JP2016194362A - Differential gear for vehicle - Google Patents

Differential gear for vehicle Download PDF

Info

Publication number
JP2016194362A
JP2016194362A JP2015231149A JP2015231149A JP2016194362A JP 2016194362 A JP2016194362 A JP 2016194362A JP 2015231149 A JP2015231149 A JP 2015231149A JP 2015231149 A JP2015231149 A JP 2015231149A JP 2016194362 A JP2016194362 A JP 2016194362A
Authority
JP
Japan
Prior art keywords
differential
gear
pinion
case
differential case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231149A
Other languages
Japanese (ja)
Inventor
森 裕之
Hiroyuki Mori
裕之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to US15/085,296 priority Critical patent/US9677664B2/en
Priority to CN201610192226.5A priority patent/CN106015510A/en
Priority to DE102016205231.4A priority patent/DE102016205231A1/en
Publication of JP2016194362A publication Critical patent/JP2016194362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a differential gear for a vehicle capable of efficiently taking a lubricant in a mission case into a differential case, in particular, into a rotary sliding portion between a pinion and a pinion shaft.SOLUTION: A differential case DC has a plurality of oil holes H1, H2 penetrating through the inside and outside of an outer peripheral wall 4 and capable of taking a lubricant into the differential case at positions offset to a pinion P side with respect to an intermediate point m between two pinions P adjacent to each other in the circumferential direction of the differential case. The oil holes H1, H2 are formed so that axes of the oil holes are inclined to a front side in a rotating direction of the differential case when a vehicle advances from an inner opening end Hi toward an outer opening end Ho of the oil holes when observed at a projection face orthogonal to a rotation axis L of the differential case, and the pinions P are disposed outside of a region A held by a first virtual line L1 connecting one circumferential end of the inner opening end Hi of each oil hole and the rotation axis L, and a second virtual line L2 connecting the circumferential other end of the inner opening end Hi of each oil hole and the rotation axis L.SELECTED DRAWING: Figure 2

Description

本発明は、差動装置、特にミッションケース内に収容したデフケースに車載の動力源から伝達された回転力を、一対の出力軸に分配して伝達する車両用差動装置に関する。   The present invention relates to a differential device, and more particularly to a vehicle differential device that distributes and transmits a rotational force transmitted from an in-vehicle power source to a differential case housed in a transmission case to a pair of output shafts.

従来、上記差動装置において、デフケースが、デフケースの外周壁の内外を貫通して潤滑油をデフケース内に取り込むための複数の油取込み孔を周方向に間隔をおいて有するものは、例えば特許文献1にも記載されているように公知である。   Conventionally, in the above-described differential device, the differential case has a plurality of oil intake holes that penetrate the inside and outside of the outer peripheral wall of the differential case and take lubricating oil into the differential case at intervals in the circumferential direction. 1 as well.

特許第3915719号公報Japanese Patent No. 3915719 特許第4803871号公報Japanese Patent No. 4803871 特開2002−364728号公報JP 2002-364728 A

ところが特許文献1のものでは、デフケースの外周壁に設けた複数の油取込み孔の位置や向きに配慮しているものの、その配慮は、単にミッションケースの底部の貯溜潤滑油をデフケース内に効率よく掻き上げ又は掬い上げるためのものであって、ミッションケース内の潤滑油の、ピニオン(差動ギヤ)とピニオンシャフト(差動ギヤ支持部)の間の回転摺動部への取込みに特別に配慮したものではなかった。   However, in Patent Document 1, although consideration is given to the position and orientation of a plurality of oil intake holes provided on the outer peripheral wall of the differential case, the consideration is simply to efficiently store the stored lubricating oil at the bottom of the transmission case in the differential case. For scraping or scooping up, special consideration is given to the lubrication oil in the transmission case being taken into the rotating sliding part between the pinion (differential gear) and the pinion shaft (differential gear support part) It was not what I did.

本発明は、斯かる事情に鑑みてなされたものであり、ミッションケース内の潤滑油のデフケース内への取込み、特にピニオン(差動ギヤ)とピニオンシャフト(差動ギヤ支持部)の間の回転摺動部への取込みを簡単な構造で効率よく行えるようにした車両用差動装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and takes in lubricating oil in a transmission case into a differential case, in particular, rotation between a pinion (differential gear) and a pinion shaft (differential gear support). An object of the present invention is to provide a vehicle differential device that can be efficiently taken into a sliding portion with a simple structure.

上記目的を達成するために、本発明に係る車両用差動装置は、ミッションケース内に収容したデフケースに車載の動力源から伝達された回転力を、一対の出力軸に分配して伝達する車両用差動装置であって、前記デフケース内に配置されたピニオンと、前記デフケースの回転軸線を通るように配置されると共に前記デフケースに支持され且つ前記ピニオンを回転自在に貫通支持するピニオンシャフトと、前記デフケース内で前記ピニオンと噛合し且つ前記一対の出力軸にそれぞれ接続される一対のサイドギヤとを備え、前記デフケースは、前記デフケースの外周壁の内外を貫通して前記ミッションケース内の潤滑油を前記デフケース内に取り込み可能な複数の油取込み孔を、それぞれ前記デフケースの周方向で隣り合う2個の前記ピニオンの中間点より前記ピニオン側にオフセットした位置に有し、各々の前記油取込み孔は、前記回転軸線と直交する投影面で見て、該油取込み孔の軸線が該油取込み孔の内側開口端から外側開口端に向かって車両前進時の前記デフケースの回転方向前側に傾斜するように形成され、前記ピニオンは、前記投影面で見て、各々の前記油取込み孔の前記内側開口端の周方向一端と前記回転軸線とを結ぶ第1仮想線と、各々の前記油取込み孔の前記内側開口端の周方向他端と前記回転軸線とを結ぶ第2仮想線とに挟まれた領域の外に配置される(これを第1の特徴とする)。   In order to achieve the above object, a vehicle differential device according to the present invention is a vehicle that distributes and transmits rotational force transmitted from a power source mounted on a vehicle to a differential case accommodated in a transmission case, to a pair of output shafts. A differential for differential, a pinion disposed in the differential case, a pinion shaft disposed so as to pass through a rotation axis of the differential case and supported by the differential case and rotatably supporting the pinion, A pair of side gears meshed with the pinion in the differential case and connected to the pair of output shafts, respectively, the differential case penetrating the inside and outside of the outer peripheral wall of the differential case, and supplying the lubricating oil in the transmission case A plurality of oil intake holes that can be taken into the differential case are respectively connected to the two pinions adjacent in the circumferential direction of the differential case. Each oil take-in hole is located at a position offset to the pinion side from the intermediate point, and each oil take-in hole is viewed from a projection plane orthogonal to the rotation axis, and the axis of the oil take-in hole is from the inner opening end of the oil take-in hole. It is formed so as to incline toward the front side in the rotational direction of the differential case when the vehicle advances toward the outer opening end, and the pinion is one end in the circumferential direction of the inner opening end of each oil intake hole when viewed from the projection plane. And a first imaginary line that connects the rotation axis, and a region that is sandwiched between a second imaginary line that connects the other end in the circumferential direction of the inner opening end of each oil intake hole and the rotation axis. (This is the first feature).

好適には、前記サイドギヤは、前記一対の出力軸にそれぞれ接続される軸部と、前記軸部から径方向外方に離間した前記ギヤ部と、該軸部の内端部から径方向外方に延びる扁平な中間壁部とを備える(これを第2の特徴とする)。   Preferably, the side gear includes a shaft portion connected to each of the pair of output shafts, the gear portion spaced radially outward from the shaft portion, and a radially outward direction from an inner end portion of the shaft portion. And a flat intermediate wall portion extending to (this is a second feature).

また上記目的を達成するために、本発明に係る車両用差動装置は、ミッションケース内に収容したデフケースに車載の動力源から伝達された回転力を、一対の出力軸に分配して伝達する車両用差動装置であって、前記デフケース内に配置された差動ギヤと、前記デフケースの回転軸線を通るように配置されると共に前記デフケースに支持され且つ前記差動ギヤを回転自在に支持する差動ギヤ支持部と、前記デフケース内で前記差動ギヤと噛合し且つ前記一対の出力軸にそれぞれ接続される一対の出力ギヤとを備え、前記デフケースは、前記デフケースの外周壁の内外を貫通して前記ミッションケース内の潤滑油を前記デフケース内に取り込み可能な複数の油取込み孔を、それぞれ前記デフケースの周方向で隣り合う2個の前記差動ギヤの中間点より前記差動ギヤ側にオフセットした位置に有し、各々の前記油取込み孔は、前記回転軸線と直交する投影面で見て、該油取込み孔の軸線が該油取込み孔の内側開口端から外側開口端に向かって車両前進時の前記デフケースの回転方向前側に傾斜するように形成され、前記差動ギヤは、前記投影面で見て、各々の前記油取込み孔の前記内側開口端の周方向一端と前記回転軸線とを結ぶ第1仮想線と、各々の前記油取込み孔の前記内側開口端の周方向他端と前記回転軸線とを結ぶ第2仮想線とに挟まれた領域の外に配置され、前記出力ギヤの歯数をZ1とし、前記差動ギヤの歯数をZ2とし、前記差動ギヤ支持部の直径をd2とし、ピッチ円錐距離をPCDとしたときに、   In order to achieve the above object, the vehicle differential device according to the present invention distributes and transmits the rotational force transmitted from the in-vehicle power source to the differential case accommodated in the transmission case to the pair of output shafts. A differential device for a vehicle, wherein the differential gear is disposed in the differential case, and is disposed so as to pass through a rotation axis of the differential case, and is supported by the differential case and rotatably supports the differential gear. A differential gear support; and a pair of output gears that mesh with the differential gear in the differential case and that are connected to the pair of output shafts, respectively, and the differential case penetrates the inside and outside of the outer peripheral wall of the differential case A plurality of oil intake holes through which the lubricating oil in the transmission case can be taken into the differential case are provided between two differential gears adjacent in the circumferential direction of the differential case. The oil intake holes are located at positions offset to the differential gear side, and each oil intake hole is viewed from a projection plane orthogonal to the rotation axis, so that the axis of the oil intake hole extends from the inner opening end of the oil intake hole. The differential gear is formed so as to incline toward the front side in the rotational direction of the differential case when the vehicle moves forward toward the outer opening end, and the differential gear is a periphery of the inner opening end of each oil intake hole when viewed in the projection plane. Outside a region sandwiched between a first imaginary line connecting one end in the direction and the rotation axis, and a second imaginary line connecting the other end in the circumferential direction of the inner opening end of each oil intake hole and the rotation axis. The number of teeth of the output gear is Z1, the number of teeth of the differential gear is Z2, the diameter of the differential gear support is d2, and the pitch cone distance is PCD.

Figure 2016194362
Figure 2016194362

を満たし、
且つZ1/Z2>2を満たす(これを第3の特徴とする)。
The filling,
And Z1 / Z2> 2 is satisfied (this is the third feature).

また、好適には、Z1/Z2≧4を満たす(これを第4の特徴とする)。   Preferably, Z1 / Z2 ≧ 4 is satisfied (this is the fourth feature).

また、好適には、Z1/Z2≧5.8を満たす(これを第5の特徴とする)。   Preferably, Z1 / Z2 ≧ 5.8 is satisfied (this is the fifth feature).

また、好適には、前記油取込み孔は、該油取込み孔の軸線と直交する横断面の形状が円形である(これを第6の特徴とする)。   Preferably, the oil intake hole has a circular cross-sectional shape perpendicular to the axis of the oil intake hole (this is a sixth feature).

第1の特徴によれば、デフケースの外周壁には、ミッションケース内の潤滑油をデフケース内に取り込み可能な複数の油取込み孔が、デフケースの周方向で隣り合う2個のピニオンの中間点よりピニオン側にオフセット配置され、各々の油取込み孔は、デフケースの回転軸線と直交する投影面で見て、油取込み孔の軸線が該孔の内側開口端から外側開口端に向かって車両前進時のデフケースの回転方向前側に傾斜するように形成され、ピニオンは、上記投影面で見て、各々の油取込み孔の内側開口端の周方向一端とデフケースの回転軸線とを結ぶ第1仮想線と、各々の油取込み孔の内側開口端の周方向他端とデフケースの回転軸線とを結ぶ第2仮想線とに挟まれた領域の外に配置されるので、ミッションケース内の潤滑油が複数の油取込み孔を通してデフケース内に効率よく取込み可能となる。しかも複数の油取込み孔のうち、特に各ピニオンの上記回転方向前側で中間点よりピニオン側にオフセット配置された油取込み孔は、デフケース内に取り込んだ潤滑油を油取込み孔近くのピニオンとサイドギヤとの噛合部に効率よく供給可能となる。一方、各ピニオンの上記回転方向後側で中間点よりピニオン側にオフセット配置された油取込み孔は、デフケース内に取り込んだ潤滑油をピニオンに邪魔されることなく(即ちピニオンが障害物となって潤滑油経路に立ちはだかることなく)ピニオンシャフトのデフケースの回転中心寄りの外周部に供給でき、供給した潤滑油が遠心力でシャフト外周面を伝ってシャフト外端側、即ちピニオンとピニオンシャフトの間の回転摺動部側に向かうため、回転摺動部に対しても効率よく潤滑油を供給可能である。それらの結果、ミッションケース内の潤滑油を、ピニオンの、サイドギヤとの噛合部は元より、ピニオンとピニオンシャフトとの回転摺動部にも効率よく供給して全体として潤滑効率を高めることができる。   According to the first feature, the outer peripheral wall of the differential case has a plurality of oil intake holes through which the lubricating oil in the transmission case can be taken into the differential case from the midpoint of two pinions adjacent in the circumferential direction of the differential case. The oil intake holes are offset on the pinion side, and each oil intake hole is viewed from a projection plane orthogonal to the rotation axis of the differential case, and the axis of the oil intake hole moves from the inner opening end of the hole toward the outer opening end when the vehicle advances. A first imaginary line connecting the circumferential end of the inner opening end of each oil intake hole and the rotation axis of the differential case, as viewed from the projection plane, is formed so as to incline toward the rotation direction front side of the differential case, Since the oil intake holes are arranged outside the region sandwiched between the other circumferential end of the inner opening end of each oil intake hole and the second imaginary line connecting the rotation axis of the differential case, the lubricating oil in the transmission case is made up of a plurality of oils. Intake hole The efficient possible incorporation into the differential case through. Moreover, among the plurality of oil intake holes, the oil intake holes that are offset from the intermediate point to the pinion side on the front side in the rotation direction of each pinion, in particular, the lubricating oil taken into the differential case and the pinion and side gear near the oil intake hole Can be efficiently supplied to the meshing portion. On the other hand, the oil intake holes that are offset from the intermediate point on the rear side in the rotational direction of each pinion are not obstructed by the pinion (i.e., the pinion becomes an obstacle). It can be supplied to the outer periphery of the pinion shaft near the rotation center of the differential case (without standing in the lubricating oil path), and the supplied lubricating oil travels along the outer peripheral surface of the shaft by centrifugal force, that is, between the outer end of the shaft, that is, between the pinion and the pinion shaft. Since it goes to the rotation sliding part side, lubricating oil can be efficiently supplied also to the rotation sliding part. As a result, the lubricating oil in the transmission case can be efficiently supplied not only to the meshing part of the pinion with the side gear but also to the rotational sliding part of the pinion and the pinion shaft, thereby improving the overall lubrication efficiency. .

また第2の特徴によれば、サイドギヤは、一対の出力軸にそれぞれ接続される軸部と、軸部から径方向外方に離間したギヤ部と、軸部内端から径方向外方に延びる板状の中間壁部とを備えるので、サイドギヤの歯数をピニオンの歯数よりも十分大きく設定し得るようにサイドギヤをピニオンに対し極力大径化でき、ピニオンシャフトの荷重負担を軽減、延いては小径化が図られて、デフケースの、出力軸の軸方向での幅狭化に寄与することができる。また上記投影面で見て油取込み孔がピニオン側にオフセットした位置に在っても、ピニオンは、上記領域の外に位置する、即ちサイドギヤに対し十分小径化されるので、油取込み孔を前述の如くデフケースの周方向でピニオン側にオフセット(即ちピニオン寄りに)配置したにも拘わらず、ピニオンを油取込み孔の内側開口端に対応した上記領域の外に無理なく配置可能となり、ピニオンとピニオンシャフトの間の回転摺動部への潤滑効果が十分に確保可能である。   According to the second feature, the side gear includes a shaft portion connected to each of the pair of output shafts, a gear portion spaced radially outward from the shaft portion, and a plate extending radially outward from the inner end of the shaft portion. Since the side gear can be made as large as possible with respect to the pinion so that the number of teeth of the side gear can be set sufficiently larger than the number of teeth of the pinion, the load burden on the pinion shaft is reduced and extended. By reducing the diameter, the differential case can contribute to narrowing the width of the output shaft in the axial direction. Even if the oil intake hole is offset to the pinion side when viewed from the projection plane, the pinion is located outside the region, that is, the diameter is sufficiently reduced with respect to the side gear. In spite of being arranged on the pinion side in the circumferential direction of the differential case as described above (that is, closer to the pinion), the pinion can be easily arranged outside the region corresponding to the inner opening end of the oil intake hole, and the pinion and the pinion A sufficient lubrication effect on the rotating sliding portion between the shafts can be secured.

