JP6645507B2 - ガスクロマトグラフ及び試料注入方法 - Google Patents

ガスクロマトグラフ及び試料注入方法 Download PDF

Info

Publication number
JP6645507B2
JP6645507B2 JP2017547264A JP2017547264A JP6645507B2 JP 6645507 B2 JP6645507 B2 JP 6645507B2 JP 2017547264 A JP2017547264 A JP 2017547264A JP 2017547264 A JP2017547264 A JP 2017547264A JP 6645507 B2 JP6645507 B2 JP 6645507B2
Authority
JP
Japan
Prior art keywords
sample
solution
syringe
pseudo
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017547264A
Other languages
English (en)
Other versions
JPWO2017072893A1 (ja
Inventor
誠人 ▲高▼倉
誠人 ▲高▼倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2017072893A1 publication Critical patent/JPWO2017072893A1/ja
Application granted granted Critical
Publication of JP6645507B2 publication Critical patent/JP6645507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、カラムに接続された試料気化室内にシリンジから試料を注入することにより、前記試料気化室内で気化された試料を前記カラムに導入するガスクロマトグラフ及び試料注入方法に関するものである。
食品中の残留農薬を試料として分析する際などに、ガスクロマトグラフ(ガスクロマトグラフ質量分析装置を含む。)が用いられる場合がある。この種の試料には、分析対象物質以外に、夾雑物質(マトリックス)が含まれており、当該試料を定量分析すると定量値が実際とは異なる場合がある。この原因としては、カラムなどの分析系に存在するシラノール基などの活性点が、マトリックスと結合してしまうということが挙げられる。
例えば標準試料などのように、試料中にマトリックスがほとんど含まれていない場合には、試料中の分析対象物質の一部が活性点と結合し、検出器まで到達できない。そのため、活性点が多いほど、検出される分析対象物質は少なくなり、分析対象物質のピーク強度が小さくなる。これに対して、実際の試料(検査試料)にはマトリックスが含まれているため、マトリックスが分析対象成分よりも優先的に活性点と結合し、活性点と結合する分析対象成分の量が少なくなる。この場合には、分析対象物質のピーク強度は小さくならない。
このように、検出器で検出される分析対象物質のピーク強度は、試料中にマトリックスが含まれているか否かによって変化する。そのため、マトリックスが少ない標準試料を用いて検量線を作成し、マトリックスが多く含まれる検査試料を定量分析すると、定量値が実際の値とは大きく異なる結果となってしまう。このような現象は、マトリックス効果と呼ばれ、食品中の残留農薬の分析など、夾雑物質を多く含む試料の分析でしばしば起こり、規制値が設定されている分野では特に問題となる。
上記のようなマトリックス効果に起因する定量値の問題を防止する方法としては、下記非特許文献1のように、疑似マトリックス(Analytical Protectant)を用いる方法が知られている。具体的には、試料溶液に対して、gulonolactoneなどの疑似マトリックスが添加される。試料溶液に疑似マトリックスを添加することで、疑似マトリックスが活性点と結合するため、マトリックスが含まれていない試料と、マトリックスが含まれている試料とで、検出器において検出される分析対象物質のピーク強度が変化するのを防止することが可能となる。したがって、標準試料の試料溶液に疑似マトリックスを添加して検量線を作成すれば、マトリックスが含まれる検査試料を定量分析した場合でも正確な定量値を算出することができる。
M. Anastassiades, K. Mastovska, S. J. Lehotay, "Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides" Journal of Chromatography A, 1015 (2003) 163-184
しかしながら、gulonolactoneなどの疑似マトリックスは、分析対象成分よりも分析系の活性点に結合しやすい物質であることが好ましく、一般的に、高沸点で極性が大きいため、同じく極性が大きい溶媒に対しては溶解しやすいものの、極性が小さい溶媒に対しては溶解しにくい。例えば、食品中の残留農薬を検査試料として分析する場合には、検査試料の溶媒としてアセトンとヘキサンの混合液が主に使用されるが、このような溶媒は極性が小さいため、極性が大きい疑似マトリックスを添加しても均一に溶解しないという問題がある。
