手段を以て着脱可能に結合される。尚、結合手段としては、ボルトB以外の適当な結合手段、例えば、カシメ、接着、溶接等の結合手段を採用してもよい。また、第1カバー部C1を、第2カバー部C2と同様にケース部4とは別体に形成して、ケース部4にボルトB等の結合手段を以て結合してもよい。 Of the pair of cover portions C1 and C2, the first cover portion C1 on the reduction gear mechanism RG side is formed integrally with, for example, the case portion 4. The first cover portion C1 is connected to the carrier 23 by, for example, welding w. Further, the second cover portion C2 is detachably connected to the case portion 4 by, for example, a connecting means such as a bolt B. As the coupling means, an appropriate coupling means other than the bolt B, for example, a coupling means such as caulking, bonding, or welding may be adopted. Further, the first cover portion C1 may be formed separately from the case portion 4 like the second cover portion C2, and may be connected to the case portion 4 by a coupling means such as a bolt B.

第1,第2カバー部C1,C2は、例えば、サイドギヤSの後述する軸部Sjを同心状に囲繞して回転自在に嵌合支持する円筒状のボス部Cbと、外側面の全部又は大部分をデフケースDCの回転軸線Lと直交する平坦面としてボス部Cbの軸方向内端に一体に連設される板状で環状の側壁部Csとを備えている。また、側壁部Csの外周端部はケース部4に一体に又は着脱可能に結合される。側壁部Csは、上記のように平坦面としたことで、軸方向外方側に大きく張出すことが抑えられるから、差動装置Dの軸方向の扁平化を図る上で有利である。 The first and second cover portions C1 and C2 include, for example, a cylindrical boss portion Cb that concentrically surrounds and rotatably fits and supports the shaft portion Sj described later of the side gear S, and the entire outer surface or a large portion. The portion is provided with a plate-shaped annular side wall portion Cs integrally connected to the axial inner end of the boss portion Cb as a flat surface orthogonal to the rotation axis L of the differential case DC. Further, the outer peripheral end portion of the side wall portion Cs is integrally or detachably connected to the case portion 4. Since the side wall portion Cs has a flat surface as described above, it is possible to prevent the side wall portion Cs from protruding significantly outward in the axial direction, which is advantageous for flattening the differential device D in the axial direction.

一方のカバー部(本実施形態では第1カバー部C1)のボス部Cbの内周面には、出力軸J1の外周面が相対回転自在に直接嵌合している。そして、その相対回転に伴いボス部Cbの軸方向外端から内端側に向かって潤滑油を強制的に給送し得る螺旋状の凹溝8がボス部Cbの内周面に形成される。また、他方のカバー部(本実施形態では第2カバー部C2)のボス部Cbの内周面には、他方のカバー部(より具体的には第2カバー部C2のボス部Cb)と同側のサイドギヤSの軸部Sjとの相対回転に伴い該ボス部Cbの軸方向外端から内端側に向かって潤滑油を強制的に給送し得る螺旋状の凹溝8′が形成される。
The outer peripheral surface of the output shaft J1 is directly fitted to the inner peripheral surface of the boss portion Cb of one of the cover portions (the first cover portion C1 in the present embodiment) so as to be relatively rotatable. Then, a spiral concave groove 8 capable of forcibly supplying lubricating oil from the outer end in the axial direction to the inner end side of the boss portion Cb is formed on the inner peripheral surface of the boss portion Cb with the relative rotation. .. Further, the inner peripheral surface of the boss portion Cb of the other cover portion ( second cover portion C2 in the present embodiment) is the same as the other cover portion ( more specifically, the boss portion Cb of the second cover portion C2). A spiral concave groove 8'that can forcibly supply lubricating oil from the axially outer end to the inner end side of the boss portion Cb is formed along with the relative rotation of the side gear S with the shaft portion Sj. The cover.

ピニオンシャフトPSは、例えば、デフケースDC内でデフケースDCの回転軸線Lと直交するように配置されるものであって、筒状のケース部4に一直径線上に設けた一対の貫通支持孔4aに、ピニオンシャフトPSの両端部がそれぞれ抜差可能に挿通される。そして、ピニオンシャフトPSは、ピニオンシャフトPSの一端部を貫通してケース部4に挿着される抜け止めピン5を以て、ケース部4に固定される。抜け止めピン5は、例えば、ケース部4にボルト止めした第2カバー部C2に抜け止めピン5の外端を当てがうことで、ケース部4からの抜け止めがなされる。 The pinion shaft PS is, for example, arranged in the differential case DC so as to be orthogonal to the rotation axis L of the differential case DC, and is provided in a pair of through support holes 4a provided on one diameter line in the tubular case portion 4. , Both ends of the pinion shaft PS are inserted so that they can be inserted and removed. Then, the pinion shaft PS is fixed to the case portion 4 by a retaining pin 5 which penetrates one end portion of the pinion shaft PS and is inserted into the case portion 4. The retaining pin 5 is prevented from coming off from the case portion 4, for example, by applying the outer end of the retaining pin 5 to the second cover portion C2 bolted to the case portion 4.

ところで本実施形態では、第2シャフトとしてのピニオンシャフトPSを直線棒状に形成して、ピニオンシャフトPSの両端部に2個のピニオンPをそれぞれ支持させるようにしたものを示したが、ピニオンPを3個以上設けてもよい。その場合には、ピニオンシャフトPSを、3個以上のピニオンPに対応してデフケースDCの回転軸線Lから三方向以上に枝分かれして放射状に延びる交差棒状(例えば、ピニオンPが4個の場合には十字状)に形成し、ピニオンシャフトPSの各先端部にピニオンPを各々支持させるようにする。またケース部4は、ピニオンシャフトPSの各端部を取付支持し得るように複数のケース要素に分割構成する。 By the way, in the present embodiment, the pinion shaft PS as the second shaft is formed in a straight rod shape so that the two pinion Ps are supported at both ends of the pinion shaft PS. Three or more may be provided. In that case, the pinion shaft PS has a cross-bar shape (for example, when there are four pinions P) that branches radially from the rotation axis L of the differential case DC in three or more directions corresponding to three or more pinions P. Is formed in a cross shape) so that each tip of the pinion shaft PS supports the pinion P. Further, the case portion 4 is divided into a plurality of case elements so that each end portion of the pinion shaft PS can be attached and supported.

尚、第2シャフトとしてのピニオンシャフトPSを複数(より具体的には複数のピニオンPと同数)用意してデフケースDCに別々に取付けるようにし、取付けた複数のピニオンシャフトPSで複数のピニオンPを個別に支持させてもよい。 A plurality of pinion shaft PSs as the second shaft (more specifically, the same number as a plurality of pinion Ps) are prepared and attached to the differential case DC separately, and a plurality of pinion shafts P are attached to the attached plurality of pinion shaft PSs. It may be supported individually.

またピニオンPは、ピニオンシャフトPSに直接嵌合させてもよいし、軸受ブッシュ等の軸受手段を介して嵌合させてもよい。尚、ピニオンシャフトPSは、図2、図3に示すように全長に亘り略一様等径の軸状としてもよいし、或いは段付き軸状としてもよい。またピニオンシャフトPSの、ピニオンPとの嵌合面には、例えば、嵌合面への潤滑油の流通を十分に確保するための平坦な切欠き面6(図3参照)が形成され、切欠き面6とピニオンPの内周面との間に、潤滑油の流通可能な油路が確保される。 Further, the pinion P may be fitted directly to the pinion shaft PS, or may be fitted via a bearing means such as a bearing bush. As shown in FIGS. 2 and 3, the pinion shaft PS may have a shaft shape having a substantially uniform diameter over the entire length, or may have a stepped shaft shape. Further, on the fitting surface of the pinion shaft PS with the pinion P, for example, a flat notched surface 6 (see FIG. 3) for sufficiently ensuring the flow of lubricating oil to the fitting surface is formed and cut. An oil passage through which lubricating oil can flow is secured between the notch surface 6 and the inner peripheral surface of the pinion P.

またピニオンP及びサイドギヤSは、例えば、ベベルギヤに形成されており、しかもピニオンP及びサイドギヤSの歯部を含む全体が各々鍛造等の塑性加工で形成されている。そのため、ピニオンP及びサイドギヤSの歯部を切削加工する場合のような機械加工上の制約を受けることなく歯部を任意の歯数比を以て高精度に形成可能である。尚、ピニオンP及びサイドギヤSとしては、ベベルギヤに代えて他のギヤを採用してもよく、例えば、サイドギヤSをフェースギヤとし且つピニオンPを平歯車又は斜歯歯車としてもよい。 Further, the pinion P and the side gear S are formed on, for example, bevel gears, and the entire pinion P and the side gear S including the tooth portions are formed by plastic working such as forging. Therefore, the tooth portions can be formed with high accuracy with an arbitrary gear ratio without being restricted by machining as in the case of cutting the tooth portions of the pinion P and the side gear S. As the pinion P and the side gear S, other gears may be adopted instead of the bevel gear. For example, the side gear S may be a face gear and the pinion P may be a spur gear or an oblique tooth gear.

また、一対のサイドギヤSは、例えば、一対の出力軸J1,J2の内端部がそれぞれスプライン嵌合7される円筒状の軸部Sjと、軸部Sjから径方向外方に離れた位置に在ってピニオンPに噛合する歯面を有する円環状の歯部Sgと、軸部Sjの内端部から歯部Sgの内周端部に向かって径方向外方に延びる扁平なリング板状に形成される中間壁部Smとを備えており、中間壁部Smにより、軸部Sjと歯部Sgの内周端部との間が一体に接続される。そして、サイドギヤSの背面fのうち、歯部Sgの背面部分fgは、中間壁部Smの背面部分fmよりも軸方向外方に張り出している。
Further, the pair of side gears S are located, for example, at positions separated radially outward from the cylindrical shaft portion Sj in which the inner end portions of the pair of output shafts J1 and J2 are spline-fitted 7, respectively. An annular tooth portion Sg having a tooth surface that is present and meshes with the pinion P, and a flat ring plate shape extending radially outward from the inner end portion of the shaft portion Sj toward the inner peripheral end portion of the tooth portion Sg. The intermediate wall portion Sm is provided, and the shaft portion Sj and the inner peripheral end portion of the tooth portion Sg are integrally connected by the intermediate wall portion Sm. Of the back surface f of the side gear S, the back surface portion fg of the tooth portion Sg projects outward in the axial direction from the back surface portion fm of the intermediate wall portion Sm.

尚、各サイドギヤSの軸部Sjは、例えば、各カバー部C1,C2のボス部Cbに回転自在に直接嵌合しているが、軸受を介して嵌合させてもよい。 The shaft portion Sj of each side gear S is rotatably and directly fitted to the boss portion Cb of each cover portion C1 and C2, for example, but may be fitted via a bearing.

左右少なくとも一方(本実施形態では両方)のサイドギヤSの中間壁部Smには、例えば、中間壁部Smを軸方向に横切るよう貫通する複数の貫通油路9が周方向に間隔をおいて形成される。従って、デフケースDC内では、貫通油路9を通して、サイドギヤSの内方側と外方側との間での潤滑油の流通がスムーズに行われる。尚、図示はしないが、少なくとも一方のカバー部C1,C2の側壁部Csには、デフケースDCの内外での潤滑油の流通を許容する複数の貫通孔を周方向に間隔をおいて設けるようにしてもよい。 A plurality of penetrating oil passages 9 penetrating the intermediate wall portion Sm of at least one of the left and right side gears (both in the present embodiment) so as to cross the intermediate wall portion Sm in the axial direction are formed at intervals in the circumferential direction. Will be done. Therefore, in the differential case DC, the lubricating oil is smoothly circulated between the inner side and the outer side of the side gear S through the through oil passage 9. Although not shown, a plurality of through holes that allow the flow of lubricating oil inside and outside the differential case DC are provided at least one of the cover portions C1 and C2 at intervals in the circumferential direction. You may.

また、各カバー部C1,C2の側壁部Csの内側面、即ちサイドギヤSの背面fとの対向面には、サイドギヤSの歯部Sgの背面部分fgが、ワッシャWを介して回転自在に当接、支持される。尚、ワッシャWは、例えば、カバー部C1,C2の側壁部Csの内側面と、サイドギヤSの歯部Sgの背面部分fgとの相対向面の少なくとも一方(本実施形態では側壁部Csの内側面)に形成した環状のワッシャ保持溝10に嵌合、保持される。 Further, the back surface portion fg of the tooth portion Sg of the side gear S rotatably hits the inner surface of the side wall portion Cs of each cover portion C1 and C2, that is, the surface facing the back surface f of the side gear S via the washer W. Contact and support. The washer W is, for example, at least one of the inner side surfaces of the side wall portions Cs of the cover portions C1 and C2 and the back surface portion fg of the tooth portions Sg of the side gear S (in the side wall portion Cs in the present embodiment). It is fitted and held in the annular washer holding groove 10 formed on the side surface).

またカバー部C1,C2の側壁部Csの内側面は、例えば、前述の如くサイドギヤSの歯部Sgの背面部分fgが中間壁部Smの背面部分fmよりも軸方向外方に張り出していることに対応して、側壁部Csの、歯部Sgの背面部分fgに対応する部分よりも中間壁部Smの背面部分fmに対応する部分の方が軸方向内方に張り出すように(即ち軸方向厚肉に)形成される。これにより、側壁部CsのサイドギヤSに対する支持剛性が効果的に高められる。 Further, on the inner surface of the side wall portions Cs of the cover portions C1 and C2, for example, as described above, the back surface portion fg of the tooth portion Sg of the side gear S projects outward in the axial direction from the back surface portion fm of the intermediate wall portion Sm. Correspondingly, the portion of the side wall portion Cs corresponding to the back portion fm of the intermediate wall portion Sm protrudes inward in the axial direction than the portion corresponding to the back portion fg of the tooth portion Sg (that is, the shaft). Formed (thick in the direction). As a result, the support rigidity of the side wall portion Cs with respect to the side gear S is effectively increased.