また第3の特徴によれば、ミッションケース内の潤滑油が複数の油取込み孔を通してデフケース内に効率よく取込み可能となる。しかも複数の油取込み孔のうち、特に各差動ギヤの、車両前進時のデフケースの回転方向前側で中間点より差動ギヤ側にオフセット配置された油取込み孔は、デフケース内に取り込んだ潤滑油を油取込み孔の近くの差動ギヤと出力ギヤとの噛合部に効率よく供給可能となる。一方、各差動ギヤの上記回転方向後側で中間点より差動ギヤ側にオフセット配置された油取込み孔は、デフケース内に取り込んだ潤滑油を差動ギヤに邪魔されることなく(即ち差動ギヤが障害物となって潤滑油経路に立ちはだかることなく)差動ギヤ支持部のデフケースの回転中心寄りの部分に供給でき、供給した潤滑油が遠心力で差動ギヤ支持部を伝って外端側、即ち差動ギヤと差動ギヤ支持部の間の回転摺動部側に向かうため、回転摺動部に対しても効率よく潤滑油を供給可能である。それらの結果、ミッションケース内の潤滑油を、差動ギヤの、出力ギヤとの噛合部は元より、差動ギヤと差動ギヤ支持部との回転摺動部にも効率よく供給して全体として潤滑効率を高めることができる。しかも第3の特徴によれば、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を全体として出力軸の軸方向で十分に幅狭化できるから、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で有利となる。   According to the third feature, the lubricating oil in the transmission case can be efficiently taken into the differential case through the plurality of oil taking holes. In addition, among the plurality of oil intake holes, the oil intake holes that are offset from the intermediate point on the differential gear side on the front side in the rotational direction of the differential case when the vehicle advances, in particular, are lubricating oil that has been taken into the differential case. Can be efficiently supplied to the meshing portion between the differential gear and the output gear near the oil intake hole. On the other hand, the oil intake holes that are offset from the intermediate point on the rear side in the rotational direction of each differential gear are not obstructed by the differential gear. (Without the moving gear becoming an obstacle and standing in the lubricating oil path) The differential gear support can be supplied to the portion near the center of rotation of the differential case, and the supplied lubricating oil is transferred to the differential gear support by centrifugal force. Since it goes to the end side, that is, the rotational sliding part side between the differential gear and the differential gear support part, the lubricating oil can be efficiently supplied also to the rotational sliding part. As a result, the lubricating oil in the transmission case is efficiently supplied not only to the meshing part of the differential gear with the output gear but also to the rotating sliding part of the differential gear and the differential gear support part. As a result, the lubrication efficiency can be increased. In addition, according to the third feature, the differential device as a whole is sufficiently narrow in the axial direction of the output shaft while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. As a result, it is possible to easily incorporate a differential gear into a transmission system with many layout constraints around the differential gear with a high degree of freedom, and it is advantageous for downsizing the transmission system. .

また特に第4及び第5の各特徴によれば、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を出力軸の軸方向で更に十分に幅狭化できる。   In particular, according to each of the fourth and fifth features, the differential device is more sufficiently installed in the axial direction of the output shaft while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. Can be narrowed.

また第6の特徴によれば、油取込み孔は、該孔の軸線と直交する横断面の形状が円形、即ち機械加工が容易な横断面形状であるので、デフケースを例えば鍛造成形する場合等のように、デフケースの成形の際に同時に油取込み孔を成形することが困難な製法を採用する場合でも、デフケースの成形後に油取込み孔を容易に機械加工でき、製造コストの節減に寄与することができる。   According to the sixth feature, the oil intake hole has a circular cross section perpendicular to the axis of the hole, that is, a cross section shape that is easy to machine. Thus, even when adopting a manufacturing method in which it is difficult to form the oil intake hole at the same time when forming the differential case, the oil intake hole can be easily machined after the differential case is formed, which contributes to the reduction of manufacturing costs. it can.

本発明の一実施形態に係る差動装置及び減速歯車機構の要部縦断面図(図2の1A−1A線断面図)FIG. 2 is a longitudinal sectional view of a main part of a differential gear and a reduction gear mechanism according to an embodiment of the present invention (sectional view taken along line 1A-1A in FIG. 2). 前記差動装置の一部を破断した軸方向一方側の側面図(図1の2A−2A線断面図)Side view of one side in the axial direction with a part of the differential device broken (sectional view taken along line 2A-2A in FIG. 1) 前記差動装置の軸方向他方側の要部側面図(図1の3A−3A線断面図)Side view of the main part on the other axial side of the differential device (sectional view taken along line 3A-3A in FIG. 1) 図1の4A−4A線断面図であって、一方のカバー部Cのみを実線で示すFIG. 4 is a cross-sectional view taken along line 4A-4A in FIG. 1 and shows only one cover portion C by a solid line. 図1の5A−5A線断面図であって、他方のカバー部C′及び入力部材のみを実線で示すFIG. 5 is a cross-sectional view taken along line 5A-5A in FIG. 1 and shows only the other cover portion C ′ and the input member with solid lines. (A)は図1の6A矢視部の拡大図であり、(B)は(A)のBA−BA線断面図(A) is the enlarged view of the 6A arrow part of FIG. 1, (B) is the BA-BA sectional view taken on the line of (A). 従来の差動装置の一例を示す縦断面図A longitudinal sectional view showing an example of a conventional differential device ピニオンの歯数を10とした時の歯数比率に対するギヤ強度変化率の関係を示すグラフThe graph which shows the relationship of the gear strength change rate with respect to the ratio of the number of teeth when the number of teeth of the pinion is 10 ピッチ円錐距離の変化率に対するギヤ強度変化率の関係を示すグラフGraph showing the relationship between the rate of change in gear strength and the rate of change in pitch cone distance ピニオンの歯数を10とした時のギヤ強度を100%維持する場合における歯数比率に対するピッチ円錐距離の変化率の関係を示すグラフThe graph which shows the relationship of the change rate of the pitch cone distance with respect to the ratio of the number of teeth when the gear strength is maintained at 100% when the number of teeth of the pinion is 10 ピニオンの歯数を10とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 10 and the ratio of the shaft diameter / pitch cone distance ピニオンの歯数を6とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 6 and the ratio of the shaft diameter / pitch cone distance ピニオンの歯数を12とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 12 and the ratio of the shaft diameter / pitch cone distance ピニオンの歯数を20とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 20 and the ratio of the shaft diameter / pitch cone distance

本発明の実施の形態を、添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

先ず、図1において、自動車に搭載される動力源としてのエンジン(図示せず)には、減速歯車機構RGを介して差動装置Dが接続される。差動装置Dは、エンジンから減速歯車機構RGを経てデフケースDCに伝達される回転力を、左右一対の車軸にそれぞれ連なる左右一対の出力軸Jに分配して伝達することにより、左右車軸を、左右車軸の差動回転を許容しつつ駆動するためのものであって、例えば車体前部のエンジンの横に配置されたミッションケースM内に、減速歯車機構RGに隣接した状態で減速歯車機構RGと共に収容される。尚、エンジンと減速歯車機構RGとの間には、従来周知の動力断接機構や前後進切換機構(何れも図示せず)が介装される。またデフケースDCの回転軸線(回転中心)Lは、出力軸Jの中心軸線と一致する。   First, in FIG. 1, a differential device D is connected to an engine (not shown) as a power source mounted on an automobile via a reduction gear mechanism RG. The differential device D distributes and transmits the rotational force transmitted from the engine to the differential case DC via the reduction gear mechanism RG to the pair of left and right output shafts J respectively connected to the pair of left and right axles, thereby transmitting the left and right axles. For driving while allowing differential rotation of the left and right axles, for example, in a transmission case M arranged beside the engine at the front of the vehicle body, the reduction gear mechanism RG is adjacent to the reduction gear mechanism RG. Is housed together. A conventionally known power connection / disconnection mechanism and forward / reverse switching mechanism (both not shown) are interposed between the engine and the reduction gear mechanism RG. Further, the rotation axis (rotation center) L of the differential case DC coincides with the center axis of the output shaft J.

減速歯車機構RGは、図示例ではエンジンのクランクシャフトに連動回転するサンギヤ50と、サンギヤ50を同心状に囲繞してミッションケースMの内壁に固定されるリングギヤ51と、サンギヤ50及びリングギヤ51の間に介装され且つ両ギヤ50,51に噛合する複数のプラネタリギヤ52と、プラネタリギヤ52を回転自在に軸支するキャリア53とを備えた遊星歯車機構より構成される。尚、このような遊星歯車機構に代えて、複数の平歯車の歯車列よりなる減速歯車機構を用いてもよい。   In the illustrated example, the reduction gear mechanism RG includes a sun gear 50 that rotates in conjunction with the crankshaft of the engine, a ring gear 51 that concentrically surrounds the sun gear 50 and is fixed to the inner wall of the transmission case M, and between the sun gear 50 and the ring gear 51. And a planetary gear mechanism including a plurality of planetary gears 52 that mesh with both gears 50 and 51, and a carrier 53 that rotatably supports the planetary gear 52. In place of such a planetary gear mechanism, a reduction gear mechanism comprising a gear train of a plurality of spur gears may be used.

キャリア53は、図示しない軸受を介してミッションケースMに回転自在に支持される。また、キャリア53は、差動装置DのデフケースDCの一端部に一体的に回転するように結合され、デフケースDCの他端部は、軸受2を介してミッションケースMに回転自在に支持される。したがって、相互に一体的に回転するデフケースDC及びキャリア53の結合体が、ミッションケースMに複数の軸受を介して回転自在に安定よく支持される。   The carrier 53 is rotatably supported by the transmission case M via a bearing (not shown). The carrier 53 is coupled to one end portion of the differential case DC of the differential device D so as to rotate integrally, and the other end portion of the differential case DC is rotatably supported by the transmission case M via the bearing 2. . Therefore, the combination of the differential case DC and the carrier 53 that rotate integrally with each other is stably and stably supported by the mission case M via the plurality of bearings.

またミッションケースMには、各出力軸Jが嵌挿される貫通孔Maが形成され、貫通孔Maの内周と各出力軸Jの外周との間には、その間をシールする環状のシール部材3が介装される。またミッションケースMの底部には、ミッションケースMの内部空間1に臨んで所定量の潤滑油を貯溜するオイルパン(図示せず)が設けられており、オイルパンで貯溜した潤滑油がミッションケースMの内部空間1において減速歯車機構RGの可動要素やデフケースDC等の回転によって回転部位の周辺に掻き上げられ飛散することで、デフケースDCの内外に存する機械運動部分を潤滑できるようになっている。尚、潤滑油をオイルポンプ(図示せず)で吸引して、ミッションケースMの内部空間1の特定部位、例えば減速歯車機構RGやデフケースDC、或いはその周辺のミッションケースMの内壁に向けて強制的に飛散又は散布させるようにしてもよい。   The transmission case M is formed with a through hole Ma into which each output shaft J is inserted, and an annular seal member 3 that seals between the inner periphery of the through hole Ma and the outer periphery of each output shaft J. Is installed. Further, an oil pan (not shown) for storing a predetermined amount of lubricating oil facing the internal space 1 of the mission case M is provided at the bottom of the mission case M, and the lubricating oil stored in the oil pan is stored in the mission case. In the internal space 1 of M, the mechanical movement portions existing inside and outside the differential case DC can be lubricated by being scattered and scattered around the rotation part by the rotation of the movable element of the reduction gear mechanism RG and the differential case DC. . The lubricating oil is sucked by an oil pump (not shown) and forced toward a specific part of the internal space 1 of the mission case M, for example, the reduction gear mechanism RG or the differential case DC, or the inner wall of the mission case M in the vicinity thereof. May be scattered or dispersed.

ところでミッションケースMの天井壁Mtは、図1からも明らかなようにデフケースDCの直上部に向かって下る傾斜部を有している。そして、ミッションケースM内で前述のように飛散する潤滑油の一部は、ミッションケースMの天井壁Mtにも付着して、天井壁Mtの傾斜内面Mtfを伝って低い側に流れ、天井壁Mtの特定部位、例えば傾斜内面Mtfの終端部分(即ち天井壁水平面との境界部分)から直下のデフケースDCに向けて滴下する。これにより、滴下した潤滑油の一部が、デフケースDCの外周面に開口した後述の油取込み孔H1,H2に取り込み可能である。尚、ミッションケースMの天井壁Mtが上記のような傾斜部を持たない場合でも、天井壁Mtには多量の潤滑油が飛散付着することから、付着した潤滑油は、自重で天井壁Mt内面の各所からランダムに滴下し、その一部は上記油取込み孔H1,H2に取り込み可能である。   Incidentally, the ceiling wall Mt of the mission case M has an inclined portion that goes down directly above the differential case DC, as is apparent from FIG. A part of the lubricating oil scattered in the transmission case M as described above adheres to the ceiling wall Mt of the transmission case M and flows to the lower side along the inclined inner surface Mtf of the ceiling wall Mt. It is dropped from the specific part of Mt, for example, the terminal part of the inclined inner surface Mtf (that is, the boundary part with the horizontal surface of the ceiling wall) toward the differential case DC immediately below. As a result, a part of the dropped lubricating oil can be taken into oil take-in holes H1 and H2, which will be described later, opened on the outer peripheral surface of the differential case DC. Even when the ceiling wall Mt of the transmission case M does not have the inclined portion as described above, a large amount of lubricating oil is scattered and adhered to the ceiling wall Mt. It is dripped at random from each place of this, The part can be taken in into the said oil taking-in hole H1, H2.

図2〜図6も併せて参照して、差動装置Dは、デフケースDCと、デフケースDC内に収容される複数のピニオン(差動ギヤ)Pと、デフケースDC内に収容されてピニオンPを回転自在に支持するピニオンシャフト(差動ギヤ支持部)PSと、デフケースDC内に収容されてピニオンPに対し左右両側より噛合し且つ左右一対の出力軸Jにそれぞれ接続される左右一対のサイドギヤ(出力ギヤ)Sとを備える。そして、デフケースDCは、ピニオンシャフトPSと共に回転し得るようピニオンシャフトPSを支持する短円筒状のケース本体部4と、両サイドギヤSの外側をそれぞれ覆い且つケース本体部4と一体に回転する左右一対のカバー部C,C′とを有しており、ケース本体部4がデフケースDCの外周壁を構成する。   2 to 6, the differential device D includes a differential case DC, a plurality of pinions (differential gears) P accommodated in the differential case DC, and a pinion P accommodated in the differential case DC. A pinion shaft (differential gear support portion) PS that is rotatably supported, and a pair of left and right side gears that are housed in the differential case DC and mesh with the pinion P from the left and right sides and connected to the pair of left and right output shafts J (each Output gear) S. The differential case DC includes a short cylindrical case main body 4 that supports the pinion shaft PS so as to be able to rotate together with the pinion shaft PS, and a pair of right and left that covers the outer sides of both side gears S and rotates integrally with the case main body 4. Cover part C, C ', and the case body 4 constitutes the outer peripheral wall of the differential case DC.

ピニオンシャフトPSは、例えば、デフケースDC内でデフケースDCの回転軸線Lを通るように配置されるものであって、ケース本体部4にケース本体部4の一直径線上で設けた一対の貫通支持孔4aにシャフト両端部がそれぞれ抜差可能に挿通される。そして、ピニオンシャフトPSは、ピニオンシャフトPSの一端部を貫通してケース本体部4に挿着される抜け止めピン5を以てケース本体部4に固定される。ピニオンシャフトPSがケース本体部4に固定された状態でピニオンシャフトPSの両外端面PSfは、デフケースDCの外周面における開口DCo(即ち貫通支持孔4aの外端開口)を通してミッションケースMの内部空間1に臨んでいる。   The pinion shaft PS is, for example, arranged so as to pass through the rotation axis L of the differential case DC in the differential case DC, and a pair of through support holes provided in the case main body 4 on one diameter line of the case main body 4 Both end portions of the shaft are inserted into 4a so as to be insertable / removable. The pinion shaft PS is fixed to the case body 4 with a retaining pin 5 that passes through one end of the pinion shaft PS and is attached to the case body 4. In a state where the pinion shaft PS is fixed to the case main body portion 4, both outer end surfaces PSf of the pinion shaft PS pass through the opening DCo (that is, the outer end opening of the through support hole 4a) in the outer peripheral surface of the differential case DC. 1

本実施形態では、ピニオンPを2個とし、ピニオンシャフトPSをケース本体部4の一直径線に沿って延びる直線棒状に形成して、ピニオンシャフトPSの両端部に2個のピニオンPをそれぞれ支持させるようにしたものを示したが、ピニオンPを3個以上設けてもよい。その場合には、ピニオンシャフトPSを、3個以上のピニオンPに対応してデフケースDCの回転軸線Lから三方向以上に枝分かれして放射状に延びる交差棒状(例えばピニオンPが4個の場合には十字状)に形成して、ピニオンシャフトPSの各先端部にピニオンPを各々支持させるようにし、またケース本体部4は二つ割りに分割構成して、その分割要素の相互間にピニオンシャフトPSを挟むようにする。   In the present embodiment, two pinions P are provided, and the pinion shaft PS is formed in a straight bar shape extending along one diameter line of the case main body 4, and the two pinions P are respectively supported at both ends of the pinion shaft PS. Although what was made to show was shown, you may provide three or more pinions P. FIG. In that case, the pinion shaft PS is crossed into three or more directions from the rotation axis L of the differential case DC corresponding to three or more pinions P and extends radially (for example, when there are four pinions P). The pinion P is supported on each tip of the pinion shaft PS, and the case body 4 is divided into two parts, and the pinion shaft PS is sandwiched between the divided elements. Like that.

またピニオンPは、ピニオンシャフトPSに図示例のように直接嵌合させてもよいし、或いは軸受ブッシュ等の軸受手段(図示せず)を介して嵌合させてもよい。そして、前者の場合には、ピニオンシャフトPSとピニオンPとの間の嵌合部が、ピニオンシャフトPSとピニオンPとの間の回転摺動部rsとなり、また後者の場合には上記軸受手段が回転摺動部rsとなる。尚、ピニオンシャフトPSは、図示例のように全長に亘り略一様等径の軸状としてもよいし、或いは段付き軸状としてもよい。   Further, the pinion P may be directly fitted to the pinion shaft PS as shown in the figure, or may be fitted via a bearing means (not shown) such as a bearing bush. In the former case, the fitting portion between the pinion shaft PS and the pinion P is a rotational sliding portion rs between the pinion shaft PS and the pinion P. In the latter case, the bearing means is It becomes a rotation sliding part rs. Note that the pinion shaft PS may have a substantially uniform shaft diameter as in the illustrated example, or may have a stepped shaft shape.

