JP6648341B2 - シール膜を有するトルクセンサー - Google Patents

シール膜を有するトルクセンサー Download PDF

Info

Publication number
JP6648341B2
JP6648341B2 JP2019511933A JP2019511933A JP6648341B2 JP 6648341 B2 JP6648341 B2 JP 6648341B2 JP 2019511933 A JP2019511933 A JP 2019511933A JP 2019511933 A JP2019511933 A JP 2019511933A JP 6648341 B2 JP6648341 B2 JP 6648341B2
Authority
JP
Japan
Prior art keywords
torque sensor
flange
sensor according
outer flange
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019511933A
Other languages
English (en)
Other versions
JP2019526801A (ja
Inventor
ハーンレ、マチアス
シュポラー、ノルベルト
グランドル、ミカエル
サトラー、マチアス
Original Assignee
センソドライブ・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by センソドライブ・ゲーエムベーハー filed Critical センソドライブ・ゲーエムベーハー
Publication of JP2019526801A publication Critical patent/JP2019526801A/ja
Application granted granted Critical
Publication of JP6648341B2 publication Critical patent/JP6648341B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1421Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using optical transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1442Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving electrostatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1457Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving resistance strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、請求項1の前文によるトルクセンサーに関する。
モノリシック受信構成要素の形態のトルクセンサーは、欧州特許出願公開第1353159A2号から公知である。
本発明の根底にある目的は、機械的干渉に対してそれほど敏感ではない簡単な構造のコンパクトなトルクセンサーを提供することである。
この目的は、本発明に基づいて、請求項1に記載の特徴を有するトルクセンサーによって達成される。
このようなトルクセンサーは基体を有するが、該基体は、第1加力点を有する環状の内側フランジから、出力信号を発生する測定変換器を備えた機械的に弱いセンサー部を介して、第2加力点を有する環状の外側フランジまで基体の半径方向に延びる。ここで、外側フランジと内側フランジとの間に軸方向に配置されたゴム弾性シール膜は、機械的に弱いセンサー部を液密に覆っている。これは、例えば、流体が、機械的弱化のために軸方向貫通開口部を備えたセンサー部を通過することを防ぐ。
好ましくは、ゴム弾性シール膜は、第2加力点と機械的に弱いセンサー部との間に軸方向に配置されている。このようにすることで、測定変換器、又はひずみゲージを、流体との接触から確実に保護することができ、存在する場合、歯車をも密封することができる。
シール膜は、トルクセンサーに締め付けられるか、又は接着結合される。
好ましくは、シール膜は、円板状の環状膜の形態であるので、外側フランジと内側フランジとの間に容易に導入され得る。
好ましくは、シール膜は、外側及び/又は内側フランジに取り付けられる。
好ましくは、シール膜は、成形ゴム部品、回転ゴム部品、又はウォータージェット加工によって製造されたゴム部品である。
好ましくは、シール膜は、基体の弾性率よりも少なくとも10倍低い弾性率、好ましくは10〜10倍低い弾性率、好ましくは10〜10倍低い弾性率を有する。このようにシール膜の弾性率が低いため、センサー部における変形に対する影響はさらに減少する。