各々のサイドギヤSの背面fのうち、ワッシャWに当接する当接面の最外周端feは、例えば、図6に示されるように、サイドギヤS及びピニオンPの相互の噛合部Iの最外周端に対しサイドギヤSの径方向で同一の位置に在り、しかも当接面の最外周端feよりもワッシャWの外周端部Weの方が径方向外方に延びている。 Of the back surface f of each side gear S, the outermost outermost end fe of the contact surface that comes into contact with the washer W is, for example, as shown in FIG. 6, the outermost outermost end of the mutual meshing portion I of the side gear S and the pinion P. On the other hand, the side gears S are at the same position in the radial direction, and the outer peripheral end portion We of the washer W extends outward in the radial direction than the outermost outer peripheral end fe of the contact surface.

次に、図4〜図6を参照して、キャリア23とデフケースDCとの溶接構造について、具体的に説明する。デフケースDC(より具体的には第1カバー部C1)の外周端部DCoのキャリア23側の側面には、例えば、キャリア23とは反対側に窪み且つその窪みがデフケースDCの外周端部DCoの径方向外端面DCoeまで延びる円環状の段部15が凹設される。図4,図5に明示されるように、段部15は、例えば、遊星ギヤ22の回転軸線と直交する投影面で見て、遊星ギヤ22と重ならない位置、即ち遊星ギヤ22よりも第1カバー部C1の径方向外方側の位置に形成される。尚、図4〜図6において、段部15は、後述する溶接の工程前の形態を示している。 Next, the welded structure of the carrier 23 and the differential case DC will be specifically described with reference to FIGS. 4 to 6. On the side surface of the outer peripheral end DCo of the differential case DC (more specifically, the first cover portion C1) on the carrier 23 side, for example, a recess is formed on the side opposite to the carrier 23, and the recess is formed in the outer peripheral end DCo of the differential case DC. An annular step portion 15 extending to the radial outer end surface DCoe is recessed. As is shown in FIGS. 4 and 5, for example, the step portion 15 is at a position that does not overlap with the planetary gear 22, that is, is first than the planetary gear 22 when viewed on a projection plane orthogonal to the rotation axis of the planetary gear 22. It is formed at a position on the outer side in the radial direction of the cover portion C1. In addition, in FIGS. 4 to 6, the step portion 15 shows the form before the welding process described later.

本明細書において、デフケースDC(より具体的には第1カバー部C1)の外周端部DCoとは、デフケースDCの径方向外端面DCoeのみならず、径方向外端面DCoeより径方向内方側の、径方向外端面DCoeに近い所定領域も含まれる概念である。 In the present specification, the outer peripheral end DCO of the differential case DC (more specifically, the first cover portion C1) is not only the radial outer end surface DCoe of the differential case DC but also the radial inner side of the radial outer end surface DCoe. This is a concept that includes a predetermined region close to the radial outer end surface DCoe.

また第1カバー部C1のキャリア23側の側面には、例えば、段部15の径方向内方側に隣接した、段部15よりも深い複数の円弧状の凹部16が周方向に互いに間隔をおいて凹設される。凹部16は、キャリア23の複数のアーム部23aにそれぞれ対応した位置に形成される。しかも各々の凹部16は、キャリア23の各々のアーム部23aの先端部(即ち後述する突部23af)の、少なくとも周方向で一方端(本実施形態では両端)よりも外方側に延びている。そして、外方側に延出した凹部16の周方向端部は、緩やかに立ち上がる緩斜面16sに各々形成される。 Further, on the side surface of the first cover portion C1 on the carrier 23 side, for example, a plurality of arcuate recesses 16 deeper than the step portion 15 adjacent to the radial inward side of the step portion 15 are spaced apart from each other in the circumferential direction. It is recessed. The recess 16 is formed at a position corresponding to each of the plurality of arm portions 23a of the carrier 23. Moreover, each recess 16 extends outward from one end (both ends in this embodiment) of the tip end portion (that is, the protrusion 23af) of each arm portion 23a of the carrier 23 in at least the circumferential direction. .. Then, the peripheral end portions of the recesses 16 extending outward are formed on the gently rising gentle slopes 16s, respectively.

また第1カバー部C1のキャリア23側の側面には、例えば、キャリア23の複数のアーム部23aの内周面に係合させる円環状の位置決め突部18が一体に突設されている。位置決め突部18に複数のアーム部23aの内周面を係合させることで、デフケースDCに対するキャリア23の径方向位置決めが簡単且つ的確に行われる。 Further, on the side surface of the first cover portion C1 on the carrier 23 side, for example, an annular positioning protrusion 18 that engages with the inner peripheral surfaces of the plurality of arm portions 23a of the carrier 23 is integrally provided. By engaging the inner peripheral surfaces of the plurality of arm portions 23a with the positioning protrusions 18, the radial positioning of the carrier 23 with respect to the differential case DC can be easily and accurately performed.

一方、キャリア23の軸方向端部、即ち各々のアーム部23aの先端部には、例えば、アーム部23aの先端面より軸方向でデフケースDC側に張出し且つアーム部23aの径方向外周面より径方向外方側に張出すフランジ状の突部23afが一体に形成されている。各々の突部23afの軸方向先端面のうち径方向内方側部分は、凹部16の深さに対応した小空隙17を挟んで凹部16の底面に対向しており、径方向外方側部分は段部15に当接し、その当接部がレーザトーチT(図6参照)を以て溶接wされることで、キャリア23がデフケースDCと連結される。そして、段部15とキャリア23(具体的には突部23af)との溶接部waは、デフケースDCの外周端部DCoに含まれている。また、突部23afの径方向外端面は、本実施形態ではデフケースDCの外周端部DCoの径方向外端面DCoeの、段部15と隣接する部分と面一に連続するように形成されるが、段部15と隣接する部分との間に多少の高低差を設定するようにしてもよい。 On the other hand, the axial end of the carrier 23, that is, the tip of each arm 23a, extends from the tip surface of the arm 23a toward the differential case DC in the axial direction and has a diameter of the outer peripheral surface of the arm 23a in the radial direction. A flange-shaped protrusion 23af that projects outward in the direction is integrally formed. Of the axial tip surfaces of the respective protrusions 23af, the radial inner side portion faces the bottom surface of the recess 16 with a small gap 17 corresponding to the depth of the recess 16 interposed therebetween, and is a radial outer side portion. Is in contact with the stepped portion 15, and the abutting portion is welded w with the laser torch T (see FIG. 6), whereby the carrier 23 is connected to the differential case DC. The welded portion wa between the step portion 15 and the carrier 23 (specifically, the protrusion portion 23af) is included in the outer peripheral end portion DCo of the differential case DC. Further, in the present embodiment, the radial outer end surface of the protrusion 23af is formed so as to be continuous with the portion of the radial outer end surface DCoe of the outer peripheral end portion DCo of the differential case DC, which is adjacent to the step portion 15. , A slight height difference may be set between the step portion 15 and the adjacent portion.

またデフケースDCの第1カバー部C1に関し、例えば、段部15及び凹部16は、段部15及び凹部16の形態に対応した鋳造型又は鍛造型を用いて鋳造法又は鍛造法で成形される。 Regarding the first cover portion C1 of the differential case DC, for example, the step portion 15 and the recess 16 are formed by a casting method or a forging method using a casting mold or a forging mold corresponding to the form of the step portion 15 and the recess 16.

ところで上述したように、デフケースDCのキャリア23との対向壁(即ち第1カバー部C1の側壁部Cs)におけるサイドギヤSと径方向でオーバラップする位置には、遊星ギヤ22を支持する枢軸PLの端部がそれぞれ嵌合可能な複数の凹部としての凹孔H1が形成されているが、複数の凹孔H1は、何れも差動ギヤとしてのピニオンPとピニオンPを支持するピニオンシャフトPSとに対して、デフケースDCの周方向でずれた位置(つまりデフケースDCの回転軸線Lと直交する投影面で見てピニオンP及びピニオンシャフトPSと重ならない位置)に配置される。また、本実施形態では、複数の凹孔H1は、何れもキャリア23(より具体的にはアーム部23aの先端部)とデフケースDCとを結合する溶接部waに対し、デフケースDCの周方向でずれた位置に配置される。
By the way, as described above, the pivot PL supporting the planetary gear 22 is located at a position that radially overlaps the side gear S on the wall facing the carrier 23 of the differential case DC (that is, the side wall portion Cs of the first cover portion C1) . Recessed holes H1 are formed as a plurality of recesses into which the ends can be fitted, and the plurality of recessed holes H1 are formed in the pinion P as a differential gear and the pinion shaft PS supporting the pinion P. On the other hand, it is arranged at a position deviated in the circumferential direction of the differential case DC (that is, a position that does not overlap the pinion P and the pinion shaft PS when viewed from the projection plane orthogonal to the rotation axis L of the differential case DC). Further, in the present embodiment, the plurality of concave holes H1 are all in the circumferential direction of the differential case DC with respect to the welded portion wa that connects the carrier 23 (more specifically, the tip portion of the arm portion 23a) and the differential case DC. It is placed in a misaligned position.

次に、第1実施形態の作用について説明する。 Next, the operation of the first embodiment will be described.

本実施形態の差動装置Dは、エンジンから減速歯車機構RGを介してデフケースDCに回転力を受けた場合に、ピニオンPがピニオンシャフトPS回りに自転しないでデフケースDCと共にデフケースDCの回転軸線L回りに公転するときは、デフケースDCからピニオンPを介して左右のサイドギヤSが同速度で回転駆動されて、サイドギヤSの駆動力が均等に左右の出力軸J1,J2に伝達される。また、自動車の旋回走行等により左右の出力軸J1,J2に回転速度差が生じるときは、ピニオンPが自転しつつ公転することで、ピニオンPから左右のサイドギヤSに対して差動回転を許容しつつ回転駆動力が伝達される。以上は、従来周知の差動装置の作動と同様である。 In the differential device D of the present embodiment, when a rotational force is applied to the differential case DC from the engine via the reduction gear mechanism RG, the pinion P does not rotate around the pinion shaft PS and the rotation axis L of the differential case DC together with the differential case DC. When revolving around, the left and right side gears S are rotationally driven from the differential case DC via the pinion P at the same speed, and the driving force of the side gears S is evenly transmitted to the left and right output shafts J1 and J2. In addition, when there is a difference in rotational speed between the left and right output shafts J1 and J2 due to turning of an automobile or the like, the pinion P revolves while rotating, allowing differential rotation from the pinion P to the left and right side gears S. While doing so, the rotational driving force is transmitted. The above is the same as the operation of the conventionally known differential device.

ところで本実施形態では、デフケースDCの外周端部DCoのキャリア23側の側面に、キャリア23とは反対側に窪み且つその窪みがデフケースDCの外周端部DCoの径方向外端面DCoeまで延びていて、キャリア23の軸方向端部(即ち複数のアーム部23aの各先端部の突部23af)と当接する段部15が凹設されている。そして、段部15とキャリア23の軸方向端部(より具体的には突部23af)とを突き合わせるように当接させた状態で、段部15とキャリア23の軸方向端部との当接部を溶接wすることで、デフケースDC(より具体的には第1カバー部C1)と減速歯車機構RG(より具体的にはキャリア23)とが連結される。このとき、段部15とキャリア23の軸方向端部(より具体的には突部23af)との当接部が溶接部waとなる。 By the way, in the present embodiment, the outer peripheral end portion DCo of the differential case DC has a recess on the side surface on the carrier 23 side, and the recess extends to the radial outer end surface DCoe of the outer peripheral end portion DCo of the differential case DC. , A step portion 15 that comes into contact with the axial end portion of the carrier 23 (that is, the protrusion 23af of each tip portion of the plurality of arm portions 23a) is recessed. Then, in a state where the step portion 15 and the axial end portion of the carrier 23 (more specifically, the protrusion 23af) are brought into contact with each other so as to abut against each other, the step portion 15 and the axial end portion of the carrier 23 are brought into contact with each other. By welding the tangent portion w, the differential case DC (more specifically, the first cover portion C1) and the reduction gear mechanism RG (more specifically, the carrier 23) are connected. At this time, the contact portion between the step portion 15 and the axial end portion (more specifically, the protrusion portion 23af) of the carrier 23 becomes the welded portion wa.

溶接作業は、例えば、図6に鎖線で示すように第1カバー部C1の径方向外方よりも外側の方に配備される溶接用レーザトーチTから、段部15とキャリア23の軸方向端部と当接部の径方向外端に向けてレーザを照射し且つ第1カバー部C1及びレーザトーチTの何れか一方(例えばレーザトーチT)を何れか他方(例えば第1カバー部C1)に対し、デフケースDCの回転軸線L回りに緩やかに相対回転させることで行われる。これにより、レーザのエネルギを以て、段部15と、キャリア23の軸方向端部、即ち突部23afの軸方向先端面とを溶接wにより連結することができる。
For example, as shown by the chain line in FIG. 6, the welding work is performed from the welding laser torch T provided outside the radial direction of the first cover portion C1, the step portion 15 and the axial end portion of the carrier 23. The laser is irradiated toward the radial outer end of the contact portion with the first cover portion C1 and one of the laser torch T (for example, the laser torch T) is applied to the other (for example, the first cover portion C1). This is done by gently rotating the differential case DC around the rotation axis L. As a result, the step portion 15 and the axial end portion of the carrier 23, that is, the axial tip surface of the protrusion 23af can be connected by welding w using the energy of the laser.

以上説明したように、本実施形態によれば、デフケースDC(より具体的には第1カバー部C1)の外周端部DCoのキャリア23側の側面に、キャリア23とは反対側に窪み且つその窪みがデフケースDC(より具体的には第1カバー部C1)の外周端部DCoの径方向外端面DCoeまで延びていてキャリア23の突部23afと当接可能である段部15を有している。そのため、溶接作業に当たり、溶接用レーザトーチTをデフケースDCの径方向外方側から被溶接部(即ち上記当接部の外端)に容易に対向させることができる。これにより、溶接用レーザトーチTの移動自由度を従来技術よりもデフケースDC(より具体的には第1カバー部C1)の径方向外方側により広く確保でき、従来技術よりも加工自由度や溶接作業性を向上させることができる。 As described above, according to the present embodiment, the outer peripheral end portion of the differential case DC (more specifically, the first cover portion C1) is recessed on the side surface of the outer peripheral end DCo on the carrier 23 side and on the side opposite to the carrier 23. The recess has a stepped portion 15 that extends to the radial outer end surface DCoe of the outer peripheral end portion DCo of the differential case DC (more specifically, the first cover portion C1) and can come into contact with the protrusion 23af of the carrier 23. There is. Therefore, in the welding work, the welding laser torch T can be easily opposed to the welded portion (that is, the outer end of the contact portion) from the radial outer side of the differential case DC. As a result, the degree of freedom of movement of the laser torch T for welding can be secured wider on the radial outer side of the differential case DC (more specifically, the first cover portion C1) than in the conventional technology, and the degree of freedom in processing and welding can be secured more than in the conventional technology. Workability can be improved.

