JP6644222B2 - Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system - Google Patents

Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system Download PDF

Info

Publication number
JP6644222B2
JP6644222B2 JP2015235974A JP2015235974A JP6644222B2 JP 6644222 B2 JP6644222 B2 JP 6644222B2 JP 2015235974 A JP2015235974 A JP 2015235974A JP 2015235974 A JP2015235974 A JP 2015235974A JP 6644222 B2 JP6644222 B2 JP 6644222B2
Authority
JP
Japan
Prior art keywords
sulfur
tank
denitrification
sulfur material
denitrification treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015235974A
Other languages
Japanese (ja)
Other versions
JP2017100088A (en
Inventor
田中 康男
康男 田中
輝明 長谷川
輝明 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Prefectural Government
National Agriculture and Food Research Organization
Original Assignee
Chiba Prefectural Government
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Prefectural Government, National Agriculture and Food Research Organization filed Critical Chiba Prefectural Government
Priority to JP2015235974A priority Critical patent/JP6644222B2/en
Publication of JP2017100088A publication Critical patent/JP2017100088A/en
Application granted granted Critical
Publication of JP6644222B2 publication Critical patent/JP6644222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、例えば養豚排水の脱窒処理に関する。   The present invention relates to, for example, denitrification treatment of swine wastewater.

窒素成分は閉鎖性水域では総量規制が実施され、また、東京湾、伊勢湾、瀬戸内海に排出する事業場において窒素削減が実施され、その費用は増大傾向にある。さらに、畜産農業分野でも特に伊勢湾では総量規制対応が求められている。また、硝酸性窒素は水質汚濁防止法特定事業場に対し排水量に拘わらず厳しい濃度規制が課されている。このような中で、多様な窒素除去技術が普及しているが、コスト・管理面で一層負担の少ない除去技術は、畜産業及び各種産業分野で高いニーズがある。   The total amount of nitrogen components is regulated in closed waters, and nitrogen emission reductions are being made at business sites that discharge to Tokyo Bay, Ise Bay, and the Seto Inland Sea, and the costs are increasing. Furthermore, in the livestock and agriculture sector, especially in Ise Bay, there is a need to comply with total volume regulations. Strict concentration control of nitrate nitrogen is imposed on specified business sites of the Water Pollution Control Law regardless of the amount of wastewater. Under such circumstances, various nitrogen removal technologies have become widespread, but there is a high need in the livestock industry and various industrial fields for the removal technology with less burden on cost and management.

従来においては、窒素除去技術として生物学的な脱窒法が主流であり、脱窒の電子供与体としてメタノールが使用される場合が多い。しかしながら、メタノール購入の費用と適正添加量の調整作業は事業者にとって負担となり畜産分野での実用例は僅かである。このように、畜産分野等の各種産業分野では、メタノールに代わる安価で且つ添加量制御の不要な資材による脱窒手法を開発することが求められている。   Conventionally, biological denitrification is the mainstream of nitrogen removal technology, and methanol is often used as an electron donor for denitrification. However, the cost of purchasing methanol and the work of adjusting the appropriate addition amount are burdensome for the business operator, and there are few practical examples in the livestock industry. As described above, in various industrial fields such as the livestock industry, it is required to develop a denitrification method using materials that are inexpensive and do not require addition amount control instead of methanol.

ところで、脱窒技術として硫黄脱窒技術が知られている。硫黄脱窒技術では、処理水(排水)中の硫黄酸化脱窒細菌により硫黄を利用して硝酸性窒素を窒素ガスに還元すると同時に硫酸イオンを生成する。このようにして、硝酸性窒素が窒素ガスに変化し除去されることとなる。硫黄脱窒技術は種々の検討が行われているが、実用化が進まない要因の一つに低温期における脱窒活性の低下がある。このように、従来においては、通年対応型の硫黄脱窒技術は知られていなかった。   Incidentally, a sulfur denitrification technology is known as a denitrification technology. In the sulfur denitrification technology, sulfur oxidizing and denitrifying bacteria in treated water (effluent) reduce nitrate nitrogen to nitrogen gas using sulfur and simultaneously generate sulfate ions. In this way, nitrate nitrogen is changed to nitrogen gas and removed. Although various studies have been made on the sulfur denitrification technology, one of the factors that cannot be put into practical use is a decrease in the denitrification activity in a low temperature period. As described above, conventionally, a year-round type sulfur denitrification technology has not been known.

また、硫黄脱窒反応には菌体増殖の無機炭素源の添加および処理水中和剤の添加が必要であるが、この際にできるだけ簡易な手法が望まれる。さらに、資材層中に脱窒に由来する気泡が蓄積すると処理対象液と硫黄資材の円滑な接触が妨げられ、処理効率が低下する。これを防ぐための簡易な手段も必要である。   In addition, the sulfur denitrification reaction requires the addition of an inorganic carbon source for cell growth and the addition of a treated water neutralizing agent. In this case, a method as simple as possible is desired. Further, if bubbles derived from denitrification accumulate in the material layer, smooth contact between the liquid to be treated and the sulfur material is hindered, and the treatment efficiency is reduced. Simple means for preventing this is also required.

そこで、本発明は、上述した実情に鑑み、通年対応型での養豚排水の簡易な硫黄脱窒処理方法及び処理装置を提供することを目的とする。   In view of the above-mentioned circumstances, an object of the present invention is to provide a simple sulfur denitrification treatment method and a treatment apparatus for swine wastewater of a year-round type.

上記課題を解決するため鋭意研究を行った結果、養豚排水処理施設の特性を活用し、既存施設の曝気槽の通年で高い水温を介した加温条件下で、養豚排水を硫黄脱窒処理に供することで、低温期を含む通年にわたり養豚排水から脱窒を行うことができることを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above-mentioned problems, pig farm wastewater was subjected to sulfur denitrification treatment under the heating conditions through the high water temperature throughout the year in the aeration tank of the existing facility, utilizing the characteristics of the pig farm wastewater treatment facility. It has been found that the use of this method enables denitrification from swine wastewater over the whole year including the low temperature period, and has completed the present invention.