そのため、試料溶液が収容されている容器内に疑似マトリックスを添加した後、その容器内から試料溶液をシリンジで吸引した場合には、疑似マトリックスが均一に溶解した試料溶液を吸引することができない。その結果、吸引した試料溶液中の疑似マトリックスの量が一定にならず、正確な定量値を算出することができないおそれがある。
特に、ガスクロマトグラフにおいては検査試料を気化させて分析を行うため、検査試料の溶媒として、極性が小さい低沸点の溶媒が用いられる。一方で、疑似マトリックスは高沸点化合物であるため極性が大きく、極性が小さい検査試料の溶媒には溶解しにくい。このように、従来の方法では、検査試料の溶媒が制約条件となるため、疑似マトリックスを用いて正確に定量分析を行うことが困難であった。
本発明は、上記実情に鑑みてなされたものであり、疑似マトリックスを用いて正確に定量分析を行うことができるガスクロマトグラフ及び試料注入方法を提供することを目的とする。
(1)本発明に係るガスクロマトグラフは、カラムに接続された試料気化室内にシリンジから試料を注入することにより、前記試料気化室内で気化された試料を前記カラムに導入するガスクロマトグラフであって、第1収容部と、第2収容部と、吸引制御部と、注入制御部とを備える。前記第1収容部は、第1溶媒中に試料を含む試料溶液を収容する。前記第2収容部は、前記第1溶媒よりも極性が大きい第2溶媒に疑似マトリックスが溶解された疑似マトリックス溶液を収容する。前記吸引制御部は、前記第1収容部内の試料溶液、及び、前記第2収容部内の疑似マトリックス溶液を前記シリンジ内に吸引させる。前記注入制御部は、前記シリンジ内に吸引された試料溶液及び疑似マトリックス溶液を前記試料気化室に注入させることにより、当該試料気化室内で試料溶液及び疑似マトリックス溶液を気化させる。
このような構成によれば、試料溶液及び疑似マトリックス溶液が同じシリンジ内に吸引された後、試料気化室に注入されて気化される。すなわち、試料溶液と疑似マトリックス溶液とが予め混合された後にシリンジ内に吸引されるのではなく、それぞれの溶液が定められた量だけシリンジ内に吸引される。
したがって、試料溶液に対して疑似マトリックスが溶解しにくいような場合であっても、試料溶液に疑似マトリックスが予め混合されてから吸引される場合のように、吸引した試料溶液中の疑似マトリックスの量が一定にならなくなるのを防止することができる。その結果、疑似マトリックスを用いてマトリックス効果を効果的に低減し、正確に定量分析を行うことができる。
また、試料溶液を第1収容部から吸引して試料気化室に注入する動作と、疑似マトリックス溶液を第2収容部から吸引して試料気化室に注入する動作とが、それぞれ個別に行われるような構成と比較して、分析時の動作を簡略化することができる。
また、試料溶液に疑似マトリックスを添加する場合と比較して、試薬調製の手間を削減することができる。
(2)前記吸引制御部は、前記第1収容部内の試料溶液を前記シリンジ内に吸引させた後、当該シリンジ内に前記第2収容部内の疑似マトリックス溶液を吸引させてもよい。
このような構成によれば、シリンジ内に吸引された試料溶液及び疑似マトリックス溶液のうち、疑似マトリックス溶液が試料溶液よりも先に試料気化室に注入される。したがって、疑似マトリックスが分析対象物質よりも先に気化して活性点と結合するため、後で気化した分析対象成分が活性点と結合しにくい。その結果、分析対象物質のピーク強度が小さくなるのを効果的に防止することができるため、より正確に定量分析を行うことができる。また、ディスクリミネーション(測定対象の高沸点成分がシリンジ内部に残り、カラムに導入される成分比がシリンジ吸引された試料の成分比と異なること)の影響を避ける場合は,前記吸引制御部が前記第2収容部内の疑似マトリックス溶液を前記シリンジ内に吸引させた後、当該シリンジ内に前記第1収容部内の試料溶液を吸引させてもよい。
(3)前記注入制御部は、前記シリンジ内の疑似マトリックス溶液を前記試料気化室に注入させた後、一定時間が経過してから前記シリンジ内の試料溶液を前記試料気化室に注入させてもよい。
このような構成によれば、シリンジ内に吸引された試料溶液及び疑似マトリックス溶液を別々に試料気化室に注入することができる。これにより、疑似マトリックスが気化して活性点と十分に結合した後、分析対象物質が気化してカラムに導入されるため、分析対象成分が活性点と結合するのを効果的に防止することができ、さらに正確に定量分析を行うことができる。
(4)本発明に係る試料注入方法は、カラムに接続された試料気化室内にシリンジから試料を注入するための試料注入方法であって、吸引ステップと、注入ステップとを備える。前記吸引ステップでは、第1溶媒中に試料を含む試料溶液、及び、前記第1溶媒よりも極性が大きい第2溶媒に疑似マトリックスが溶解された疑似マトリックス溶液をシリンジ内に吸引する。前記注入ステップでは、前記シリンジ内に吸引された試料溶液及び疑似マトリックス溶液を前記試料気化室に注入することにより、当該試料気化室内で試料溶液及び疑似マトリックス溶液を気化させる。
(5)前記吸引ステップでは、前記第1収容部内の試料溶液を前記シリンジ内に吸引させた後、当該シリンジ内に前記第2収容部内の疑似マトリックス溶液を吸引させてもよい。
(6)前記注入ステップでは、前記シリンジ内の疑似マトリックス溶液を前記試料気化室に注入させた後、一定時間が経過してから前記シリンジ内の試料溶液を前記試料気化室に注入させてもよい。