さらに、本実施形態によれば、段部15とキャリア23は溶接w結合されるとともに、段部15とキャリア23との溶接部waがデフケースDCの外周端部DCoに含まれる。そのため、溶接作業に当たり、デフケースDC(より具体的には第1カバー部C1)の径方向外方側から溶接用レーザトーチTを被溶接部に対し、より容易に対向させることができる。従って、溶接用レーザトーチTの移動自由度をデフケースDC(より具体的には第1カバー部C1)の径方向外方側により広く確保でき、加工自由度や溶接作業性をより向上させることができる。しかも、溶接部waがデフケースDC(より具体的には第1カバー部C1)の外周端部DCoに含まれるため、デフケースDC(より具体的には第1カバー部C1)の、サイドギヤSの背面fを支持する部位(本実施形態ではワッシャWとの当接面)への溶接熱の影響(例えば熱歪)を回避又は低減できる。これにより、溶接熱の影響を考慮した仕上げ加工も不要となる。その上、溶接ビードと周辺部品(例えば、減速歯車機構RGのリングギヤ21)とが干渉する虞れがなくなるから、溶接ビードの削り作業や仕上げ作業も不要となる。それらの結果、製造コストを効果的に抑制することができる。
Further, according to the present embodiment, the step portion 15 and the carrier 23 are welded together, and the welded portion wa of the step portion 15 and the carrier 23 is included in the outer peripheral end portion DCo of the differential case DC. Therefore, in the welding work, the welding laser torch T can be more easily opposed to the welded portion from the radial outer side of the differential case DC (more specifically, the first cover portion C1). Therefore, the degree of freedom of movement of the welding laser torch T can be secured wider on the radial outer side of the differential case DC (more specifically, the first cover portion C1), and the degree of freedom of processing and welding workability can be further improved. .. Moreover, since the welded portion washer is included in the outer peripheral end DCo of the differential case DC (more specifically, the first cover portion C1), the back surface of the side gear S of the differential case DC (more specifically, the first cover portion C1). The influence of welding heat (for example, thermal strain) on the portion supporting f (the contact surface with the washer W in this embodiment) can be avoided or reduced. This eliminates the need for finishing in consideration of the influence of welding heat. In addition, since there is no possibility that the weld bead and peripheral parts (for example, the ring gear 21 of the reduction gear mechanism RG) interfere with each other, the welding bead cutting work and finishing work are not required. As a result, the manufacturing cost can be effectively suppressed.

また本実施形態によれば、第1カバー部C1のキャリア23側の側面が、段部15の径方向内方側に隣接した、段部15よりも深い円弧状の凹部16を有しており、凹部16は、少なくともアーム部23a(より具体的にはアーム部23aの先端部(本実施形態ではアーム部23aの突部23af))の、キャリア23の周方向での一方端(本実施形態では両端)よりも周方向外方側まで延びている。そのため、溶接時に溶接部の周辺に発生するガスを凹部16を通じて外部に的確に排出できるから、溶接の品質の向上に寄与することができる。 Further, according to the present embodiment, the side surface of the first cover portion C1 on the carrier 23 side has an arcuate concave portion 16 deeper than the step portion 15 adjacent to the radial inward side of the step portion 15. The recess 16 is at least one end of the arm portion 23a (more specifically, the tip portion of the arm portion 23a (the protrusion 23af of the arm portion 23a in the present embodiment)) in the circumferential direction of the carrier 23 (the present embodiment). Then, it extends to the outer side in the circumferential direction from both ends). Therefore, the gas generated around the welded portion during welding can be accurately discharged to the outside through the recess 16, which can contribute to the improvement of welding quality.

また本実施形態によれば、凹部16は、周方向に互いに間隔をおいて複数配設されるので、凹部16を設けたことに因るデフケースDCの強度低下が極力抑えられる。これにより、デフケースDC(より具体的には第1カバー部C1)の強度保持を図りながら、デフケースDC(より具体的にはカバー部C1)の薄肉軽量化を達成することができる。 Further, according to the present embodiment, since a plurality of recesses 16 are arranged at intervals in the circumferential direction, the decrease in strength of the differential case DC due to the provision of the recesses 16 can be suppressed as much as possible. As a result, it is possible to achieve a thin wall weight reduction of the differential case DC (more specifically, the cover portion C1) while maintaining the strength of the differential case DC (more specifically, the first cover portion C1).

また本実施形態によれば、段部15は、遊星ギヤ22の回転軸線と直交する投影面で見て、遊星ギヤ22と重ならない位置に形成される。このため、遊星ギヤ22に対するデフケースDC(より具体的には第1カバー部C1)側の摺動支持面が段部15を特設したことで減ぜられることを回避できるから、デフケースDC側の摺動支持面の面積(即ち遊星ギヤ22に対する受圧面積)を十分に確保可能となる。 Further, according to the present embodiment, the step portion 15 is formed at a position that does not overlap with the planetary gear 22 when viewed on a projection plane orthogonal to the rotation axis of the planetary gear 22. Therefore, it can be avoided that the sliding support surface on the differential case DC (more specifically, the first cover portion C1) side with respect to the planetary gear 22 is reduced by specially providing the step portion 15, so that the sliding on the differential case DC side can be prevented. The area of the dynamic support surface (that is, the pressure receiving area with respect to the planetary gear 22) can be sufficiently secured.

また本実施形態によれば、第1カバー部C1は、段部15及び凹部16が鋳造型又は鍛造型を用いて鋳造法又は鍛造法で成形される。そのため、段部15及び凹部16を形成するための切削工程が不要となり、加工工数の削減が図られる。 Further, according to the present embodiment, in the first cover portion C1, the step portion 15 and the recess 16 are formed by a casting method or a forging method using a casting mold or a forging mold. Therefore, the cutting process for forming the step portion 15 and the recess 16 becomes unnecessary, and the processing man-hours can be reduced.

また本実施形態によれば、第1カバー部C1の外周端部DCoの側面に形成されてキャリア23とは反対側に窪んだ段部15が、キャリア23との当接面(即ち被溶接面)とされる。そのため、第1カバー部C1の外周端部DCoの側面とキャリア23の軸方向端部とを軸方向に突き合わせて溶接w結合しているにも拘わらず、第1カバー部C1及びキャリア23の結合体の外周端部の軸方向全幅を極力小幅にすることができる。これにより、差動装置Dの小型化が図られる。 Further, according to the present embodiment, the stepped portion 15 formed on the side surface of the outer peripheral end portion DCo of the first cover portion C1 and recessed on the side opposite to the carrier 23 is the contact surface with the carrier 23 (that is, the surface to be welded). ). Therefore, although the side surface of the outer peripheral end DCo of the first cover portion C1 and the axial end portion of the carrier 23 are abutted in the axial direction and welded together, the first cover portion C1 and the carrier 23 are joined. The total width of the outer peripheral edge of the body in the axial direction can be made as small as possible. As a result, the differential device D can be downsized.

また本実施形態によれば、上述したようにデフケースDCのキャリア23との対向壁(より具体的には第1カバー部C1の側壁部Cs)におけるサイドギヤSと径方向でオーバラップする位置に、遊星ギヤ22を支持する枢軸(第1シャフト)PLのデフケースDC側の端部を嵌合可能な凹部としての複数の凹孔H1が形成される。しかも、複数の凹孔H1は、差動ギヤとしてのピニオンPを支持するピニオンシャフト(第2シャフト)PSに対し、デフケースDCの周方向でずれた位置に配置される。これにより、デフケースDCにおいてトルク伝達時に特に大きな荷重が作用する部分(即ちピニオンPとサイドギヤSとの噛合部に対応する位置でサイドギヤSの背面(より具体的にはワッシャW)側を支持する部分)に遊星ギヤ22を支持する枢軸PLを嵌合可能な凹孔H1が形成されることが回避される。そのため、本実施形態のように差動装置Dが軸方向に扁平化されデフケースDCが扁平化されても、凹孔H1の形成に因るデフケースDCの耐久性低下を効果的に抑制できる。
Further, according to the present embodiment, as described above, at a position that overlaps the side gear S in the radial direction on the wall facing the carrier 23 of the differential case DC (more specifically, the side wall portion Cs of the first cover portion C1). A plurality of concave holes H1 are formed as recesses into which the end portion of the pivot (first shaft) PL supporting the planetary gear 22 on the differential case DC side can be fitted. Moreover, the plurality of concave holes H1 are arranged at positions deviated from the pinion shaft (second shaft) PS supporting the pinion P as the differential gear in the circumferential direction of the differential case DC. As a result, the back surface f (more specifically, washer W) side of the side gear S is supported at a position corresponding to the meshing portion between the pinion P and the side gear S in the differential case DC where a particularly large load acts during torque transmission. It is avoided that the concave hole H1 into which the pivot PL supporting the planetary gear 22 can be fitted is formed in the portion). Therefore, even if the differential device D is flattened in the axial direction and the differential case DC is flattened as in the present embodiment, the decrease in durability of the differential case DC due to the formation of the concave hole H1 can be effectively suppressed.

また、扁平な差動装置に、特許文献1に開示のシャフトの配置構成を適用すると、複数ある遊星ギヤのうち、特に遊星ギヤ支持用のシャフトと差動ギヤ支持用のシャフトの周方向位置が一致してしまう特定の遊星ギヤのみに偏った力が働いてしまう。そのため、特定の遊星ギヤと、その他の遊星ギヤとでギヤ部に働く力のバランスが崩れ、複数ある遊星ギヤの荷重負担を均等化できなくなる。これにより、複数の遊星ギヤのギヤ部の強度を過不足なく的確に設定できなくなり、全部の遊星ギヤのギヤ部の性能を最適且つ十分に発揮させることができなくなる等の問題がある。 Further, when the shaft arrangement configuration disclosed in Patent Document 1 is applied to the flat differential device, among the plurality of planetary gears, the circumferential position of the planetary gear support shaft and the differential gear support shaft is particularly high. A biased force acts only on specific planetary gears that match. Therefore, the balance of the force acting on the gear portion between the specific planetary gear and the other planetary gears is lost, and the load load of the plurality of planetary gears cannot be equalized. As a result, the strength of the gear portions of the plurality of planetary gears cannot be set accurately without excess or deficiency, and there is a problem that the performance of the gear portions of all the planetary gears cannot be optimally and sufficiently exhibited.

しかしながら本実施形態によれば、上述の構成にすることにより、複数ある遊星ギヤ22のうちの一部の遊星ギヤ22に偏った力が働いてしまうことを回避できる。そのため、全ての遊星ギヤ22のギヤ部に働く力を極力均等化できる。これにより、全ての遊星ギヤ22のギヤ部の強度を過不足なく的確に設定可能となる。従って、全ての遊星ギヤ22のギヤ部の性能を最適且つ十分に発揮させることができる。 However, according to the present embodiment, by adopting the above configuration, it is possible to prevent a biased force from acting on some of the planetary gears 22 among the plurality of planetary gears 22. Therefore, the forces acting on the gear portions of all the planetary gears 22 can be equalized as much as possible. As a result, the strength of the gear portions of all the planetary gears 22 can be set accurately without excess or deficiency. Therefore, the performance of the gear portions of all the planetary gears 22 can be optimally and sufficiently exhibited.

また本実施形態では、デフケースDCが、サイドギヤSの軸部Sjを囲繞するボス部Cbと、外側面を出力軸J1,J2と直交する平坦面としてボス部Cbに連設された板状の側壁部Csとを有している。そのため、デフケースDC、特に第1,第2カバー部C1,C2の側壁部Csを薄肉扁平化する上で有利な構造となっているが、側壁部Csの薄肉扁平化によっても、上述したように凹孔H1がピニオンシャフトPSに対しデフケースDCの周方向でずれた位置に配置されることで、凹孔H1の形成に因るデフケースDCの耐久性低下が効果的に抑制される。 Further, in the present embodiment, the differential case DC has a plate-shaped side wall connected to the boss portion Cb with the boss portion Cb surrounding the shaft portion Sj of the side gear S and the outer surface as a flat surface orthogonal to the output shafts J1 and J2. It has a part Cs. Therefore, the differential case DC, particularly the side wall portions Cs of the first and second cover portions C1 and C2, has an advantageous structure for thin-walling flattening, but the thin-walled flattening of the side wall portions Cs also causes as described above. By arranging the concave hole H1 at a position deviated from the pinion shaft PS in the circumferential direction of the differential case DC, the decrease in durability of the differential case DC due to the formation of the concave hole H1 is effectively suppressed.

更に本実施形態では、デフケースDC(より具体的には第1カバーC1)に形成された凹孔H1が、キャリア23(より具体的にはアーム部23aの先端部)とデフケースDCとを結合する溶接部waに対し、デフケースDCの周方向でずれた位置に配置される。そのため、デフケースDCのピニオン支持面(即ちピニオンPの大径側端面をワッシャW′を介して相対回転自在に支持する面)や、ピニオンP近傍のサイドギヤ支持面(即ちサイドギヤSの背面をワッシャWを介して相対回転自在に支持する面)を溶接部位から遠ざけることができて、溶接時の熱の影響を極力抑えることができる。これにより、デフケースDCの上記ピニオン支持面や上記サイドギヤ支持面が溶接熱で歪んで回転摺動抵抗が増大することを効果的に抑制可能である。
Further, in the present embodiment, the concave hole H1 formed in the differential case DC (more specifically, the first cover C1) connects the carrier 23 (more specifically, the tip end portion of the arm portion 23a) and the differential case DC. It is arranged at a position deviated from the welded portion wa in the circumferential direction of the differential case DC. Therefore, the pinion support surface of the differential case DC (that is, the surface that supports the large-diameter side end surface of the pinion P with relative rotation via the washer W') and the side gear support surface near the pinion P (that is, the back surface f of the side gear S are washers). The surface that supports the surface so as to be relatively rotatable via the W) can be kept away from the welded portion, and the influence of heat during welding can be suppressed as much as possible. As a result, it is possible to effectively prevent the pinion support surface and the side gear support surface of the differential case DC from being distorted by welding heat and increasing the rotational sliding resistance.