本発明は以下を包含する。
(1)養豚排水を硫黄脱窒処理に供する硫黄資材含有槽と、曝気槽内液温の熱を介して前記硫黄資材含有槽内の液温を加温する手段とを備える、養豚排水の脱窒処理装置。
(2)太陽熱を介して前記硫黄資材含有槽内の液温を加温する手段をさらに備える、(1)記載の脱窒処理装置。
(3)飽和重曹溶液を前記硫黄資材含有槽内に供給する手段をさらに備える、(1)又は(2)記載の脱窒処理装置。
(4)硫黄資材層に蓄積する窒素気泡を硫黄資材含有槽外面又は硫黄資材層中に設置した振動子による振動で脱泡する手段をさらに備える、(1)〜(3)のいずれか1記載の脱窒処理装置。
(5)養豚排水を、曝気槽内液温の熱を介した加温下で硫黄脱窒処理に供する工程を含む、養豚排水の脱窒処理方法。
(6)さらに、太陽熱を介した加温下で硫黄脱窒処理を行う、(5)記載の方法。
(7)飽和重曹溶液を養豚排水に供給して硫黄脱窒処理を行う、(5)又は(6)記載の方法。
(8)硫黄資材層に蓄積する窒素気泡を硫黄資材含有槽外面又は硫黄資材層中に設置した振動子による振動で脱泡しながら脱窒処理を行う、(5)〜(7)のいずれか1記載の方法。
The present invention includes the following.
(1) A method for removing swine wastewater, comprising: a sulfur material-containing tank for subjecting swine wastewater to a sulfur denitrification treatment; and means for heating the liquid temperature in the sulfur material-containing tank through the heat of the liquid temperature in the aeration tank. Nitrogen treatment equipment.
(2) The denitrification treatment apparatus according to (1), further comprising means for heating the liquid temperature in the sulfur-containing tank via solar heat.
(3) The denitrification treatment apparatus according to (1) or (2), further comprising means for supplying a saturated sodium bicarbonate solution into the sulfur material-containing tank.
(4) The device according to any one of (1) to (3), further comprising a unit for removing bubbles of nitrogen bubbles accumulated in the sulfur material layer by vibrating the vibrator provided on the outer surface of the sulfur material-containing tank or in the sulfur material layer. Denitrification equipment.
(5) A method for denitrifying swine wastewater, comprising the step of subjecting swine wastewater to sulfur denitrification while heating through the heat of the liquid temperature in an aeration tank.
(6) The method according to (5), further comprising performing a sulfur denitrification treatment under heating through solar heat.
(7) The method according to (5) or (6), wherein the saturated sodium bicarbonate solution is supplied to swine wastewater to perform a sulfur denitrification treatment.
(8) Any one of (5) to (7), wherein the nitrogen bubbles accumulated in the sulfur material layer are denitrified while being defoamed by the vibration of a vibrator provided on the outer surface of the sulfur material-containing tank or in the sulfur material layer. The method of claim 1.

本発明によれば、養豚排水処理施設において、通年にわたり養豚排水から脱窒を行うことができる。   According to the present invention, in a swine wastewater treatment facility, denitrification can be performed from swine wastewater over a year.

本発明に係る養豚排水の脱窒処理装置を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the denitrification processing apparatus of the swine wastewater concerning this invention. 実施例1における、冬期における加温システムの導入効果を示すグラフである。4 is a graph showing the effect of introducing the heating system in winter in Example 1. 実施例1における、冬期における窒素除去性能を示すグラフである。4 is a graph showing nitrogen removal performance in winter in Example 1. 実施例1における、脱窒装置内水温と窒素除去率の関係を示すグラフである。4 is a graph showing the relationship between the water temperature in the denitrification device and the nitrogen removal rate in Example 1. 実施例2における、浄化槽熱と太陽熱を併用した加温効果を示すグラフである。It is a graph in Example 2 which shows the heating effect which used septic tank heat and solar heat together. 実施例3における、アルカリ度と窒素除去率の関係を示すグラフである。9 is a graph showing the relationship between alkalinity and nitrogen removal rate in Example 3.

本発明に係る養豚排水の脱窒処理装置(以下、「本装置」と称する)は、養豚排水を硫黄脱窒処理に供する硫黄資材含有槽と、曝気槽内液温の熱を介して該硫黄資材含有槽内の液温を加温する手段とを備えるものである。また、本発明に係る養豚排水の脱窒処理方法は、本装置を用いて、養豚排水を、曝気槽内液温の熱を介した加温下で硫黄脱窒処理に供する工程を含むものである。   The swine wastewater denitrification treatment apparatus according to the present invention (hereinafter, referred to as “the present apparatus”) is a sulfur material-containing tank for subjecting swine wastewater to sulfur denitrification treatment, and the sulfur through a heat of the liquid temperature in the aeration tank. Means for heating the liquid temperature in the material-containing tank. Further, the method for denitrifying swine wastewater according to the present invention includes a step of using the present apparatus to subject swine wastewater to sulfur denitrification treatment under heating through the heat of the liquid temperature in the aeration tank.

硫黄脱窒処理においては、低温期において脱窒活性の低下がみられる。そこで、本発明では、養豚排水処理施設の曝気槽内液温の熱を介した加温下で養豚排水を硫黄脱窒処理に供することで、養豚排水中の硫黄酸化脱窒細菌による脱窒活性を維持し、通年で養豚排水から脱窒を行うことができる。   In the sulfur denitrification treatment, the denitrification activity decreases in the low temperature period. Therefore, in the present invention, the denitrification activity of sulfur oxidizing and denitrifying bacteria in swine wastewater is performed by subjecting swine wastewater to sulfur denitrification treatment under heating through the heat of the liquid temperature in the aeration tank of the swine wastewater treatment facility. And denitrification from swine wastewater throughout the year.

既存の養豚排水処理施設は、養豚排水を活性汚泥法に供するための曝気槽を備えている。活性汚泥法は、最初沈殿、曝気、最終沈殿の順から成る処理方式で、最初沈殿で先ず重力沈降によって物理的な処理が行われ、次いで、得られた上澄み液を曝気槽に投入する。曝気槽では活性汚泥によって好気的な微生物処理が行われ、有機物が分解される。最終沈殿では、活性汚泥を沈降させ、曝気槽へ汚泥の一部を返送することにより、汚泥濃度が調整される。また、最終沈殿後の上澄み液が処理水となる。曝気槽内では、ブロアーの熱及び地中温によって通年で高い水温(例えば、冬期でも15℃以上)が維持されている場合が多い。   Existing swine wastewater treatment facilities are equipped with an aeration tank for subjecting swine wastewater to the activated sludge process. The activated sludge method is a treatment method comprising first sedimentation, aeration, and final sedimentation. In the first sedimentation, physical treatment is first performed by gravity sedimentation, and then the obtained supernatant is put into an aeration tank. In the aeration tank, an aerobic microbial treatment is performed by activated sludge, and organic matter is decomposed. In the final sedimentation, the activated sludge is settled, and a part of the sludge is returned to the aeration tank, whereby the sludge concentration is adjusted. Further, the supernatant liquid after the final precipitation becomes treated water. In the aeration tank, a high water temperature throughout the year (for example, 15 ° C. or higher even in winter) is often maintained by the heat of the blower and the ground temperature.