本発明によれば、試料溶液に対して疑似マトリックスが溶解しにくいような場合であっても、試料溶液と疑似マトリックス溶液とが予め混合されてから吸引される場合のように、吸引した試料溶液中の疑似マトリックスの量が一定にならなくなるのを防止することができるため、疑似マトリックスを用いてマトリックス効果を効果的に低減し、正確に定量分析を行うことができる。また、検査試料の溶媒がどのような溶媒であっても、極性の高い疑似マトリックスを用いて、正確に定量分析を行うことができる。
本発明の第1実施形態に係るガスクロマトグラフの構成例を示した概略図である。 シリンジ内に溶液が吸引された状態を示す概略図である。 シリンジによる吸引動作及び吐出動作を行う際の制御部による処理の一例を示したフローチャートである。 シリンジ内に溶液を吸引する際の態様の第1変形例を示した概略図である。 シリンジ内に溶液を吸引する際の態様の第2変形例を示した概略図である。 シリンジ内に溶液を吸引する際の態様の第3変形例を示した概略図である。 本発明の第2実施形態に係るガスクロマトグラフにおいてシリンジによる吸引動作及び吐出動作を行う際の制御部による処理の一例を示したフローチャートである。 農薬標準試料の注入量とピーク面積値との関係を示した図である。 カルバリル(5ppb)のみを注入した場合のピーク形状を示したグラフである。 カルバリル(5ppb)と疑似マトリックス溶液を同時注入した場合のピーク形状を示したグラフである。 ホサロンのみを注入した場合の検量線を示した図である。 カルバリルのみを注入した場合の検量線を示した図である。 delta−BHCのみを注入した場合の検量線を示した図である。 ホサロンと疑似マトリックス溶液を同時注入した場合の検量線を示した図である。 カルバリルと疑似マトリックス溶液を同時注入した場合の検量線を示した図である。 delta−BHCと疑似マトリックス溶液を同時注入した場合の検量線を示した図である。 農薬標準試料のみを注入した場合と疑似マトリックス溶液を同時注入した場合との回収率について示した図である。 検査試料に疑似マトリックス溶液を同時注入した場合の繰り返し分析精度について示した図である。
図1は、本発明の第1実施形態に係るガスクロマトグラフの構成例を示した概略図である。このガスクロマトグラフは、ガスクロマトグラフ部(GC部1)と質量分析部(MS部2)とを備えたガスクロマトグラフ質量分析装置(GC/MS)である。
GC部1には、例えばカラム11、試料気化室12、カラムオーブン13、AFC(Advanced Flow Controller)14、シリンジ15、シリンジ駆動部16、第1収容部17、第2収容部18及び制御部19が備えられている。カラム11はその上流端が試料気化室12に接続されるとともに、下流端がMS部2に接続されている。
カラム11は、ヒータ及びファンなど(いずれも図示せず)とともにカラムオーブン13内に収容されている。カラムオーブン13は、カラム11を加熱するためのものであり、分析時にはヒータ及びファンを適宜駆動させることにより、カラムオーブン13内の温度を一定に維持しながら分析を行う恒温分析、又は、カラムオーブン13内の温度を徐々に上昇させながら分析を行う昇温分析などが実行可能となっている。
カラム11には、AFC14を介してキャリアガスが供給される。キャリアガスとしては、例えばHeガスが用いられる。分析時には、シリンジ15から試料気化室12に試料が注入されることにより、試料気化室12内で試料が気化し、その気化した試料がキャリアガスとともにカラム11に導入される。GC部1では、キャリアガスがカラム11を通過する過程で各試料成分が分離され、検出器としてのMS部2に順次導かれる。
MS部2には、例えばイオン化室、マスフィルタ及びイオン検出器など(いずれも図示せず)が備えられている。分析中は、カラム11で分離された各試料成分が、イオン化室に導かれ、イオン化されるようになっている。そして、真空チャンバ内のマスフィルタでイオン化された各試料成分をm/zに応じて分離してイオン検出器で検出することにより、質量分析を行うことができる。
本実施形態では、シリンジ15から試料気化室12に注入される溶液として、分析対象成分を含む試料溶液21と、疑似マトリックスが溶解された疑似マトリックス溶液22とが用いられる。試料溶液21は、第1収容部17に収容されている。一方、疑似マトリックス溶液22は、第1収容部17とは異なる第2収容部18に収容されている。
試料溶液21は、溶媒(第1溶媒)中に、分析対象成分を含む溶液である。この溶媒としては、例えばアセトンとヘキサンとの混合液が用いられ、その混合比(体積比)は1:1である。このような溶媒は、低沸点で極性が小さいという特性を有している。ただし、試料の溶媒としては、低沸点で極性が小さい溶媒であれば、アセトンとヘキサンとの混合液に限られるものではなく、その混合比も上記のような値に限られるものではない。試料溶液は、マトリックス(夾雑成分)を含まない分析対象成分の標準試料を溶媒に溶解して得られたものであってもよいし、マトリックスを含む実際の試料(検査試料)から溶媒抽出などの前処理を経て得られたものであってもよい。
疑似マトリックス溶液22は、疑似マトリックスを溶媒(第2溶媒)に溶解させることにより得られる溶液である。この溶媒としては、例えばアセトニトリルと水の混合液が用いられ、その混合比(体積比)は疑似マトリックスの種類に応じて設定される。このような溶媒は、試料の溶媒よりも高沸点で極性が大きいという特性を有している。ただし、疑似マトリックスを溶解させる溶媒としては、高沸点で極性が大きい溶媒であれば、アセトニトリルと水の混合液に限られるものではない。溶媒に溶解される疑似マトリックスは、例えばガラノラクトン、ソルビトール又はエチルグリセロールなどからなる分析保護剤(Analytical Protectant)であり、極性が大きい高沸点化合物である。