また本実施形態によれば、サイドギヤSは、内周側の軸部Sjと、軸部Sjから径方向外方に離間した外周側のサイドギヤSの歯部Sgとの間に、軸部Sjと歯部Sgとの間を繋ぐ扁平なリング板状の中間壁部Smを有している。また、中間壁部Smの径方向幅t1がピニオンPの最大直径d1よりも長くなっている。このため、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようにサイドギヤSをピニオンPに対し十分大径化できる。また、ピニオンPからサイドギヤSへのトルク伝達時におけるピニオンシャフトPSの荷重負担を軽減できる、これにより、ピニオンシャフトPSの有効直径d2の小径化、延いてはピニオンPの、出力軸J1,J2の軸方向での幅狭化(小径化)を図ることができる。 Further, according to the present embodiment, the side gear S has a shaft portion Sj between the shaft portion Sj on the inner peripheral side and the tooth portion Sg of the side gear S on the outer peripheral side separated from the shaft portion Sj in the radial direction. It has a flat ring plate-shaped intermediate wall portion Sm connecting between the tooth portion Sg and the tooth portion Sg. Further, the radial width t1 of the intermediate wall portion Sm is longer than the maximum diameter d1 of the pinion P. Therefore, the diameter of the side gear S can be made sufficiently larger than that of the pinion P so that the number of teeth Z1 of the side gear S can be set sufficiently larger than the number of teeth Z2 of the pinion P. Further, the load load on the pinion shaft PS when the torque is transmitted from the pinion P to the side gear S can be reduced, whereby the effective diameter d2 of the pinion shaft PS can be reduced, and the output shafts J1 and J2 of the pinion P can be reduced. It is possible to narrow the width (smaller diameter) in the axial direction.

またこのようにしてピニオンシャフトPSの荷重負担が軽減されると共に、サイドギヤSにかかる反力が低下し、しかもサイドギヤSの背面f(特にサイドギヤS及びピニオンPの相互の噛合部Iの背面側に位置する背面部分fg)がワッシャWを介してカバー部C1,C2の側壁部Csに支持されることから、中間壁部Smを薄肉化してもサイドギヤSの必要な剛性強度を確保することが容易である。即ち、サイドギヤSに対する支持剛性を確保しつつサイドギヤSの中間壁部Smを十分に薄肉化することが可能となる。 Further, in this way, the load load on the pinion shaft PS is reduced, the reaction force applied to the side gear S is reduced, and the back surface f of the side gear S (particularly, the back surface side of the mutual meshing portion I of the side gear S and the pinion P). Since the located back surface portion fg) is supported by the side wall portions Cs of the cover portions C1 and C2 via the washer W, it is easy to secure the required rigidity strength of the side gear S even if the intermediate wall portion Sm is thinned. Is. That is, it is possible to sufficiently thin the intermediate wall portion Sm of the side gear S while ensuring the support rigidity for the side gear S.

また本実施形態によれば、小径化を可能としたピニオンシャフトPSの有効直径d2よりもサイドギヤSの中間壁部Smの最大肉厚t2が更に小さく形成されるため、サイドギヤSの中間壁部Smの更なる薄肉化が達成可能となる。 Further, according to the present embodiment, since the maximum wall thickness t2 of the intermediate wall portion Sm of the side gear S is formed to be smaller than the effective diameter d2 of the pinion shaft PS that enables the diameter to be reduced, the intermediate wall portion Sm of the side gear S is formed. Further thinning of the wall can be achieved.

また本実施形態によれば、第1,第2カバー部C1,C2の側壁部Csが、側壁部Csの外側面をデフケースDCの回転軸線Lと直交する平坦面とした扁平な板状に形成されることで、第1,第2カバー部C1,C2の側壁部Cs自体の薄肉化も達成される。その上、サイドギヤSの背面fのうち、歯部Sgの背面部分fgは、中間壁部Smの背面部分fmよりも軸方向外方に張り出している。そのため、サイドギヤSの歯部Sgの剛性を十分に確保しながら、サイドギヤSの中間壁部Smを極力薄肉に形成可能となり、差動装置Dの更なる軽量化や軸方向扁平化が達成される。
Further, according to the present embodiment, the side wall portions Cs of the first and second cover portions C1 and C2 are formed in a flat plate shape in which the outer surface of the side wall portions Cs is a flat surface orthogonal to the rotation axis L of the differential case DC. By doing so, thinning of the side wall portions Cs itself of the first and second cover portions C1 and C2 is also achieved. Moreover, of the back surface f of the side gear S, the back surface portion fg of the tooth portion Sg projects outward in the axial direction from the back surface portion fm of the intermediate wall portion Sm. Therefore, it is possible to form the intermediate wall portion Sm of the side gear S as thin as possible while sufficiently ensuring the rigidity of the tooth portion Sg of the side gear S, and further weight reduction and axial flattening of the differential device D are achieved. ..

それらの結果、本実施形態によれば、差動装置Dは、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として軸方向で十分に幅狭化することが可能となる。そのため、差動装置Dの周辺のレイアウト上の制約が多い伝動系に対しても、差動装置Dを高い自由度を以て無理なく容易に組込み可能となり、また差動装置Dの伝動系を小型化する上で頗る有利となる。 As a result, according to the present embodiment, the differential device D is sufficiently narrow in the axial direction as a whole while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. It becomes possible to change. Therefore, even for a transmission system having many layout restrictions around the differential device D, the differential device D can be easily incorporated with a high degree of freedom, and the transmission system of the differential device D can be miniaturized. It will be a great advantage to do.

次に、本発明の第2実施形態を図7を用いて説明する。尚、第1実施形態と同様の構成については同一符号を付して詳しい説明は省略する。 Next, the second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

第1実施形態では、ピニオンPをデフケースDCに支持させる第2シャフトとして長いピニオンシャフトPSを用いるものを示したが、第2実施形態では、ピニオンPの大径側の端面に同軸に一体に結合された支軸PS′を、ピニオンPをデフケースDCに支持させる第2シャフトに用いている。この構成によれば、ピニオンシャフトPSを嵌合させる貫通孔をピニオンPに設ける必要がなくなるため、それだけピニオンPを小径化(軸方向幅狭化)でき、差動装置Dの更なる軸方向の扁平化を図ることができる。即ち、ピニオンシャフトPSがピニオンPを貫通する場合、ピニオンPにはピニオンシャフトPSの径に対応するサイズの貫通孔を形成する必要があるが、ピニオンPの端面に支軸PS′を一体化した場合には、支軸PS′の外径(即ち有効直径d2)に依存することなくピニオンPの小径化(出力軸J1,J2の軸方向での幅狭化)が可能となる。 In the first embodiment, a long pinion shaft PS is used as the second shaft for supporting the pinion P on the differential case DC, but in the second embodiment, the pinion P is coaxially and integrally coupled to the end face on the large diameter side. The support shaft PS'is used for the second shaft that supports the pinion P on the differential case DC. According to this configuration, since it is not necessary to provide the pinion P with a through hole for fitting the pinion shaft PS, the diameter of the pinion P can be reduced (the width in the axial direction is narrowed) by that amount, and the differential device D can be further axially oriented. Flattening can be achieved. That is, when the pinion shaft PS penetrates the pinion P, it is necessary to form a through hole having a size corresponding to the diameter of the pinion shaft PS in the pinion P, but the support shaft PS'is integrated with the end face of the pinion P. In this case, it is possible to reduce the diameter of the pinion P (narrow the width of the output shafts J1 and J2 in the axial direction) without depending on the outer diameter of the support shaft PS'(that is, the effective diameter d2).

そして、支軸PS′の外周面と、デフケースDC(より具体的には第1カバー部C1)の外周壁、即ち筒状のケース部4に設けた貫通支持孔4aの内周面との間には、支軸PS′の外周面と貫通支持孔4aの内周面との間の相対回転を許容する軸受手段としての軸受ブッシュ12が介挿される。尚、軸受手段としては、ニードルベアリング等の軸受を使用してもよい。また、軸受を省略して、支軸PS′をデフケースDCの貫通支持孔4aに直接嵌合させてもよい。 Then, between the outer peripheral surface of the support shaft PS'and the outer peripheral wall of the differential case DC (more specifically, the first cover portion C1), that is, the inner peripheral surface of the through support hole 4a provided in the tubular case portion 4. A bearing bush 12 as a bearing means that allows relative rotation between the outer peripheral surface of the support shaft PS'and the inner peripheral surface of the through support hole 4a is inserted therein. As the bearing means, a bearing such as a needle bearing may be used. Further, the bearing may be omitted and the support shaft PS'may be directly fitted into the through support hole 4a of the differential case DC.

また、第2実施形態は上述した第1実施形態との相違部分以外は第1実施形態と同様の構成をしているため、第2実施形態においても、上記で示した第1実施形態の構成との違いにより得られる効果以外の効果については、第1実施形態と同様の効果が得られる。つまり、第2実施形態においても、デフケースDCの第1カバー部C1と、減速歯車機構RGのキャリア23との溶接に関わる構造に起因する効果、並びに遊星ギヤ22を支持する枢軸(第1シャフト)PLとピニオンPを支持する支軸(第2シャフト)PS′との配置関係に基づく効果については、第1実施形態と同様の効果が得られる。 Further, since the second embodiment has the same configuration as the first embodiment except for the differences from the first embodiment described above, the second embodiment also has the configuration of the first embodiment shown above. As for the effect other than the effect obtained by the difference from the above, the same effect as that of the first embodiment can be obtained. That is, also in the second embodiment, the effect caused by the structure related to the welding between the first cover portion C1 of the differential case DC and the carrier 23 of the reduction gear mechanism RG, and the pivot shaft (first shaft) that supports the planetary gear 22. As for the effect based on the arrangement relationship between the PL and the support shaft (second shaft) PS'supporting the pinion P, the same effect as that of the first embodiment can be obtained.

次に図8を参照して、本発明の第3実施形態を説明する。第1,第2実施形態では、複数の遊星ギヤ22を各々支持する複数の第1シャフトとしての枢軸PLの一端部(枢軸PLの他端部)をデフケースDC(より具体的には第1カバー部C1の側壁部Cs)に支持させる凹部として、有底凹孔H1を例示したが、第3実施形態では、凹部として、デフケースDC(より具体的には第1カバー部C1′の側壁部Cs′)を貫通する貫通孔H1′が採用され、貫通孔H1′にはワッシャWの背面の一部が臨んでいる。
Next, a third embodiment of the present invention will be described with reference to FIG. In the first and second embodiments, one end of the pivot PL (the other end of the pivot PL) as the plurality of first shafts supporting the plurality of planetary gears 22 is provided with a differential case DC (more specifically, the first cover). as the recess for supporting the side wall Cs) parts C1, it is exemplified recess hole H1 of a bottom, in the third embodiment, as the recess, the differential case DC (more specifically the side wall portion of the first cover portion C1 ' A through hole H1'that penetrates Cs') is adopted, and a part of the back surface of the washer W faces the through hole H1'.

第3実施形態のその他の構成は、第1実施形態と同様であるので、第3実施形態の各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すに留め、それ以上の構造の説明は省略する。而して、第3実施形態は、第1実施形態と比べ、第1シャフトとしての枢軸PLの一端部(枢軸PLの他端部)をデフケースDCに支持させる凹部が貫通孔H1である点を除いて同一の構成であるため、第1実施形態の上記した効果と同様の効果が得られる。 Since the other configurations of the third embodiment are the same as those of the first embodiment, each component of the third embodiment is given the same reference code as the corresponding component of the first embodiment. The above description of the structure will be omitted. Thus, in the third embodiment, as compared with the first embodiment, the recess for supporting one end of the pivot PL as the first shaft (the other end of the pivot PL) on the differential case DC is the through hole H1. Since the configuration is the same except for this, the same effect as the above-mentioned effect of the first embodiment can be obtained.

次に、図9を参照して、本発明の第4実施形態を説明する。第1〜第3実施形態では、キャリア23が円環状のキャリアベース23bと、デフケースDCの回転軸線Lと直交する投影面で見て扇形状の複数のアーム部(キャリア本体部)23aとを一体に形成して、各々のアーム部23aの端部をデフケースDCに溶接wで結合するものを示したが、第4実施形態では、キャリア123において、第3実施形態のキャリアベース23bに相当する部分を、複数のアーム部(キャリア本体部)123aから分離独立させて、キャリアカバー123bとする。 Next, a fourth embodiment of the present invention will be described with reference to FIG. In the first to third embodiments, a carrier base 23b having an annular carrier 23 and a plurality of fan-shaped arm portions (carrier main body portions) 23a viewed from a projection plane orthogonal to the rotation axis L of the differential case DC are integrated. The end portion of each arm portion 23a is connected to the differential case DC by welding w. However, in the fourth embodiment, the carrier 123 corresponds to the carrier base 23b of the third embodiment. Is separated from the plurality of arm portions (carrier main body portions) 123a to form a carrier cover 123b.

そして、キャリアカバー123bとアーム部123aとが隣接するように、キャリアカバー123bと、少なくとも1つ(本実施形態では全部)のアーム部123aとが、例えば結合手段(具体的にはキャリアカバー123bを通してアーム部123aに螺挿されるボルト100)で着脱可能に結合される。尚、上記結合手段は、ボルト100に限定されず、例えば、溶接、クリップ、接着等の種々の結合手段を選定可能である。
Then, the carrier cover 123b and at least one (all in the present embodiment) arm portions 123a are connected, for example, through the coupling means (specifically, the carrier cover 123b) so that the carrier cover 123b and the arm portion 123a are adjacent to each other. It is detachably connected with a bolt 100) screwed into the arm portion 123a. The coupling means is not limited to the bolt 100, and various coupling means such as welding, clipping, and bonding can be selected.