ここで、養豚排水とは、豚舎の糞尿や洗浄水を含む排水を意味する。養豚排水には、硫黄脱窒反応(硫黄を利用して硝酸性窒素を窒素ガスに還元すると同時に硫酸イオンを生成する反応)を行う硫黄酸化脱窒細菌が存在する。本発明では、養豚排水中の硫黄酸化脱窒細菌により硝酸性窒素が窒素ガスへと変換され、窒素を系外へ放出することができる。   Here, swine raising wastewater means wastewater containing manure and washing water in a piggery. Swine wastewater contains sulfur oxidizing and denitrifying bacteria that perform a sulfur denitrification reaction (a reaction that reduces nitrate nitrogen to nitrogen gas using sulfur and simultaneously produces sulfate ions). In the present invention, nitrate nitrogen is converted into nitrogen gas by sulfur oxidizing and denitrifying bacteria in swine wastewater, and nitrogen can be released out of the system.

図1は、本装置の一例を示す模式図である。図1に示すように、本装置1は、硫黄資材含有槽2a及び2bと曝気槽3内液温の熱を介した加温手段4とを備える。曝気槽3は、既設浄化施設内の曝気槽であり、本装置を構成するものではない。   FIG. 1 is a schematic diagram illustrating an example of the present apparatus. As shown in FIG. 1, the present apparatus 1 includes sulfur material-containing tanks 2 a and 2 b and a heating unit 4 through the heat of the liquid temperature in the aeration tank 3. The aeration tank 3 is an aeration tank in an existing purification facility, and does not constitute the present apparatus.

硫黄資材含有槽2a及び2bは、例えば土木工事用土砂沈殿分離タンク(ノッチタンク)である。硫黄資材含有槽は、既存養豚排水処理施設の後段に設置するものであり、当該施設の放流水(養豚排水)を対象として脱窒処理を行う。硫黄資材含有槽2a及び2bとして、ノッチタンクを2槽の直列配置とする。各槽の内部には、仕切板により3つの区画(「第1〜第3区画」と称する)に分けられており、ノッチタンク2a及び2bの第1区画5a及び第2区画5bの底部に硫黄資材6を投入し、ノッチタンク2aの第1区画5aに既存施設からの処理水(養豚排水;原水)7を流入させ、ノッチタンク2bの第3区画5cまで自然流下させる。液は、流下中に資材層を通過し、この際の硫黄脱窒反応により硝酸性窒素が窒素ガスに変化し、系外へ除去される。   The sulfur material-containing tanks 2a and 2b are, for example, earth and sand sedimentation separation tanks (notch tanks) for civil engineering work. The sulfur material-containing tank is to be installed after the existing swine wastewater treatment facility, and performs denitrification for the effluent (swine wastewater) from the facility. As the sulfur material-containing tanks 2a and 2b, two notch tanks are arranged in series. The inside of each tank is divided into three sections (referred to as "first to third sections") by a partition plate, and sulfur is added to the bottom of the first section 5a and the second section 5b of the notch tanks 2a and 2b. Material 6 is charged, and treated water (pig raising wastewater; raw water) 7 from the existing facility flows into the first section 5a of the notch tank 2a, and flows down naturally to the third section 5c of the notch tank 2b. The liquid passes through the material layer while flowing down, and the nitrate nitrogen is changed into nitrogen gas by the sulfur denitrification reaction at this time, and is removed out of the system.

ここで、硫黄資材としては、例えば農業用に土壌pH調整用資材として流通している粉末硫黄、工業原料として流通している粗砕硫黄が挙げられる。粉末硫黄の場合には、疎水性のため、中性洗剤で親水化処理してから用いる。硫黄資材は、例えば有効容積500Lのノッチタンク当たり100〜138.2kg(好ましくは100kg)を投入する。一方、処理水は、例えば流入量320〜1460mL/分(好ましくは336〜491mL/分)、水有効容積当たりの水理学的滞留時間(HRT)0.5〜2.2日(好ましくは1.4〜2.1日)で連続投入される。槽内の硫黄資材表面には、硫黄酸化脱窒細菌が増殖し、硫黄を利用した脱窒が進行する。   Here, examples of the sulfur material include powdered sulfur that is distributed as a material for adjusting soil pH for agriculture, and coarse sulfur that is distributed as an industrial raw material. In the case of powdered sulfur, since it is hydrophobic, it is used after being subjected to hydrophilization treatment with a neutral detergent. As the sulfur material, for example, 100 to 138.2 kg (preferably 100 kg) is supplied per notch tank having an effective volume of 500 L. On the other hand, the treated water has, for example, an inflow rate of 320 to 1460 mL / min (preferably 336 to 491 mL / min) and a hydraulic retention time (HRT) per effective volume of water of 0.5 to 2.2 days (preferably 1.4 to 2.1 days). It is put continuously. Sulfur oxidizing and denitrifying bacteria grow on the surface of the sulfur material in the tank, and denitrification using sulfur proceeds.

硫黄酸化脱窒細菌は、硫黄を利用して硝酸性窒素を窒素ガスに還元すると同時に硫酸イオンを生成する。従って、硫黄脱窒が活性化するとpHは低下傾向となる。そこで、処理水のpH低下を防止すると同時に硫黄脱窒細菌の増殖及び脱窒反応に必要な炭酸イオンを供給するため、重曹を飽和濃度以上に投入した重曹貯槽8を設置して、自動灌水器により水道水を給水するか、又はポンプで循環送水することで調整された飽和重曹溶液を重曹貯槽8からノッチタンク2aの第1区画5aに適宜流入させる(本発明における「飽和重曹溶液を硫黄資材含有槽内に供給する手段」に相当)。例えば、下部に重曹を沈殿させた重曹貯槽に、底部から水道水を12時間毎に1〜4分間(好ましくは1分間)、流入量679〜2020mL/分(好ましくは800mL/分)で通水し、飽和重曹溶液を重曹貯槽の上部よりノッチタンクへと流出させる。また、ノッチタンク2bの第3区画5cに投入した循環ポンプ9により、循環ライン10を介して重曹貯槽8に一部の液を循環させてもよい。あるいは、簡易な手法として、ノッチタンク2aの第3区画5cの底部に重曹11を所要量充填しても良い。充填された重曹は徐々に溶解し、循環ライン12によってノッチタンク2aおよびノッチタンク2bに拡散し硫黄脱窒反応と中和に効果を発揮する。   Sulfur oxidizing and denitrifying bacteria utilize sulfur to reduce nitrate nitrogen to nitrogen gas and simultaneously produce sulfate ions. Therefore, when sulfur denitrification is activated, the pH tends to decrease. Therefore, in order to prevent the pH of the treated water from dropping and to supply carbonate ions necessary for the growth and denitrification of sulfur denitrifying bacteria, a baking soda storage tank 8 containing baking soda at a saturation concentration or higher is installed. A saturated baking soda solution adjusted by supplying tap water or circulating water with a pump from the baking soda storage tank 8 into the first section 5a of the notch tank 2a as appropriate (refer to the "saturated baking soda solution Means for supplying into the containing tank "). For example, tap water is passed from the bottom to the baking soda storage tank with baking soda precipitated at the bottom for 1 to 4 minutes every 12 hours (preferably 1 minute), with an inflow of 679 to 2020 mL / min (preferably 800 mL / min). Then, let the saturated baking soda solution flow out from the upper part of the baking soda storage tank to the notch tank. In addition, a part of the liquid may be circulated to the baking soda storage tank 8 through the circulation line 10 by the circulation pump 9 charged into the third section 5c of the notch tank 2b. Alternatively, as a simple method, a required amount of baking soda 11 may be filled in the bottom of the third section 5c of the notch tank 2a. The filled baking soda is gradually dissolved and diffused into the notch tank 2a and the notch tank 2b by the circulation line 12, and exerts effects on sulfur denitrification and neutralization.