またピニオンP及びサイドギヤSは、本実施形態ではベベルギヤに形成されており、しかも歯部を含む全体が各々鍛造等の塑性加工で形成されている。そのため、ピニオンP及びサイドギヤSの歯部を切削加工する場合のような機械加工上の制約を受けることなく歯部を任意の歯数比を以て高精度に形成可能である。尚、ベベルギヤに代えて他のギヤを採用してもよく、例えばサイドギヤSをフェースギヤとし且つピニオンPを平歯車又は斜歯歯車としてもよい。   The pinion P and the side gear S are formed as bevel gears in the present embodiment, and the whole including the tooth portions is formed by plastic working such as forging. Therefore, the teeth can be formed with high accuracy with an arbitrary ratio of teeth without being subjected to machining restrictions as in the case of cutting the teeth of the pinion P and the side gear S. Note that other gears may be employed instead of the bevel gear. For example, the side gear S may be a face gear, and the pinion P may be a spur gear or an inclined gear.

また、一対のサイドギヤSは、一対の出力軸Jの内端部がそれぞれスプライン嵌合6される円筒状の軸部Sjと、軸部SjからデフケースDCの半径方向外方に離れた位置に在ってピニオンPに噛合する円環状の歯部Sgと、出力軸Jの軸線Lと直交する扁平なリング板状に形成されて軸部Sj及び歯部Sgの間を一体に接続する中間壁部Swとを備える。尚、サイドギヤSの軸部Sjは、図示例ではカバー部C,C′のボス部Cbに回転自在に直接嵌合しているが、軸受を介して嵌合させてもよい。   The pair of side gears S are located at the cylindrical shaft portion Sj in which the inner ends of the pair of output shafts J are respectively spline-fitted 6, and at positions away from the shaft portion Sj radially outward of the differential case DC. An annular tooth portion Sg meshing with the pinion P and an intermediate wall portion formed in a flat ring plate shape orthogonal to the axis L of the output shaft J and integrally connecting the shaft portion Sj and the tooth portion Sg Sw. The shaft portion Sj of the side gear S is directly fitted in a freely rotatable manner to the boss portion Cb of the cover portions C and C ′ in the illustrated example, but may be fitted via a bearing.

左右少なくとも一方(本実施形態では両方)のサイドギヤSの中間壁部Swには、中間壁部Swの内側面と外側面とに両端が各々開口して中間壁部Swを横切る貫通油路15が形成される。   The intermediate wall portion Sw of at least one of the left and right (both in the present embodiment) side gears S has through oil passages 15 that open at both inner and outer surfaces of the intermediate wall portion Sw and cross the intermediate wall portion Sw. It is formed.

また、サイドギヤSの中間壁部Swは、中間壁部Swの半径方向の幅t1がピニオンPの最大直径d1よりも大きくなり、且つ中間壁部Swの、出力軸Jの軸方向での最大肉厚t2がピニオンシャフトPSの有効直径d2、即ち外径よりも小さくなるように形成(図1参照)される。これにより、後述するように、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようサイドギヤSを十分に大径化することができ、且つ出力軸Jの軸方向でサイドギヤSが十分に薄肉化できる。   Further, the intermediate wall part Sw of the side gear S has a radial width t1 of the intermediate wall part Sw larger than the maximum diameter d1 of the pinion P, and the intermediate wall part Sw has a maximum wall thickness in the axial direction of the output shaft J. The thickness t2 is formed to be smaller than the effective diameter d2 of the pinion shaft PS, that is, the outer diameter (see FIG. 1). Thereby, as will be described later, the side gear S can be sufficiently increased in diameter so that the number of teeth Z1 of the side gear S can be set sufficiently larger than the number of teeth Z2 of the pinion P, and in the axial direction of the output shaft J. The side gear S can be sufficiently thinned.

またデフケースDCにおける左右一対のカバー部C,C′のうちの何れか一方側、例えば減速歯車機構RGとは反対側のカバー部Cは、ケース本体部4とは別体に形成されてケース本体部4にボルトBを以て着脱可能に結合される。結合手段としては、ネジ手段以外の種々の結合手段、例えば溶接手段やカシメ手段も使用可能である。また他方側のカバー部C′は、図示例ではケース本体部4に一体に形成され且つ減速歯車機構RGのキャリア53に結合されているが、カバー部C′を、一方側のカバー部Cと同様にケース本体部4とは別体に形成して、ケース本体部4にボルトBその他の結合手段を以て結合してもよい。   One of the pair of left and right cover portions C and C ′ in the differential case DC, for example, the cover portion C on the opposite side of the reduction gear mechanism RG is formed separately from the case main body portion 4 to form the case main body. The part 4 is detachably coupled with a bolt B. As the coupling means, various coupling means other than the screw means such as welding means and caulking means can be used. In the illustrated example, the other side cover portion C ′ is integrally formed with the case main body portion 4 and coupled to the carrier 53 of the reduction gear mechanism RG, but the cover portion C ′ is connected to the one side cover portion C. Similarly, it may be formed separately from the case body 4 and coupled to the case body 4 with a bolt B or other coupling means.

また各々のカバー部C,C′は、サイドギヤSの軸部Sjを同心状に囲繞して回転自在に嵌合支持する円筒状のボス部Cbと、外側面をデフケースDCの回転軸線Lと直交する平坦面としてボス部Cbの軸方向内端に一体に連設される板状の側壁部Csとを備えており、カバー部C,C′の側壁部Csは、出力軸Jの軸方向でケース本体部4の幅内に収まるように配置される。これにより、カバー部C,C′の側壁部Csがケース本体部4の端面より軸方向外方側に張出すことが抑えられるから、差動装置Dの出力軸Jの軸方向での幅狭化を図る上で有利になる。   Each of the cover portions C and C ′ includes a cylindrical boss portion Cb that concentrically surrounds and supports the shaft portion Sj of the side gear S, and an outer surface orthogonal to the rotation axis L of the differential case DC. And a plate-like side wall Cs integrally connected to the inner end in the axial direction of the boss Cb as a flat surface. The side walls Cs of the covers C and C ′ are arranged in the axial direction of the output shaft J. It arrange | positions so that it may be settled in the width | variety of the case main-body part 4. FIG. As a result, the side wall Cs of the covers C and C ′ can be prevented from projecting outward in the axial direction from the end surface of the case main body 4, so that the width in the axial direction of the output shaft J of the differential device D is narrow. This is advantageous for achieving the above.

また、カバー部C,C′の側壁部Csの内側面により、サイドギヤSの中間壁部Sw及び歯部Sgのうちの少なくとも一方(図示例では中間壁部Sw)の背面がワッシャWを介して回転自在に支持される。尚、このようなワッシャWを省略して、側壁部Csの内側面により、サイドギヤSの背面を回転自在に直接支持させてもよい。   In addition, the back surface of at least one of the intermediate wall portion Sw and the tooth portion Sg (the intermediate wall portion Sw in the illustrated example) of the side gear S is interposed through the washer W by the inner surface of the side wall portion Cs of the cover portions C and C ′. It is supported rotatably. Note that such a washer W may be omitted, and the back surface of the side gear S may be directly supported rotatably by the inner surface of the side wall portion Cs.

而して、本実施形態のサイドギヤSは、内周側の軸部Sjと、軸部Sjから径方向外方に離間した外周側のサイドギヤSの歯部Sgとの間に、その間を一体に接続する扁平なリング板状の中間壁部Swを有しており、中間壁部Swの半径方向幅t1がピニオンPの最大直径d1よりも長くなっている。このため、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようにサイドギヤSをピニオンPに対し十分大径化できることから、ピニオンPからサイドギヤSへのトルク伝達時におけるピニオンシャフトPSの荷重負担を軽減できてピニオンシャフトPSの有効直径d2の小径化、延いてはピニオンPの、出力軸Jの軸方向での幅狭化(小径化)を図ることができる。   Thus, the side gear S of the present embodiment is integrally formed between the inner peripheral shaft portion Sj and the tooth portion Sg of the outer peripheral side gear S that is spaced radially outward from the shaft portion Sj. It has a flat ring plate-shaped intermediate wall part Sw to be connected, and the radial width t1 of the intermediate wall part Sw is longer than the maximum diameter d1 of the pinion P. For this reason, since the side gear S can be sufficiently enlarged with respect to the pinion P so that the number of teeth Z1 of the side gear S can be set sufficiently larger than the number of teeth Z2 of the pinion P, the torque at the time of torque transmission from the pinion P to the side gear S can be reduced. The load on the pinion shaft PS can be reduced, and the effective diameter d2 of the pinion shaft PS can be reduced. As a result, the width of the pinion P in the axial direction of the output shaft J can be reduced.

またこのようにピニオンシャフトPSの荷重負担が軽減されると共に、サイドギヤSにかかる反力が低下し、しかもサイドギヤSの中間壁部Swの背面がカバー側壁部Csに支持されることから、中間壁部Swを薄肉化してもサイドギヤSの必要な剛性強度を確保することは容易である。即ち、サイドギヤSに対する支持剛性を確保しつつサイドギヤSの中間壁部Swを十分に薄肉化することが可能となる。更にまた本実施形態では、小径化を可能としたピニオンシャフトPSの有効直径d2よりもサイドギヤSの中間壁部Swの最大肉厚t2が更に小さく形成されるため、サイドギヤSの中間壁部Swの更なる薄肉化が達成可能となる。しかもカバー側壁部Csが、外側面をデフケースDCの回転軸線Lと直交する平坦面とした板状に形成されることで、カバー側壁部Cs自体の薄肉化も達成される。   In addition, the load on the pinion shaft PS is reduced in this way, the reaction force applied to the side gear S is reduced, and the back surface of the intermediate wall portion Sw of the side gear S is supported by the cover side wall portion Cs. Even if the portion Sw is made thin, it is easy to ensure the necessary rigidity and strength of the side gear S. That is, the intermediate wall portion Sw of the side gear S can be sufficiently thinned while ensuring the support rigidity for the side gear S. Furthermore, in the present embodiment, since the maximum wall thickness t2 of the intermediate wall portion Sw of the side gear S is formed to be smaller than the effective diameter d2 of the pinion shaft PS that can be reduced in diameter, the intermediate wall portion Sw of the side gear S is Further thinning can be achieved. In addition, since the cover side wall Cs is formed in a plate shape whose outer surface is a flat surface orthogonal to the rotation axis L of the differential case DC, the cover side wall Cs itself can be thinned.

それらの結果、差動装置Dは、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸Jの軸方向で十分に幅狭化することが可能となるため、差動装置Dの周辺のレイアウト上の制約が多い伝動系に対しても差動装置Dを、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる。   As a result, the differential device D should be sufficiently narrow in the axial direction of the output shaft J as a whole while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. Therefore, the differential device D can be easily and easily incorporated into a transmission system with many restrictions on the layout around the differential device D with a high degree of freedom, and the transmission system is downsized. It is advantageous to do it.

ところで、一方のカバー部Cの側壁部Csは、出力軸Jの軸方向外方から見た側面視で(即ち図2で見て)ピニオンPと重なる領域を含む第1の所定領域でサイドギヤSの背面を覆う油保持部7を備えており、更に上記側面視でピニオンPと重ならない第2の所定領域において、サイドギヤSの背面をデフケースDC外に露出させる肉抜き部8と、油保持部7からケース本体部4の周方向に離間し且つケース本体部4の半径方向に延びてボス部Cb及びケース本体部4の間を連結する連結腕部9とを併せ持つ構造となっている。換言すれば、カバー部Cの基本的に円板状をなす側壁部Csは、側壁部Csに切欠き状をなす肉抜き部8が周方向に間隔をおいて複数形成されることで、肉抜き部8を周方向に挟んで一方側に油保持部7が、他方側に連結腕部9がそれぞれ形成される構造形態となっている。   By the way, the side wall portion Cs of the one cover portion C has a side gear S in a first predetermined region including a region overlapping with the pinion P when viewed from the side in the axial direction of the output shaft J (that is, as viewed in FIG. 2). An oil retaining portion 7 that covers the rear surface of the side gear S, and further, an oil retaining portion 8 that exposes the rear surface of the side gear S to the outside of the differential case DC in the second predetermined region that does not overlap the pinion P in the side view. 7 and a connecting arm portion 9 that is spaced apart from the circumferential direction of the case main body portion 4 and extends in the radial direction of the case main body portion 4 to connect the boss portion Cb and the case main body portion 4 together. In other words, the side wall portion Cs that basically has a disk shape of the cover portion C is formed by forming a plurality of cutout portions 8 that are notched in the side wall portion Cs at intervals in the circumferential direction. The oil retaining portion 7 is formed on one side and the connecting arm portion 9 is formed on the other side with the punched portion 8 interposed in the circumferential direction.

このようなカバー部Cの側壁部Csの構造形態、特に油保持部7により、デフケースDCの回転による遠心力で径方向外方側に移動しようとする潤滑油を、油保持部7とケース本体部4とで覆われた空間に滞留させ易くなり、ピニオンP及びピニオンPの周辺部に潤滑油を保持し易くすることができる。   The structure of the side wall portion Cs of the cover portion C, in particular, the oil holding portion 7 allows the lubricating oil to move outward in the radial direction by centrifugal force due to the rotation of the differential case DC, to the oil holding portion 7 and the case main body. It becomes easy to make it stay in the space covered with the part 4, and it can make it easy to hold | maintain lubricating oil in the peripheral part of the pinion P and the pinion P.

また本実施形態では、図3に示されるように、他方のカバー部C′においても、側壁部Csに一方のカバー部Cと同様に肉抜き部8が形成される。但し、他方のカバー部C′の側壁部Csにおいては、油保持部7及び連結腕部9がケース本体部4に一体に形成される。尚、カバー部C,C′のうちの何れか一方のカバー部の側壁部Csを、肉抜き部を持たない(従ってサイドギヤSの中間壁部Sw及び歯部Sgの背面全面を覆う)円板状に形成してもよい。   In the present embodiment, as shown in FIG. 3, also in the other cover portion C ′, the thinned portion 8 is formed in the side wall portion Cs similarly to the one cover portion C. However, the oil retaining portion 7 and the connecting arm portion 9 are formed integrally with the case main body portion 4 in the side wall portion Cs of the other cover portion C ′. Note that the side wall Cs of one of the covers C and C ′ does not have a lightening portion (thus covering the entire rear surface of the intermediate wall Sw of the side gear S and the tooth Sg). You may form in a shape.

ところでデフケースDC内において、ピニオンPとピニオンシャフトPSとの対向部分には、図6に明示されるようにピニオンPの、サイドギヤSの径方向内方側の端面Pfiに隣接する空間60に臨んでいて空間60に飛散する潤滑油を捕捉・貯溜し得る油溜部61が、ピニオンPとピニオンシャフトPSとの相互に回転摺動自在な嵌合部(即ち回転摺動部rs)に油溜部61が直接連通するようにして形成される。油溜部61は、図示例ではピニオンPの内周面の、サイドギヤSの径方向内方側の端縁に環状の面取りを施すことで形成される。   By the way, in the differential case DC, the facing portion of the pinion P and the pinion shaft PS faces a space 60 adjacent to the end surface Pfi on the radially inner side of the side gear S of the pinion P as clearly shown in FIG. The oil reservoir 61 that can capture and store the lubricating oil scattered in the space 60 has an oil reservoir in a fitting portion (that is, the rotational sliding portion rs) between the pinion P and the pinion shaft PS that can rotate and slide relative to each other. 61 is formed in direct communication. In the illustrated example, the oil reservoir 61 is formed by circularly chamfering the inner peripheral surface of the pinion P on the radially inner end of the side gear S.

また左右一対のサイドギヤSの相対向面(図示例では各サイドギヤSの中間壁部Swの歯部Sg寄りの内側面)には、遠心力で中間壁部Swの内側面を伝って径方向外方に流れる潤滑油流から一部の潤滑油を分離させて空間60に誘導、飛散させ得るエッジ状の環状の段部Eが形成され、段部Eの頂面は、サイドギヤSの径方向で段部Eよりも内方側の中間壁部Swの内側面と同一平面をなして連続する。   Further, the opposing surfaces of the pair of left and right side gears S (in the illustrated example, the inner side surface of the intermediate wall portion Sw of each side gear S near the tooth portion Sg) are transmitted radially along the inner side surface of the intermediate wall portion Sw by centrifugal force. An edge-shaped annular stepped portion E that can be guided and scattered in the space 60 by separating a part of the lubricating oil from the flowing lubricating oil flow is formed, and the top surface of the stepped portion E is in the radial direction of the side gear S Continuing in the same plane as the inner side surface of the intermediate wall portion Sw on the inner side of the stepped portion E.

ところでサイドギヤSは、鍛造成形、その他の種々の成形手法で製造可能であるが、例えば、サイドギヤSを鍛造成形する場合には、段部Eの頂面と段部Eに連なる外周面(段差面)との間にいわゆる鍛造ダレに因る丸みが形成されることがある。その場合には、外周面(段差面)に対して機械加工を施すことにより頂面と外周面(段差面)との間に先鋭なエッジを形成可能である。   By the way, the side gear S can be manufactured by forging and other various forming methods. For example, when the side gear S is forged, the top surface of the step portion E and the outer peripheral surface (step surface) connected to the step portion E. ) May be rounded due to so-called forging sagging. In that case, a sharp edge can be formed between the top surface and the outer peripheral surface (step surface) by machining the outer peripheral surface (step surface).