また第4実施形態の複数のアーム部(キャリア本体部)123aは、デフケースDCの壁部(より具体的には第1カバー部C10の側壁部Cs′)に一体に形成される。即ち、第1カバー部C10は、例えば上述のボス部Cbと、上述の側壁部Cs′と、上述の複数のアーム部(キャリア本体部)123aと、を備えている。つまり、第1カバー部C10は、少なくとも、側壁部Cs′と、アーム部(キャリア本体部)123aと、を備えている。そして、第1カバー部C10の側壁部Cs′におけるサイドギヤSと径方向でオーバラップする位置には、複数の遊星ギヤ22を各々支持する第1シャフトとしての複数の枢軸PLの一端部(枢軸PLの他端部)を挿入、支持させる凹部として、複数の貫通孔H1′が設けられる。
Further, the plurality of arm portions (carrier main body portions) 123a of the fourth embodiment are integrally formed on the wall portion (more specifically, the side wall portion Cs'of the first cover portion C10) of the differential case DC. That is, the first cover portion C10 includes, for example, the above-mentioned boss portion Cb, the above-mentioned side wall portion Cs', and the above-mentioned plurality of arm portions (carrier main body portions) 123a. That is, the first cover portion C10 includes at least a side wall portion Cs'and an arm portion (carrier main body portion) 123a. Then, at a position that overlaps the side gear S in the radial direction on the side wall portion Cs'of the first cover portion C10, one end of a plurality of pivot PLs as the first shafts that support the plurality of planetary gears 22 (the pivot PL). A plurality of through holes H1'are provided as recesses for inserting and supporting the other end).

また枢軸PLの他端部(枢軸PLの一端部)は、キャリアカバー123bに設けた貫通孔H2に嵌合、支持される。そして、貫通孔H2を横切る方向に延びるピン孔102が、キャリアカバー123b及び枢軸PLの他端部に跨がるように設けられる。そして、キャリアカバー123bのピン孔102にピン101を圧入し且つ枢軸PLにピン101の先部を係合させる。これにより、枢軸PLのキャリアカバー123bからの抜け止めがなされる。ピン101のキャリアカバー123bへの固定は、上記圧入の他、例えば、溶接、カシメ、接着、螺合等の種々の結合手段を選定可能である。 The other end of the pivot PL (one end of the pivot PL) is fitted and supported in the through hole H2 provided in the carrier cover 123b. Then, a pin hole 102 extending in a direction crossing the through hole H2 is provided so as to straddle the other end of the carrier cover 123b and the pivot PL. Then, the pin 101 is press-fitted into the pin hole 102 of the carrier cover 123b, and the tip of the pin 101 is engaged with the pivot PL. As a result, the pivot PL is prevented from coming off from the carrier cover 123b. For fixing the pin 101 to the carrier cover 123b, various coupling means such as welding, caulking, bonding, and screwing can be selected in addition to the above press fitting.

尚、枢軸PLの他端部(枢軸PLの一端部)のキャリアカバー123bへの固定は、ピン101を使用せずに、例えば、溶接、カシメ、接着、螺合等の種々の結合手段を選定可能であり、或いは、枢軸PLの他端部をキャリアカバー123bの貫通孔H2に直接圧入してもよい。 For fixing the other end of the Axis PL (one end of the Axis PL) to the carrier cover 123b, various coupling means such as welding, caulking, bonding, screwing, etc. are selected without using the pin 101. Alternatively, the other end of the pivot PL may be press-fitted directly into the through hole H2 of the carrier cover 123b.

第4実施形態のその他の構成は、第1実施形態と同様であるので、第4実施形態の各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すに留め、それ以上の構造の説明は省略する。 Since the other configurations of the fourth embodiment are the same as those of the first embodiment, each component of the fourth embodiment is provided with the same reference code as the corresponding component of the first embodiment. The above description of the structure will be omitted.

次に図10を参照して、本発明の第5実施形態を説明する。第1〜第4実施形態では、デフケースDCにおける第1カバー部(C1,C1′,C10)の側壁部(Cs,Cs′)にケース部(周壁部)4 を一体に形成し、ケース部4の端面(具体的には図2,図9で右端面)に第2カバー部C2の側壁部CsをボルトBで締結することで、第1,第2カバー部C1,C2間を結合したものを示したが、第5実施形態では、第2カバー部C200の側壁部Csにケース部(周壁部)4 を一体に形成し、ケース部4の端面(具体的には図10で左端面)に第1カバー部C100の側壁部Cs′をボルトB′で締結することで、第1,第2カバー部C100,C200間を結合している。 Next, a fifth embodiment of the present invention will be described with reference to FIG. In the first to fourth embodiments, the case portion (peripheral wall portion) 4 is integrally formed on the side wall portions (Cs, Cs') of the first cover portion (C1, C1', C10) in the differential case DC, and the case portion 4 is formed. The side wall portion Cs of the second cover portion C2 is fastened to the end surface (specifically, the right end surface in FIGS. 2 and 9) with a bolt B to connect the first and second cover portions C1 and C2. However, in the fifth embodiment, the case portion (peripheral wall portion) 4 is integrally formed with the side wall portion Cs of the second cover portion C200, and the end surface of the case portion 4 (specifically, the left end surface in FIG. 10). By fastening the side wall portion Cs'of the first cover portion C100 with a bolt B', the first and second cover portions C100 and C200 are connected to each other.

而して、第5実施形態の第1カバー部C100の側壁部Cs′には、軸方向一方側にキャリア23のアーム部(キャリア本体部)123aが一体に突設される。また第5実施形態の第2カバー部C200の側壁部Csには、軸方向一方側にケース部(周壁部)4が一体に突設される。また、ピニオンシャフトPSの抜け止めピン5は、第2カバー部C200の側壁部Csに圧入により固定されるが、圧入以外の結合手段、例えば、溶接、カシメ、接着、螺合等で固定してもよい。
And Thus, the fifth side wall portion of the first cover portion C100 Cs embodiment ', the arm portions of the carrier 1 23 on one side in the axial direction (carrier body portion) 123a is integrally projected. Further, a case portion (peripheral wall portion) 4 is integrally projected on one side in the axial direction on the side wall portion Cs of the second cover portion C200 of the fifth embodiment. Further, the retaining pin 5 of the pinion shaft PS is fixed to the side wall portion Cs of the second cover portion C200 by press fitting, but is fixed by a coupling means other than press fitting, for example, welding, caulking, adhesion, screwing or the like. May be good.

第5実施形態のその他の構成は、第4実施形態と同様であるので、第5実施形態の各構成要素には、第4実施形態の対応する構成要素と同じ参照符号を付すに留め、それ以上の構造の説明は省略する。 Since the other configurations of the fifth embodiment are the same as those of the fourth embodiment, each component of the fifth embodiment is given the same reference code as the corresponding component of the fourth embodiment. The above description of the structure will be omitted.

而して、上記した第4,第5実施形態では、キャリア123のアーム部(キャリア本体部)123aがデフケースDC(より具体的には第1カバー部C10,C100の側壁部Cs′)と一体化される。そのため、第1〜第3実施形態の上記した効果のうち、特にキャリア23のアーム部23aをデフケースDCに溶接wにより結合することに関連する効果は得られないが、それ以外の効果は、第4,第5実施形態においても同様に得られる。即ち、第1〜第3実施形態において、枢軸(第1シャフト)PLの端部を支持する複数の凹孔(凹部)H1又は貫通孔(凹部)H1′と、ピニオンシャフト(第2シャフト)PSとがデフケースDCの周方向でずれた位置にあることに基づく上記した効果と、差動装置Dの軽量化及び軸方向扁平化に関する上記した効果は、第4,第5実施形態でも同様に得られるものである。 Thus, in the fourth and fifth embodiments described above, the arm portion (carrier main body portion) 123a of the carrier 123 is integrated with the differential case DC (more specifically, the side wall portions Cs'of the first cover portions C10 and C100). Be made. Therefore, among the above-mentioned effects of the first to third embodiments, the effect related to connecting the arm portion 23a of the carrier 23 to the differential case DC by welding w cannot be obtained, but the other effects are the first. The same can be obtained in the fourth and fifth embodiments. That is, in the first to third embodiments, a plurality of concave holes (recesses) H1 or through holes (recesses) H1'supporting the ends of the pivot (first shaft) PL, and a pinion shaft (second shaft) PS. The above-mentioned effect based on the fact that the differential case DC is displaced in the circumferential direction and the above-mentioned effect on the weight reduction and the axial flattening of the differential device D are similarly obtained in the fourth and fifth embodiments. Is something that can be done.

ところで上記した特許文献1〜3で例示したような従来の差動装置では、通常、サイドギヤ(出力ギヤ)の歯数Z1とピニオン(差動ギヤ)の歯数Z2として、例えば、特許文献3に示される14×10、或いは16×10または13×9が用いられており、この場合、差動ギヤに対する出力ギヤの歯数比率Z1/Z2は、それぞれ1.4 、1.6 、1.44となっている。また従来の差動装置では、歯数Z1,Z2の、その他の組合わせとして、例えば、15×10、17×10、18×10、19×10、または20×10となっているものも知られており、この場合の歯数比率Z1/Z2は、それぞれ1.5 、1.7 、1.8 、1.9 、2.0 となっている。 By the way, in the conventional differential device as illustrated in Patent Documents 1 to 3 described above, the number of teeth Z1 of the side gear (output gear) and the number of teeth Z2 of the pinion (differential gear) are usually set to, for example, Patent Document 3. The 14 × 10, 16 × 10 or 13 × 9 shown are used, and in this case, the number of teeth ratio Z1 / Z2 of the output gear to the differential gear is 1.4, 1.6, and 1.44, respectively. Further, in the conventional differential device, it is also known that the number of teeth Z1 and Z2 is, for example, 15 × 10, 17 × 10, 18 × 10, 19 × 10, or 20 × 10 as another combination. In this case, the tooth number ratios Z1 / Z2 are 1.5, 1.7, 1.8, 1.9, and 2.0, respectively.

一方、今日では、差動装置周辺でのレイアウト上の制約を伴う伝動装置も増えており、差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)することが市場で要求されている。しかしながら従来の既存の差動装置では、上記歯数比率の組み合わせからも明らかなように出力軸の軸方向で幅広の構造形態となっているため、上記した市場の要求を満たすことが困難な状況にある。 On the other hand, today, the number of transmission devices with layout restrictions around the differential device is increasing, and the width of the differential device is sufficiently narrowed in the axial direction of the output shaft while ensuring the gear strength of the differential device (that is,). Flattening) is required in the market. However, in the conventional existing differential device, as is clear from the combination of the number of teeth ratios, the structure is wide in the axial direction of the output shaft, so that it is difficult to meet the above market demands. It is in.

そこで差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)し得る差動装置Dの構成例を、上記した実施形態とは異なる観点より、以下に具体的に特定する。尚、この構成例に係る差動装置Dの各構成要素の構造は、図1〜図10(特に図1〜図6,図8〜図10)で説明した上記実施形態の差動装置Dの各構成要素と同様であるので、各構成要素の参照符号は、上記実施形態のそれと同じ符号を使用し、構造説明は省略する。 Therefore, a configuration example of the differential device D capable of sufficiently narrowing (that is, flattening) the width of the differential device in the axial direction of the output shaft while ensuring the gear strength of the differential device is described from a viewpoint different from the above-described embodiment. , Specifically specified below. The structure of each component of the differential device D according to this configuration example is the structure of the differential device D of the above-described embodiment described with reference to FIGS. 1 to 10 (particularly, FIGS. 1 to 6 and 8 to 10). Since it is the same as each component, the reference code of each component uses the same code as that of the above embodiment, and the structural description will be omitted.

先ず、差動装置Dを出力軸J1,J2の軸方向に十分に幅狭化(即ち扁平化)するための基本的な考え方を、図11を併せて参照して説明すると、それは、
[1]ピニオンP即ち差動ギヤに対するサイドギヤS即ち出力ギヤの歯数比率Z1/Z2を従来既存の差動装置の歯数比率よりも増大させる。(これにより、ギヤのモジュール(従って歯厚)が減少してギヤ強度が低下する一方で、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するが、全体としては後述する如くギヤ強度は低下する。)
[2]ピニオンPのピッチ円錐距離PCDを従来既存の差動装置のピッチ円錐距離よりも増やす。(これにより、ギヤのモジュールが増加してギヤ強度が増大すると共に、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するため、全体としては後述する如くギヤ強度は大幅に増大する。)
従って、上記[1]によるギヤ強度低下の量と、上記[2]によるギヤ強度増大の量とが等しくなるか、或いは上記[1]によるギヤ強度低下の量よりも、上記[2]によるギヤ強度増大の量の方が上回るように、歯数比率Z1/Z2及びピッチ円錐距離PCDを設定することにより、全体としてギヤ強度を従来既存の差動装置と比べて同等もしくは増大させることができる。
First, the basic concept for sufficiently narrowing (that is, flattening) the differential device D in the axial direction of the output shafts J1 and J2 will be described with reference to FIG.
[1] The tooth number ratio Z1 / Z2 of the side gear S, that is, the output gear to the pinion P, that is, the differential gear is increased as compared with the tooth number ratio of the conventional differential device. (This reduces the gear module (and therefore the tooth thickness) and reduces the gear strength, while increasing the pitch circle diameter of the side gear S increases the transmission load at the gear meshing portion and increases the gear strength. As a whole, the gear strength decreases as described later.)
[2] The pitch cone distance PCD of the pinion P is increased from the pitch cone distance of the conventional differential device. (As a result, the number of gear modules increases and the gear strength increases, and at the same time, the pitch circle diameter of the side gear S increases, the transmission load at the gear meshing portion decreases, and the gear strength increases. The gear strength is greatly increased.)
Therefore, the amount of decrease in gear strength due to the above [1] is equal to the amount of increase in gear strength due to the above [2], or the amount of decrease in gear strength due to the above [1] is larger than the amount of decrease in gear strength due to the above [2]. By setting the number of teeth ratio Z1 / Z2 and the pitch cone distance PCD so that the amount of increase in strength exceeds, the gear strength as a whole can be equal to or increased as compared with the conventional differential device.