一方、硫黄酸化脱窒細菌の脱窒活性の維持に必要な水温を確保するため、ノッチタンク2bの第3区画5cに投入した循環ポンプ13でノッチタンク2aの第1区画5aに一部の液を循環させる。この循環ライン12の一部を加温手段4として水道用ステンレスフレキシブル管を設置し、既存養豚排水処理施設の曝気槽3内液温を利用して本装置1の加温を行う。ステンレスフレキシブル管は、例えば長さ5〜10m(好ましくは10m)でコイル状に巻いた形態で曝気槽内の液中に浸漬し、当該曝気槽内液の熱をノッチタンク内液に移行させる。   On the other hand, in order to secure the water temperature necessary for maintaining the denitrifying activity of the sulfur oxidizing and denitrifying bacteria, a part of the liquid is supplied to the first section 5a of the notch tank 2a by the circulation pump 13 which is charged into the third section 5c of the notch tank 2b. Circulate. A part of the circulation line 12 is provided with a stainless steel flexible pipe for water supply as a heating means 4, and the apparatus 1 is heated using the liquid temperature in the aeration tank 3 of the existing swine wastewater treatment facility. The stainless flexible tube is immersed in a liquid in an aeration tank in a form of, for example, a coil having a length of 5 to 10 m (preferably 10 m) and transfers the heat of the liquid in the aeration tank to the liquid in the notch tank.

さらに、厳寒期の加温補助のために、太陽熱を介した加温手段として太陽熱温水パネル14を設置することができる。例えばポリカーボネート製の2枚の薄板の間を流れる清水を太陽光で加温し、その温水を太陽電池15駆動のポンプ16でノッチタンク内の液中に浸漬したステンレスフレキシブル管17に循環させて、熱をノッチタンク内液に移行させる。上記同様に、当該ステンレスフレキシブル管は、例えば長さ10mでコイル状に巻いた形態でノッチタンク内の液中に配置される。   Further, a solar hot water panel 14 can be installed as a heating means via solar heat to assist heating in a severe cold season. For example, clear water flowing between two thin plates made of polycarbonate is heated by sunlight, and the hot water is circulated by a pump 16 driven by a solar cell 15 through a stainless flexible pipe 17 immersed in a liquid in a notch tank. The heat is transferred to the liquid in the notch tank. Similarly to the above, the stainless flexible tube is disposed in the liquid in the notch tank, for example, in the form of a coil having a length of 10 m.

これらの加温システムによれば、低温期でもノッチタンク内の水温を一定以上に保持することができる。   According to these heating systems, the water temperature in the notch tank can be maintained at a certain level or more even in the low temperature period.

処理水18は、適宜ノッチタンク2bの第3区画5cから系外に排出することができる。   The treated water 18 can be appropriately discharged from the third section 5c of the notch tank 2b to the outside of the system.

振動子19は、硫黄資材表面から発生した窒素気泡が硫黄資材層中に埋封され硫黄資材と原水との接触を阻害するのを防ぐため常時又は定期的に硫黄資材層を振動させ脱泡することができる。当該振動子は、例えば空気圧式のバイブレーター又はノッカー等でノッチタンクの外面又は資材層内に配置される。   The vibrator 19 vibrates or defoams the sulfur material layer constantly or periodically to prevent nitrogen bubbles generated from the surface of the sulfur material from being embedded in the sulfur material layer and hindering contact between the sulfur material and the raw water. be able to. The vibrator is disposed on the outer surface of the notch tank or in the material layer by, for example, a pneumatic vibrator or a knocker.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples.

〔実施例1〕冬期における加温システム(曝気槽液温の利用)導入効果と脱窒活性について1. 実験条件
1-1. 脱窒処理装置
有効容積500Lの市販の角形土砂沈殿分離タンク(ノッチタンク)(スイコー株式会社、尼崎)を2槽連結して、水有効容積1000Lのリアクターとして使用した。タンクの内部は仕切板で3区画(「第1〜第3区画」と称する)に分けられ、第1区画から流入した水は仕切板と底面の間隙を通過し、第2区画の上部より第3区画に越流し処理水として排出される。そのため、各タンクの第1区画と第2区画に粉末硫黄を投入することで、硫黄資材と流下水の効率良い接触が可能である。
[Example 1] Introduction effect of heating system (use of aeration tank liquid temperature) and denitrification activity in winter 1. Experimental conditions
1-1. Denitrification treatment equipment Two commercially available rectangular sedimentation separation tanks (notch tanks) with an effective volume of 500 L (Suiko Co., Amagasaki) were connected and used as a reactor with an effective water volume of 1000 L. The inside of the tank is divided into three sections (referred to as `` first to third sections '') by a partition plate, and the water flowing from the first section passes through the gap between the partition plate and the bottom surface, and flows from the top of the second section to the second section. Overflows into three compartments and is discharged as treated water. Therefore, by charging the powdered sulfur into the first section and the second section of each tank, efficient contact between the sulfur material and the flowing water is possible.

1-2. 硫黄資材
硫黄資材には、ブルーベリー栽培などで使用される土壌pH調整用粉末硫黄(硫黄分99%以上、200メッシュパス、株式会社自然の休憩所、香川)を用いた。粉末硫黄は撥水性のため、そのままでは脱窒処理に使用不可能であるが、家庭用中性洗剤を適量添加し撹拌することで、親水化し水中に沈降するようになる。親水化処理した粉末硫黄を、ノッチタンク1槽当たり100kg、合計200kgを投入した。
1-2. Sulfur material As the sulfur material, powdered sulfur for soil pH adjustment used in cultivation of blueberries and the like (sulfur content: 99% or more, 200 mesh pass, Nature Rest Office, Kagawa) was used. Powdered sulfur cannot be used for denitrification treatment as it is because of its water repellency. However, by adding an appropriate amount of a neutral detergent for home use and stirring, it becomes hydrophilic and precipitates in water. A total of 200 kg of the powdered sulfur subjected to the hydrophilization treatment was charged at 100 kg per one notch tank.