尚、自動車が前進方向に回転してデフケースDCが正転方向Rに回転駆動される状態では、後述するようにサイドギヤSの貫通油路15を経て潤滑油が中間壁部Swの内側面の径方向中間部付近に効率よく供給されるので、径方向中間部付近に供給された潤滑油は、遠心力で中間壁部Swの内側面を伝って径方向外方、即ち歯部Sg側に流れようとし、その途中で段部Eに到達する。   In the state where the automobile rotates in the forward direction and the differential case DC is rotated in the forward rotation direction R, the lubricating oil passes through the through oil passage 15 of the side gear S and the diameter of the inner side surface of the intermediate wall portion Sw as will be described later. Since the oil is efficiently supplied near the intermediate portion in the direction, the lubricating oil supplied near the intermediate portion in the radial direction travels radially outward, that is, toward the tooth portion Sg along the inner surface of the intermediate wall portion Sw by centrifugal force. Attempts to reach stepped part E in the middle.

而して、上記段部Eは、遠心力で中間壁部Swの内側面を伝って径方向外方に流れる潤滑油流から一部の潤滑油を段部Eのエッジ部分で効果的に分離させて、空間60に誘導し、飛散させることができる。これにより、飛散した潤滑油を、空間60に臨む油溜部61で効率よく捕捉貯溜させることができるため、油溜部61を経てピニオンP及びピニオンシャフトPSの間の回転摺動部rsに潤滑油が十分に供給される。それと共に、潤滑油流の残部は、段部Eのエッジ部分から飛散せずに段部Eの段差面を伝ってサイドギヤSのギヤ部Sgに向かう流れとなり、ギヤ部SgとピニオンPとの噛合部を十分に潤滑可能である。これにより、ピニオンPがピニオンPの小径化等に関係して高速回転するような過酷な運転状況となっても、上記噛合部に対する潤滑と、ピニオンPとピニオンシャフトPSの間の回転摺動部rsに対する潤滑とが共に十分に行われる。   Thus, the stepped portion E effectively separates a part of the lubricating oil at the edge portion of the stepped portion E from the lubricating oil flow flowing radially outward along the inner surface of the intermediate wall portion Sw by centrifugal force. Then, it can be guided to the space 60 and scattered. As a result, the scattered lubricating oil can be efficiently captured and stored in the oil reservoir 61 facing the space 60, so that the lubricating oil is lubricated to the rotational sliding portion rs between the pinion P and the pinion shaft PS via the oil reservoir 61. Oil is supplied sufficiently. At the same time, the remaining portion of the lubricating oil flow does not scatter from the edge portion of the step portion E but flows along the step surface of the step portion E toward the gear portion Sg of the side gear S, and the gear portion Sg and the pinion P mesh with each other. The part can be sufficiently lubricated. Thereby, even if it becomes a severe driving | running condition where the pinion P rotates at high speed in relation to the diameter reduction of the pinion P etc., lubrication with respect to the said meshing part, and the rotation sliding part between the pinion P and the pinion shaft PS Both lubrication with respect to rs is sufficiently performed.

しかも本実施形態のエッジ状の段部Eは、段部Eの頂面を通り且つデフケースDCの回転軸線Lと直交する仮想平面feが油溜部61の内部空間61s又は開口縁61eを通るように形成される。これにより、潤滑油流から段部Eで分離し空間60に誘導して飛散した潤滑油を、油溜部61に効果的に捕捉させて、油溜部61に貯溜させ易くすることができるため、ピニオンP及びピニオンシャフトPSの間の回転摺動部rsに潤滑油をより効率よく供給可能となる。更に本実施形態の差動装置Dにおいては、前述のようにデフケースDCの出力軸の軸方向での幅狭化を図るべくサイドギヤSをピニオンPに対して十分大径化した構造としているが、サイドギヤSの大径化に関係して、中間壁部Swの内側面を伝って径方向外方に流れる潤滑油流がより大きな遠心力を受ける。このため、潤滑油流から一部の潤滑油が段部Eで分離して飛散する効果が大きくなるから、飛散した潤滑油を油溜部61に一層効果的に捕捉させることができる。   Moreover, the edge-shaped stepped portion E of the present embodiment passes through the top surface of the stepped portion E and a virtual plane fe that is orthogonal to the rotation axis L of the differential case DC passes through the internal space 61s or the opening edge 61e of the oil reservoir 61. Formed. Thereby, the lubricating oil separated from the lubricating oil flow at the step E and guided to the space 60 and scattered can be effectively captured by the oil reservoir 61 and can be easily stored in the oil reservoir 61. The lubricating oil can be more efficiently supplied to the rotary sliding portion rs between the pinion P and the pinion shaft PS. Further, in the differential device D of the present embodiment, the side gear S has a sufficiently large diameter with respect to the pinion P in order to reduce the width in the axial direction of the output shaft of the differential case DC as described above. In connection with the increase in the diameter of the side gear S, the lubricating oil flow that flows radially outward along the inner surface of the intermediate wall portion Sw receives a larger centrifugal force. For this reason, since the effect that a part of lubricating oil separates and scatters from the lubricating oil flow at the stepped portion E is increased, the scattered lubricating oil can be more effectively captured by the oil reservoir 61.

ところで、本実施形態では、ピニオンシャフトPSの両外端面PSfが、前述のようにデフケースDCの外周面の開口DCo(即ちケース本体部4の貫通支持孔4aの外端開口)を通してミッションケースMの内部空間1に臨んでいるが、ピニオンシャフトPSの両端部には、図6に明示したように一端が開口し且つ他端が閉塞された有底中空部Tが、ピニオンシャフトPSの両外端面PSfより凹ませるようにして形成される。有底中空部(中空円筒部)Tは、ピニオンシャフトPSの軸線方向に長く延びる有底の円筒孔状に形成され、孔の深さは、孔がピニオンシャフトPS及びピニオンPの間の回転摺動部rsを過ぎて更に内方側に延びるように深く設定される。従って、有底中空部Tは、有底中空部Tの少なくとも中間部が回転摺動部rsに同心状に囲繞される配置形態となる。   By the way, in this embodiment, both the outer end surfaces PSf of the pinion shaft PS pass through the opening DCo on the outer peripheral surface of the differential case DC (that is, the outer end opening of the through support hole 4a of the case body 4) as described above. Although facing the internal space 1, both ends of the pinion shaft PS have bottomed hollow portions T having one end opened and the other end closed as clearly shown in FIG. It is formed so as to be recessed from PSf. The bottomed hollow part (hollow cylindrical part) T is formed in a bottomed cylindrical hole extending long in the axial direction of the pinion shaft PS, and the depth of the hole is determined by the rotational sliding between the pinion shaft PS and the pinion P. It is set deeply so as to extend further inward after passing through the moving part rs. Therefore, the bottomed hollow portion T has an arrangement configuration in which at least an intermediate portion of the bottomed hollow portion T is concentrically surrounded by the rotary sliding portion rs.

ピニオンシャフトPSにおける有底中空部Tの周壁には、有底中空部T内に貯溜された潤滑油を遠心力で回転摺動部rsに誘導可能な複数の油誘導孔G…が設けられ、油誘導孔G…は、周壁の内周から外周に向かってピニオンシャフトPSの軸方向外方側に傾斜して該周壁を横切るように形成される。複数の油誘導孔G…は、有底中空部Tの長手方向に間隔をおいて配列して形成されるものであり、更にそのような油誘導孔G…の配列群が有底中空部Tの周方向に間隔をおいて複数群、即ち有底中空部Tの中心軸線から放射状に配設される。また、有底中空部Tの周壁内周への油誘導孔Gの開口端Giは、有底中空部Tの長手方向で有底中空部Tの底面bより離間しているため、有底中空部Tの、開口端Giよりも底面b側の中空部分Taが、必要な油量の潤滑油を貯溜可能な油溜として機能し得るものである。   The peripheral wall of the bottomed hollow portion T in the pinion shaft PS is provided with a plurality of oil guide holes G that can guide the lubricating oil stored in the bottomed hollow portion T to the rotating sliding portion rs by centrifugal force. The oil guide holes G are formed so as to incline to the outer side in the axial direction of the pinion shaft PS from the inner periphery to the outer periphery of the peripheral wall and cross the peripheral wall. The plurality of oil guide holes G are formed so as to be arranged at intervals in the longitudinal direction of the bottomed hollow portion T, and further, the array group of such oil guide holes G. Are arranged radially from the central axis of the plurality of groups, that is, the bottomed hollow portion T, with an interval in the circumferential direction. Moreover, since the opening end Gi of the oil guide hole G to the inner periphery of the peripheral wall of the bottomed hollow portion T is separated from the bottom surface b of the bottomed hollow portion T in the longitudinal direction of the bottomed hollow portion T, the bottomed hollow The hollow portion Ta of the portion T closer to the bottom surface b than the opening end Gi can function as an oil reservoir capable of storing a required amount of lubricating oil.

このようなピニオンシャフトPSにおける有底中空部Tの特設構造によれば、エンジンの停止時には、停止前の差動装置D等の作動に伴いミッションケースM内で飛散した潤滑油やミッションケースMの天井壁Mtに付着して天井壁Mtから滴下する潤滑油を、停止時に上向き姿勢となった有底中空部Tに貯溜、保持しておくことができる。そして、有底中空部T内に貯溜された潤滑油を差動装置Dの作動開始の際に油誘導孔Gから遠心力でピニオンPとピニオンシャフトPSの間の回転摺動部rsに迅速に供給することができる。この場合、油誘導孔Gは、有底中空部Tの周壁の内周から外周に向かってピニオンシャフトPSの軸方向外方側に傾斜して延びるので、差動装置Dの停止時には有底中空部Tに貯溜保持した潤滑油の流出を効果的に抑制できる一方、貯溜した潤滑油を差動装置Dの作動開始の際には遠心力を利用して油誘導孔Gから回転摺動部rsに対して効率的に供給可能である。   According to such a special structure of the bottomed hollow portion T in the pinion shaft PS, when the engine is stopped, the lubricating oil scattered in the mission case M or the transmission of the transmission case M due to the operation of the differential device D before the stop, etc. Lubricating oil that adheres to the ceiling wall Mt and drops from the ceiling wall Mt can be stored and retained in the bottomed hollow portion T that is in an upward posture when stopped. Then, the lubricating oil stored in the bottomed hollow portion T is quickly transferred to the rotational sliding portion rs between the pinion P and the pinion shaft PS by centrifugal force from the oil guide hole G when the differential device D starts to operate. Can be supplied. In this case, since the oil guide hole G is inclined and extended outward in the axial direction of the pinion shaft PS from the inner periphery of the peripheral wall of the bottomed hollow portion T toward the outer periphery, the bottomed hollow portion G is provided when the differential device D is stopped. The lubricating oil stored and held in the portion T can be effectively prevented from flowing out, while the stored lubricating oil is rotated from the oil guide hole G to the rotating sliding portion rs using the centrifugal force when the differential device D starts operating. Can be supplied efficiently.

尚、差動装置Dの停止位置によっては、有底中空部Tが水平姿勢となって潤滑油を貯溜困難な状況も起こり得るが、殆どの場合は、複数ある有底中空部Tの何れかが上向きの鉛直姿勢又は傾斜姿勢となって、そこにミッションケースM内に飛散された潤滑油やミッションケースMの天井壁Mtから滴下された潤滑油を貯溜可能である。   Depending on the stop position of the differential device D, the bottomed hollow portion T may be in a horizontal posture and it may be difficult to store the lubricating oil. However, in most cases, any of the plurality of bottomed hollow portions T is present. Becomes an upward vertical posture or an inclined posture, and the lubricating oil scattered in the mission case M and the lubricating oil dropped from the ceiling wall Mt of the mission case M can be stored therein.

更に本実施形態においては、デフケースDCの外周壁、即ちケース本体部4に、ケース本体部4の内外を貫通してミッションケースM内の潤滑油、例えばミッションケースMの天井壁Mtから滴下された潤滑油をデフケースDC内に取り込み可能な各複数の第1,第2油取込み孔H1,H2が、横断面円形に且つデフケースDCの周方向に間隔をおいて形成される。しかも第1,第2油取込み孔H1,H2は、図2に明示したように、デフケースDCの周方向で隣り合う2個のピニオンPの中間点mより各ピニオンP側にそれぞれオフセットした位置に配置される。   Further, in the present embodiment, the lubricating oil in the transmission case M, for example, the ceiling wall Mt of the transmission case M, is dropped onto the outer peripheral wall of the differential case DC, that is, the case main body 4 through the inside and outside of the case main body 4. A plurality of first and second oil intake holes H1 and H2 capable of taking lubricating oil into the differential case DC are formed in a circular cross section and at intervals in the circumferential direction of the differential case DC. Moreover, as clearly shown in FIG. 2, the first and second oil intake holes H1 and H2 are offset from the intermediate point m between the two pinions P adjacent in the circumferential direction of the differential case DC to the respective pinion P side. Be placed.

また各々の油取込み孔H1,H2は、デフケースDCの回転軸線Lと直交する投影面で見て、油取込み孔H1,H2の軸線が油取込み孔H1,H2の内側開口端Hiから外側開口端Hoに向かって車両前進時のデフケースDCの回転方向R前側に傾斜するように形成される。その上、各々のピニオンPは、上記投影面で見て、各々の油取込み孔H1,H2の内側開口端Hiの周方向一端と回転軸線Lとを結ぶ第1仮想線L1と、各々の油取込み孔H1,H2の内側開口端Hiの周方向他端と回転軸線Lとを結ぶ第2仮想線L2とに挟まれた領域Aの外に配置される。   The oil intake holes H1 and H2 are viewed from the projection plane orthogonal to the rotation axis L of the differential case DC, and the axis of the oil intake holes H1 and H2 extends from the inner opening end Hi to the outer opening end of the oil intake holes H1 and H2. It forms so that it may incline in the rotation direction R front side of differential case DC at the time of vehicle advance toward Ho. In addition, each pinion P has a first imaginary line L1 connecting one end in the circumferential direction of the inner opening end Hi of each of the oil intake holes H1 and H2 and the rotation axis L when viewed in the projection plane, and each oil It arrange | positions out of the area | region A pinched | interposed into the 2nd virtual line L2 which connects the circumferential direction other end of the inner opening end Hi of the taking-in holes H1 and H2, and the rotating shaft L.

また本実施形態では前述の如くサイドギヤSに対しピニオンPを十分小径化し得る扁平デフ構造であることから、各油取込み孔H1,H2をデフケースDCの周方向で中間点mよりピニオンP側にオフセット(即ちピニオンP寄りに)配置しても、ピニオンPを油取込み孔H1,H2の内側開口端Hiに対応した領域Aの外に無理なく配置可能となる。換言すれば、ピニオンPは、各油取込み孔H1,H2がピニオンP側にオフセット配置されてもピニオンPを領域Aの外に無理なく配置し得るように、サイドギヤSに対して十分小径に形成される。   In the present embodiment, since the pinion P has a flat differential structure that can sufficiently reduce the diameter of the pinion P with respect to the side gear S as described above, the oil intake holes H1 and H2 are offset from the intermediate point m to the pinion P side in the circumferential direction of the differential case DC. Even if the pinion P is disposed (that is, close to the pinion P), the pinion P can be easily disposed outside the region A corresponding to the inner opening ends Hi of the oil intake holes H1 and H2. In other words, the pinion P is formed with a sufficiently small diameter with respect to the side gear S so that the pinion P can be easily arranged outside the region A even if the oil intake holes H1 and H2 are offset on the pinion P side. Is done.

このようなデフケースDCの外周壁における油取込み孔H1,H2の特設によれば、車両前進時であってデフケースDCが正転方向Rに比較的低速で回転している状態では、ミッションケースMの天井壁Mtから滴下する潤滑油が、特定方向(即ち効率よくデフケースDC内に取込み得る方向)に傾斜した各複数の第1,第2油取込み孔H1,H2を通してデフケースDC内に効率よく取込み可能となる。しかも油取込み孔H1,H2のうち、特に各ピニオンPの正転方向R前側で中間点mよりピニオンP側にオフセット配置された第1油取込み孔H1は、デフケースDC内に取り込まれ滴下された潤滑油を、第1油取込み孔H1近くのピニオンPとサイドギヤSとの噛合部に効率よく供給可能となる。一方、各ピニオンPの正転方向Rの後側で中間点mよりピニオンP側にオフセット配置された第2油取込み孔H2は、デフケースDC内に取り込まれ滴下された潤滑油を、ピニオンPに邪魔されることなく(即ちピニオンPが障害物となって潤滑油の経路に立ちはだかることなく)ピニオンシャフトPSの、デフケースDCの回転中心L寄りの外周部に供給でき、そこからは潤滑油が遠心力でピニオンシャフトPSの外周面を伝って外端側、即ちピニオンシャフトPSとピニオンPの間の回転摺動部rsへ向かうため、回転摺動部rsに対しても効率よく潤滑油を供給可能である。それらの結果、ミッションケースMの天井壁Mtから滴下された潤滑油を、ピニオンPの、サイドギヤSとの噛合部は元より、ピニオンシャフトPSとの回転摺動部rsにも効率よく供給して全体として潤滑効率を高めることができる。尚、油取込み孔H1,H2からデフケースDC内に取り込まれ滴下される潤滑油の一部は、サイドギヤSの中間壁部Swの内側面にも到達し、中間壁部Swの内側面を伝って遠心力で径方向外方側、即ち歯部Sg側に流れる。   According to the special arrangement of the oil intake holes H1 and H2 in the outer peripheral wall of the differential case DC, when the differential case DC is rotating in the normal rotation direction R at a relatively low speed when the vehicle is moving forward, Lubricating oil dripping from the ceiling wall Mt can be efficiently taken into the differential case DC through each of the plurality of first and second oil intake holes H1 and H2 inclined in a specific direction (that is, a direction in which it can be taken into the differential case DC efficiently). It becomes. Moreover, among the oil intake holes H1 and H2, the first oil intake hole H1 that is offset from the intermediate point m to the pinion P side, particularly in the forward direction R of each pinion P, is taken into the differential case DC and dropped. Lubricating oil can be efficiently supplied to the meshing portion between the pinion P and the side gear S near the first oil intake hole H1. On the other hand, the second oil intake hole H2, which is arranged behind the pinion P in the forward rotation direction R and offset from the intermediate point m to the pinion P side, allows the lubricating oil taken and dropped into the differential case DC to be fed into the pinion P. Without being obstructed (that is, without pinion P becoming an obstacle and standing in the path of the lubricating oil), the pinion shaft PS can be supplied to the outer periphery of the differential case DC near the rotation center L, from which the lubricating oil is centrifuged. Since the force travels along the outer peripheral surface of the pinion shaft PS toward the outer end side, that is, the rotational sliding portion rs between the pinion shaft PS and the pinion P, the lubricating oil can be efficiently supplied also to the rotational sliding portion rs. It is. As a result, the lubricating oil dropped from the ceiling wall Mt of the transmission case M is efficiently supplied not only to the meshing part of the pinion P with the side gear S but also to the rotational sliding part rs with the pinion shaft PS. Overall, the lubrication efficiency can be increased. A part of the lubricating oil taken and dropped into the differential case DC from the oil intake holes H1 and H2 also reaches the inner surface of the intermediate wall portion Sw of the side gear S, and travels along the inner surface of the intermediate wall portion Sw. It flows to the radially outward side, that is, the tooth portion Sg side by centrifugal force.