好ましくは、第2加力点は、半径方向弾性材料部によってセンサー部に接続されている。したがって、半径方向に高度の分離を達成することができるので、例えば、第2加力点での真円度のずれを補償することができる。そのような真円度のずれは、例えば製造公差によって引き起こされる可能性がある。その結果、測定変換器のクロストークが発生する可能性がある。それによって生じる測定誤差を回避するために、半径方向弾性材料部は、半径方向変形に関して低い剛性を有するが、軸方向力及び傾斜モーメントを補償するために、ねじり力に関して実質的に剛性である(つまり、高剛性を有している)。半径方向弾性材料部は、軸方向力及び傾斜モーメントからの変形が補償されるように構成することができる。
半径方向弾性材料部は、基体の軸方向に延びる薄肉材料部とすることができる。該材料部は、必ずしも軸方向に延びる必要はなく、軸方向構成要素を有するだけでもよい。例えば、そのような軸方向材料部は円錐形又は蛇行形であり得る。好ましくは、この薄肉材料部は、基体の軸方向にのみ延びる部分、即ち軸方向にのみ延びる材料部である。
測定変換器として適しているのは、例えば圧力又は張力に敏感な測定変換器、例えばひずみゲージであるが、トルクセンサーの内側フランジと外側フランジとの間の角度差をエンコーダによって測定することも可能である。さらに磁歪測定法を用いることも可能である。
好ましくは、外側フランジはモノリシック又は複数パートであり、ここで半径方向弾性材料部及び第2加力点は好ましくは1つのパートを形成する。
好ましくは、薄肉材料部は、外側フランジ内に周方向に延びる溝の薄肉底部の形態である。好ましくは、溝は外側フランジの外周又は内周に配置される。その結果、全体として、製造が簡単な、コンパクトな構造のトルクセンサーが可能になる。
加力点は、穴若しくは歯の空間又はこれら2つの組み合わせとすることができ、歯の空間を形成する歯及び/又は穴は、好ましくは基体の軸方向に延びる。本明細書を通して、穴とは、少なくとも片側が開口している開口部、例えば円形又は多角形の断面を有する開口部を意味する。
好ましくは、半径方向弾性材料部は、それぞれが穴の形をしている複数の第2加力点と、外側フランジ上に位置し、それぞれ同様の穴の形をしている複数の第3加力点とを連結している。トルクセンサーの応力が加えられていない基本状態において、前記第2、第3加力点は、同心である。このような同心の第2及び第3加力点は、穿穴プロセスによって簡単な方法で製造することができる。
センサーの外側フランジ(非半径方向弾性材料部)に位置する穴の形態の第3加力点に、好ましくはストップピンの形態のストップ要素を固定することができる。ストップ要素は、穴の軸方向に延びるとともに、トルクセンサーの応力が加えられていない基本状態において、同様に穴の形をした第4加力点に非接触状態で周方向に囲まれている。その後、ストップ要素が穴の形態をした第4加力点の壁と接触し、そのように支持されることで、トルクセンサーに追加の補剛を与えるので、特に、機械的に弱いセンサー部の過負荷を回避することができる。好ましくは、ストップ要素の形状は、第3加力点の形状と相補的であり、それによってストップ要素は中空体の形態でもあり得る。
好ましくは、穴の形態の第3加力点は、穴の形態の第2加力点とは異なる直径を有する。これは、ストップ要素として、例えば一定の直径を有するストップピンを使用することができるという利点を有し、その直径は、穴の形の第2及び第3加力点のより小さい直径に対応しなければならない。その結果、穴の形をした第2及び第3加力点のそれぞれの他方に非接触状態で囲まれるようになる。
好ましくは、穴の形態の第3加力点は、同様に穴の形態の第2加力点よりも大きい直径を有する。したがって、有利には、第2加力点から離れた貫通穴の形態の第3加力点の端部から、ストップ要素の一端が実際に第3加力点に非接触状態で囲まれているかどうかを確認することができる。他方、ストップ要素の他端は、穴の形態の第2加力点に固定されており、トルクセンサーの装着状態では見えない。
好ましくは、第2加力点は、外側フランジから半径方向に突出し、そこからセンサー部まで半径方向弾性材料部が基体の軸方向に延びる部分の一部である。したがって、第2加力点への簡単な取り付けアクセスが可能である。
外側フランジはモノリシックとすることができ、トルクセンサーは鋼、アルミニウム又はアルミニウム合金で構成することができる。
あるいは、外側フランジは複数パートであってもよく、ここで、半径方向弾性材料部と第2加力点は、好ましくは鋼からなる共通部品を形成し、他方、外側フランジの他の部分はアルミニウム又はアルミニウム合金で構成することができる。この複数パートの形態は、各部品に適した材料を選択することを可能にする。したがって、最後に言及した2つの材料は、高強度を有しながらもヒステリシスを有さずかつ内部減衰が小さいので、鋼からトルクセンサーの半径方向弾性部を、アルミニウム又はアルミニウム合金からトルクセンサーの残りの部分を、製造することが有利である。したがって、モノリシック形態のトルクセンサーの場合、材料としてアルミニウム又はアルミニウム合金を選択することが同様に有利である。