1-3. 試験方法
試験の処理対象水(養豚排水;脱窒装置への流入水)は既設浄化施設の処理水貯留槽から、チュービングポンプにより流入量336〜1460mL/分、水有効容積当たりの水理学的滞留時間(HRT)0.5〜2.1日で脱窒装置へ連続投入した。なお、試験開始後に流入水の硝酸性窒素濃度が100mg/L以下に低下してしまったため、硝酸ナトリウム溶液貯留タンクを設置し薬注ポンプで溶液を流入水に添加することで、硝酸性窒素濃度を200mg/L程度にまで高めて試験を行った。硫黄酸化脱窒細菌の植種は行わなかった。
運転は、冬期(2014年12月18日から2015年3月3日)の76日間行った。
1-3. Test method The water to be treated in the test (swine wastewater; influent water to the denitrification equipment) is supplied from the treated water storage tank of the existing purification facility by a tubing pump with an inflow of 336 to 1460 mL / min. It was continuously charged into the denitrification unit with a hydraulic residence time (HRT) of 0.5 to 2.1 days. Since the concentration of nitrate nitrogen in the influent water dropped to 100 mg / L or less after the start of the test, a sodium nitrate solution storage tank was installed, and the solution was added to the influent water by a chemical injection pump, so that the nitrate nitrogen concentration was reduced. Was increased to about 200 mg / L for the test. Inoculation of sulfur oxidizing and denitrifying bacteria was not performed.
The operation was carried out for 76 days during the winter season (December 18, 2014 to March 3, 2015).

1-4. 重曹添加装置の設置
脱窒反応で生成する硫酸イオンにより、処理水が酸性化することを防ぐとともに脱窒反応に必要な炭酸イオンを供給するため、脱窒装置には適宜飽和重曹溶液の添加を行った。重曹添加装置には、上部開放式で角型のプラスチック製容器(水有効容積約68L)を用い、一般工業用重曹25kgを投入した。この投入量は飽和濃度を大きく上回るため大部分は溶解せずに容器下部に沈殿した。この容器の底部から水道水をタイマー式散水器(G225;タカギ,北九州)により12時間毎に1分間、流入量約0.8 L/分で通水し、飽和重曹溶液を上部より流出させた。沈殿重曹は徐々に減少するので、消失前に重曹を補充した。
1-4. Installation of baking soda addition equipment In order to prevent the treated water from being acidified by the sulfate ions generated by the denitrification reaction and to supply the carbonate ions necessary for the denitrification reaction, the denitrification equipment should be equipped with a saturated sodium bicarbonate as appropriate. Solution addition was performed. In the baking soda addition apparatus, an open-top, square-shaped plastic container (effective water volume: about 68 L) was used, and 25 kg of baking soda for general industrial use was charged. Since this input amount greatly exceeded the saturation concentration, most of the amount did not dissolve and settled at the bottom of the container. Tap water was passed from the bottom of the container by a timer-type sprinkler (G225; Takagi, Kitakyushu) at an inflow rate of about 0.8 L / min for 1 minute every 12 hours, and a saturated sodium bicarbonate solution was allowed to flow out from the top. Since the amount of precipitated sodium bicarbonate gradually decreased, sodium bicarbonate was supplemented before disappearing.

1-5. 加温システム(曝気槽液温の利用)の導入
試験開始51日目以降の2015年2月6日から2015年3月3日までの25日間は、脱窒装置内の加温対策として、第2槽目の第3区画に水中ポンプを循環ポンプとして設置し、液を第1槽目の第1区画に返送するラインを組み込んだ。この循環ラインの一部をステンレスフレキシブル管(2月18日まで5m、その後10mに延長)とし、コイル状に巻いたフレキシブル管を既設浄化施設の曝気槽混合液中に浸漬させ、曝気槽混合液の熱を脱窒装置内に移行させた。
1-5. Introduction of heating system (use of aeration tank liquid temperature) Heating in the denitrification equipment for 25 days from February 6, 2015 to March 3, 2015 after the 51st day of the test As a countermeasure, a submersible pump was installed as a circulation pump in the third section of the second tank, and a line for returning the liquid to the first section of the first tank was incorporated. A part of this circulation line is a stainless flexible tube (5 m until February 18, then extended to 10 m), and the coiled flexible tube is immersed in the aeration tank mixture of the existing purification facility, and the aeration tank mixture Was transferred to the denitrifier.

2. 結果
2-1. 冬期における加温システムの導入効果
図2に示すように、加温システム(曝気槽液温の利用)の導入前の平均外気温6.3℃に対して、平均装置内水温は10.0℃で推移した。これに対して、加温システム導入後では平均外気温6.7℃に対して平均装置内水温は15.4℃で推移した。加温システム導入前後で平均外気温にはほぼ変化がないことから、装置内水温の上昇は曝気槽液温がステンレスフレキシブル管を備えた循環ラインにより、装置内に効果的に移送されたと考えられる。活性汚泥法の曝気槽内の液は、低温期でもブロアーの熱及び地中温によって外気温より高く保持されていたと推測される。なお、装置内水温は、曝気槽液温に対して−1.0±0.7℃(平均±標準偏差)の差で追随したことから、本システムにより低温期でも曝気槽内の液温と同程度まで加温可能といえる。
2. Result
2-1. Effect of introducing the heating system in winter As shown in Fig. 2, the average outside water temperature is 6.3 ° C before the introduction of the heating system (using the aeration tank liquid temperature), whereas the average internal water temperature is 10.0 ° C. It was changed. In contrast, after the introduction of the heating system, the average internal water temperature changed to 15.4 ° C against the average outside temperature of 6.7 ° C. Since the average outside air temperature hardly changed before and after the introduction of the heating system, it was considered that the rise in water temperature in the device was due to the liquid temperature of the aeration tank being effectively transferred into the device by the circulation line equipped with stainless flexible tubes. . It is presumed that the liquid in the aeration tank of the activated sludge method was maintained at a higher temperature than the outside temperature due to the heat of the blower and the ground temperature even in the low temperature period. Since the water temperature in the equipment followed the aeration tank liquid temperature by a difference of -1.0 ± 0.7 ° C (mean ± standard deviation), this system increased the temperature of the aeration tank to the same level as the liquid temperature in the aeration tank even in the low temperature period. It can be said that it is possible to warm.

2-2. 冬期における窒素除去性能
図3に示すように、加温システム導入前の原水の硝酸性窒素濃度は155.4±43.3mg/Lに対して、処理水の硝酸性窒素濃度は112.9±41.5mg/Lと大きな変化は見られず、窒素除去率は平均29.0%と低かった。この期間中の装置内水温は7.0〜13.0℃の範囲で推移しており、平均10.0℃であった。一般に硫黄脱窒素は、10℃未満で活性が顕著に低下することが確認されていることから、低温期に脱窒活性を維持するためには加温が必要不可欠である。
2-2. Nitrogen removal performance in winter As shown in Fig. 3, the nitrate concentration of raw water before introduction of the heating system was 155.4 ± 43.3 mg / L, while the nitrate concentration of treated water was 112.9 ± 41.5 There was no significant change at mg / L, and the nitrogen removal rate was low at an average of 29.0%. During this period, the water temperature in the apparatus fluctuated in the range of 7.0 to 13.0 ° C., and was 10.0 ° C. on average. In general, it has been confirmed that the activity of sulfur denitrification is remarkably reduced below 10 ° C. Therefore, heating is indispensable for maintaining the denitrification activity in a low temperature period.