ところで、デフケースDCにおけるカバー部C,C′の側壁部Csの内側面と、サイドギヤSの外側面との間には、前述のようにワッシャWが介装されるが、ワッシャWを、貫通油路15への潤滑油経路を考慮した適切な定位置に位置決め保持するために、側壁部Csの内側面とサイドギヤSの外側面との相対向面の少なくとも一方(図示例ではサイドギヤSの外側面)には環状のワッシャ保持溝16が形成され、ワッシャ保持溝16にはワッシャWが嵌合される。そして、ワッシャWの内周部が貫通油路15の、中間壁部Swの外側面への開口部に臨むように、ワッシャW及び貫通油路15の相対位置が設定される。これにより、カバー部C,C′の側壁部Csの内側面とサイドギヤSの外側面との間隙において遠心力で半径方向外方に流出しようとする潤滑油の流動がワッシャWで抑制されて、ワッシャWの内周側から貫通油路15を経てサイドギヤSの内方側に誘導できるため、貫通油路15を通過してサイドギヤSの内側面を径方向外方に伝って歯部Sg側へ向かう潤滑油量を増やすことができる。   Incidentally, the washer W is interposed between the inner side surface of the side wall portion Cs of the cover portions C and C ′ and the outer side surface of the side gear S in the differential case DC as described above. In order to position and hold at an appropriate fixed position in consideration of the lubricating oil path to the path 15, at least one of the opposing surfaces of the inner surface of the side wall Cs and the outer surface of the side gear S (in the illustrated example, the outer surface of the side gear S). ) Is formed with an annular washer holding groove 16, and a washer W is fitted into the washer holding groove 16. Then, the relative positions of the washer W and the through oil passage 15 are set so that the inner peripheral portion of the washer W faces the opening of the through oil passage 15 to the outer surface of the intermediate wall portion Sw. Accordingly, the washer W suppresses the flow of the lubricating oil that tends to flow outward in the radial direction by centrifugal force in the gap between the inner side surface of the side wall portion Cs of the cover portions C and C ′ and the outer side surface of the side gear S. Since it can be guided from the inner peripheral side of the washer W to the inner side of the side gear S through the through oil passage 15, the inner surface of the side gear S passes through the through oil passage 15 and travels radially outward to the tooth portion Sg side. The amount of lubricating oil heading can be increased.

また図4,図5を併せて参照して、カバー部C,C′の側壁部Csの内側面には、デフケースDCの回転時に肉抜き部8の周縁からワッシャW及び貫通油路15への潤滑油の流入を誘導し得る油ガイド溝17が凹設される。油ガイド溝17は、肉抜き部8の周縁から油保持部7の接線方向に対し斜めに(より具体的に言えば、デフケースDCの後述する正転方向後方に向かって中心軸線L側に)傾斜して延びる第1内側壁17aと、肉抜き部8の周縁から油保持部7の接線方向に延びる第2内側壁17bと、両内側壁17a,17bの内端間を接続する奥壁部17cとによって、概ね三角形状に形成される。しかも油ガイド溝17の、奥壁部17cが臨む内奥溝部17iは、デフケースDCの回転軸線Lと直交する投影面で見てワッシャWの一部と常にオーバラップし、且つデフケースDCの回転に伴い貫通油路15の、中間壁部Swの外側面への開口部とも一時的にオーバラップし得る位置に配置される。   4 and 5 together, the inner side surface of the side wall portion Cs of the cover portions C and C ′ is connected to the washer W and the through oil passage 15 from the peripheral edge of the thinned portion 8 when the differential case DC rotates. An oil guide groove 17 that can guide the inflow of the lubricating oil is provided in the recess. The oil guide groove 17 is inclined with respect to the tangential direction of the oil retaining portion 7 from the peripheral edge of the thinned portion 8 (more specifically, toward the center axis L side toward the rearward direction of the differential case DC described later). A first inner side wall 17a extending in an inclined manner, a second inner side wall 17b extending in the tangential direction of the oil retaining portion 7 from the periphery of the thinned portion 8, and a back wall portion connecting the inner ends of both inner side walls 17a, 17b 17c is formed in a generally triangular shape. Moreover, the inner back groove portion 17i of the oil guide groove 17 facing the back wall portion 17c always overlaps with a part of the washer W when viewed from the projection plane orthogonal to the rotation axis L of the differential case DC, and the rotation of the differential case DC. Accordingly, the penetrating oil passage 15 is disposed at a position where the opening to the outer surface of the intermediate wall portion Sw can be temporarily overlapped.

而して、自動車を前進させるべくエンジンから減速歯車機構RGを介して伝達される回転力でデフケースDCが正転方向Rに回転される場合には、ミッションケースM内でデフケースDCの周囲を飛散する潤滑油が、潤滑油と回転中のカバー部C,C′との相対速度差により肉抜き部8の周縁から油保持部7内(即ち油ガイド溝17)に流入する。この場合、油ガイド溝17に流入した潤滑油は、特に第1内側壁17aの案内作用により油ガイド溝17の回転方向での最後方位置の内奥溝部17iに向けて効率よく集められて、内奥溝部17iからワッシャW及び貫通油路15側へ効率よく誘導される。そして、貫通油路15を通過してサイドギヤSの中間壁部Swの内側面に達した潤滑油は、前述の如く遠心力で中間壁部Swの内側面を伝って径方向外方側に流動する。   Thus, when the differential case DC is rotated in the normal rotation direction R by the rotational force transmitted from the engine via the reduction gear mechanism RG in order to move the vehicle forward, the periphery of the differential case DC is scattered in the mission case M. The lubricating oil to flow flows into the oil holding portion 7 (ie, the oil guide groove 17) from the peripheral edge of the light-emission portion 8 due to the relative speed difference between the lubricating oil and the rotating cover portions C and C ′. In this case, the lubricating oil that has flowed into the oil guide groove 17 is efficiently collected toward the innermost groove portion 17i at the rearmost position in the rotation direction of the oil guide groove 17 particularly by the guide action of the first inner wall 17a. It is efficiently guided from the inner back groove portion 17i to the washer W and the through oil passage 15 side. Then, the lubricating oil that has passed through the through oil passage 15 and reached the inner surface of the intermediate wall portion Sw of the side gear S flows to the radially outer side along the inner surface of the intermediate wall portion Sw by centrifugal force as described above. To do.

更に本実施形態のカバー部C,C′は、肉抜き部8の周縁部において、デフケースDCの回転時にケース本体部4の内方側への潤滑油の流入を誘導し得る油誘導斜面fを有している。また、上記した油ガイド溝17の入口は油誘導斜面fに開口している。そして、油誘導斜面fは、油保持部7及び連結腕部9をデフケースDCの周方向に横切る横断面(図4,5の部分断面図を参照)で見て、油保持部7及び連結腕部9の各々の外側面から内側面に向かって油保持部7及び連結腕部9の各々の周方向中央側に傾斜した斜面より構成される。而して、油誘導斜面fの油誘導作用によれば、デフケースDCの回転に伴いカバー部C,C′の外側から内側へ潤滑油がスムーズに流入可能となり、特に油ガイド溝17には、油誘導斜面fに開口する入口から潤滑油を効率よく流入させることができる。   Further, the cover portions C and C ′ of the present embodiment have an oil guide slope f that can guide the inflow of the lubricating oil into the inner side of the case body portion 4 at the time of rotation of the differential case DC at the peripheral portion of the thinned portion 8. Have. The inlet of the oil guide groove 17 is open to the oil guide slope f. The oil guide slope f is seen in a cross section (see partial cross-sectional views of FIGS. 4 and 5) across the oil holding portion 7 and the connecting arm portion 9 in the circumferential direction of the differential case DC. It is comprised from the slope which inclined to the circumferential direction center side of each of the oil holding | maintenance part 7 and the connection arm part 9 toward the inner surface from each outer surface of the part 9. FIG. Thus, according to the oil guiding action of the oil guiding slope f, the lubricating oil can smoothly flow from the outside to the inside of the cover portions C and C ′ with the rotation of the differential case DC. Lubricating oil can be efficiently introduced from the inlet opening to the oil guiding slope f.

次に、上記した実施形態の作用について説明する。本実施形態の差動装置Dは、デフケースDCにエンジンから減速歯車機構RGを介して回転力を受けた場合に、ピニオンPがピニオンシャフトPS回りに自転しないでデフケースDCと共にデフケースDCの回転軸線L回りに公転するときは、左右のサイドギヤSが同速度で回転駆動されて、駆動力が均等に左右の出力軸Jに伝達される。また、自動車の旋回走行等により左右の出力軸Jに回転速度差が生じるときは、ピニオンPが自転しつつ公転することで、ピニオンPから左右のサイドギヤSに対して差動回転を許容しつつ回転駆動力が伝達される。以上は、従来周知の差動装置の作動と同様である。   Next, the operation of the above-described embodiment will be described. In the differential device D of the present embodiment, when the differential case DC receives rotational force from the engine via the reduction gear mechanism RG, the pinion P does not rotate around the pinion shaft PS and rotates together with the differential case DC and the rotational axis L of the differential case DC. When revolving around, the left and right side gears S are rotationally driven at the same speed, and the driving force is evenly transmitted to the left and right output shafts J. Further, when a difference in rotational speed occurs between the left and right output shafts J due to turning of the automobile or the like, the pinion P revolves while rotating, thereby allowing differential rotation from the pinion P to the left and right side gears S. A rotational driving force is transmitted. The above is the same as the operation of a conventionally known differential device.

ところで自動車の前進走行状態でエンジンの動力が減速歯車機構RG及び差動装置Dを介して左右の出力軸Jに伝達される場合に、減速歯車機構RGの各可動要素及びデフケースDCの回転に伴いミッションケースM内の各所で潤滑油が勢いよく飛散するが、飛散した潤滑油の一部は、前述のようにカバー部C,C′の内側に肉抜き部8から流入する。   By the way, when the power of the engine is transmitted to the left and right output shafts J through the reduction gear mechanism RG and the differential device D in the forward traveling state of the automobile, the rotation of each movable element of the reduction gear mechanism RG and the differential case DC is accompanied. Lubricating oil splashes vigorously at various locations within the transmission case M, but part of the scattered lubricating oil flows into the cover portions C and C ′ from the lightening portion 8 as described above.

この場合、カバー部C,C′の側壁部Csの内側面に形成される油ガイド溝17に流入した潤滑油は、前述のように第1内側壁17aの案内作用により内奥溝部17iに向けて効率よく集められて、そこからワッシャW及び貫通油路15側へ効率よく誘導されるため、ワッシャWに対する潤滑効果が高められることは元より、貫通油路15を通過してサイドギヤSの中間壁部Swの内側面に到達する潤滑油量を十分に確保可能である。そして、到達した潤滑油は、前述のように遠心力で中間壁部Swの内側面を伝って径方向外方側に流動し、潤滑油流の一部は、エッジ状の段部Eから空間60に飛散して油溜部61に捕捉貯溜され、ピニオンシャフトPSとピニオンPの間の回転摺動部rsを潤滑するが、潤滑油流の残部は、段部Eの段差面を伝ってサイドギヤSの歯部Sgに到達し、歯部SgとピニオンPとの噛合部を潤滑する。その結果、サイドギヤSの大径化でサイドギヤSの歯部Sgが出力軸Jから遠く離れる場合やピニオンPが高速回転する過酷な運転状況の場合でも、上記した噛合部や回転摺動部rsへ潤滑油を効率よく供給可能となるから、噛合部や回転摺動部rsの焼付きを効果的に防止できる。   In this case, the lubricating oil that has flowed into the oil guide groove 17 formed on the inner side surface of the side wall portion Cs of the cover portions C and C ′ is directed toward the inner back groove portion 17i by the guiding action of the first inner side wall 17a as described above. And is efficiently guided from there to the washer W and the through oil passage 15 side, so that the lubricating effect on the washer W is enhanced, and the intermediate portion of the side gear S passes through the through oil passage 15. A sufficient amount of lubricating oil reaching the inner surface of the wall portion Sw can be secured. Then, the reached lubricating oil flows to the radially outer side along the inner side surface of the intermediate wall portion Sw by centrifugal force as described above, and a part of the lubricating oil flow passes from the edge-shaped step portion E to the space. 60 is scattered and trapped and stored in the oil reservoir 61 to lubricate the rotational sliding portion rs between the pinion shaft PS and the pinion P, but the remaining portion of the lubricating oil flow passes along the step surface of the step E to the side gear. The tooth part Sg of S is reached, and the meshing part of the tooth part Sg and the pinion P is lubricated. As a result, even when the tooth portion Sg of the side gear S is far away from the output shaft J due to an increase in the diameter of the side gear S or in a severe driving situation where the pinion P rotates at a high speed, the meshing portion or the rotational sliding portion rs is moved to. Since the lubricating oil can be supplied efficiently, seizure of the meshing portion and the rotary sliding portion rs can be effectively prevented.

また本実施形態では、ピニオンシャフトPSの外端面PSfに、ミッションケースMの内部空間1に開口して油溜として機能し得る有底中空部Tが凹設されるため、エンジンの停止時には、停止前の差動装置D等の作動に伴いミッションケースM内で飛散した潤滑油やミッションケースMの天井壁Mtに付着して天井壁Mtから滴下する潤滑油を、上向き姿勢にある有底中空部Tに貯溜、保持しておくことができる。従って、有底中空部T内に貯溜された潤滑油を、差動装置Dの作動開始の際に有底中空部Tの周壁の油誘導孔Gから遠心力でピニオンPとピニオンシャフトPSの間の回転摺動部rsに迅速に供給できるから、作動開始の当初よりピニオンPとピニオンシャフトPSの間の回転摺動部rsを遅れなく十分に潤滑することができる。   Further, in the present embodiment, the bottomed hollow portion T that opens to the inner space 1 of the mission case M and functions as an oil reservoir is recessed in the outer end surface PSf of the pinion shaft PS. A bottomed hollow portion in an upward posture of lubricating oil splashed in the mission case M with the operation of the differential unit D or the like, or lubricating oil that adheres to the ceiling wall Mt of the mission case M and drops from the ceiling wall Mt. T can be stored and held in T. Accordingly, the lubricating oil stored in the bottomed hollow portion T is moved between the pinion P and the pinion shaft PS by centrifugal force from the oil guide hole G on the peripheral wall of the bottomed hollow portion T when the differential device D starts to operate. Therefore, the rotary sliding part rs between the pinion P and the pinion shaft PS can be sufficiently lubricated without delay from the beginning of the operation.

更に本実施形態においては、デフケースDCの外周壁に、ミッションケースMの天井壁Mtから滴下した潤滑油をデフケースDC内に取り込み可能な各複数の第1,第2油取込み孔H1,H2が形成され、第1,第2油取込み孔H1,H2の形成位置や向きは、上記した通りである。そのため、車両前進時であってデフケースDCが正転方向Rに比較的低速で回転している状態では、ミッションケースMの天井壁Mtから滴下する潤滑油が第1,第2油取込み孔H1,H2を通してデフケースDC内に効率よく取込み可能となる。しかも各ピニオンPの正転方向R前側で且つ相隣なるピニオンPの中間点mよりピニオンP側にオフセット配置された第1油取込み孔H1は、デフケースDC内に取り込んだ潤滑油を、第1油取込み孔H1近くのピニオンPとサイドギヤSとの噛合部に効率よく供給可能となる。一方、各ピニオンPの正転方向Rの後側で且つ中間点mよりピニオンP側にオフセット配置された第2油取込み孔H2は、デフケースDC内に取り込まれ滴下された潤滑油を、ピニオンPに邪魔されずにピニオンシャフトPSの、デフケースDCの回転中心L寄りの外周部に供給でき、そこからは潤滑油が遠心力でピニオンシャフトPSの外周面を伝って外端側に流動することで、ピニオンシャフトPとピニオンPの間の回転摺動部rsに対しても効率よく潤滑油を供給可能である。それらの結果、ミッションケースMの天井壁Mtから滴下された潤滑油を、ピニオンPのサイドギヤSとの噛合部は元より、ピニオンシャフトPSとの回転摺動部rsにも効率よく供給して全体として潤滑効率を更に高めることができる。   Further, in the present embodiment, a plurality of first and second oil intake holes H1 and H2 are formed on the outer peripheral wall of the differential case DC, and the lubricating oil dropped from the ceiling wall Mt of the transmission case M can be taken into the differential case DC. The formation positions and orientations of the first and second oil intake holes H1 and H2 are as described above. Therefore, when the differential case DC is rotating in the forward rotation direction R at a relatively low speed when the vehicle is moving forward, the lubricating oil dripping from the ceiling wall Mt of the transmission case M is the first and second oil intake holes H1, It can be efficiently taken into the differential case DC through H2. Moreover, the first oil intake hole H1 that is arranged in front of the forward rotation direction R of each pinion P and offset from the intermediate point m of the adjacent pinion P to the pinion P side is the first oil intake hole H1 that receives the lubricating oil taken into the differential case DC in the first It becomes possible to efficiently supply the meshing portion between the pinion P and the side gear S near the oil intake hole H1. On the other hand, the second oil intake hole H2, which is arranged behind the forward rotation direction R of each pinion P and offset from the intermediate point m to the pinion P side, receives the lubricating oil taken into and dropped from the differential case DC. Can be supplied to the outer peripheral portion of the pinion shaft PS near the rotation center L of the differential case DC without being obstructed by the lubricant, from which the lubricating oil flows to the outer end side along the outer peripheral surface of the pinion shaft PS by centrifugal force. The lubricating oil can be efficiently supplied also to the rotational sliding portion rs between the pinion shaft P and the pinion P. As a result, the lubricating oil dropped from the ceiling wall Mt of the transmission case M is efficiently supplied not only to the meshing part with the side gear S of the pinion P but also to the rotational sliding part rs with the pinion shaft PS. As a result, the lubrication efficiency can be further increased.