好ましくは、半径方向弾性材料部及び第2加力点は、好ましくはねじによって外側フランジの残りの部分に取り外し可能に接続される部分を形成する。このようにして、外側フランジ部を迅速かつ安価に交換することができる。
好ましくは、第2加力点をハウジングと一体的に形成することで、製造を単純化することができる。
好ましくは、測定変換器はひずみゲージであり、その動作原理は電気的、光学的又は圧電的であり得る。
機械的に弱いセンサー部は、半径方向に延びる第1及び第2接続ウェブを含むことができ、それらは同じ又は異なる機械的特性を有し、周方向に交互に配置されている。ここで「半径方向に延びる」とは、少なくとも1つの半径方向成分を含む機械的に弱いセンサー部の任意の輪郭(profile)を意味する。半径方向の輪郭はもっぱら半径方向であり得るが、半径方向の構成要素を有するが、それから逸脱する輪郭、例えば曲がりくねった輪郭も容易に考えられる。
好ましくは、接続ウェブは、剪断応力及び/又は曲げ応力を測定するのに適している。
好ましくは、第1接続ウェブが第2接続ウェブと機械的に異なる場合、測定変換器として機能するひずみゲージは、第1接続ウェブにのみ又は両方の接続ウェブに取り付けられる。第二の選択肢では、測定範囲を拡大することができる。原則として、第1及び第2接続ウェブを機械的に異なるように構成することによって、機械的負荷が同じであるにもかかわらず(即ち、この場合同じ実効トルクで)、ひずみゲージによって測定される表面ひずみが異なり得る。したがって、機械的に異なる第1及び第2接続ウェブが存在するとき、第1接続ウェブは、例えば、それに固定されたひずみゲージが、低い実効トルクでも比較的高い所望の電気信号を生成するような形態であり得る。このような形態のウェブを接続することにより、より低い分解能で低トルクを測定することができるが、それに応じて測定範囲もそれだけ小さくなる。選択された例では、第2接続ウェブは、それに固定されたひずみゲージがより高いトルクでのみ良好な所望の電気信号を伝達するような形態とすることができ、これは、より高いトルクを測定するのに有利である。この場合、第2接続ウェブに固定されているひずみゲージの測定範囲も相応してより大きい。
内側フランジのみに回転固定式に連結され、トルクセンサーの応力が加えられていない基本状態において軸方向外側フランジ穴と同心である少なくとも1つのストップフランジ穴を有する、ストップフランジは、第2加力点とは反対側の外側フランジの側のセンサー部と平行に延びることができる。このようにして、トルクセンサーで過負荷が発生した場合に、必要に応じて1つ又は複数のストップピンによる補剛の可能性を追加することができる。機能のモードは、ストップピンに関して上述したものに対応する。
好ましくは、ストップフランジ穴は、外側フランジ穴とは異なる直径を有し、より小さい直径を有する穴がストップピンを固定することができる。このようにして、上述したように、一定の直径を有するストップピンの一端を外側フランジ穴又はストップフランジ穴のいずれかに固定することができ、一方で、ストップピンの他端は、トルクセンサーの応力が加えられていない基本状態においてストップフランジ穴又は外側フランジ穴のうちの他方に非接触状態で囲まれている。
好ましくは、ストップフランジには、外側フランジの周方向に等間隔に配置された複数のストップフランジ穴が存在し、これは過負荷の場合に周方向におけるより良好な荷重分布をもたらすことができる。
好ましくは、ストップフランジは、内側フランジの中心軸を通る線に関して等距離で互いに対向して配置されたストップフランジ穴を有し、それは過負荷の場合に半径方向におけるより良好な荷重分布をもたらすことができる。
好ましくは、軸方向に延びるストップピンは、外側フランジ穴又はストップフランジ穴のうちの一方に固定され、トルクセンサーの応力が加えられていない基本状態では、外側フランジ穴又はストップフランジ穴のうちの反対側の他方に非接触状態で周方向に囲まれている。
上記手段により、過負荷による破損防止をトルクセンサーに簡単かつコンパクトに提供することができ、それによりトルクセンサーの塑性変形も回避することができる。ここに提供される軸方向の穴は、半径方向の穴よりも製造が簡単である。さらに、ストップピンと対応するストップフランジ穴又は外側フランジ穴との間の間隙は、ストップピンが半径方向に向いている場合よりも小さくなるように選択することができる。これに関連して、欧州特許出願公開第1353159A2号の図6a、6b、7a、7bを参照。さらに、半径方向に延びるストップピンは、トルクセンサーにおける軸方向の変形及び傾斜モーメントに対してより敏感である。
ストップフランジは、内側フランジと一体的に形成することができ、これは単純でコンパクトな構造を可能にすることができる。
あるいは、ストップフランジは、内側フランジに接続される構成要素、好ましくは内側フランジに取り外し可能に接続される構成要素であり得る。このようにして、トルクセンサーの基体、特にセンサー部よりも、ストップフランジについて、より堅い材料を選択することができる。