加温システム導入後は、原水の硝酸性窒素濃度167.0±28.8mg/Lに対して、処理水の硝酸性窒素濃度は62.4±19.0mg/Lまで低下した(平均窒素除去率66.6%)。加温システム導入後の処理水の硝酸性窒素は徐々に低下し、65日目には除去率で82.4%まで上昇している。処理水の硝酸性窒素濃度の平均は62.4mg/Lであることから、一般基準値である100mg/L以下まで低下できたといえる。この期間中の水温は13.5〜17.7℃の範囲で推移しており、平均15.4℃であった。このことが、脱窒活性上昇の要因と考えられる。   After the introduction of the heating system, the nitrate nitrogen concentration of the treated water decreased to 62.4 ± 19.0 mg / L against the nitrate nitrogen concentration of the raw water of 167.0 ± 28.8 mg / L (average nitrogen removal rate 66.6%). The nitrate nitrogen in the treated water after the introduction of the heating system gradually decreased, and on the 65th day, the removal rate increased to 82.4%. Since the average nitrate nitrogen concentration of the treated water was 62.4 mg / L, it can be said that the concentration was reduced to 100 mg / L or less, which is the general standard value. During this period, the water temperature was in the range of 13.5-17.7 ° C, averaging 15.4 ° C. This is considered to be a factor of the increase in the denitrification activity.

2-3. 脱窒装置内水温と窒素除去率の関係
図4に示すように、装置内水温と窒素除去率の関係はおおむね直線的で、水温が上昇するほど除去率は高くなる傾向を示した。加温システム導入後の除去率はおおむね60%以上が確保できており、水温15.5℃で82.4%の除去率が得られたことから、装置内の水温を15℃以上に保持することが目標といえる。逆に水温10℃未満では実用的な性能は発揮されなかった。
2-3. Relationship between denitrification equipment water temperature and nitrogen removal rate As shown in Fig. 4, the relationship between water temperature in the equipment and nitrogen removal rate is almost linear, and the removal rate tends to increase as the water temperature increases. Was. The removal rate after the introduction of the heating system was approximately 60% or more, and a removal rate of 82.4% was obtained at a water temperature of 15.5 ° C. Therefore, the goal was to maintain the water temperature in the device at 15 ° C or more. I can say. Conversely, if the water temperature was lower than 10 ° C., no practical performance was exhibited.

〔実施例2〕太陽熱温水パネルの導入に伴う脱窒装置内水温の保温効果について
1. 実験条件
1-1. 脱窒処理装置
脱窒処理装置は、実施例1と同様のものであった。
[Example 2] Heat retention effect of water temperature in denitrification equipment accompanying introduction of solar hot water panel
1. Experimental conditions
1-1. Denitrification treatment device The denitrification treatment device was the same as in Example 1.

1-2. 硫黄資材
硫黄資材には、工業用に使用されている粗砕硫黄を使用した。粗砕硫黄は微粉末に近いものから直径40mm程度の粗粒までを含む資材である。粉末硫黄と異なり、そのままでも水中に沈降するので親水化処理は不要である。ノッチタンク1槽当たり100kg、合計200kgを投入した。
1-2. Sulfur material Crude sulfur used for industrial purposes was used as the sulfur material. Crushed sulfur is a material that includes materials ranging from close to fine powder to coarse particles with a diameter of about 40 mm. Unlike powdered sulfur, it settles in water as it is, so that no hydrophilic treatment is required. 100kg per notch tank, a total of 200kg was injected.

1-3. 試験方法
脱窒装置への流入水(養豚排水)は、既設浄化施設の処理水貯留槽からチュービングポンプにより流入量395〜682mL/分、水有効容積当たりのHRT 1.0〜1.8日で脱窒装置へ連続投入した。なお、流入水の硝酸性窒素濃度を高めるため、硝酸ナトリウム溶液貯留タンクを設置し薬注ポンプで溶液を流入水に添加することで、硝酸性窒素濃度を178〜513mg/L程度にまで高めて試験を行った。硫黄酸化脱窒細菌の植種は行わなかった。
運転は、2015年4月23日〜2015年5月18日の間、試験を行った。
1-3. Test method The inflow water (swine wastewater) into the denitrification equipment is supplied from the treated water storage tank of the existing purification facility by a tubing pump at an inflow rate of 395 to 682 mL / min, and HRT per effective water volume of 1.0 to 1.8 days. It was continuously charged into the denitrification equipment. In order to increase the concentration of nitrate nitrogen in the influent water, a sodium nitrate solution storage tank was installed, and the solution was added to the influent water by a chemical injection pump to increase the nitrate nitrogen concentration to about 178 to 513 mg / L. The test was performed. Inoculation of sulfur oxidizing and denitrifying bacteria was not performed.
The operation was tested between April 23, 2015 and May 18, 2015.

1-4. 重曹添加装置の設置
重曹添加装置の設置は、実施例1と同様であった。
1-4. Installation of baking soda addition device The installation of baking soda addition device was the same as in Example 1.

1-5. 加温システム(曝気槽液温の利用)の導入
加温システム(曝気槽液温の利用)の導入は、実施例1と同様であった。
1-5. Introduction of heating system (use of aeration tank liquid temperature) Introduction of a heating system (use of aeration tank liquid temperature) was the same as in Example 1.

1-6. 加温システム(太陽熱温水パネルの利用)の導入
太陽熱温水パネルを用いた加温システムを導入した。内部が中空のポリカーボネート製ボード(長さ1.8m×幅0.9m×厚さ4.5mm、6L容量、ソフト・エネルギー研究所、柏)2枚をホースで繋げて太陽熱温水パネルとした。パネル内部で太陽光により温められた水は、直射光受光時にのみ太陽電池駆動のポンプにより、パネルとステンレスフレキシブル管(長さ10m)の間を循環する。このフレキシブル管を脱窒装置内の液中に浸漬させることで、太陽光熱を移行させた。
1-6. Introduction of heating system (use of solar hot water panel) A heating system using a solar hot water panel was introduced. Two hollow polycarbonate boards (1.8m long x 0.9m wide x 4.5mm thick, 6L capacity, Soft Energy Laboratory, Kashiwa) were connected with a hose to form a solar hot water panel. Water heated by sunlight inside the panel is circulated between the panel and the stainless flexible pipe (length 10m) by a solar cell driven pump only when receiving direct light. By immersing this flexible tube in the liquid in the denitrification device, the solar heat was transferred.