次に上記[1],[2]に基づくギヤ強度の変化態様を数式により具体的に検証する。尚、検証は、以下の実施形態で説明する。先ず、サイドギヤSの歯数Z1を14、ピニオンPの歯数Z2を10とした時の差動装置D′を「基準差動装置」とする。また「変化率」とは、基準差動装置D′を基準(即ち100%)とした場合の各種変数の変化率である。
[1]について
サイドギヤSのモジュールをMO、ピッチ円直径をPD1 、ピッチ角をθ1 、ピッチ円錐距離をPCD、ギヤ噛合部での伝達荷重をFO、伝達トルクをTOとした場合に、ベベルギヤの一般的な公式より、
MO=PD1 /Z1
PD1 =2PCD・ sinθ1
θ1 = tan-1(Z1/Z2)
これら式から、ギヤのモジュールは、
MO=2PCD・ sin{ tan-1(Z1/Z2)}/Z1 ・・・(1)
となり、
また基準差動装置D′のモジュールは、2PCD・ sin{ tan-1(7/5)}/14
となる。
Next, the mode of change in gear strength based on the above [1] and [2] is specifically verified by a mathematical formula. The verification will be described in the following embodiments. First, the differential device D'when the number of teeth Z1 of the side gear S is 14 and the number of teeth Z2 of the pinion P is 10, is referred to as a "reference differential device". The "rate of change" is the rate of change of various variables when the reference differential device D'is used as a reference (that is, 100%).
[1] Bevel gear when the module of the side gear S is MO, the pitch circle diameter is PD 1 , the pitch angle is θ 1 , the pitch cone distance is PCD, the transmission load at the gear meshing part is FO, and the transmission torque is TO. From the general formula of
MO = PD 1 / Z1
PD 1 = 2PCD ・ sinθ 1
θ 1 = tan -1 (Z1 / Z2)
From these formulas, the gear module
MO = 2PCD ・ sin {tan -1 (Z1 / Z2)} / Z1 ・ ・ ・ (1)
Next,
The module of the reference differential D'is 2PCD · sin {tan -1 (7/5)} / 14
Will be.

従って、この両式の右項を除算することにより、基準差動装置D′に対するモジュール変化率は、次の(2)式のようになる。 Therefore, by dividing the right term of both equations, the module change rate with respect to the reference differential device D'is as shown in equation (2) below.

Figure 0006827752
Figure 0006827752

また、ギヤ強度(即ち歯部の曲げ強度)に相当する歯部の断面係数は、歯厚の二乗に比例する関係にあり、一方、その歯厚は、モジュールMOと略リニアな関係にある。従って、モジュール変化率の二乗は、歯部の断面係数変化率、延いてはギヤ強度の変化率に相当する。即ち、そのギヤ強度変化率は、(2)式に基づいて次の(3)式のように表される。(3)式は、ピニオンPの歯数Z2が10の時には図12のL1で示され、これにより、歯数比率Z1/Z2が増えるにつれてモジュール減少によりギヤ強度が低下することが判る。 Further, the cross-sectional coefficient of the tooth portion corresponding to the gear strength (that is, the bending strength of the tooth portion) has a relationship proportional to the square of the tooth thickness, while the tooth thickness has a substantially linear relationship with the module MO. Therefore, the square of the module change rate corresponds to the change rate of the cross-sectional coefficient of the tooth portion, and by extension, the change rate of the gear strength. That is, the gear strength change rate is expressed by the following equation (3) based on the equation (2). Equation (3) is shown by L1 in FIG. 12 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength decreases due to the decrease in modules as the number of teeth ratio Z1 / Z2 increases.

Figure 0006827752
Figure 0006827752

ところで上記したベベルギヤの一般的な公式より、サイドギヤSのトルク伝達距離は、次の(4)式のようになる。 By the way, according to the general formula of the bevel gear described above, the torque transmission distance of the side gear S is as shown in the following equation (4).

PD1 /2=PCD・ sin{ tan-1(Z1/Z2)}・・・(4)
そして、トルク伝達距離PD1 /2による伝達荷重FOは、FO=2TO/PD1 である。従って、基準差動装置D′のサイドギヤSにおいて、トルクTOを一定とすれば、伝達荷重FOとピッチ円直径PD1 とが反比例の関係となる。また伝達荷重FOの変化率は、ギヤ強度の変化率とも反比例の関係にあることから、ギヤ強度の変化率は、ピッチ円直径PD1 の変化率と等しくなる。
PD 1/2 = PCD · sin {tan -1 (Z1 / Z2)} ··· (4)
The transmission load FO due to the torque transmission distance PD 1/2 is FO = 2TO / PD 1 . Therefore, in the side gear S of the reference differential device D', if the torque TO is constant, the transmission load FO and the pitch circle diameter PD 1 have an inversely proportional relationship. Further, since the rate of change of the transmission load FO is also inversely proportional to the rate of change of the gear strength, the rate of change of the gear strength is equal to the rate of change of the pitch circle diameter PD 1 .

その結果、ピッチ円直径PD1 の変化率は、(4)の式を用いて、次の(5)式のようになる。 As a result, the rate of change of the pitch circle diameter PD 1 is as shown in the following equation (5) using the equation (4).

Figure 0006827752
Figure 0006827752

(5)式は、ピニオンPの歯数Z2が10の時には図12のL2で示され、これにより、歯数比率Z1/Z2が増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。 Equation (5) is shown by L2 in FIG. 12 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength is increased by reducing the transmission load as the number of teeth ratio Z1 / Z2 increases.

結局のところ、歯数比率Z1/Z2が増えることに伴うギヤ強度の変化率は、モジュールMOの減少によるギヤ強度の減少変化率(上記した(3)式の右項)と、伝達荷重低減によるギヤ強度の増加変化率(上記した(5)式の右項)との掛け合わせにより、次の(6)式として表される。 After all, the rate of change in gear strength due to the increase in the number of teeth ratio Z1 / Z2 depends on the rate of change in gear strength due to the decrease in module MO (the right item in equation (3) above) and the reduction in transmission load. It is expressed as the following equation (6) by multiplying it with the rate of increase / change in gear strength (the right term of equation (5) above).

Figure 0006827752
Figure 0006827752

(6)式は、ピニオンPの歯数Z2が10の時には図12のL3で示され、これにより、歯数比率Z1/Z2が増えるにつれて全体としてギヤ強度が低下することが判る。
[2]について
ピニオンPのピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離よりも増やすと、変更前のPCDをPCD1、変更後のPCDをPCD2とした場合には、PCDの変更前後のモジュール変化率は、上記したベベルギヤの一般的な公式より、歯数を一定とすれば、(PCD2/PCD1)となる。
Equation (6) is shown by L3 in FIG. 12 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength as a whole decreases as the number of teeth ratio Z1 / Z2 increases.
Regarding [2] When the pitch cone distance PCD of the pinion P is increased from the pitch cone distance of the reference differential device D', when the PCD before the change is PCD1 and the PCD after the change is PCD2, before and after the change of the PCD. According to the general formula of the bevel gear described above, the module change rate of is (PCD2 / PCD1) if the number of teeth is constant.

一方、サイドギヤSのギヤ強度の変化率は、(3)式を導いた過程からも明らかなように、モジュール変化率の二乗に相当するため、結局のところ、
モジュール増大によるギヤ強度変化率=(PCD2/PCD1)2 ・・・(7)
(7)式は、図13のL4で示され、これにより、ピッチ円錐距離PCDが増えるにつれてモジュール増加によりギヤ強度が増加することが判る。
On the other hand, the rate of change in the gear strength of the side gear S corresponds to the square of the module change rate, as is clear from the process of deriving Eq. (3).
Gear strength change rate due to module increase = (PCD2 / PCD1) 2 ... (7)
Equation (7) is shown by L4 in FIG. 13, and it can be seen that the gear strength increases due to the increase in modules as the pitch cone distance PCD increases.

また、ピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離PCD1よりも増やした場合に、伝達荷重FOが低減されるが、これによる、ギヤ強度の変化率は、前述のようにピッチ円直径PD1 の変化率と等しくなる。またサイドギヤSのピッチ円直径PD1 とピッチ円錐距離PCDとは比例関係にある。従って、
伝達荷重低減によるギヤ強度変化率=PCD2/PCD1 ・・・(8)
(8)式は、図13のL5で示され、これにより、ピッチ円錐距離PCDが増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。
Further, when the pitch cone distance PCD is increased more than the pitch cone distance PCD1 of the reference differential device D', the transmission load FO is reduced, and the rate of change in gear strength due to this is the pitch circle as described above. Equal to the rate of change of diameter PD 1 . Further, the pitch circle diameter PD 1 of the side gear S and the pitch cone distance PCD are in a proportional relationship. Therefore,
Gear strength change rate due to transmission load reduction = PCD2 / PCD1 ... (8)
Equation (8) is shown in L5 of FIG. 13, and it can be seen that as the pitch cone distance PCD increases, the gear strength increases due to the reduction of the transmission load.

そして、ピッチ円錐距離PCDが増えることに伴うギヤ強度の変化率は、モジュールMOの増大によるギヤ強度の増加変化率(上記した(7)式の右項)と、ピッチ円直径PDの増加に伴う伝達荷重低減によるギヤ強度の増加変化率(上記した(8)式の右項)との掛け合わせにより、次の(9)式として表される。 The rate of change in gear strength due to the increase in pitch cone distance PCD is the rate of change in gear strength due to the increase in module MO (the right item of equation (7) above) and the increase in pitch circle diameter PD. It is expressed as the following equation (9) by multiplying it with the rate of increase / change in gear strength due to the reduction of the transmitted load (the right item of equation (8) above).

ピッチ円錐距離増大によるギヤ強度変化率=(PCD2/PCD1)3 ・・(9)
(9)式は、図13のL6で示され、これにより、ピッチ円錐距離PCDが増えるにつれてギヤ強度が大幅に高められることが判る。
Gear strength change rate due to increase in pitch cone distance = (PCD2 / PCD1) 3 ... (9)
Equation (9) is shown by L6 in FIG. 13, and it can be seen that the gear strength is significantly increased as the pitch cone distance PCD increases.

そして、[1]の手法(歯数比率増大)によるギヤ強度の低下分を、[2]の手法(ピッチ円錐距離増大)によるギヤ強度の増大分で十分補うようにして全体として差動装置のギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とするように、歯数比率Z1/Z2及びピッチ円錐距離PCDの組み合わせを決定する。 Then, the decrease in gear strength due to the method [1] (increase in the number of teeth ratio) is sufficiently compensated for by the increase in gear strength due to the method [2] (increase in pitch cone distance), and the differential device as a whole The combination of the number of teeth ratio Z1 / Z2 and the pitch cone distance PCD is determined so that the gear strength is equal to or higher than the gear strength of the conventional differential device.

例えば、基準差動装置D′のサイドギヤSのギヤ強度を100%維持する場合には、[1]で求めた歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、[2]で求めたピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが100%となるように設定すればよい。これより、基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係は、次の(10)式で求められる。(10)式は、ピニオンPの歯数Z2が10の時には図14のL7で示される。 For example, when maintaining 100% of the gear strength of the side gear S of the reference differential device D', the rate of change of the gear strength with the increase in the number of teeth ratio obtained in [1] (the right term of the above equation (6)). ) And the gear strength change rate due to the increase in the pitch cone distance obtained in [2] (the right item of (9) above) may be set to be 100%. From this, the relationship between the number of teeth ratio Z1 / Z2 and the rate of change of the pitch cone distance PCD when the gear strength of the reference differential device D'is maintained at 100% is obtained by the following equation (10). Equation (10) is shown by L7 in FIG. 14 when the number of teeth Z2 of the pinion P is 10.

Figure 0006827752
Figure 0006827752

このように(10)式は、歯数比率Z1/Z2=14/10とした基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係(図14参照)を示すものであるが、図14の縦軸のピッチ円錐距離PCDの変化率は、ピニオンPを支持するピニオンシャフトPS(即ちピニオン支持部)のシャフト径をd2とした場合にはd2/PCDの比率に変換可能である。 As described above, in the equation (10), the change in the number of teeth ratio Z1 / Z2 and the pitch cone distance PCD when the gear strength of the reference differential device D'with the number of teeth ratio Z1 / Z2 = 14/10 is maintained at 100%. The relationship with the rate (see FIG. 14) is shown. The rate of change of the pitch cone distance PCD on the vertical axis of FIG. 14 is such that the shaft diameter of the pinion shaft PS (that is, the pinion support portion) supporting the pinion P is d2. In the case of, it can be converted to the ratio of d2 / PCD.

Figure 0006827752
Figure 0006827752

すなわち、従来既存の差動装置において、ピッチ円錐距離PCDの増大変化は、上記表1のようにd2の増大変化と相関があり、且つd2を一定としたときはd2/PCDの比率の低下として表現可能である。しかも、従来既存の差動装置においては、上記表1のように、基準差動装置D′の時にはd2/PCDが40〜45%の範囲に収まっている関係と、PCDを増やすとギヤ強度が増大することとから、基準差動装置D′の時には少なくともd2/PCDが45%以下となるように、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを決めれば、ギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とすることができる。つまり、基準差動装置D′の場合には、
d2/PCD≦0.45を満たせばよい。この場合、基準差動装置D′のピッチ円錐距離PCD1に対して、増減変更後のPCDをPCD2とすれば、
d2/PCD2≦0.45/(PCD2/PCD1)・・・(11)
を満たせばよいということになる。そして、(11)式を、上記した(10)式に適用すれば、d2/PCDと、歯数比率Z1/Z2との関係が、次の(12)式のように変換可能である。
That is, in the conventional differential device, the increase change of the pitch cone distance PCD has a correlation with the increase change of d2 as shown in Table 1 above, and when d2 is constant, the ratio of d2 / PCD decreases. It can be expressed. Moreover, in the conventional existing differential device, as shown in Table 1 above, when the reference differential device D'is used, d2 / PCD is within the range of 40 to 45%, and when the PCD is increased, the gear strength is increased. Since it increases, if the shaft diameter d2 of the pinion shaft PS and the pitch cone distance PCD are determined so that at least d2 / PCD is 45% or less at the time of the reference differential device D', the gear strength will be different from the conventional one. It can be equal to or greater than the gear strength of the moving device. That is, in the case of the reference differential device D',
It suffices to satisfy d2 / PCD ≦ 0.45. In this case, if the PCD after the increase / decrease change is PCD2 with respect to the pitch cone distance PCD1 of the reference differential device D',
d2 / PCD2 ≤ 0.45 / (PCD2 / PCD1) ... (11)
It means that it is sufficient to satisfy. Then, if the equation (11) is applied to the equation (10) described above, the relationship between the d2 / PCD and the tooth number ratio Z1 / Z2 can be converted as in the following equation (12).