好ましくは、ストップフランジは締まりばめ(interference fit)によって内側フランジに接続される構成要素であり得る。
好ましくは、ストップフランジは、基体の軸方向と平行に延びるねじによって内側フランジに取り外し可能に接続される構成要素であり得る。あるいは、接着剤接続、接着剤接続とねじ、又は締まりばめとねじ、又は他の方法によって、ストップフランジを内側フランジに接続することができる。
測定変換器は、基体に接続された測定グリッド部と、測定グリッド部に隣接し、少なくとも1つの電気接続点を有する自由接続部と、を有するひずみゲージとすることができる。このようにして、ひずみゲージは一端を表面に、他端を電気部品に迅速かつ容易に取り付けることができる。
好ましくは、少なくとも1つの電気接続点は半田パッドである。
好ましくは、電気接続点と測定グリッド部分との間の最小距離は、測定グリッド部分の長手方向の長さに対応し、これは取り付け目的のためのひずみゲージの取り扱いを容易にする。
好ましくは、接続部は弾性及び/又は帯状である。
好ましくは、接続部は、応力が加えられていない基本状態で優先方向に曲げられ、例えばU字形に曲げられる。
電気部品上で接続部を一時的に保持するように設計された保持部は、少なくとも1つの電気接続点の他方の側で接続部に隣接し得る。これにより、ひずみゲージの他端部を電気部品に取り付けることが容易になる。
好ましくは、保持部は中央貫通穴又は刻み目を有する。これは、例えばねじ回しによって保持部を電気部品上に一時的に保持するのに役立ち得る。
好ましくは、保持部は自己接着性である。この場合、保持部を、工具を用いずに電気部品に一時的に保持することができる。
好ましくは、保持部は丸みを帯びており、その取り扱い中の怪我を防ぐことができる。
本発明は、概略図によって以下により詳細に説明される。類似の要素には類似の符号が付され、図面を読みやすくするために、符号は場合によっては省略される。
左図は、第1トルクセンサーの上面斜視図であり、右図は、第1モノリシックトルクセンサーの断面図である。 右図は、第2トルクセンサーの底面斜視図であり、左図は、第2モノリシックトルクセンサーの断面図である。 右図は、第3トルクセンサーの底面斜視図であり、左図は、第3(二部式)トルクセンサーの断面図である。 右図は、第4トルクセンサーの底面斜視図であり、左図は、第4(二部式)トルクセンサーの断面図である。 同一の接続ウェブを有する第5トルクセンサーの斜視図である。 異なる接続ウェブが交互に配置された第6トルクセンサーの斜視図である。 ストップフランジと一体的に形成された第7トルクセンサーの断面図である。 締まりばめによってトルクセンサーに別個に接続された構成要素であるストップフランジを有する第8トルクセンサーの断面図である。 図8の第8トルクセンサーに類似した第9トルクセンサーの底面分解斜視図である。ここで、ストップフランジがねじ接続によってトルクセンサーに接続されている。 締め付けられたシール膜を有する第10トルクセンサーの断面図である。 シール膜が内部に接着結合されている第11トルクセンサーの断面図である。 ハーモニックドライブ(登録商標)ギアを備えた軽量構成の図1の第1トルクセンサーの断面図である。 図12の軽量構成の分解図である。 上図は、従来のひずみゲージを示し、下図は、ひずみゲージの従来の固定方法を示す。 上図は、代替のひずみゲージを示し、下図は、代替のひずみゲージの固定方法を示す。
図1は、それぞれ穴の形をした複数の第1加力点105を有する環状の内側フランジ103から、電気的に出力信号を発生する歪み感応測定変換器を備えた機械的に弱いセンサー部107を介して(例えば、図14及び15参照)、環状のモノリシック外側フランジ109まで基体101の半径方向Yに延びるアルミニウム又はアルミニウム合金からなる基体101を有するモノリシック形態の第1トルクセンサー100を示す。外側フランジ109から半径方向に突出した部分には、それぞれ穴の形をした複数の第2加力点111があり、これらの第2加力点111は、半径方向弾性材料部113を介して基体101の軸方向Xにセンサー部107に接続されている。半径方向弾性材料部113は、軸方向Xに延び、薄肉周壁部の形をしている。
図2は、同様にモノリシック形態の第2トルクセンサー200を示し、ここで、半径方向弾性材料部213は、外側フランジ209の外周の周りを走る溝215の薄肉底部の形態である。半径方向弾性材料部213は、第2加力点211を、外側フランジ209上に位置し、それぞれ穴の形をしている複数の第3加力点211aと、同様に穴の形をしている複数の第4加力点211b(ここでは、アクセス開口部として機能する)とに接続させる。アクセス開口部211bは、トルクセンサー200の応力が加えられていない基本状態において、第2加力点211と同心円状に配置されている。しかしながら、図7から図9を参照して後述するように、アクセス開口部211bは加力点として機能することも可能である。その目的のために、ストップ要素を加力点211、211bの一方に固定することができ、このストップ要素は、軸方向Xに延びるとともに、トルクセンサー200の応力が加えられていない基本状態では、各々の他方の加力点211b、211によって非接触状態で周方向に囲まれている。図示の例示的な実施形態では、アクセス開口部211bは、第2加力点211よりも大きい直径を有する。もちろん、アクセス開口部211bは、部品の結合要素、例えばスリーブ又はハウジングを第2加力点211に接続させるように、第2加力点211に接続要素、例えばねじ又はボルトを通すのに追加的に又は単独で使用することができる。