2. 結果
浄化槽熱と太陽熱を併用した加温効果
図5に示すように、日照があり太陽電池が良好に稼働しているときのデータを示した。この期間の各温度は、装置内水温は22.4〜32.4℃(29.3±3.4℃)、外気温21.5〜27.4℃(24.5±2.4℃)、曝気槽液温22.1〜26.3℃(24.7±1.4℃)であった。特に21日目の装置内水温は32.4℃まで上昇し、外気温の+10.5℃、曝気槽液温の+7.1℃まで高まった。これは太陽光熱が装置に移行されたためと考えられる。また、装置内水温と外気温の温度差は4.8±2.9℃、装置内水温と曝気槽液温の温度差は4.6±2.7℃であったことから、太陽熱利用により外気温、曝気槽液温よりも約5℃水温を高められると考えられる。なお、太陽熱の利用は日照のあるときに限られることから、厳寒期の加温補助や、曝気槽の運転が不良もしくは急な故障の場合の応急的対応として活用メリットがある。
2. Results Heating effect using combined use of septic tank heat and solar heat As shown in Fig. 5, data is shown when the solar cell is operating well under sunshine. During this period, the water temperature in the equipment was 22.4 to 32.4 ° C (29.3 ± 3.4 ° C), the outside temperature was 21.5 to 27.4 ° C (24.5 ± 2.4 ° C), and the aeration tank liquid temperature was 22.1 to 26.3 ° C (24.7 ± 1.4 ° C). there were. In particular, the water temperature inside the equipment rose to 32.4 ° C on the 21st day, rising to an outside temperature of + 10.5 ° C and an aeration tank liquid temperature of 7.1 ° C. This is probably because solar heat was transferred to the device. The difference between the internal water temperature and the outside air temperature was 4.8 ± 2.9 ° C, and the temperature difference between the internal water temperature and the aeration tank liquid temperature was 4.6 ± 2.7 ° C. It is thought that the water temperature can be raised by about 5 ° C. Since the use of solar heat is limited to when there is sunshine, there is a merit of using it as a heating aid during a severe cold season or as an emergency measure in the case of poor or sudden malfunction of the aeration tank.

〔実施例3〕重曹添加による炭素源の供給が脱窒活性に及ぼす影響について
1. 実験条件
1-1. 脱窒処理装置
脱窒処理装置は、実施例1と同様のものであった。
[Example 3] Effect of supply of carbon source by adding sodium bicarbonate on denitrification activity
1. Experimental conditions
1-1. Denitrification treatment device The denitrification treatment device was the same as in Example 1.

1-2. 硫黄資材
硫黄資材には、工業用に使用されている粗砕硫黄を使用した。粗砕硫黄は微粉末に近いものから直径40mm程度の粗粒までを含む資材である。粉末硫黄と異なり、そのままでも水中に沈降するので親水化処理は不要である。ノッチタンクの第1槽目のタンクには130kg、第2槽目のタンクには138.2kgの合計268.2kgを投入した。
1-2. Sulfur material Crude sulfur used for industrial purposes was used as the sulfur material. Crushed sulfur is a material that includes materials ranging from close to fine powder to coarse particles with a diameter of about 40 mm. Unlike powdered sulfur, it is settled in water as it is, so that no hydrophilization treatment is required. A total of 268.2 kg of 130 kg was put into the first notch tank and 138.2 kg was put into the second tank.

1-3. 試験方法
脱窒装置への流入水(養豚排水)は、既設浄化施設の処理水貯留槽からチュービングポンプにより流入量320〜453mL/分、水有効容積当たりのHRT 1.5〜2.2日で脱窒装置へ連続投入した。なお、流入水の硝酸性窒素濃度を高めるため、硝酸ナトリウム溶液貯留タンクを設置し薬注ポンプで溶液を流入水に添加することで、硝酸性窒素濃度を329〜440mg/L程度にまで高めて試験を行った。実施例2からの継続試験のため、硫黄酸化脱窒細菌の植種を行った。
運転は、2015年9月7日〜2015年10月13日の間、試験を行った。
1-3. Test method The inflow water (swine effluent) into the denitrification equipment is from the treated water storage tank of the existing purification facility using a tubing pump with an inflow of 320 to 453 mL / min, and an HRT of 1.5 to 2.2 days per effective water volume. It was continuously charged into the denitrification equipment. In order to increase the concentration of nitrate nitrogen in the influent water, a sodium nitrate solution storage tank was installed, and the solution was added to the influent water with a chemical injection pump to increase the nitrate nitrogen concentration to about 329 to 440 mg / L. The test was performed. For continued testing from Example 2, inoculation of sulfur oxidizing and denitrifying bacteria was performed.
The operation was tested between September 7, 2015 and October 13, 2015.

1-4. 重曹添加装置の設置
重曹添加装置の設置は、実施例1と同様であった。上部開放式で角型のプラスチック製容器(水有効容積約68L)を用い、一般工業用重曹25kgを投入した。この投入量は飽和濃度を大きく上回るため大部分は溶解せずに容器下部に沈殿した。この容器の底部から水道水をタイマー式散水器(G225;タカギ,北九州)により、9/7〜9/29までは12時間毎に3分間、流入量780〜2020mL/分、9/30〜10/13までは12時間毎に4分間、流入量679〜845mL/分で通水し、飽和重曹溶液を上部より流出させた。沈殿重曹は徐々に減少するので、消失前に重曹を補充した。
1-4. Installation of baking soda addition device The installation of baking soda addition device was the same as in Example 1. Using an open-top, rectangular plastic container (effective water volume: about 68 L), 25 kg of general industrial baking soda was charged. Since this input amount greatly exceeded the saturation concentration, most of the amount did not dissolve and settled at the bottom of the container. From the bottom of this container, tap water is sprinkled with a timer-type sprinkler (G225; Takagi, Kitakyushu) for 3 minutes every 12 hours from 9/7 to 9/29, with an inflow of 780 to 2020 mL / min, and 9/3 to 10 Water was passed at a flow rate of 679 to 845 mL / min for 4 minutes every 12 hours until / 13, and a saturated sodium bicarbonate solution was allowed to flow out from the top. Since the amount of precipitated sodium bicarbonate gradually decreased, sodium bicarbonate was supplemented before disappearing.

1-5. 加温システム(曝気槽液温の利用)の導入
加温システム(曝気槽液温の利用)の導入は、実施例1と同様であった。なお、加温システム(太陽熱温水パネルの利用)を導入しなかった。
1-5. Introduction of heating system (use of aeration tank liquid temperature) Introduction of a heating system (use of aeration tank liquid temperature) was the same as in Example 1. In addition, the heating system (use of the solar hot water panel) was not introduced.