Figure 0006827752
Figure 0006827752

(12)式の等号が成立する時において、ピニオンPの歯数Z2が10の時には図15のL8のように表すことができる。(12)式の等号が成立する時が、基準差動装置D′のギヤ強度を100%維持する場合のd2/PCDと歯数比率Z1/Z2との関係である。 When the equal sign of the equation (12) holds, when the number of teeth Z2 of the pinion P is 10, it can be expressed as L8 in FIG. When the equal sign of Eq. (12) holds, it is the relationship between d2 / PCD and the tooth number ratio Z1 / Z2 when the gear strength of the reference differential device D'is maintained at 100%.

ところで従来既存の差動装置では、上述したように、通常、基準差動装置D′のような歯数比率Z1/Z2を1.4とするものだけでなく、歯数比率Z1/Z2を1.6とするものや、歯数比率Z1/Z2を1.44とするものも採用されている。この事実を踏まえて、基準差動装置D′(Z1/Z2=1.4)で必要十分な、即ち100%のギヤ強度が得られると想定した場合には、従来既存の差動装置において歯数比率Z1/Z2が16/10の差動装置では、図12から明らかなようにギヤ強度が基準差動装置D′に比べ87%に低下していることが判る。しかしながら、この程度に低下したギヤ強度は、従来既存の差動装置では実用強度として許容され、実用されている。そこで、軸方向に扁平な差動装置においても、基準差動装置D′に対し少なくとも87%のギヤ強度があれば、ギヤ強度が十分に確保、許容されると考えられる。 By the way, in the conventional differential device, as described above, not only the device in which the tooth number ratio Z1 / Z2 is 1.4 as in the reference differential device D', but also the tooth number ratio Z1 / Z2 is usually 1. Those having a tooth number ratio of 6.6 and those having a tooth number ratio Z1 / Z2 of 1.44 are also adopted. Based on this fact, if it is assumed that the reference differential device D'(Z1 / Z2 = 1.4) can obtain the necessary and sufficient gear strength, that is, 100% gear strength, the conventional differential device has teeth. As is clear from FIG. 12, in the differential device having a number ratio Z1 / Z2 of 16/10, it can be seen that the gear strength is reduced to 87% as compared with the reference differential device D'. However, the gear strength lowered to this extent is allowed as a practical strength in the conventional differential device and is put into practical use. Therefore, even in a differential device that is flat in the axial direction, if the gear strength is at least 87% with respect to the reference differential device D', it is considered that the gear strength is sufficiently secured and allowed.

このような観点から、基準差動装置D′のギヤ強度を87%維持する場合における歯数比率Z1/Z2と、ピッチ円錐距離PCDの変化率との関係を先ず求めると、その関係は、(10)式を導く過程に倣って演算(即ち、歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、ピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが87%となるように演算)することにより、次の(10′)式のように表すことができる。 From this point of view, when the relationship between the number of teeth ratio Z1 / Z2 and the rate of change of the pitch cone distance PCD when the gear strength of the reference differential device D'is maintained at 87% is first obtained, the relationship is ( Calculations following the process of deriving Eq. 10) (that is, the rate of change in gear strength due to an increase in the number of teeth ratio (the right term of Eq. By calculating so that the product of 9) and the right term) is 87%, it can be expressed as the following equation (10').

Figure 0006827752
Figure 0006827752

そして、前述の(11)式を、上記した(10′)式に適用すれば、基準差動装置D′のギヤ強度を87%以上維持する場合におけるd2/PCDと、歯数比率Z1/Z2との関係が、次の(13)式のように変換可能である。但し、計算の過程において、変数を用いて表される項を除き、有効数字を3桁で計算し、それ以外の桁は切り捨てで対応する都合上、実際には計算誤差によりほぼ等しいとなる場合でも、式の表現では等号で表すこととする。 Then, if the above equation (11) is applied to the above equation (10'), d2 / PCD when the gear strength of the reference differential device D'is maintained at 87% or more and the tooth number ratio Z1 / Z2. The relationship with can be converted as shown in the following equation (13). However, in the process of calculation, except for the terms expressed using variables, significant figures are calculated with 3 digits, and the other digits are rounded down so that they are actually almost equal due to calculation error. However, in the expression of the formula, it is expressed by the equal sign.

Figure 0006827752
Figure 0006827752

(13)式の等号が成立する場合において、ピニオンPの歯数Z2が10の時には図15のように(より具体的には、図15のL9ラインのように)表すことができ、この場合に(13)式に対応する領域は、図15でL9ライン上及びL9ラインよりも下側の領域となる。そして、(13)式を満たし、且つ図15でL10ラインよりも右側となる歯数比率Z1/Z2が2.0を超えることを満たす特定領域(図15のハッチング領域)が、特にピニオンPの歯数Z2が10で歯数比率Z1/Z2が2.0を超える軸方向に扁平な差動装置において、基準差動装置D′に対し少なくとも87%のギヤ強度を確保可能なZ1/Z2及びd2/PCDの設定領域である。尚、参考までに、歯数比率Z1/Z2を40/10と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図15において例示すれば、菱形点のようになり、また歯数比率Z1/Z2を58/10と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図15において例示すれば、三角点のようになり、これらは上記の特定領域に収まっている。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。 When the equal sign of the equation (13) holds, when the number of teeth Z2 of the pinion P is 10, it can be represented as shown in FIG. 15 (more specifically, as shown by the L9 line in FIG. 15). In the case, the region corresponding to the equation (13) is the region on the L9 line and below the L9 line in FIG. The specific region (hatching region in FIG. 15) that satisfies the equation (13) and that the number of teeth ratio Z1 / Z2 on the right side of the L10 line in FIG. 15 exceeds 2.0 is particularly the pinion P. In an axially flat differential device in which the number of teeth Z2 is 10 and the number of teeth ratio Z1 / Z2 exceeds 2.0, Z1 / Z2 and Z1 / Z2 capable of ensuring a gear strength of at least 87% with respect to the reference differential D'. This is a setting area for d2 / PCD. For reference, if an example is shown in FIG. 15 when the number of teeth ratio Z1 / Z2 is set to 40/10 and d2 / PCD is set to 20.00%, it becomes like a rhombus point. An example in which the tooth number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 16.67% is shown in FIG. 15 as a triangular point, and these are in the above specific region. It fits. As a result of strength analysis by simulation for these examples, a gear strength equal to or higher than that of the conventional one (more specifically, a gear strength of 87% or higher with respect to the reference differential device D'). ) Was obtained.

而して、上記特定領域にある扁平な差動装置は、従来既存の非扁平な差動装置と同程度のギヤ強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸の軸方向で十分に幅狭化な差動装置として構成されるものであり、そのため、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる等の効果を達成可能である。 Thus, the flat differential device in the specific region as a whole secures the same gear strength (for example, static torsional load strength) and maximum torque transmission amount as the conventional non-flat differential device. It is configured as a differential device that is sufficiently narrow in the axial direction of the output shaft. Therefore, the differential device has a high degree of freedom even for a transmission system with many layout restrictions around the differential device. Therefore, it can be easily incorporated without difficulty, and it is possible to achieve effects such as a great advantage in miniaturizing the transmission system.

また、好適には、Z1/Z2≧4を満たすようにし、更に好適には、Z1/Z2≧5.8を満たすようにすれば、従来既存の非扁平な差動装置と同程度のギヤ強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を出力軸の軸方向で更に十分に幅狭化できる。 Further, preferably, if Z1 / Z2 ≧ 4 is satisfied, and more preferably Z1 / Z2 ≧ 5.8 is satisfied, the gear strength is about the same as that of the conventional non-flat differential device. The width of the differential device can be further narrowed in the axial direction of the output shaft while ensuring (for example, static torsional load strength) and the maximum torque transmission amount.

また、上記特定領域にある扁平な差動装置の構造が、例えば、上述した実施形態の構造(より具体的には、図1〜10で示される構造)となる場合には、上記特定領域にある扁平な差動装置は、上述した実施形態で示した構造に伴う効果も併せて達成可能である。 Further, when the structure of the flat differential device in the specific region is, for example, the structure of the above-described embodiment (more specifically, the structure shown in FIGS. 1 to 10), the specific region Some flat differentials can also achieve the effects associated with the structures shown in the embodiments described above.

尚、前述の説明(特に図12,14,15に関する説明)は、ピニオンPの歯数Z2を10とした時の差動装置について行っているが、本発明は、これに限定されるものではない。例えば、ピニオンPの歯数Z2を6,12,20とした場合にも、上記効果を達成可能な扁平な差動装置は、図16,17,18のハッチングで示されるように、(13)式で表すことができる。即ち、前述のようにして導出された(13)式は、ピニオンPの歯数Z2の変化に関わらず適用できるものであって、例えばピニオンPの歯数Z2を6,12,20とした場合でも、ピニオンPの歯数Z2を10とした場合と同様、(13)式を満たすようにサイドギヤSの歯数Z1、ピニオンPの歯数Z2、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを設定すれば上記効果が得られる。 The above description (particularly the description relating to FIGS. 12, 14 and 15) describes the differential device when the number of teeth Z2 of the pinion P is 10, but the present invention is not limited thereto. Absent. For example, even when the number of teeth Z2 of the pinion P is 6, 12, 20, a flat differential device capable of achieving the above effect is shown by hatching in FIGS. 16, 17, and 18 (13). It can be expressed by an expression. That is, the equation (13) derived as described above can be applied regardless of the change in the number of teeth Z2 of the pinion P, for example, when the number of teeth Z2 of the pinion P is 6, 12, 20. However, as in the case where the number of teeth Z2 of the pinion P is 10, the number of teeth Z1 of the side gear S, the number of teeth Z2 of the pinion P, the shaft diameter d2 of the pinion shaft PS, and the pitch cone distance PCD so as to satisfy the equation (13). The above effect can be obtained by setting.

また、参考までに、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図17に菱形点で、歯数比率Z1/Z2を70/12と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図17に三角点で例示する。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。また、これらの実施例は、図17に示されるように上記特定領域に収まっている。 Further, for reference, when the number of teeth Z2 of the pinion P is set to 12, the number ratio Z1 / Z2 is set to 48/12 and d2 / PCD is set to 20.00%, respectively. An example in which the tooth number ratio Z1 / Z2 is set to 70/12 and d2 / PCD is set to 16.67% is illustrated by a triangular point in FIG. As a result of strength analysis by simulation for these examples, a gear strength equal to or higher than that of the conventional one (more specifically, a gear strength of 87% or higher with respect to the reference differential device D'). ) Was obtained. Further, these examples are contained in the specific area as shown in FIG.

比較例として、上記特定範囲に収まらない実施例、例えばピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を58/10と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図15に星形点で、ピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を40/10と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図15に丸点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を70/12と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図17の星形点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図17の丸点で示す。これらの実施例についてシミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られなかったことが確認できた。つまり、上記特定範囲に収まらない実施例では上記効果が得られないことが確認できた。 As a comparative example, in an example that does not fit in the specific range, for example, when the number of teeth Z2 of the pinion P is 10, the number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 27.50%, respectively. When the number of teeth Z2 of the pinion P is 10 at the star point in FIG. 15, the number ratio Z1 / Z2 is set to 40/10 and d2 / PCD is set to 34.29%, respectively. In the example shown in FIG. 15, when the number of teeth Z2 of the pinion P is 12, the number ratio Z1 / Z2 is set to 70/12 and d2 / PCD is set to 27.50%, respectively. In the example of the time, when the number of teeth Z2 of the pinion P was 12 at the star point in FIG. 17, the number ratio Z1 / Z2 was set to 48/12 and d2 / PCD was set to 34.29%, respectively. Examples of the time are shown by the circles in FIG. As a result of performing strength analysis by simulation for these examples, the gear strength equal to or higher than the conventional one (more specifically, the gear strength is 87% or higher than that of the reference differential device D'). Was not obtained. That is, it was confirmed that the above effect cannot be obtained in the examples that do not fall within the above specific range.

以上、本発明の実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the gist thereof.

例えば、上述した実施形態では、差動装置Dは、左右車軸の回転速度差を許容するものであったが、前輪と後輪の回転速度差を吸収するセンターデフにも本発明の差動装置を実施可能である。 For example, in the above-described embodiment, the differential device D allows a difference in rotational speed between the left and right axles, but the differential device of the present invention also has a center differential that absorbs the difference in rotational speed between the front wheels and the rear wheels. Is feasible.

また上述した実施形態では、遊星ギヤ22の設置個数(従って遊星ギヤ22を支持する第1シャフトとしての枢軸PLの数)を4個としたものを示したが、本発明において、遊星ギヤ22の設置個数は、2個以上の数(例えば2個、3個、6個等)を適宜選定可能である。 Further, in the above-described embodiment, the number of planetary gears 22 installed (hence, the number of pivot PLs as the first shaft supporting the planetary gears 22) is set to 4, but in the present invention, the planetary gears 22 are As for the number of installations, two or more (for example, two, three, six, etc.) can be appropriately selected.

また上述した第1〜第3実施形態では、キャリア23の複数のアーム部23aの先端部(より具体的にはフランジ状の突部23af)をデフケースDC(より具体的には第1カバー部C1)に直接、溶接wしたものを示したが、本発明では、複数のアーム部23aの先端部に、キャリアベース23bとは別の円環状の第2キャリアベースを一体に結合し、キャリア23の軸方向端部、即ち第2キャリアベースの端部をデフケースDCに溶接wするようにしてもよい。 Further, in the first to third embodiments described above, the tip portions (more specifically, the flange-shaped protrusions 23af) of the plurality of arm portions 23a of the carrier 23 are replaced with the differential case DC (more specifically, the first cover portion C1). ) Is directly welded, but in the present invention, an annular second carrier base different from the carrier base 23b is integrally connected to the tips of the plurality of arm portions 23a to form the carrier 23. The axial end, that is, the end of the second carrier base may be welded to the differential case DC.