図3は、外側フランジ309を有する第3トルクセンサー300を示し、これは、図1及び図2とは対照的に、複数パートの形態である。複数パートの外側フランジ309の、アルミニウム製又はアルミニウム合金製の第1部分309aは、センサー部307の延長部として一体的に延びており、一方、スチール製の第2部分309bは、半径方向弾性材料部313と第2加力点311を含む。第2部分309bは、軸方向Xと平行に延びるねじ310によって第1部分309aに取り外し可能に接続される。
図4は、その第2加力点411が、トルクセンサー400の中心軸の方を向くベアリングシート419を有するハウジング417と一体的に形成されているという点で、実質的に図3に示される第3トルクセンサー300と異なる第4トルクセンサー400を示す。
図5は、環状の機械的に弱いセンサー部507が、全て同じ機械的性質を有しかつ切欠き521によって周方向に互いに離間された、半径方向に延びる接続ウェブ519によって形成されている第5トルクセンサー500を示す。接続ウェブ519は、剪断応力及び/又は曲げ応力を測定するようになっており、ひずみゲージの形態の測定変換器がすべての接続ウェブ519に取り付けられる。それによって、第1感度の測定変換器と第2感度の測定変換器とを周方向に交互に取り付けることができる。同様に、測定変換器は、接続ウェブ519の異なる点で交互に取り付けることができる。
図6は、図5に示す第5のトルクセンサー500とは対照的に、環状の機械的に弱いセンサー部607が半径方向に延びる第1及び第2接続ウェブ619a、619bを有する第6トルクセンサー600を示す。第1接続ウェブ619aは、第2接続ウェブ619bとは異なる機械的性質を有し、第1及び第2接続ウェブ619a、619bは、それらの間に位置する切欠き621を有して周方向に交互に配置されている。測定変換器は、ここでは両方の接続ウェブ619a、619bに取り付けられる。測定変換器を、第1又は第2接続ウェブ619a、619bにのみ取り付けることもできる。第1接続ウェブ619aに取り付けられた第1測定変換器は、第1測定範囲の信号のみを伝達し、第2接続ウェブ619bに取り付けられた第2測定変換器は、第2測定範囲の信号のみを伝達する。これらの測定範囲は互いに異なる。一方の測定範囲は他方の測定範囲内にあり得る。
接続ウェブ519、619aは、欧州特許出願公開第1353159A2号の段落[0043]〜[0052]に記載されているように、測定変換器61が取り付けられた接続ウェブ14に対応して形成することができる。同様に、接続ウェブ619bは、欧州特許出願公開第1353159A2号の段落番号[0055]〜[0057]に記載されているように、中実の形態であってもよく、測定変換器61が取り付けられた接続ウェブ24又は24’に対応して形成しされてもよい。本明細書に記載の接続ウェブを有する他のすべてのトルクセンサーにも同じことが当てはまる。
図7は、第7トルクセンサー700を示し、これは、第2加力点711とは反対側の外側フランジ709の側面上でセンサー部707と平行に延びるストップフランジ723と一体的に形成されるという点で、図2に示される第2トルクセンサー200と実質的に異なる。ストップフランジ723は、内側フランジ703にのみ回転的に固定された方法で接続され、複数のストップフランジ穴725(第4加力点)を有する。トルクセンサー700に応力が加えられていない基本状態では、ストップフランジ穴725は、軸方向外側フランジ穴711及び第3外側フランジ穴711aと同心である。ストップフランジ穴725は、外側フランジ穴711及び711aよりも大きい直径を有し、かつ内側フランジ703の中心軸を通る半径方向Yの線に対して同じ距離で互いに対向して配置されている。ストッパピンの形態のストッパ要素727は、第3外側フランジ穴711a内に固定され、軸方向Xに延びる。トルクセンサー700の応力が加えられていない基本状態では、ストップ要素727は、周方向にストップフランジ穴725に非接触状態で囲まれている。ここに示されたように、ストップフランジ穴725又は第3外側フランジ穴711aのいずれかは、貫通穴の形態又は盲穴の形態であり得る。センサー部707の過負荷の場合、ストップピン727は対応するストップフランジ穴725の内側に接触するとともにそこに支持されることで、センサー部707を軽減する。