シリンジ駆動部16は、例えばモータなどを含む構成であり、シリンジ15を上下方向及び水平方向に移動させることができるとともに、シリンジ15内に溶液を吸引させたり、シリンジ15内の溶液を吐出させたりすることができる。このシリンジ駆動部16の駆動によって、シリンジ15の先端部を第1収容部17又は第2収容部18に選択的に挿入し、第1収容部17内の試料溶液21又は第2収容部18内の疑似マトリックス溶液22をシリンジ15内に吸引することができる。また、吸引後は、シリンジ駆動部16の駆動によって、シリンジ15の先端を試料気化室12内に挿入し、シリンジ15内の溶液を試料気化室12内に注入することができる。
制御部19は、例えばCPU(Central Processing Unit)を含む構成であり、CPUがプログラムを実行することにより、吸引制御部191、注入制御部192、流量制御部193及び分析制御部194などとして機能する。制御部19は、MS部2、AFC14及びシリンジ駆動部16などの各部に対して電気的に接続されている。
吸引制御部191は、シリンジ駆動部16を制御することにより、シリンジ15内に溶液を吸引させる。具体的には、第1収容部17内からの試料溶液21の吸引動作と、第2収容部18からの疑似マトリックス溶液22の吸引動作とが、それらの間に吐出動作を挟むことなく行われるようにシリンジ駆動部16が制御されることにより、シリンジ15内に試料溶液21及び疑似マトリックス溶液22が吸引される。
注入制御部192は、シリンジ駆動部16を制御することにより、シリンジ15内の溶液を試料気化室12に注入させる。具体的には、試料溶液21及び疑似マトリックス溶液22が吸引されたシリンジ15の先端部が試料気化室12内に挿入され、そのシリンジ15内の試料溶液21及び疑似マトリックス溶液22が一度の吐出動作で試料気化室12内に注入される。
流量制御部193は、AFC14を制御することにより、設定された分析条件に対応する流量で試料気化室12内にキャリアガスを供給させる。分析制御部194は、MS部2での質量分離を制御し、得られた検出信号に基づいて、クロマトグラムやスペクトルを作成する。
図2は、シリンジ15内に溶液が吸引された状態を示す概略図である。この図2に示すように、シリンジ15内に溶液を吸引する際には、第1収容部17内の試料溶液21が先に吸引された後、第2収容部18内の疑似マトリックス溶液22が吸引される。
試料溶液21及び疑似マトリックス溶液22は、それぞれ予め定められた量だけシリンジ15内に吸引される。試料溶液21及び疑似マトリックス溶液22の吸引量は、例えばそれぞれ1μLであるが、これに限られるものではなく、疑似マトリックス溶液22は、例えば0.2〜0.4μLなどのようにできるだけ少量であることが好ましい。
試料溶液21の吸引時と疑似マトリックス溶液22の吸引時との間で、吸引動作や吐出動作は行わず、シリンジ15内では試料溶液21及び疑似マトリックス溶液22が空気層を挟むことなく隣接した状態で吸引する。
図2の例とは異なり、試料溶液21を吸引した後に空気を吸引した上で疑似マトリックス溶液22を吸引した場合には、試料溶液21と疑似マトリックス溶液22との間に空気層が挟まれることとなる。しかし、この場合には、疑似マトリックス溶液22を吸引する際に、疑似マトリックス溶液22の溶媒の種類によってシリンジ15内の空気層の影響で疑似マトリックス溶液22を正確な量で吸引することができず、疑似マトリックス溶液22の吸引量が少なくなってしまうことがある。その場合は、試料溶液21と疑似マトリックス溶液22との間には、図2の例のように、空気層が存在しないようにする。
図3は、シリンジ15による吸引動作及び吐出動作を行う際の制御部19による処理の一例を示したフローチャートである。図3に示すように、吸引動作を行う際には、まず第1収容部17内の試料溶液21が吸引され、その後に第2収容部18内の疑似マトリックス溶液22が吸引される(ステップS101,S102:吸引ステップ)。
その後、シリンジ15の先端部が試料気化室12に挿入され(ステップS103)、シリンジ15内の試料溶液21及び疑似マトリックス溶液22が一度に試料気化室12内に注入される(ステップS104:注入ステップ)。これにより、試料気化室12内で試料溶液21及び疑似マトリックス溶液22が気化し、カラム11内に導入される。
このように、本実施形態では、試料溶液21及び疑似マトリックス溶液22が同じシリンジ15内に吸引された後、試料気化室12に注入されて気化される。すなわち、試料溶液21と疑似マトリックス溶液22とが予め混合された後にシリンジ15内に吸引されるのではなく、それぞれの溶液が定められた量だけシリンジ15内に吸引される。
したがって、試料溶液21に対して疑似マトリックスが溶解しにくいような場合であっても、試料溶液21に疑似マトリックスが予め混合されてから吸引される場合のように、吸引した試料溶液21中の疑似マトリックスの量が一定にならなくなるのを防止することができる。その結果、疑似マトリックスを用いてマトリックス効果を効果的に低減し、正確に定量分析を行うことができる。