尚、本実施形態のデフケースDCは、デフケースDCの外周部の一部をミッションケースMの内底部に貯溜された潤滑油の油面下に浸漬させてもよいし或いは浸漬させなくてもよい。そして、特に油面下に浸漬させる場合には、車両前進時であってデフケースDCが正転方向Rに回転している状態で第1,第2油取込み孔H1,H2からデフケースDC内に貯溜した潤滑油を効率よく掬い上げることができるから、デフケースDC内の各部の潤滑を一層効率よく行うことができる。   In the differential case DC of the present embodiment, a part of the outer peripheral portion of the differential case DC may be immersed under the lubricating oil stored in the inner bottom portion of the transmission case M or may not be immersed. In particular, when immersed under the oil level, the differential case DC is stored in the differential case DC from the first and second oil intake holes H1 and H2 while the differential case DC is rotating in the normal rotation direction R when the vehicle is moving forward. Therefore, the lubrication of each part in the differential case DC can be performed more efficiently.

ところで上記した特許文献2,3で例示したような従来の差動装置(特に入力部材内にピニオン(差動ギヤ)と、ピニオン(差動ギヤ)に噛合する一対のサイドギヤ(出力ギヤ)とを備えた従来の差動装置)では、通常、サイドギヤ(出力ギヤ)の歯数Z1とピニオン(差動ギヤ)の歯数Z2として、例えば特許文献3に示される14×10、或いは16×10または13×9が用いられている。この場合、差動ギヤに対する出力ギヤの歯数比率Z1/Z2は、それぞれ1.4 、1.6 、1.44となっている。また従来の差動装置では、歯数Z1,Z2の、その他の組合わせとして、例えば15×10、17×10、18×10、19×10、または20×10となっているものも知られており、この場合の歯数比率Z1/Z2は、それぞれ1.5 、1.7 、1.8 、1.9 、2.0 となっている。   By the way, a conventional differential device as exemplified in Patent Documents 2 and 3 above (in particular, a pinion (differential gear) in the input member and a pair of side gears (output gears) meshed with the pinion (differential gear)). In the conventional differential device), normally, the number of teeth Z1 of the side gear (output gear) and the number of teeth Z2 of the pinion (differential gear) are, for example, 14 × 10 or 16 × 10 shown in Patent Document 3 or 13 × 9 is used. In this case, the gear ratio Z1 / Z2 of the output gear with respect to the differential gear is 1.4, 1.6, and 1.44, respectively. In addition, in the conventional differential device, other combinations of the number of teeth Z1 and Z2, for example, 15 × 10, 17 × 10, 18 × 10, 19 × 10, or 20 × 10 are also known. In this case, the tooth number ratios Z1 / Z2 are 1.5, 1.7, 1.8, 1.9, and 2.0, respectively.

一方、今日では、差動装置周辺でのレイアウト上の制約を伴う伝動装置も増えており、差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)することが市場で要求されている。しかしながら従来の既存の差動装置では、上記歯数比率の組み合わせからも明らかなように出力軸の軸方向で幅広の構造形態となっているため、上記した市場の要求を満たすことが困難な状況にある。   On the other hand, the number of transmission devices with layout constraints around the differential device is increasing today, and the differential device is sufficiently narrow in the axial direction of the output shaft while ensuring the gear strength of the differential device (that is, Flattening) is required in the market. However, the conventional differential device has a wide structure in the axial direction of the output shaft, as is clear from the combination of the above-mentioned number of teeth ratios, so it is difficult to satisfy the above market requirements. It is in.

そこで差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)し得る差動装置Dの構成例を、上記した実施形態とは異なる観点より、以下に具体的に特定する。尚、この構成例に係る差動装置Dの各構成要素の構造は、図1〜図6で説明した上記実施形態の差動装置Dの各構成要素と同様であるので、各構成要素の参照符号は、上記実施形態のそれと同じ符号を使用し、構造説明は省略する。   Therefore, a configuration example of the differential device D capable of sufficiently narrowing (that is, flattening) the differential device in the axial direction of the output shaft while securing the gear strength of the differential device from a viewpoint different from the above-described embodiment. Specific identification will be given below. The structure of each component of the differential device D according to this configuration example is the same as each component of the differential device D according to the above-described embodiment described with reference to FIGS. The reference numerals are the same as those in the above embodiment, and the structural description is omitted.

先ず、差動装置Dを出力軸Jの軸方向に十分に幅狭化(即ち扁平化)するための基本的な考え方を、図7を併せて参照して説明すると、それは、
[1]ピニオンP即ち差動ギヤに対するサイドギヤS即ち出力ギヤの歯数比率Z1/Z2を従来既存の差動装置の歯数比率よりも増大させる。(これにより、ギヤのモジュール(従って歯厚)が減少してギヤ強度が低下する一方で、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するが、全体としては後述する如くギヤ強度は低下する。)
[2]ピニオンPのピッチ円錐距離PCDを従来既存の差動装置のピッチ円錐距離よりも増やす。(これにより、ギヤのモジュールが増加してギヤ強度が増大すると共に、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するため、全体としては後述する如くギヤ強度は大幅に増大する。)
従って、上記[1]によるギヤ強度低下の量と、上記[2]によるギヤ強度増大の量とが等しくなるか、或いは上記[1]によるギヤ強度低下の量よりも、上記[2]によるギヤ強度増大の量の方が上回るように、歯数比率Z1/Z2及びピッチ円錐距離PCDを設定することにより、全体としてギヤ強度を従来既存の差動装置と比べて同等もしくは増大させることができる。
First, a basic idea for sufficiently narrowing (that is, flattening) the differential device D in the axial direction of the output shaft J will be described with reference to FIG.
[1] The tooth number ratio Z1 / Z2 of the side gear S, that is, the output gear with respect to the pinion P, that is, the differential gear is increased from the tooth number ratio of the existing differential device. (This reduces the gear module (and hence the tooth thickness) and decreases the gear strength, while the pitch circle diameter of the side gear S increases and the transmission load at the gear meshing portion decreases and the gear strength increases. As a whole, the gear strength decreases as will be described later.)
[2] The pitch cone distance PCD of the pinion P is increased from the pitch cone distance of the existing differential device. (As a result, the gear module is increased and the gear strength is increased, and the pitch circle diameter of the side gear S is increased to reduce the transmission load at the gear meshing portion and increase the gear strength. Thus, the gear strength is greatly increased.)
Accordingly, the amount of reduction in gear strength due to the above [1] is equal to the amount of increase in gear strength due to the above [2], or the amount of gear strength due to the above [2] is larger than the amount of reduction in gear strength due to the above [1]. By setting the gear ratio Z1 / Z2 and the pitch cone distance PCD so that the amount of strength increase is greater, the gear strength as a whole can be equal or increased as compared with conventional differential devices.

次に上記[1][2]に基づくギヤ強度の変化態様を数式により具体的に検証する。尚、検証は、以下の実施形態で説明する。先ず、サイドギヤSの歯数Z1を14、ピニオンPの歯数Z2を10とした時の差動装置D′を「基準差動装置」とする。また「変化率」とは、基準差動装置D′を基準(即ち100 %)とした場合の各種変数の変化率である。
[1]について
サイドギヤSのモジュールをMO、ピッチ円直径をPD1 、ピッチ角をθ1 、ピッチ円錐距離をPCD、ギヤ噛合部での伝達荷重をF、伝達トルクをTOとした場合に、ベベルギヤの一般的な公式より、
MO=PD1 /Z1
PD1 =2PCD・ sinθ1
θ1 = tan-1(Z1/Z2)
これら式から、ギヤのモジュールは、
MO=2PCD・ sin{ tan-1(Z1/Z2)}/Z1 ・・・(1)
となり、
また基準差動装置D′のモジュールは、2PCD・ sin{ tan-1(7/5)}/14
となる。
Next, the change mode of the gear strength based on the above [1] and [2] will be specifically verified by mathematical expressions. The verification will be described in the following embodiment. First, the differential device D ′ when the number of teeth Z1 of the side gear S is 14 and the number of teeth Z2 of the pinion P is 10 is referred to as a “reference differential device”. The “change rate” is a change rate of various variables when the reference differential device D ′ is used as a reference (ie, 100%).
About [1] When the side gear S module is MO, the pitch circle diameter is PD 1 , the pitch angle is θ 1 , the pitch cone distance is PCD, the transmission load at the gear meshing portion is F, and the transmission torque is TO, the bevel gear From the general formula of
MO = PD 1 / Z1
PD 1 = 2PCD · sinθ 1
θ 1 = tan -1 (Z1 / Z2)
From these equations, the gear module is
MO = 2PCD · sin {tan −1 (Z1 / Z2)} / Z1 (1)
And
The module of the reference differential device D ′ is 2PCD · sin {tan −1 (7/5)} / 14.
It becomes.

従って、この両式の右項を除算することにより、基準差動装置D′に対するモジュール変化率は、次の(2)式のようになる。   Therefore, by dividing the right term of both equations, the module change rate with respect to the reference differential device D ′ is expressed by the following equation (2).

Figure 2016194362
Figure 2016194362

また、ギヤ強度(即ち歯部の曲げ強度)に相当する歯部の断面係数は、歯厚の二乗に比例する関係にあり、一方、その歯厚は、モジュールMOと略リニアな関係にある。従って、モジュール変化率の二乗は、歯部の断面係数変化率、延いてはギヤ強度の変化率に相当する。即ち、そのギヤ強度変化率は、(2)式に基づいて次の(3)式のように表される。(3)式は、ピニオンPの歯数Z2が10の時には図8のL1で示され、これにより歯数比率Z1/Z2が増えるにつれてモジュール減少によりギヤ強度が低下することが判る。   Further, the section modulus of the tooth portion corresponding to the gear strength (that is, the bending strength of the tooth portion) is proportional to the square of the tooth thickness, and the tooth thickness is in a substantially linear relationship with the module MO. Accordingly, the square of the module change rate corresponds to the change rate of the section modulus of the tooth portion, and thus the change rate of the gear strength. That is, the gear strength change rate is expressed by the following equation (3) based on the equation (2). Equation (3) is indicated by L1 in FIG. 8 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength decreases due to the module decrease as the number of teeth ratio Z1 / Z2 increases.

Figure 2016194362
Figure 2016194362

ところで上記したベベルギヤの一般的な公式より、サイドギヤSのトルク伝達距離は、次の(4)式のようになる。   By the way, from the general formula of the bevel gear described above, the torque transmission distance of the side gear S is expressed by the following equation (4).

PD1 /2=PCD・ sin{ tan-1(Z1/Z2)}・・・(4)
そして、トルク伝達距離PD1 /2による伝達荷重Fは、F=2TO/PD1 である。従って、基準差動装置D′のサイドギヤSにおいて、トルクTOを一定とすれば、伝達荷重Fとピッチ円直径PD1 とが反比例の関係となる。また伝達荷重Fの変化率は、ギヤ強度の変化率とも反比例の関係にあることから、ギヤ強度の変化率は、ピッチ円直径PD1 の変化率と等しくなる。
PD 1/2 = PCD · sin {tan -1 (Z1 / Z2)} ··· (4)
Then, the transmitted load F by the torque transmission distance PD 1/2 is F = 2TO / PD 1. Accordingly, if the torque TO is constant in the side gear S of the reference differential device D ′, the transmission load F and the pitch circle diameter PD 1 are in an inversely proportional relationship. The rate of change in transmitted load F, since the both the rate of change of the gear strength is inversely proportional to the rate of change in gear strength is equal to the rate of change of the pitch diameter PD 1.

その結果、ピッチ円直径PD1 の変化率は、(4)の式を用いて、次の(5)式のようになる。 As a result, the change rate of the pitch circle diameter PD 1 is expressed by the following equation (5) using the equation (4).

Figure 2016194362
Figure 2016194362

(5)式は、ピニオンPの歯数Z2が10の時には図8のL2で示され、これにより、歯数比率Z1/Z2が増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。   The expression (5) is indicated by L2 in FIG. 8 when the number of teeth Z2 of the pinion P is 10, and it can be seen that as the number of teeth ratio Z1 / Z2 increases, the gear strength increases as the transmission load decreases.

結局のところ、歯数比率Z1/Z2が増えることに伴うギヤ強度の変化率は、モジュールMOの減少によるギヤ強度の減少変化率(上記した(3)式の右項)と、伝達荷重低減によるギヤ強度の増加変化率(上記した(5)式の右項)との掛け合わせにより、次の(6)式として表される。   After all, the rate of change in gear strength as the number of teeth ratio Z1 / Z2 increases is the rate of change in gear strength due to the decrease in module MO (the right term in equation (3) above) and the reduction in transmission load. It is expressed as the following equation (6) by multiplication with the rate of increase in gear strength (the right term of the above equation (5)).

Figure 2016194362
Figure 2016194362

(6)式は、ピニオンPの歯数Z2が10の時には図8のL3で示され、これにより、歯数比率Z1/Z2が増えるにつれて全体としてギヤ強度が低下することが判る。
[2]について
ピニオンPのピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離よりも増やすと、変更前のPCDをPCD1、変更後のPCDをPCD2とした場合には、PCDの変更前後のモジュール変化率は、上記したベベルギヤの一般的な公式より、歯数を一定とすれば、(PCD2/PCD1)となる。
Equation (6) is indicated by L3 in FIG. 8 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength as a whole decreases as the number of teeth ratio Z1 / Z2 increases.
[2] When the pitch cone distance PCD of the pinion P is increased beyond the pitch cone distance of the reference differential device D ′, when the PCD before the change is PCD1 and the PCD after the change is PCD2, before and after the change of the PCD According to the general formula of the bevel gear described above, the module change rate is (PCD2 / PCD1) if the number of teeth is constant.

一方、サイドギヤSのギヤ強度の変化率は、(3)式を導いた過程からも明らかなように、モジュール変化率の二乗に相当するため、結局のところ、
モジュール増大によるギヤ強度変化率=(PCD2/PCD1)2 ・・・(7)
(7)式は、図9のL4で示され、これにより、ピッチ円錐距離PCDが増えるにつれてモジュール増加によりギヤ強度が増加することが判る。
On the other hand, the change rate of the gear strength of the side gear S corresponds to the square of the module change rate, as is apparent from the process of deriving the equation (3).
Gear strength change rate due to module increase = (PCD2 / PCD1) 2 (7)
The equation (7) is indicated by L4 in FIG. 9, and it can be seen that as the pitch cone distance PCD increases, the gear strength increases as the module increases.

また、ピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離PCD1よりも増やした場合に、伝達荷重Fが低減されるが、これによる、ギヤ強度の変化率は、前述のようにピッチ円直径PD1 の変化率と等しくなる。またサイドギヤSのピッチ円直径PD1 とピッチ円錐距離PCDとは比例関係にある。従って、
伝達荷重低減によるギヤ強度変化率=PCD2/PCD1 ・・・(8)
(8)式は、図9のL5で示され、これにより、ピッチ円錐距離PCDが増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。
Further, when the pitch cone distance PCD is increased beyond the pitch cone distance PCD1 of the reference differential device D ′, the transmission load F is reduced. As a result, the change rate of the gear strength is as described above. equal to the rate of change of the diameter PD 1. Also there is a proportional relationship with the pitch diameter PD 1 and a pitch cone distance PCD side gear S. Therefore,
Gear strength change rate due to reduced transmission load = PCD2 / PCD1 (8)
The equation (8) is indicated by L5 in FIG. 9, and it can be seen that as the pitch cone distance PCD increases, the gear strength increases due to the transmission load reduction.

そして、ピッチ円錐距離PCDが増えることに伴うギヤ強度の変化率は、モジュールMOの増大によるギヤ強度の増加変化率(上記した(7)式の右項)と、ピッチ円直径PDの増加に伴う伝達荷重低減によるギヤ強度の増加変化率(上記した(8)式の右項)との掛け合わせにより、次の(9)式として表される。   The change rate of the gear strength accompanying the increase in the pitch cone distance PCD is the increase rate of the gear strength due to the increase in the module MO (the right term in the above equation (7)) and the increase in the pitch circle diameter PD. The following equation (9) is obtained by multiplying with the rate of increase change in gear strength due to the reduction of the transmission load (the right term of the above equation (8)).