図8は、ストップフランジ823が、内側フランジ803と一体的に形成されておらず、内側フランジ803に取り外し可能に接続されている別個の構成要素であるという点で、図7に示された第7のトルクセンサー700とは実質的に異なる第8トルクセンサー800を示す。ストップフランジ823は締まりばめによって内側フランジ803に接続される。
図9は、そのストップフランジ923が、締まりばめではなく軸方向Xに平行に延びるねじ(図示せず)によって、内側フランジ903に接続されているという点で、図8に示される第8トルクセンサー800と実質的に異なる第9のトルクセンサー900を示す。その目的のために、対応する相補穴929a、929bが内側フランジ903上、及びストップフランジ923上に存在する。
図10は、片側のトルクセンサー1000の機械的に弱いセンサー部1007を液密に覆うためのゴム弾性シール膜1031を有する第10トルクセンサー1000を示す。シーリングメンブレン1031は、ねじ1033によって内側フランジ1003と外側フランジ1009との間で環状に締め付けられる。内側フランジ1003と外側フランジ1009のうちの一方にのみ締め付けるだけで十分であり得る。この図は、例えば欧州特許出願公開第EP1353159A2号から知られているように、シーリングメンブレン1031を従来のトルクセンサーに取り付けるだけでも可能であることを説明するために示したものである。対応して外側フランジ1009を、ねじ1033を超えて軸方向Xに延在させることによって、上述の半径方向弾性材料部1013を容易に設けることができ、第2加力点1011はそのような延在部の端部に位置する。
図11は、そのシール膜1131が、内側フランジ1103と外側フランジ1109との間で環状にトルクセンサー1000に接着結合されているという点で、図10に示した第10トルクセンサー1000とは実質的に異なる第11トルクセンサー1100を示す。
第10又は第11トルクセンサー1000、1100のシール膜1031、1131は、成形ゴム部品、回転ゴム部品、又はウォータージェット切断によって製造されたゴム部品とすることができ、固定に同様の締め付けと接着結合の組み合わせが可能である。シール膜1031、1131は、基体1001、1101の弾性率よりも少なくとも10倍低い弾性率、好ましくは10〜10倍低い弾性率、より好ましくは10〜10倍低い弾性率を有する。シール膜の弾性率が基体と比較して低いほど、シール膜がトルクセンサーの測定結果を不正確にすることが少なくなる。
図12及び図13は、内側から外側に向かって、波発生器139、フレクスプライン141及び円形スプライン143を有するハーモニックドライブギア137を有する軽量構成135の図1の第1トルクセンサー100を示す。円形スプライン143はハウジング145にねじ止めされ、その後、ハウジング145はクロスローラベアリング147を介して出力ハウジング149に取り付けられる。トルクセンサー100の外側フランジ109は、出力フランジ151によって出力ハウジング149にねじ止めされる。次に、トルクセンサー100の内側フランジ103は、ねじ付きリング153を介してフレクスプライン141にねじ止めされる。
図14は、従来のひずみゲージ10を示しており、これは、上述した測定変換器であると理解されるべきである。ひずみゲージ10は、一端に測定グリッド部13を有し、反対側の他端に半田パッド15の形態の電気接続点を有する帯状の基体11を有する。全体として部品1に固定されることができるこのひずみゲージ10を電気部品3に電気的に接続するために、線5は、最初に半田パッド15に、そして次に電気部品3にはんだ付けされなければならない。
図15に示す代替ひずみゲージ20は、測定グリッド部23によってのみ部品1に固定することできるという点と、個別の線5に代えて、ひずみゲージ20が測定グリッド部23に隣接する接続部24を有し、この接続部が、測定グリッド部23とは反対側の端部に半田パッド25を有し、その長さは少なくとも測定グリッド部23に対応するという点で、図14に示す従来のひずみゲージ10と異なる。接続部24は帯状で可撓性を有するので、応力が加えられていない基本状態においても優先方向に曲げることができ、それによって、例えばU字状に形成することができる。図示されたひずみゲージ20はさらに、半田パッド25の他方の側で接続部24に隣接し、電気部品3上で接続部24を一時的に保持するように設けられている丸い保持部27を有する。その目的のために、保持部27は中央貫通穴29、あるいは窪みを有することができ、その中にひずみゲージ20を電気部品3上に保持するための器具を導入することができる。その目的のために、保持部27は、さらに自己粘着性を有していてもよく、自己粘着性のみを有していてもよい。
10、20 測定変換器
1000、1100 トルクセンサー
1001、1101 基体
1003、1103 内側フランジ
1005、1105 第1加力点
1007、1107 機械的に弱いセンサー部
1009、1109 外側フランジ
1011、1111 第2加力点
1031、1131 ゴム弾性シール膜