また、試料溶液21を第1収容部17から吸引して試料気化室12に注入する動作と、疑似マトリックス溶液22を第2収容部18から吸引して試料気化室12に注入する動作とが、それぞれ個別に行われるような構成と比較して、分析時の動作を簡略化することができる。
特に、本実施形態では、シリンジ15内に吸引された試料溶液21及び疑似マトリックス溶液22のうち、疑似マトリックス溶液22が試料溶液21よりも先に試料気化室12に注入される。したがって、疑似マトリックスが分析対象物質よりも先に気化して活性点と結合するため、後で気化した分析対象成分が活性点と結合しにくい。その結果、分析対象物質のピーク強度が小さくなるのを効果的に防止することができるため、より正確に定量分析を行うことができる。
図4Aは、シリンジ15内に溶液を吸引する際の態様の第1変形例を示した概略図である。この図4Aの例では、試料溶液21及び疑似マトリックス溶液22とは異なる溶液23が、さらにシリンジ15内に吸引されている。溶液23として、例えば内部標準物質を含む溶液を使用した場合は、同時に、内部標準法により定量値を補正することが可能であるし、洗浄用の溶媒を使用した場合は、シリンジ15内部に分析対象成分や疑似マトリックスの成分が残留することを防ぎ、シリンジ15中の成分をカラム11に導入することができる。
この溶液23としては、例えば試料溶液21及び疑似マトリックス溶液22の各溶媒とは異なる種類の溶媒を例示することができる。また、試料溶液21が検査試料の溶液である場合には、例えば標準試料の溶液23であってもよい。このように、試料溶液21及び疑似マトリックス溶液22とは異なる1種類又は複数種類の溶液23が、シリンジ15内に吸引されてもよい。この場合、シリンジ15内に吸引される各溶液21,22,23の順序は、図4Aに例示されるような順序に限られるものではない。
図4Bは、シリンジ15内に溶液を吸引する際の態様の第2変形例を示した概略図である。この図4Bの例では、試料溶液21と疑似マトリックス溶液22との間に空気層24が挟まれている。
試料溶液21と疑似マトリックス溶液22との間に空気層24が存在する場合は、上述の通り、溶液の溶媒の種類によっては空気層24の影響で後に吸引する溶液の吸引量が少なくなってしまうことがある。その場合には、図4Bのように、シリンジ15内に空気を吸引した後、疑似マトリックス溶液22を吸引することが好ましい。これにより、シリンジ15内の空気層24の影響で、その後に吸引する溶液の吸引量が正確にならない場合であっても、先に吸引した試料溶液21の吸引量は正確なので、分析結果に与える影響を小さくすることができる。
図4Cは、シリンジ15内に溶液を吸引する際の態様の第3変形例を示した概略図である。この図4Cの例では、シリンジ15内に疑似マトリックス溶液22が吸引された後に、空気層を挟むことなく試料溶液21が吸引される。これにより、後で吸引される試料溶液21の吸引量が、空気層の影響で不正確になるのを防止することができる。また、シリンジ15からの吐出後にシリンジ15内部に試料溶液21が残留しないため、ディスクリミネーションの影響を低減することができる。
図5は、本発明の第2実施形態に係るガスクロマトグラフにおいてシリンジ15による吸引動作及び吐出動作を行う際の制御部19による処理の一例を示したフローチャートである。本実施形態において、吸引動作を行う際には、まず第1収容部17内の試料溶液21が吸引され、その後に第2収容部18内の疑似マトリックス溶液22が吸引される(ステップS201,S202:吸引ステップ)。
その後、シリンジ15の先端部が試料気化室12に挿入され(ステップS203)、シリンジ15内の疑似マトリックス溶液22だけが先に試料気化室12内に注入される(ステップS204)。そして、一定時間が経過した後(ステップS205でYes)、シリンジ15内の試料溶液21が試料気化室12内に注入される(ステップS206)。
これにより、試料気化室12内で疑似マトリックス溶液22及び試料溶液21がこの順序で気化し、カラム11内に順次導入される。上記一定時間は、予め定められた時間であってもよいし、作業者が任意に設定可能であってもよい。上記ステップS204〜S206は、注入ステップを構成している。
このように、本実施形態では、シリンジ15内に吸引された試料溶液21及び疑似マトリックス溶液22を別々に試料気化室12に注入することができる。これにより、疑似マトリックスが気化して活性点と十分に結合した後、分析対象物質が気化してカラム11に導入されるため、分析対象成分が活性点と結合するのを効果的に防止することができ、さらに正確に定量分析を行うことができる。
以上の実施形態では、ガスクロマトグラフ質量分析装置(GC/MS)に本発明が適用される場合について説明した。ただし、MS部2を備えておらず、他の検出器で試料成分を検出するようなガスクロマトグラフにも本発明を適用することが可能である。
以下では、本発明についての効果確認試験の結果を説明する。この試験では、検査試料としてホウレンソウを使用した。検査試料の溶媒としては、アセトンとヘキサンを1:1の体積比で混合した溶媒を使用し、QuEChERS法により調製した。添加濃度は0.01mg/kgであり、分析対象物質としての農薬数は268成分である。疑似マトリックスはgulonolactone,3-ethoxy-1,2-propanediol,sorbitolである。