ピッチ円錐距離増大によるギヤ強度変化率=(PCD2/PCD1)3 ・・(9)
(9)式は、図9のL6で示され、これにより、ピッチ円錐距離PCDが増えるにつれてギヤ強度が大幅に高められることが判る。
Gear strength change rate due to increase in pitch cone distance = (PCD2 / PCD1) 3 (9)
The equation (9) is indicated by L6 in FIG. 9, and it can be seen that the gear strength is significantly increased as the pitch cone distance PCD increases.

そして、[1]の手法(歯数比率増大)によるギヤ強度の低下分を、[2]の手法(ピッチ円錐距離増大)によるギヤ強度の増大分で十分補うようにして全体として差動装置のギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とするように、歯数比率Z1/Z2及びピッチ円錐距離PCDの組み合わせを決定する。   Then, the decrease in gear strength due to the method [1] (increase in the number of teeth ratio) is sufficiently compensated by the increase in gear strength due to the method [2] (increase in pitch cone distance). The combination of the gear ratio Z1 / Z2 and the pitch cone distance PCD is determined so that the gear strength is equal to or higher than the gear strength of the existing differential gear.

例えば、基準差動装置D′のサイドギヤSのギヤ強度を100%維持する場合には、[1]で求めた歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、[2]で求めたピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが100%となるように設定すればよい。これより、基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係は、次の(10)式で求められる。(10)式は、ピニオンPの歯数Z2が10の時には図10のL7で示される。   For example, when the gear strength of the side gear S of the reference differential device D ′ is maintained at 100%, the change rate of the gear strength with the increase in the tooth number ratio obtained in [1] (the right term of the above equation (6)). ) And the gear strength change rate (right term of (9) described above) obtained by increasing the pitch cone distance obtained in [2] may be set to 100%. Accordingly, the relationship between the gear ratio Z1 / Z2 and the rate of change of the pitch cone distance PCD when the gear strength of the reference differential device D ′ is maintained at 100% can be obtained by the following equation (10). The expression (10) is indicated by L7 in FIG. 10 when the number of teeth Z2 of the pinion P is 10.

Figure 2016194362
Figure 2016194362

このように(10)式は、歯数比率Z1/Z2=14/10とした基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係(図10参照)を示すものであるが、図10の縦軸のピッチ円錐距離PCDの変化率は、ピニオンPを支持するピニオンシャフトPS(即ちピニオン支持部)のシャフト径をd2とした場合にはd2/PCDの比率に変換可能である。   In this way, the expression (10) indicates that the change in the tooth number ratio Z1 / Z2 and the pitch cone distance PCD in the case where the gear strength of the reference differential device D ′ with the tooth number ratio Z1 / Z2 = 14/10 is maintained at 100%. The change rate of the pitch cone distance PCD on the vertical axis in FIG. 10 indicates the shaft diameter of the pinion shaft PS that supports the pinion P (that is, the pinion support portion) d2. In this case, the ratio can be converted to a ratio of d2 / PCD.

Figure 2016194362
Figure 2016194362

すなわち、従来既存の差動装置において、ピッチ円錐距離PCDの増大変化は、上記表1のようにd2の増大変化と相関があり、且つd2を一定としたときはd2/PCDの比率の低下として表現可能である。しかも、従来既存の差動装置においては、上記表1のように、基準差動装置D′の時にはd2/PCDが40〜45%の範囲に収まっている関係と、PCDを増やすとギヤ強度が増大することとから、基準差動装置D′の時には少なくともd2/PCDが45%以下となるように、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを決めれば、ギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とすることができる。つまり、基準差動装置D′の場合には、
d2/PCD≦0.45を満たせばよい。この場合、基準差動装置D′のピッチ円錐距離PCD1に対して、増減変更後のPCDをPCD2とすれば、
d2/PCD2≦0.45/(PCD2/PCD1)・・・(11)
を満たせばよいということになる。そして、(11)式を、上記した(10)式に適用すれば、d2/PCDと、歯数比率Z1/Z2との関係が、次の(12)式のように変換可能である。
That is, in an existing differential device, an increase in pitch cone distance PCD is correlated with an increase in d2 as shown in Table 1 above, and when d2 is constant, the ratio of d2 / PCD decreases. It can be expressed. Moreover, in the conventional differential device, as shown in Table 1, when the reference differential device D ′ is used, d2 / PCD is within the range of 40 to 45%, and when the PCD is increased, the gear strength is increased. Therefore, when the shaft diameter d2 and the pitch cone distance PCD of the pinion shaft PS are determined so that at least d2 / PCD is 45% or less at the time of the reference differential device D ′, the gear strength is different from the existing difference. It can be equal to or greater than the gear strength of the moving device. That is, in the case of the reference differential device D ′,
d2 / PCD ≦ 0.45 may be satisfied. In this case, if the PCD after the increase / decrease change is PCD2 with respect to the pitch cone distance PCD1 of the reference differential device D ′,
d2 / PCD2 ≦ 0.45 / (PCD2 / PCD1) (11)
It will be sufficient to satisfy. Then, by applying the expression (11) to the above expression (10), the relationship between d2 / PCD and the tooth number ratio Z1 / Z2 can be converted as the following expression (12).

Figure 2016194362
Figure 2016194362

(12)式の等号が成立する時において、ピニオンPの歯数Z2が10の時には図11のL8のように表すことができる。(12)式の等号が成立する時が、基準差動装置D′のギヤ強度を100%維持する場合のd2/PCDと歯数比率Z1/Z2との関係である。   When the equality of the equation (12) is established, when the number of teeth Z2 of the pinion P is 10, it can be expressed as L8 in FIG. The time when the equality in equation (12) is established is the relationship between d2 / PCD and the tooth number ratio Z1 / Z2 when the gear strength of the reference differential device D ′ is maintained at 100%.

ところで従来既存の差動装置では、上述したように、通常、基準差動装置D′のような歯数比率Z1/Z2を1.4とするものだけでなく、歯数比率Z1/Z2を1.6とするものや、歯数比率Z1/Z2を1.44とするものも採用されている。この事実を踏まえて、基準差動装置D′(Z1/Z2=1.4)で必要十分な、即ち100%のギヤ強度が得られると想定した場合には、従来既存の差動装置において歯数比率Z1/Z2が16/10の差動装置では、図8から明らかなようにギヤ強度が基準差動装置D′に比べ87%に低下していることが判る。しかしながら、この程度に低下したギヤ強度は、従来既存の差動装置では実用強度として許容され、実用されている。そこで、軸方向に扁平な差動装置においても、基準差動装置D′に対し少なくとも87%のギヤ強度があれば、ギヤ強度が十分に確保、許容されると考えられる。   By the way, in the conventional differential device, as described above, not only the tooth number ratio Z1 / Z2 is set to 1.4 as in the reference differential device D ′, but also the tooth number ratio Z1 / Z2 is set to 1. .6 and those having a tooth number ratio Z1 / Z2 of 1.44 are also employed. Based on this fact, if it is assumed that the reference differential device D ′ (Z1 / Z2 = 1.4) can provide a sufficient and sufficient gear strength, that is, a gear strength of 100%, a conventional differential device has As can be seen from FIG. 8, in the differential device having the number ratio Z1 / Z2 of 16/10, the gear strength is reduced to 87% as compared with the reference differential device D ′. However, the gear strength reduced to such a degree is allowed as a practical strength and is practically used in existing differential devices. Therefore, even in a differential device that is flat in the axial direction, if the gear strength is at least 87% with respect to the reference differential device D ′, it is considered that the gear strength is sufficiently secured and allowed.

このような観点から、基準差動装置D′のギヤ強度を87%維持する場合における歯数比率Z1/Z2と、ピッチ円錐距離PCDの変化率との関係を先ず求めると、その関係は、(10)式を導く過程に倣って演算(即ち、歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、ピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが87%となるように演算)することにより、次の(10′)式のように表すことができる。   From this point of view, when the relationship between the gear ratio Z1 / Z2 and the rate of change in the pitch cone distance PCD when the gear strength of the reference differential device D ′ is maintained at 87%, the relationship is: Following the process of deriving equation (10), calculation (ie, the rate of change in gear strength accompanying the increase in the number of teeth ratio (the right term in equation (6) above) and the rate of change in gear strength due to the increase in pitch cone distance (as described above ( 9) is multiplied so as to be 87%, and can be expressed as the following equation (10 ′).

Figure 2016194362
Figure 2016194362

そして、前述の(11)式を、上記した(10′)式に適用すれば、基準差動装置D′のギヤ強度を87%以上維持する場合におけるd2/PCDと、歯数比率Z1/Z2との関係が、次の(13)式のように変換可能である。但し、計算の過程において、変数を用いて表される項を除き、有効数字を3桁で計算し、それ以外の桁は切り捨てで対応する都合上、実際には計算誤差によりほぼ等しいとなる場合でも、式の表現では等号で表すこととする。   If the above-described equation (11) is applied to the above-described equation (10 ′), d2 / PCD and the gear ratio Z1 / Z2 when the gear strength of the reference differential device D ′ is maintained at 87% or more. Can be converted as in the following equation (13). However, in the calculation process, except for terms expressed using variables, the significant figures are calculated with 3 digits, and the other digits are rounded down, so that they are actually almost equal due to calculation errors. However, in the expression of the expression, it shall be expressed with an equal sign.

Figure 2016194362
Figure 2016194362

(13)式の等号が成立する場合において、ピニオンPの歯数Z2が10の時には図11のように(より具体的には、図11のL9ラインのように)表すことができ、この場合に(13)式に対応する領域は、図11でL9ライン上及びL9ラインよりも下側の領域となる。そして、(13)式を満たし、且つ図11でL10ラインよりも右側となる歯数比率Z1/Z2が2.0を超えることを満たす特定領域(図11のハッチング領域)が、特にピニオンPの歯数Z2が10で歯数比率Z1/Z2が2.0を超える軸方向に扁平な差動装置において、基準差動装置D′に対し少なくとも87%のギヤ強度を確保可能なZ1/Z2及びd2/PCDの設定領域である。尚、参考までに、歯数比率Z1/Z2を40/10と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図11において例示すれば、菱形点のようになり、また歯数比率Z1/Z2を58/10と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図11において例示すれば、三角点のようになり、これらは上記の特定領域に収まっている。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。   In the case where the equal sign of equation (13) holds, when the number of teeth Z2 of the pinion P is 10, it can be expressed as shown in FIG. 11 (more specifically, as shown by the L9 line in FIG. 11). In this case, the region corresponding to the expression (13) is a region above the L9 line and below the L9 line in FIG. A specific region (hatching region in FIG. 11) that satisfies the expression (13) and satisfies that the tooth number ratio Z1 / Z2 on the right side of the L10 line in FIG. In a differential gear flat in the axial direction in which the number of teeth Z2 is 10 and the gear ratio Z1 / Z2 exceeds 2.0, Z1 / Z2 that can secure a gear strength of at least 87% with respect to the reference differential gear D ′; This is a setting area for d2 / PCD. For reference, if the example when the tooth number ratio Z1 / Z2 is set to 40/10 and d2 / PCD is set to 20.00% in FIG. 11 is illustrated in FIG. An example when the tooth number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 16.67% is shown in FIG. It is settled. As a result of performing a strength analysis by simulation with respect to these embodiments, a gear strength equal to or higher than that of a conventional gear strength (more specifically, a gear strength of 87% or higher with respect to the reference differential device D ′). ) Was obtained.

而して、上記特定領域にある扁平な差動装置は、従来既存の非扁平な差動装置と同程度のギヤ強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸の軸方向で十分に幅狭化な差動装置として構成されるものであり、そのため、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる等の効果を達成可能である。   Therefore, the flat differential device in the specific area as a whole while securing the same gear strength (for example, static torsional load strength) and maximum torque transmission amount as conventional non-flat differential devices. It is configured as a differential device with a sufficiently narrow width in the axial direction of the output shaft. Therefore, the differential device can be used with a high degree of freedom even for transmission systems with many layout constraints around the differential device. As a result, it can be easily assembled without difficulty, and it is possible to achieve advantages such as being advantageous in reducing the size of the transmission system.

また、上記特定領域にある扁平な差動装置の構造が、例えば、上述した実施形態の構造(より具体的には、図1〜図6で示される構造)となる場合には、上記特定領域にある扁平な差動装置は、上述した実施形態で示した構造に伴う効果も併せて達成可能である。   Further, when the structure of the flat differential device in the specific area is, for example, the structure of the above-described embodiment (more specifically, the structure shown in FIGS. 1 to 6), the specific area The flat differential device in (1) can also achieve the effects associated with the structure shown in the above-described embodiment.

尚、前述の説明(特に図8,10,11に関する説明)は、ピニオンPの歯数Z2を10とした時の差動装置について行っているが、本発明は、これに限定されるものではない。例えば、ピニオンPの歯数Z2を6,12,20とした場合にも、上記効果を達成可能な扁平な差動装置は、図12,13,14のハッチングで示されるように、(13)式で表すことができる。即ち、前述のようにして導出された(13)式は、ピニオンPの歯数Z2の変化に関わらず適用できるものであって、例えばピニオンPの歯数Z2を6,12,20とした場合でも、ピニオンPの歯数Z2を10とした場合と同様、(13)式を満たすようにサイドギヤSの歯数Z1、ピニオンPの歯数Z2、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを設定すれば上記効果が得られる。   The above description (especially with respect to FIGS. 8, 10, and 11) is performed with respect to the differential device when the number of teeth Z2 of the pinion P is 10, but the present invention is not limited to this. Absent. For example, when the number of teeth Z2 of the pinion P is set to 6, 12, and 20, the flat differential device that can achieve the above effect is (13) as shown by hatching in FIGS. It can be expressed by a formula. That is, the expression (13) derived as described above can be applied regardless of the change in the number of teeth Z2 of the pinion P. For example, when the number of teeth Z2 of the pinion P is 6, 12, 20 However, as in the case where the number of teeth Z2 of the pinion P is 10, the number of teeth Z1 of the side gear S, the number of teeth Z2 of the pinion P, the shaft diameter d2 of the pinion shaft PS, and the pitch cone distance PCD so as to satisfy the expression (13). The above effect can be obtained by setting.

また、参考までに、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図13に菱形点で、歯数比率Z1/Z2を70/12と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図13に三角点で例示する。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。また、これらの実施例は、図13に示されるように上記特定領域に収まっている。   For reference, in the case where the number of teeth Z2 of the pinion P is 12, an example in which the tooth number ratio Z1 / Z2 is set to 48/12 and d2 / PCD is set to 20.00% is shown in FIG. FIG. 13 illustrates an example when the ratio of the teeth is set to 70/12 and d2 / PCD is set to 16.67%. As a result of performing a strength analysis by simulation with respect to these embodiments, a gear strength equal to or higher than that of a conventional gear strength (more specifically, a gear strength of 87% or higher with respect to the reference differential device D ′). ) Was obtained. Also, these examples are within the specific area as shown in FIG.

比較例として、上記特定範囲に収まらない実施例、例えばピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を58/10と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図11に星形点で、ピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を40/10と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図11に丸点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を70/12と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図13の星形点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図13の丸点で示す。これらの実施例についてシミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られなかったことが確認できた。つまり、上記特定範囲に収まらない実施例では上記効果が得られないことが確認できた。   As a comparative example, in an example that does not fall within the above specific range, for example, when the number of teeth Z2 of the pinion P is 10, the tooth number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 27.50%. In the case where the number of teeth Z2 of the pinion P is set to 10 in FIG. 11, the tooth number ratio Z1 / Z2 is set to 40/10 and d2 / PCD is set to 34.29%. In the case where the number of teeth Z2 of the pinion P is set to 12 in FIG. 11, the tooth number ratio Z1 / Z2 is set to 70/12 and the d2 / PCD is set to 27.50%. In the case of the star point of FIG. 13 where the number of teeth Z2 of the pinion P is 12, the tooth number ratio Z1 / Z2 is set to 48/12 and d2 / PCD is set to 34.29%. Example of time is indicated by a circle in FIG.As a result of performing a strength analysis by simulation for these examples, a gear strength equal to or higher than the conventional one (more specifically, a gear strength of 87% or higher than the reference differential device D ′) is obtained. It was confirmed that was not obtained. In other words, it was confirmed that the above-mentioned effects could not be obtained in the examples not falling within the specific range.

以上、本発明の実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, A various design change is possible in the range which does not deviate from the summary.

例えば、上述した実施形態では、デフケースDCの一側に、遊星歯車機構より成る減速歯車機構RGを隣接配置し且つその出力側要素(キャリア53)をデフケースDC(カバー部C′)に結合して、減速歯車機構RGを介して動力源からの動力をデフケースDCに伝達するようにしたものを示したが、遊星歯車機構以外の減速歯車機構の出力側要素をデフケースDCに結合するようにしてもよい。   For example, in the above-described embodiment, the reduction gear mechanism RG composed of the planetary gear mechanism is disposed adjacent to one side of the differential case DC and the output side element (carrier 53) is coupled to the differential case DC (cover portion C ′). In this embodiment, the power from the power source is transmitted to the differential case DC via the reduction gear mechanism RG. However, the output side element of the reduction gear mechanism other than the planetary gear mechanism may be coupled to the differential case DC. Good.

また、そのような減速歯車機構に代えて、動力源からの動力を受ける入力歯部(ファイナルドリブンギヤ)をデフケースDCの外周部に一体に形成又は後付けで固定して、入力歯部を介して動力源からの動力をデフケースDCに伝達するようにしてもよい。この場合、デフケースDCの外周面の特定部位、例えば中空円筒部Tの開口部や第1,第2油取込み孔H1,H2の開口部は、入力歯部で覆われずにミッションケースMの内部空間1に常時露出させるようにする。   Further, instead of such a reduction gear mechanism, an input tooth portion (final driven gear) that receives power from a power source is formed integrally with the outer peripheral portion of the differential case DC or fixed later, and power is supplied via the input tooth portion. The power from the source may be transmitted to the differential case DC. In this case, a specific part of the outer peripheral surface of the differential case DC, for example, the opening of the hollow cylindrical portion T and the openings of the first and second oil intake holes H1 and H2 are not covered with the input tooth portion, and the inside of the mission case M The space 1 is always exposed.