Claims (10)

  1. 第1加力点を有する環状の内側フランジから、出力信号を生成する測定変換器を備えた機械的に弱いセンサー部を介して、第2加力点を有する環状の外側フランジまでその半径方向に延びる基体を有するトルクセンサーであって、
    軸方向において前記外側フランジと前記内側フランジとの間に配置されたゴム弾性シール膜が、前記機械的に弱いセンサー部を液密に覆っていて、前記シール膜は、軸方向において前記第2加力点と前記機械的に弱いセンサー部との間に配置されている、トルクセンサー。
  2. 前記シール膜が、前記トルクセンサーに締め付けられているか、又は接着結合されている、請求項1に記載のトルクセンサー。
  3. 前記シール膜が、前記トルクセンサーの前記外側フランジ及び/又は前記内側フランジに取り付けられている、請求項2に記載のトルクセンサー。
  4. 前記シール膜が、円盤形の環状膜の形態である、請求項1〜3のいずれか一項に記載のトルクセンサー。
  5. 前記シール膜が、成形ゴム部品、回転ゴム部品、又はウォータージェット加工によって製造されたゴム部品である、請求項1〜4のいずれか一項に記載のトルクセンサー。
  6. 前記シール膜が、前記基体の弾性率よりも少なくとも10倍低い弾性率を有する、請求項1〜5のいずれか一項に記載のトルクセンサー。
  7. 前記シール膜が、前記基体の弾性率よりも10〜10 倍低い弾性率を有する、請求項6に記載のトルクセンサー。
  8. 前記シール膜が、前記基体の弾性率よりも10 〜10 倍低い弾性率を有する、請求項7に記載のトルクセンサー。
  9. 前記測定変換器が、前記基体に接続された測定グリッド部と、前記測定グリッド部に隣接するとともに、少なくとも1つの電気接続点を有する自由接続部と、を有するひずみゲージである、請求項1〜のいずれか一項に記載のトルクセンサー。
  10. 前記少なくとも1つの電気接続点の反対側で前記自由接続部に隣接する保持部が、電気部品上で前記自由接続部を一時的に保持するように設けられている、請求項に記載のトルクセンサー。
JP2019511933A 2016-08-31 2017-08-31 シール膜を有するトルクセンサー Active JP6648341B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016010552.6 2016-08-31
DE102016010552.6A DE102016010552B3 (de) 2016-08-31 2016-08-31 Drehmomentsensor mit Dichtungsmembran
PCT/EP2017/071833 WO2018041934A1 (de) 2016-08-31 2017-08-31 Drehmomentsensor mit dichtungsmembran