ガスクロマトグラフとしては、株式会社島津製作所製のGCMS−TQ8040(ガスクロマトグラフ質量分析装置)を使用した。オートサンプラとしては、株式会社島津製作所製のAOC−20i/sを使用し、試料と溶媒を注入するモードで注入を行った。カラムはRestek CorporationのRxiR-5Sil MS (L=30m,0.25mmI.D.,df=0.25μm)、プレカラムはSGE Analytical ScienceのDeactivated Fused Silica Tubing L=2m,0.32mm I.D.)、インサートはRestek CorporationのSky Liner, Splitless Single Taper Gooseneck w/Woolである。
GC部における分析条件は以下の通りである。
注入口温度:250℃
カラムオーブン温度:50℃(1分)−(25℃/分)−125℃−(10℃/分)−300℃−(15℃/分)
注入法:スプリットレス(高圧注入250kPa,1.5分)
キャリアガス制御:線速度(47.2cm/sec)
注入量:1μL(疑似マトリックス溶液の注入量1μL)
MS部における分析条件は以下の通りである。
イオン源温度:200℃
インターフェイス温度:250℃
測定モード:MRM
イベント時間:0.3秒
ループタイム:0.3秒
(1)注入量とピーク面積値との関係
注入する農薬標準試料の体積を0.4μL,0.6μL,0.8μL,1.0μLと変化させ、ピーク面積値との間に比例関係があるか否かを確認した。農薬標準試料と同時に試料気化室に注入する疑似マトリクス溶液は1.0μLである。
その結果、農薬標準試料の注入量とピーク面積値との関係は図6のようになり、比例関係が認められた。このような結果から、農薬標準試料1.0μLと疑似マトリックス溶液1.0μLの計2.0μLを注入しても試料気化室から溢れないことが確認できた。
(2)農薬標準試料のみを注入した場合と疑似マトリックス溶液を同時注入した場合とのピーク面積値の比較
試料気化室で吸着しやすい農薬であるホサロン、カラムの状態によりピークにテーリングが生じやすい農薬であるカルバリル、及び、マトリックス効果が表れにくい農薬であるdelta−BHCを用いて、それぞれの農薬標準試料のみを注入した場合と疑似マトリックス溶液を同時注入した場合とのピーク面積値は、下記表1の通りであった。
Figure 0006645507
図7Aは、カルバリル(5ppb)のみを注入した場合のピーク形状を示したグラフである。一方、図7Bは、カルバリル(5ppb)と疑似マトリックス溶液を同時注入した場合のピーク形状を示したグラフである。これらの結果から、疑似マトリックス溶液を同時注入した方が、農薬標準試料のみを注入した場合よりもピーク面積値が大きく、テーリングが生じにくいことが確認できた。
(3)農薬標準試料のみを注入した場合と疑似マトリックス溶液を同時注入した場合との検量線の比較
ホサロン、カルバリル及びdelta−BHCの各農薬標準試料について、農薬標準試料のみを注入した場合の検量線は、図8A〜図8Cの通りである。一方、上記の各農薬標準試料について、疑似マトリックス溶液を同時注入した場合の検量線は、図9A〜図9Cの通りである。
農薬標準試料のみを注入した場合(図8A〜図8C)よりも、疑似マトリックス溶液を同時注入した場合(図9A〜図9C)の方が検量線の直線性が高いことが確認できた。この結果から、図9A〜図9Cの検量線により定量を行うことで、正確な定量値を求めることができることがわかる。
(4)農薬標準試料のみを注入した場合と疑似マトリックス溶液を同時注入した場合との回収率の比較
図10は、農薬標準試料のみを注入した場合と疑似マトリックス溶液を同時注入した場合との回収率について示した図である。図10に示すように、農薬標準試料のみを注入した場合には、回収率が70〜150%の農薬数が全268成分中128成分であるのに対し、疑似マトリックス溶液を同時注入した場合には、回収率が70〜150%の農薬数が全268成分中254成分であった。
(5)検査試料に疑似マトリックス溶液を同時注入した場合の繰り返し分析精度
図11は、検査試料に疑似マトリックス溶液を同時注入した場合の繰り返し分析精度について示した図である。図11に示すように、相対標準偏差が10%RSDよりも小さい成分が、全268成分中243成分であり、全成分中の91%を占めていることが確認できた。この結果から、疑似マトリックスを同時注入することにより、ばらつきの少ない定量値を求めることができることがわかる。
1 GC部(ガスクロマトグラフ部)
2 MS部(質量分析部)
11 カラム
12 試料気化室
13 カラムオーブン
14 AFC
15 シリンジ
16 シリンジ駆動部
17 第1収容部
18 第2収容部
19 制御部
21 試料溶液
22 疑似マトリックス溶液
23 溶液
24 空気層
191 吸引制御部
192 注入制御部
193 流量制御部
194 分析制御部

Claims (2)

  1. カラムに接続された試料気化室内にシリンジから試料を注入することにより、前記試料気化室内で気化された試料を前記カラムに導入するガスクロマトグラフであって、
    第1溶媒中に試料を含む試料溶液を収容する第1収容部と、
    前記第1溶媒よりも極性が大きい第2溶媒に疑似マトリックスが溶解された疑似マトリックス溶液を収容する第2収容部と、
    前記第1収容部内の試料溶液、及び、前記第2収容部内の疑似マトリックス溶液を前記シリンジ内に吸引させる吸引制御部と、