また上述した実施形態では、サイドギヤSの中間壁部Swの内側面まで潤滑油が導かれる油導入経路として、カバー部C,C′の側壁部Csに形成した肉抜き部8から油ガイド溝17を経て貫通油路15に至る油経路を説明したが、このような油経路に代えて、又は加えて、他の油導入経路も実施可能である。他の油導入経路としては、例えば、デフケースDCのカバー部C,C′のボス部CbをサイドギヤSの軸部Sjよりも軸方向外方に延長させて、ボス部Cbの延長部の内周面に出力軸Jを回転自在に嵌合させ、その嵌合面の少なくとも一方(例えばボス部Cbの延長部の内周面)に螺旋溝を凹設すれば、ボス部Cbの延長部の周辺でミッションケースMの内部空間1に存する潤滑油を、ボス部Cbと出力軸Jとの相対回転時に螺旋溝を通してサイドギヤSの軸部Sjと出力軸Jとの間のスプライン嵌合部6、延いては中間壁部Swの内側面側に効率よく供給可能である。この場合、スプライン嵌合部6のスプライン歯の一部を欠歯とすることで軸方向の潤滑油路を形成するようにすれば、サイドギヤSの中間壁部Swの内側面まで潤滑油を更に効率よく供給可能である。尚また、螺旋溝に代えて又は加えて、サイドギヤSの軸部Sjと出力軸Jとの間のスプライン嵌合部6にオイルポンプから潤滑油を圧送、供給するようにし、圧送・供給された潤滑油をスプライン嵌合部6を経てサイドギヤSの中間壁部Swの内側面に供給するようにしてもよい。   In the above-described embodiment, the oil guide groove 17 is formed from the lightening portion 8 formed in the side wall portion Cs of the cover portions C and C ′ as an oil introduction path through which the lubricating oil is guided to the inner surface of the intermediate wall portion Sw of the side gear S. However, instead of or in addition to such an oil path, other oil introduction paths can be implemented. As another oil introduction path, for example, the boss part Cb of the cover part C, C ′ of the differential case DC is extended outward in the axial direction from the shaft part Sj of the side gear S, and the inner periphery of the extension part of the boss part Cb is used. If the output shaft J is rotatably fitted to the surface and a spiral groove is formed in at least one of the fitting surfaces (for example, the inner peripheral surface of the extension of the boss Cb), the periphery of the extension of the boss Cb The lubricating oil existing in the internal space 1 of the transmission case M is passed through the spiral groove when the boss portion Cb and the output shaft J are rotated relative to each other, and the spline fitting portion 6 between the shaft portion Sj of the side gear S and the output shaft J, In other words, it can be efficiently supplied to the inner side surface of the intermediate wall portion Sw. In this case, if a part of the spline teeth of the spline fitting portion 6 is omitted to form an axial lubricating oil path, the lubricating oil is further applied to the inner surface of the intermediate wall portion Sw of the side gear S. It can be supplied efficiently. In addition, in place of or in addition to the spiral groove, the lubricating oil is pumped and supplied from the oil pump to the spline fitting portion 6 between the shaft portion Sj of the side gear S and the output shaft J. You may make it supply lubricating oil to the inner surface of the intermediate wall part Sw of the side gear S through the spline fitting part 6. FIG.

また、上述した実施形態では、一対のサイドギヤSの背面を一対のカバー部C,C′でそれぞれ覆うものを示したが、本発明では、一方のサイドギヤSの背面にのみカバー部を設けるようにしてもよい。この場合、例えば、カバー部が設けられない側に、動力伝達経路上流側に位置する駆動部材(例えば減速歯車機構RGのキャリア53)を配設して、駆動部材とデフケースDCとを結合させるようにしてもよい。   Further, in the above-described embodiment, the back surface of the pair of side gears S is shown as being covered with the pair of cover portions C and C ′. However, in the present invention, the cover portion is provided only on the back surface of the one side gear S. May be. In this case, for example, a drive member (for example, the carrier 53 of the reduction gear mechanism RG) located on the upstream side of the power transmission path is disposed on the side where the cover portion is not provided so that the drive member and the differential case DC are coupled. It may be.

また、上述した実施形態において、差動装置Dは、左右車軸の回転速度差を許容するものであったが、前輪と後輪の回転速度差を吸収するセンターデフにも本発明の差動装置を実施可能である。   In the above-described embodiment, the differential device D allows a difference in rotational speed between the left and right axles. However, the differential device according to the present invention is also applied to a center differential that absorbs the rotational speed difference between the front wheels and the rear wheels. Can be implemented.

A・・・・・第1,第2仮想線に挟まれた領域
D・・・・・差動装置
DC・・・・デフケース
d2・・・・ピニオンシャフトの直径、支持軸部の直径(ピニオン支持部の直径,差動ギヤ支持部の直径)
H1,H2・・第1,第2油取込み孔(油取込み孔)
Hi・・・・油取込み孔の内側開口端
Ho・・・・油取込み孔の外側開口端
J・・・・・出力軸
L・・・・・デフケースの回転軸線(デフケースの回転中心)
L1,L2・・第1,第2仮想線
M・・・・・ミッションケース
Mt・・・・ミッションケースの天井壁
m・・・・・デフケースの周方向で隣り合う2個のピニオンの中間点
P・・・・・ピニオン(差動ギヤ)
PCD・・・ピッチ円錐距離
PS・・・・ピニオンシャフト(ピニオン支持部,差動ギヤ支持部)
PS′・・・支持軸部(ピニオン支持部,差動ギヤ支持部)
R・・・・・車両前進時のデフケースの回転方向
S・・・・・サイドギヤ(出力ギヤ)
Sg・・・・歯部
Sj・・・・軸部
Sw・・・・中間壁部
4・・・・・ケース本体部(デフケースの外周壁)
A ... A region between first and second imaginary lines D ... Differential device DC ... Differential case d2 ... Pinion shaft diameter, support shaft diameter (pinion Support part diameter, differential gear support part diameter)
H1, H2, .. First and second oil intake holes (oil intake holes)
Hi: Inner opening end of oil intake hole Ho: Outer opening end of oil intake hole J: Output shaft L: Rotation axis of differential case (rotation center of differential case)
L1, L2, ··· First and second imaginary lines M ··· Mission case Mt ··· Ceiling wall m of mission case · · · Midpoint between two pinions adjacent in the circumferential direction of the differential case P: Pinion (differential gear)
PCD ・ ・ ・ Pitch cone distance PS ・ ・ ・ ・ Pinion shaft (Pinion support, differential gear support)
PS '... support shaft (pinion support, differential gear support)
R: Differential case rotation direction when the vehicle moves forward S: Side gear (output gear)
Sg ... tooth part Sj ... shaft part Sw ... intermediate wall part 4 ... case body (outer peripheral wall of differential case)

Claims (6)

ミッションケース(M)内に収容したデフケース(DC)に車載の動力源から伝達された回転力を、一対の出力軸(J)に分配して伝達する車両用差動装置であって、
前記デフケース(DC)内に配置されたピニオン(P)と、前記デフケース(DC)の回転軸線(L)を通るように配置されると共に前記デフケース(DC)に支持され且つ前記ピニオン(P)を回転自在に貫通支持するピニオンシャフト(PS)と、前記デフケース(DC)内で前記ピニオン(P)と噛合し且つ前記一対の出力軸(J)にそれぞれ接続される一対のサイドギヤ(S)とを備え、
前記デフケース(DC)は、前記デフケース(DC)の外周壁(4)の内外を貫通して前記ミッションケース(M)内の潤滑油を前記デフケース(DC)内に取り込み可能な複数の油取込み孔(H1,H2)を、それぞれ前記デフケース(DC)の周方向で隣り合う2個の前記ピニオン(P)の中間点(m)より前記ピニオン(P)側にオフセットした位置に有し、
各々の前記油取込み孔(H1,H2)は、前記回転軸線(L)と直交する投影面で見て、該油取込み孔(H1,H2)の軸線が該油取込み孔(H1,H2)の内側開口端(Hi)から外側開口端(Ho)に向かって車両前進時の前記デフケース(DC)の回転方向(R)前側に傾斜するように形成され、
前記ピニオン(P)は、前記投影面で見て、各々の前記油取込み孔(H1,H2)の前記内側開口端(Hi)の周方向一端と前記回転軸線(L)とを結ぶ第1仮想線(L1)と、各々の前記油取込み孔(H1,H2)の前記内側開口端(Hi)の周方向他端と前記回転軸線(L)とを結ぶ第2仮想線(L2)とに挟まれた領域(A)の外に配置されることを特徴とする、車両用差動装置。
A vehicle differential device that distributes and transmits rotational force transmitted from a vehicle-mounted power source to a differential case (DC) housed in a mission case (M), to a pair of output shafts (J),
A pinion (P) disposed in the differential case (DC) and a rotation axis (L) of the differential case (DC) are disposed, supported by the differential case (DC) and the pinion (P). A pinion shaft (PS) rotatably penetrating and supported, and a pair of side gears (S) that mesh with the pinion (P) in the differential case (DC) and are respectively connected to the pair of output shafts (J). Prepared,
The differential case (DC) has a plurality of oil intake holes through which the lubricating oil in the transmission case (M) can be taken into the differential case (DC) through the inside and outside of the outer peripheral wall (4) of the differential case (DC). (H1, H2) at positions offset from the intermediate point (m) of two pinions (P) adjacent in the circumferential direction of the differential case (DC) to the pinion (P) side,
Each of the oil intake holes (H1, H2) is viewed from a projection plane orthogonal to the rotation axis (L), and the axis of the oil intake holes (H1, H2) is the axis of the oil intake holes (H1, H2). It is formed so as to incline forward in the rotational direction (R) of the differential case (DC) when the vehicle advances from the inner opening end (Hi) toward the outer opening end (Ho).
The pinion (P) is a first imaginary line that connects one end in the circumferential direction of the inner opening end (Hi) of each of the oil intake holes (H1, H2) and the rotation axis (L) when viewed from the projection plane. Sandwiched between the line (L1) and a second imaginary line (L2) connecting the other end in the circumferential direction of the inner opening end (Hi) of each of the oil intake holes (H1, H2) and the rotation axis (L). The vehicle differential device is disposed outside the region (A).
前記サイドギヤ(S)は、前記一対の出力軸(J)にそれぞれ接続される軸部(Sj)と、前記軸部(Sj)から径方向外方に離間した前記ギヤ部(Sg)と、該軸部(Sj)の内端部から径方向外方に延びる扁平な中間壁部(Sw)とを備えたことを特徴とする、請求項1に記載の車両用差動装置。   The side gear (S) includes a shaft portion (Sj) connected to the pair of output shafts (J), the gear portion (Sg) spaced radially outward from the shaft portion (Sj), The vehicle differential device according to claim 1, further comprising a flat intermediate wall portion (Sw) extending radially outward from an inner end portion of the shaft portion (Sj). ミッションケース(M)内に収容したデフケース(DC)に車載の動力源から伝達された回転力を、一対の出力軸(J)に分配して伝達する車両用差動装置であって、
前記デフケース(DC)内に配置された差動ギヤ(P)と、前記デフケース(DC)の回転軸線(L)を通るように配置されると共に前記デフケース(DC)に支持され且つ前記差動ギヤ(P)を回転自在に支持する差動ギヤ支持部(PS)と、前記デフケース(DC)内で前記差動ギヤ(P)と噛合し且つ前記一対の出力軸(J)にそれぞれ接続される一対の出力ギヤ(S)とを備え、
前記デフケース(DC)は、前記デフケース(DC)の外周壁(4)の内外を貫通して前記ミッションケース(M)内の潤滑油を前記デフケース(DC)内に取り込み可能な複数の油取込み孔(H1,H2)を、それぞれ前記デフケース(DC)の周方向で隣り合う2個の前記差動ギヤ(P)の中間点(m)より前記差動ギヤ(P)側にオフセットした位置に有し、
各々の前記油取込み孔(H1,H2)は、前記回転軸線(L)と直交する投影面で見て、該油取込み孔(H1,H2)の軸線が該油取込み孔(H1,H2)の内側開口端(Hi)から外側開口端(Ho)に向かって車両前進時の前記デフケース(DC)の回転方向(R)前側に傾斜するように形成され、
前記差動ギヤ(P)は、前記投影面で見て、各々の前記油取込み孔(H1,H2)の前記内側開口端(Hi)の周方向一端と前記回転軸線(L)とを結ぶ第1仮想線(L1)と、各々の前記油取込み孔(H1,H2)の前記内側開口端(Hi)の周方向他端と前記回転軸線(L)とを結ぶ第2仮想線(L2)とに挟まれた領域(A)の外に配置され、
前記出力ギヤ(S)の歯数をZ1とし、前記差動ギヤ(P)の歯数をZ2とし、前記差動ギヤ支持部(PS,PS′)の直径をd2とし、ピッチ円錐距離をPCDとしたときに、
Figure 2016194362
を満たし、
且つZ1/Z2>2を満たすことを特徴とする車両用差動装置。
A vehicle differential device that distributes and transmits rotational force transmitted from a vehicle-mounted power source to a differential case (DC) housed in a mission case (M), to a pair of output shafts (J),
A differential gear (P) disposed in the differential case (DC) and a differential gear (P) disposed so as to pass through a rotation axis (L) of the differential case (DC) and supported by the differential case (DC) A differential gear support (PS) that rotatably supports (P), and meshes with the differential gear (P) in the differential case (DC) and is connected to the pair of output shafts (J). A pair of output gears (S),
The differential case (DC) has a plurality of oil intake holes through which the lubricating oil in the transmission case (M) can be taken into the differential case (DC) through the inside and outside of the outer peripheral wall (4) of the differential case (DC). (H1, H2) at positions offset from the intermediate point (m) of the two differential gears (P) adjacent in the circumferential direction of the differential case (DC) toward the differential gear (P). And
Each of the oil intake holes (H1, H2) is viewed from a projection plane orthogonal to the rotation axis (L), and the axis of the oil intake holes (H1, H2) is the axis of the oil intake holes (H1, H2). It is formed so as to incline forward in the rotational direction (R) of the differential case (DC) when the vehicle advances from the inner opening end (Hi) toward the outer opening end (Ho).
The differential gear (P) is connected to the circumferential end of the inner opening end (Hi) of each of the oil intake holes (H1, H2) and the rotation axis (L) when viewed from the projection plane. A first imaginary line (L1) and a second imaginary line (L2) connecting the other circumferential end of the inner opening end (Hi) of each of the oil intake holes (H1, H2) and the rotation axis (L). Arranged outside the area (A) sandwiched between
The number of teeth of the output gear (S) is Z1, the number of teeth of the differential gear (P) is Z2, the diameter of the differential gear support (PS, PS ') is d2, and the pitch cone distance is PCD. And when
Figure 2016194362
The filling,
And a vehicle differential device satisfying Z1 / Z2> 2.
Z1/Z2≧4を満たすことを特徴とする、請求項3に記載の車両用差動装置。   The vehicle differential device according to claim 3, wherein Z1 / Z2 ≧ 4 is satisfied. Z1/Z2≧5.8を満たすことを特徴とする、請求項3に記載の車両用差動装置。   The vehicle differential device according to claim 3, wherein Z1 / Z2 ≧ 5.8 is satisfied. 前記油取込み孔(H1,H2)は、該油取込み孔(H1,H2)の軸線と直交する横断面の形状が円形であることを特徴とする、請求項1〜5の何れか1項に記載の車両用差動装置。   The oil intake hole (H1, H2) has a circular cross-sectional shape orthogonal to the axis of the oil intake hole (H1, H2), according to any one of claims 1 to 5. The differential for vehicles as described.
JP2015231149A 2015-03-31 2015-11-26 Differential gear for vehicle Pending JP2016194362A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/085,296 US9677664B2 (en) 2015-03-31 2016-03-30 Vehicle differential device
CN201610192226.5A CN106015510A (en) 2015-03-31 2016-03-30 Vehicle differential device
DE102016205231.4A DE102016205231A1 (en) 2015-03-31 2016-03-30 Vehicle differential device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071294 2015-03-31
JP2015071294 2015-03-31

Publications (1)

Publication Number Publication Date
JP2016194362A true JP2016194362A (en) 2016-11-17

Family

ID=57322777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231149A Pending JP2016194362A (en) 2015-03-31 2015-11-26 Differential gear for vehicle

Country Status (1)

Country Link
JP (1) JP2016194362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207322A (en) * 2019-08-02 2022-03-18 武藏精密工业株式会社 Differential gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207322A (en) * 2019-08-02 2022-03-18 武藏精密工业株式会社 Differential gear
CN114207322B (en) * 2019-08-02 2023-12-15 武藏精密工业株式会社 Differential device

Similar Documents

Publication Publication Date Title
CN106015534B (en) Differential gear
US9863519B2 (en) Differential device
US20160290486A1 (en) Differential device
US9677664B2 (en) Vehicle differential device
US9587730B2 (en) Differential device
CN107842602A (en) Geared system
US10436308B2 (en) Power transmission system
DE112015000919T5 (en) Lubricating structure for a transmission
US20160138702A1 (en) Differential device
JP2016080152A (en) Differential gear
CN106895127B (en) Differential gear
JP2017082919A (en) Differential gear
JP2017009109A (en) Differential device
JP6742715B2 (en) Differential
CN114375375B (en) Transmission device
JP6683460B2 (en) Differential
JP7268173B2 (en) transmission device
JP2016194362A (en) Differential gear for vehicle
JP6649057B2 (en) Differential device
JP6587892B2 (en) Differential
CN111577855B (en) Differential device
JP6827752B2 (en) Differential
JP6612577B2 (en) Differential
JP2016102587A (en) Differential device
JP6660149B2 (en) Differential device