Publications (2)

Publication Number Publication Date
JP2019526801A JP2019526801A (ja) 2019-09-19
JP6648341B2 true JP6648341B2 (ja) 2020-02-14

Family

ID=59859046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019511933A Active JP6648341B2 (ja) 2016-08-31 2017-08-31 シール膜を有するトルクセンサー

Country Status (7)

Country Link
US (1) US11105694B2 (ja)
EP (1) EP3507582B1 (ja)
JP (1) JP6648341B2 (ja)
KR (1) KR102026922B1 (ja)
CN (1) CN109661566B (ja)
DE (1) DE102016010552B3 (ja)
WO (1) WO2018041934A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976892B2 (ja) * 2018-03-29 2021-12-08 日本電産コパル電子株式会社 トルクセンサ
JP7085922B2 (ja) * 2018-07-03 2022-06-17 アズビル株式会社 トルクセンサ
JP7021834B2 (ja) * 2018-07-03 2022-02-17 アズビル株式会社 トルクセンサ
JP7021835B2 (ja) * 2018-07-03 2022-02-17 アズビル株式会社 トルクセンサ
DE202019101333U1 (de) * 2019-03-08 2019-06-06 SWEDEX GmbH Industrieprodukte Drehmomentschrauberanordnung zum Betrieb einer solchen Drehmomentschrauberanordnung
EP3933221B1 (en) 2020-04-27 2024-02-07 Harmonic Drive Systems Inc. Bearing device and wave motion gear device
EP4163612A1 (en) * 2021-10-06 2023-04-12 MEAS France Sensing membrane for torque sensor device and torque sensor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526162A (en) * 1968-05-21 1970-09-01 Rogers Freels & Associates Inc Process and apparatus for cutting of non-metallic materials
DE4430503C1 (de) * 1994-08-27 1996-02-29 Daimler Benz Ag Drehmomentsensor mit Dehnmeßstreifenanordnung
US5648617A (en) * 1995-08-25 1997-07-15 Applied Robotics, Inc. Single axis robot force sensor assembly
DE50302070D1 (de) * 2002-04-12 2006-02-02 Deutsch Zentr Luft & Raumfahrt Verfahren und Einrichtung zum Messen des Abtriebsdrehmoments eines Elektromotors mit einem diesem nachgeordneten Getriebe
US7796844B2 (en) * 2008-07-22 2010-09-14 The Hong Kong Polytechnic University Temperature-compensated fibre optic strain gauge
DE102009014284B4 (de) 2009-03-25 2017-01-26 Hottinger Baldwin Messtechnik Gmbh Drehmomentsensor
DE102010034877A1 (de) 2009-08-23 2011-02-24 GIF Gesellschaft für Industrieforschung mbH Drehmomentmesseinrichtung und Anordnung aus einer Drehmomentmesseinrichtung und einer Triebwelle
US8423249B2 (en) * 2011-01-20 2013-04-16 GM Global Technology Operations LLC Torque sensor system with integrated electrical connectors
CN202533206U (zh) * 2011-11-10 2012-11-14 中国矿业大学(北京) 轮辐式联轴器扭矩传感器
DE102013012973A1 (de) * 2013-08-03 2015-02-05 Primosensor GmbH Sensor zur Messung eines Drehmoments
CN104535231B (zh) * 2015-01-05 2017-02-22 攀钢集团攀枝花钢铁研究院有限公司 测试钢轨残余应力的电阻应变片转接装置及测试方法
DE102016010551B3 (de) * 2016-08-31 2018-02-08 Sensodrive Gmbh Drehmomentsensor mit radialelastischer Momentübertragung

Also Published As

Publication number Publication date
CN109661566A (zh) 2019-04-19
EP3507582A1 (de) 2019-07-10
CN109661566B (zh) 2020-03-17
EP3507582B1 (de) 2020-08-12
DE102016010552B3 (de) 2017-11-09
KR20190033638A (ko) 2019-03-29
US11105694B2 (en) 2021-08-31
WO2018041934A1 (de) 2018-03-08
US20190212217A1 (en) 2019-07-11
KR102026922B1 (ko) 2019-09-30
JP2019526801A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6648340B2 (ja) 半径方向弾性トルク伝達を備えたトルクセンサー
JP6648341B2 (ja) シール膜を有するトルクセンサー
JP6979061B2 (ja) シャントスポークを有するトルクセンサー
US9003896B2 (en) Dual-flange disc-shaped torque sensor
US7832290B2 (en) Axial force transducer
WO2005075950A1 (ja) トルク計
US20100162830A1 (en) Torque-measuring flange
US9612171B2 (en) Torque-measuring shaft
KR20210074271A (ko) 스트레인 웨이브 기어 및 그것을 위한 탄성 트랜스미션 부재, 로봇 아암 및 스트레인 게이지를 배열하는 방법
JP2010169586A (ja) トルク量変換器
EP2510325A2 (en) Multiaxial force-torque sensors
KR102567753B1 (ko) 기계적 마찰 결합을 이용한 회전 요소용 토크 센서
JP2018529897A (ja) ひずみセンサ装置を備える転がり軸受アッセンブリ
US6640651B2 (en) Torque detector
WO2019220516A1 (ja) アクチュエータおよびトルクセンサユニット
JP2545317Y2 (ja) 波動歯車変速機のトルク検出装置
JP7091177B2 (ja) トルクセンサ
JP2022076359A (ja) トルク計測装置
JPH06207867A (ja) ひずみゲージ式荷重変換器
JPS59174726A (ja) ひずみゲ−ジ式荷重変換器

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20190422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190422

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6648341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250