    前記シリンジ内に吸引された試料溶液及び疑似マトリックス溶液を前記試料気化室に注入させることにより、当該試料気化室内で試料溶液及び疑似マトリックス溶液を気化させる注入制御部とを備え、
    前記吸引制御部は、前記第1収容部内の試料溶液を前記シリンジ内に吸引させた後、当該シリンジ内に前記第2収容部内の疑似マトリックス溶液を吸引させ、
    前記注入制御部は、前記シリンジ内の疑似マトリックス溶液を前記試料気化室に注入させた後、一定時間が経過してから前記シリンジ内の試料溶液を前記試料気化室に注入させることを特徴とするガスクロマトグラフ。
  2. カラムに接続された試料気化室内にシリンジから試料を注入するための試料注入方法であって、
    第1溶媒中に試料を含む試料溶液、及び、前記第1溶媒よりも極性が大きい第2溶媒に疑似マトリックスが溶解された疑似マトリックス溶液をシリンジ内に吸引する吸引ステップと、
    前記シリンジ内に吸引された試料溶液及び疑似マトリックス溶液を前記試料気化室に注入することにより、当該試料気化室内で試料溶液及び疑似マトリックス溶液を気化させる注入ステップとを備え、
    前記吸引ステップでは、前記試料溶液を前記シリンジ内に吸引させた後、当該シリンジ内に前記疑似マトリックス溶液を吸引させ、
    前記注入ステップでは、前記シリンジ内の疑似マトリックス溶液を前記試料気化室に注入させた後、一定時間が経過してから前記シリンジ内の試料溶液を前記試料気化室に注入させることを特徴とする試料注入方法。
JP2017547264A 2015-10-28 2015-10-28 ガスクロマトグラフ及び試料注入方法 Active JP6645507B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080462 WO2017072893A1 (ja) 2015-10-28 2015-10-28 ガスクロマトグラフ及び試料注入方法

Publications (2)

Publication Number Publication Date
JPWO2017072893A1 JPWO2017072893A1 (ja) 2018-08-09
JP6645507B2 true JP6645507B2 (ja) 2020-02-14

Family

ID=58629933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547264A Active JP6645507B2 (ja) 2015-10-28 2015-10-28 ガスクロマトグラフ及び試料注入方法

Country Status (5)

Country Link
US (1) US10900936B2 (ja)
EP (1) EP3370062B1 (ja)
JP (1) JP6645507B2 (ja)
CN (1) CN108351333B (ja)
WO (1) WO2017072893A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
WO2020031226A1 (ja) * 2018-08-06 2020-02-13 株式会社島津製作所 試料注入装置
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
JP2021117122A (ja) * 2020-01-27 2021-08-10 株式会社島津製作所 分析システム
EP4296663A1 (en) 2021-02-22 2023-12-27 Shimadzu Corporation Air measurement method using gas chromatograph and gas chromatograph analysis system
CN113567571B (zh) * 2021-06-30 2024-02-20 河南中烟工业有限责任公司 一种补偿卷烟主流烟气分析基质效应的分析保护剂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1165312B (de) * 1962-07-13 1964-03-12 Bodenseewerk Perkin Elmer Co Anordnung bei Probengebern fuer Gaschromatographen
US5686656A (en) * 1996-02-27 1997-11-11 Aviv Amirav Method and device for the introduction of a sample into a gas chromatograph
ITMI20040962A1 (it) * 2004-05-13 2004-08-13 Thermo Electron Spa Metodo e strumento per l'iniezione di campioni in gas cromatografia
JP4645408B2 (ja) * 2005-10-14 2011-03-09 株式会社島津製作所 ガスクロマトグラフ用試料注入装置
FR2950697B1 (fr) * 2009-09-25 2011-12-09 Biomerieux Sa Procede de detection de molecules par spectrometrie de masse
US9435774B2 (en) * 2013-05-30 2016-09-06 Shimadzu Corporation Gas chromatograph apparatus