また上述した第1〜第3実施形態では、デフケースDC(より具体的には第1カバー部C1)のキャリア23側の側面に凹設される段部15を、デフケースDCの全周に亘り連続した円環状に形成したものを示したが、本発明では、複数の円弧状段部を周方向に互いに間隔をおいて配列形成してもよく、この場合には、段部15をデフケースDCに設けたことに因る強度低下を極力抑えてデフケースDCの強度保持を図りながら、デフケースDCを薄肉軽量化することができる。 Further, in the first to third embodiments described above, the stepped portion 15 recessed in the side surface of the differential case DC (more specifically, the first cover portion C1) on the carrier 23 side is continuously provided over the entire circumference of the differential case DC. In the present invention, a plurality of arcuate step portions may be arranged at intervals in the circumferential direction, and in this case, the step portions 15 are formed in the differential case DC. It is possible to reduce the thickness and weight of the differential case DC while maintaining the strength of the differential case DC by suppressing the decrease in strength due to the provision as much as possible.

また上述した第1〜第3実施形態では、デフケースDC(より具体的には第1カバー部C1)のキャリア23側の側面に段部15に隣接して形成される凹部16が、キャリア23の複数のアーム部23aに対応した複数の円弧状凹部16より構成されるものを示したが、本発明では、凹部16を周方向に連続した単一の円環状の凹部(即ち環状溝)より構成してもよい。 Further, in the first to third embodiments described above, the recess 16 formed on the side surface of the differential case DC (more specifically, the first cover portion C1) on the carrier 23 side adjacent to the step portion 15 is formed on the carrier 23. Although the one composed of a plurality of arcuate recesses 16 corresponding to the plurality of arm portions 23a is shown, in the present invention, the recess 16 is composed of a single annular recess (that is, an annular groove) continuous in the circumferential direction. You may.

また上述した第1,第2実施形態では、複数の遊星ギヤ22を各々支持する複数の第1シャフトとしての枢軸PLの一端部をデフケースDC(より具体的には第1カバー部C1の側壁部Cs)に支持させる凹部として、有底凹孔H1を例示する一方、第3〜第5実施形態では、上記凹部として貫通孔H1′を例示したが、第1,第2実施形態において、上記凹部としての凹孔H1を貫通孔H1′に置換してもよく、或いは、第3〜第5実施形態において、上記凹部としての貫通孔H1′を凹孔H1に置換してもよい。
Further, in the first and second embodiments described above, one end of the pivot PL as the plurality of first shafts each supporting the plurality of planetary gears 22 is provided with a differential case DC (more specifically, a side wall portion of the first cover portion C1). as the recess for supporting the cs), while illustrating the concave hole H1 of a bottom, in the third to fifth embodiments have been illustrated through hole H1 'as the recess, first, in the second embodiment, the The concave hole H1 as the concave portion may be replaced with the through hole H1', or in the third to fifth embodiments, the through hole H1'as the concave portion may be replaced with the concave hole H1.

C1,C1′,C10,C100・・第1カバー部(対向壁、一方のカバー部)
C2,C200・・・・・・第2カバー部(他方のカバー部)
Cb・・・・ボス部
Cs,Cs′・・側壁部(壁部)
D・・・・・差動装置
DC・・・・デフケース(入力部材)
d2・・・・ピニオンシャフトの直径、支軸の直径(第2シャフトの直径)
H1・・・・凹孔(凹部)
H1′・・・貫通孔(凹部)
P・・・・・ピニオン(ピニオンギヤ、差動ギヤ)
PCD・・・ピッチ円錐距離
PL・・・・枢軸(第1シャフト)
PS・・・・ピニオンシャフト(第2シャフト)
PS′・・・支軸(第2シャフト)
S・・・・・サイドギヤ(出力ギヤ)
Sj・・・・軸部
wa・・・・溶接部
22・・・・遊星ギヤ
23・・・・キャリア
123a・・アーム部(キャリア本体部)
123b・・キャリアカバー
C1, C1', C10, C100 ... 1st cover part (opposing wall, one cover part)
C2, C200 ... 2nd cover (the other cover)
Cb ... Boss part Cs, Cs' ... Side wall part (wall part)
D ... Differential device DC ... Diff case (input member)
d2 ... Diameter of pinion shaft, diameter of support shaft (diameter of second shaft)
H1 ... concave hole (recess)
H1'... Through hole (recess)
P: Pinion (pinion gear, differential gear)
PCD ・ ・ ・ Pitch cone distance PL ・ ・ ・ ・ Axis (1st shaft)
PS ... Pinion shaft (second shaft)
PS'... Support shaft (second shaft)
S: Side gear (output gear)
Sj ・ ・ ・ ・ Shaft part wa ・ ・ ・ ・ Welded part 22 ・ ・ ・ ・ Planetary gear 23 ・ ・ ・ ・ Carrier 123a ・ ・ Arm part (carrier body part)
123b ... Carrier cover

Claims (8)

複数の遊星ギヤ(22)を各々支持する複数の第1シャフト(PL)を介して該複数の遊星ギヤ(22)を支持するキャリア(23)と結合可能な入力部材(DC)と、
前記入力部材(DC)に少なくとも1つの第2シャフト(PS,PS′)を介して支持されて、前記入力部材(DC)に対し自転可能であると共に前記入力部材(DC)の回転中心回りに公転可能な差動ギヤ(P)と、
前記差動ギヤ(P)に噛合する一対の出力ギヤ(S)と、を備え、
前記入力部材(DC)は、前記キャリア(23)との対向壁(C1,C1′)における前記出力ギヤ(S)と径方向でオーバラップする位置に、前記複数の第1シャフト(PL)をそれぞれ嵌合可能な複数の凹部(H1,H1′)を有すると共に、前記複数の凹部(H1,H1′)は、全ての前記第2シャフト(PS,PS′)に対し、前記入力部材(DC)の周方向でずれた位置に配置される、差動装置。
An input member (DC) that can be coupled to a carrier (23) that supports the plurality of planetary gears (22) via a plurality of first shafts (PL) that each support the plurality of planetary gears (22).
It is supported by the input member (DC) via at least one second shaft (PS, PS'), is rotatable with respect to the input member (DC), and is around the center of rotation of the input member (DC). Revolving differential gear (P) and
A pair of output gears (S) that mesh with the differential gear (P) are provided.
The input member (DC) has the plurality of first shafts (PL) at positions that radially overlap the output gear (S) on the wall (C1, C1') facing the carrier (23). Each has a plurality of recesses (H1, H1') that can be fitted, and the plurality of recesses (H1, H1') have the input member (DC) with respect to all the second shafts (PS, PS'). ) Is a differential device that is placed at a position offset in the circumferential direction.
前記一対の出力ギヤ(S)は、一対の出力軸(J1,J2)に接続される軸部(Sj)を有し、
前記入力部材(DC)は、前記軸部(Sj)を同心状に囲繞するボス部(Cb)と、外側面を前記出力軸(J1,J2)と直交する平坦面として前記ボス部(Cb)に連設された側壁部(Cs,Cs′)とを有する、請求項1に記載の差動装置。
The pair of output gears (S) have shaft portions (Sj) connected to the pair of output shafts (J1, J2).
The input member (DC) has a boss portion (Cb) that concentrically surrounds the shaft portion (Sj) and a boss portion (Cb) having an outer surface as a flat surface orthogonal to the output shafts (J1, J2). The differential device according to claim 1, further comprising side wall portions (Cs, Cs') connected to the same.
前記複数の凹部(H1,H1′)は、前記キャリア(23)と前記入力部材(DC)とを結合する溶接部(wa)に対し、前記入力部材(DC)の周方向でずれた位置に配置される、請求項1または2に記載の差動装置。 The plurality of recesses (H1, H1') are located at positions displaced in the circumferential direction of the input member (DC) with respect to the welded portion (wa) that connects the carrier (23) and the input member (DC). The differential device according to claim 1 or 2, which is arranged. 複数の遊星ギヤ(22)を各々支持する複数の第1シャフト(PL)の一端部を支持するキャリアカバー(123b)に隣接するキャリア本体部(123a)および前記キャリア本体部(123a)と一体に形成される壁部(Cs,Cs′)を備える一方のカバー部(C10,C100)と、前記一方のカバー部(C10,C100)と結合可能な他方のカバー部(C2,C200)と、を有する入力部材(DC)と、
前記入力部材(DC)に少なくとも1つの第2シャフト(PS,PS′)を介して支持されて、前記入力部材(DC)に対し自転可能であると共に前記入力部材(DC)の回転中心回りに公転可能な差動ギヤ(P)と、
前記差動ギヤ(P)に噛合する一対の出力ギヤ(S)と、を備え、
前記一方のカバー部(C10,C100)は、前記壁部(Cs,Cs′)における前記出力ギヤ(S)と径方向でオーバラップする位置に、前記複数の第1シャフト(PL)の他端部の各々を挿入可能な複数の凹部(H1,H1′)を有し、
前記複数の凹部(H1,H1′)は、全ての前記第2シャフト(PS,PS′)に対し、前記入力部材(DC)の周方向でずれた位置に配置される、差動装置。
Together with the carrier body (123a) and the carrier body (123a) adjacent to the carrier cover (123b) that supports one end of the plurality of first shafts (PL) that each support the plurality of planetary gears (22). One cover portion (C10, C100) having a wall portion (Cs, Cs') to be formed and the other cover portion (C2, C200) capable of being coupled to the one cover portion (C10, C100). Input member (DC) to have
It is supported by the input member (DC) via at least one second shaft (PS, PS'), is rotatable with respect to the input member (DC), and is around the center of rotation of the input member (DC). Revolving differential gear (P) and
A pair of output gears (S) that mesh with the differential gear (P) are provided.
The other cover portion (C10, C100) of the one cover portion (C10, C100) is the other end of the plurality of first shafts (PL) at a position that radially overlaps with the output gear (S) on the wall portion (Cs, Cs'). It has a plurality of recesses (H1, H1') into which each of the portions can be inserted.
A differential device in which the plurality of recesses (H1, H1') are arranged at positions deviated from all the second shafts (PS, PS') in the circumferential direction of the input member (DC).
前記一対の出力ギヤ(S)は、一対の出力軸(J1,J2)に接続される軸部(Sj)を有し、
前記一方のカバー部(C10,C100)及び前記他方のカバー部(C2,C200)の各々は、前記軸部(Sj)を同心状に囲繞するボス部(Cb)と、外側面を前記出力軸(J1,J2)と直交する平坦面として前記ボス部(Cb)に連設された側壁部(Cs,Cs′)とを有する、請求項4に記載の差動装置。
The pair of output gears (S) have shaft portions (Sj) connected to the pair of output shafts (J1, J2).
Each of the one cover portion (C10, C100) and the other cover portion (C2, C200) has a boss portion (Cb) concentrically surrounding the shaft portion (Sj) and an output shaft on the outer surface. The differential device according to claim 4, further comprising a side wall portion (Cs, Cs') connected to the boss portion (Cb) as a flat surface orthogonal to (J1, J2).
前記出力ギヤ(S)の歯数をZ1とし、前記差動ギヤ(P)の歯数をZ2とし、前記第2シャフト(PS,PS′)の直径をd2とし、ピッチ円錐距離をPCDとしたときに、
Figure 0006827752
を満たし、
且つZ1/Z2>2を満たす、請求項1〜5の何れか1項に記載の差動装置。
The number of teeth of the output gear (S) was Z1, the number of teeth of the differential gear (P) was Z2, the diameter of the second shaft (PS, PS') was d2, and the pitch cone distance was PCD. sometimes,
Figure 0006827752
The filling,
And satisfying the Z1 / Z2> 2, differential device according to any one of claims 1 to 5.
Z1/Z2≧4を満たす、請求項6に記載の差動装置。 The differential device according to claim 6, which satisfies Z1 / Z2 ≥ 4. Z1/Z2≧5.8を満たす、請求項6に記載の差動装置。 The differential device according to claim 6, wherein Z1 / Z2 ≥ 5.8 is satisfied.
JP2016189118A 2015-12-18 2016-09-28 Differential Active JP6827752B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/377,743 US10221928B2 (en) 2015-12-18 2016-12-13 Differential device
DE102016225139.2A DE102016225139A1 (en) 2015-12-18 2016-12-15 differential device
CN201611169495.6A CN106895127B (en) 2015-12-18 2016-12-16 Differential gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015247944 2015-12-18
JP2015247944 2015-12-18

Publications (2)

Publication Number Publication Date
JP2017116092A JP2017116092A (en) 2017-06-29
JP6827752B2 true JP6827752B2 (en) 2021-02-10

Family

ID=59234149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189118A Active JP6827752B2 (en) 2015-12-18 2016-09-28 Differential

Country Status (1)

Country Link
JP (1) JP6827752B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028780B2 (en) * 2019-03-15 2021-06-08 Hamilton Sundstrand Corporation Hydraulic unit gear shrouds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329319A (en) * 1918-01-28 1920-01-27 Perfecto Gear Differential Co Driving mechanism for motor-cars
JPS61108557U (en) * 1984-12-21 1986-07-09
JP3287972B2 (en) * 1995-03-06 2002-06-04 トヨタ自動車株式会社 Power transmission device for electric vehicles
JP2009185973A (en) * 2008-02-08 2009-08-20 Yamaha Motor Co Ltd Carrier of planetary gear device, planetary gear device provided with the carrier and outboard motor provided with the planetary gear device
JP5303970B2 (en) * 2008-03-11 2013-10-02 トヨタ自動車株式会社 Carrier assembly
US8827859B2 (en) * 2012-10-10 2014-09-09 Eaton Corporation Differential having two-piece case split through planetary carrier wall

Also Published As

Publication number Publication date
JP2017116092A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US9897188B2 (en) Differential device
CN106895127B (en) Differential gear
US20160169360A1 (en) Differential device
JP6621298B2 (en) Differential
JP6487664B2 (en) Differential
US10006532B2 (en) Differential device
JP2016080152A5 (en)
JP6827752B2 (en) Differential
JP2019152266A (en) Differential device
JP2017009109A (en) Differential device
JP6742715B2 (en) Differential
US20160123449A1 (en) Differential device
JP6683473B2 (en) Differential
JP6706188B2 (en) Differential
JP6660149B2 (en) Differential device
JP6839742B2 (en) Differential device
JP2016109297A (en) Differential device
JP6587892B2 (en) Differential
WO2018180805A1 (en) Differential device
CN111577855B (en) Differential device
JP2016194362A (en) Differential gear for vehicle
JP2016080153A (en) Differential gear and process of manufacture of the same
JP6649057B2 (en) Differential device
JP2018168964A (en) Differential
JP2016102587A (en) Differential device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6827752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250