Also Published As

Publication number Publication date
EP3370062B1 (en) 2024-02-28
WO2017072893A1 (ja) 2017-05-04
EP3370062A1 (en) 2018-09-05
CN108351333B (zh) 2020-10-30
US20180313793A1 (en) 2018-11-01
US10900936B2 (en) 2021-01-26
JPWO2017072893A1 (ja) 2018-08-09
EP3370062A4 (en) 2019-07-31
CN108351333A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6645507B2 (ja) ガスクロマトグラフ及び試料注入方法
Zhou et al. Critical review of development, validation, and transfer for high throughput bioanalytical LC-MS/MS methods
JP6052390B2 (ja) オートサンプラ
JP6035603B2 (ja) 試料導入装置
JP6611009B2 (ja) 質量分析を用いた多成分一斉分析方法及び多成分一斉分析用プログラム
CN104142374A (zh) 一种采用直接衍生/高效液相色谱测定电子烟烟液中羰基化合物含量的方法
Li et al. Simultaneous determination of flupyradifurone and its two metabolites in fruits, vegetables, and grains by a modified quick, easy, cheap, effective, rugged, and safe method using ultra high performance liquid chromatography with tandem mass spectrometry
Tu et al. Mercury speciation analysis in soil samples by ion chromatography, post-column cold vapor generation and inductively coupled plasma mass spectrometry
US9981263B2 (en) Flow control apparatus for sample fluids
JP5930075B2 (ja) サンプル濃縮装置
JP2006053004A (ja) 質量分析装置
JP5696787B2 (ja) 酸化ハロゲン酸分析方法
JP5948630B2 (ja) 質量分析を用いた定量分析方法と定量分析装置
Morales‐Cid et al. Direct automatic determination of free and total anesthetic drugs in human plasma by use of a dual (microdialysis–microextraction by packed sorbent) sample treatment coupled at‐line to NACE–MS
CN108562660B (zh) 一种烟用纸质包装材料中磷酸酯类增塑剂含量的检测方法
JP5707264B2 (ja) 試料導入装置
Weng et al. A sheath flow gating interface for the on-line coupling of solid-phase extraction with capillary electrophoresis
JP6180827B2 (ja) 試料導入装置
Liu et al. On-site solid phase extraction and HPLC determination of chloramphenicol in surface water and sewage
JP5195686B2 (ja) 液体クロマトグラフ装置
JP2018197669A (ja) ガスクロマトグラフ装置
CN102393436A (zh) 玩具材料中苯酚含量的测量方法
CN112881556A (zh) 一种卷烟主流烟气中挥发性、半挥发性有机酸的测定方法
Chen et al. Analysis of trace bromadiolone and brodifacoum in environmental water samples by ionic liquid ultrasound-assisted dispersive liquid–liquid microextraction and LC-MS/MS
RU2545087C1 (ru) Способ определения содержания хлорбензола в природных и сточных водах с использованием газовой хроматографии и с применением анализа равновесного пара

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151