2. 結果
アルカリ度と窒素除去率の関係
図6に示すように、脱窒反応に必要である炭酸イオンの窒素除去率への影響に関して、アルカリ度と除去率との関係を示した。アルカリ度と窒素除去率の関係はおおむね直線的で、アルカリ度が高くなるほど除去率も高まる傾向を示した。脱窒活性に有効となるアルカリ度の適正範囲値については、400mg/L程度まで高めることで80%近い除去率が得られるといえる。
2. Results Relationship between alkalinity and nitrogen removal rate As shown in FIG. 6, the relationship between alkalinity and the removal rate was shown for the effect of carbonate ions required for the denitrification reaction on the nitrogen removal rate. The relationship between the alkalinity and the nitrogen removal rate was generally linear, and the removal rate tended to increase as the alkalinity increased. Regarding the appropriate range of alkalinity effective for denitrification activity, it can be said that a removal rate close to 80% can be obtained by increasing the alkalinity to about 400 mg / L.

1:本発明に係る養豚排水の脱窒処理装置
2a、b:硫黄資材含有槽(ノッチタンク)
3:曝気槽
4:曝気槽内液温の熱を介した加温手段(ステンレスフレキシブル管)
5a:第1区画
5b:第2区画
5c:第3区画
6:硫黄資材
7:原水
8:重曹貯槽
9:循環ポンプ
10:循環ライン
11:重曹
12:循環ライン
13:循環ポンプ
14:太陽熱温水パネル
15:太陽電池
16:ポンプ
17:ステンレスフレキシブル管
18:処理水
19:振動子
1: Denitrification treatment equipment 2a, b for swine wastewater according to the present invention: Sulfur material containing tank (notch tank)
3: Aeration tank 4: Heating means via the heat of the liquid temperature in the aeration tank (stainless flexible pipe)
5a: first section 5b: second section 5c: third section 6: sulfur material 7: raw water 8: baking soda storage tank 9: circulation pump 10: circulation line 11: baking soda 12: circulation line 13: circulation pump 14: solar hot water panel 15: solar cell 16: pump 17: stainless flexible tube 18: treated water 19: vibrator

Claims (8)

養豚排水を硫黄脱窒処理に供する硫黄資材含有槽と、
曝気槽内液温の熱を介して前記硫黄資材含有槽内の液温を加温する手段であって、前記曝気槽内に設置したステンレスフレキシブル管である前記手段と、
一部として前記ステンレスフレキシブル管を設置した循環ラインと、
前記循環ラインにより前記硫黄資材含有槽内の一部の液を循環させ、前記曝気槽内液温の熱を前記硫黄資材含有槽内の液に移行させる循環ポンプと、
を備える、養豚排水の脱窒処理装置。
A sulfur material-containing tank for subjecting swine wastewater to sulfur denitrification treatment,
Means for heating the liquid temperature in the sulfur material-containing tank via the heat of the liquid temperature in the aeration tank, the means being a stainless flexible pipe installed in the aeration tank ,
A circulation line in which the stainless flexible tube is installed as a part,
A circulation pump that circulates a part of the liquid in the sulfur material-containing tank by the circulation line, and transfers heat of the liquid temperature in the aeration tank to the liquid in the sulfur material-containing tank;
A denitrification treatment device for swine wastewater.
太陽熱を介して前記硫黄資材含有槽内の液温を加温する手段をさらに備える、請求項1記載の脱窒処理装置。   The denitrification treatment apparatus according to claim 1, further comprising: means for heating the liquid temperature in the sulfur material-containing tank via solar heat. 飽和重曹溶液を前記硫黄資材含有槽内に供給する手段をさらに備える、請求項1又は2記載の脱窒処理装置。   The denitrification treatment apparatus according to claim 1 or 2, further comprising a unit for supplying a saturated sodium bicarbonate solution into the sulfur material-containing tank. 硫黄資材層に蓄積する窒素気泡を硫黄資材含有槽外面又は硫黄資材層中に設置した振動子による振動で脱泡する手段をさらに備える、請求項1〜3のいずれか1項記載の脱窒処理装置。   The denitrification treatment according to any one of claims 1 to 3, further comprising means for defoaming nitrogen bubbles accumulated in the sulfur material layer by vibrating a vibrator provided on the outer surface of the sulfur material-containing tank or in the sulfur material layer. apparatus. 養豚排水を、曝気槽内液温の熱を介した加温下で硫黄脱窒処理に供する工程を含み、前記加温を、前記曝気槽内に設置したステンレスフレキシブル管を一部として設置した循環ラインにより、前記硫黄脱窒処理を行う硫黄資材含有槽内の一部の液を循環させ、前記曝気槽内液温の熱を前記硫黄資材含有槽内の液に移行させることにより行う、養豚排水の脱窒処理方法。 The pig drainage, viewed including the step of subjecting the sulfur denitrification with heating under through the aeration tank liquid temperature of the heat, the heating was placed stainless flexible tube installed in the aeration tank as part The pig raising is performed by circulating a part of the liquid in the sulfur material-containing tank for performing the sulfur denitrification treatment by the circulation line and transferring heat of the liquid temperature in the aeration tank to the liquid in the sulfur material-containing tank. Wastewater denitrification method. さらに、太陽熱を介した加温下で硫黄脱窒処理を行う、請求項5記載の方法。   The method according to claim 5, further comprising performing a sulfur denitrification treatment under heating via solar heat. 飽和重曹溶液を養豚排水に供給して硫黄脱窒処理を行う、請求項5又は6記載の方法。   The method according to claim 5 or 6, wherein a sulfuric acid denitrification treatment is performed by supplying a saturated baking soda solution to swine wastewater. 硫黄資材層に蓄積する窒素気泡を硫黄資材含有槽外面又は硫黄資材層中に設置した振動子による振動で脱泡しながら脱窒処理を行う、請求項5〜7のいずれか1項記載の方法。   The method according to any one of claims 5 to 7, wherein the denitrification treatment is performed while defoaming nitrogen bubbles accumulated in the sulfur material layer by vibrating a vibrator provided on the outer surface of the sulfur material-containing tank or in the sulfur material layer. .
JP2015235974A 2015-12-02 2015-12-02 Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system Active JP6644222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235974A JP6644222B2 (en) 2015-12-02 2015-12-02 Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235974A JP6644222B2 (en) 2015-12-02 2015-12-02 Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system

Publications (2)

Publication Number Publication Date
JP2017100088A JP2017100088A (en) 2017-06-08
JP6644222B2 true JP6644222B2 (en) 2020-02-12

Family

ID=59015283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235974A Active JP6644222B2 (en) 2015-12-02 2015-12-02 Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system

Country Status (1)

Country Link
JP (1) JP6644222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935653B2 (en) * 2016-12-14 2021-09-15 一般財団法人畜産環境整備機構 Sulfur material for denitrification

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586557B2 (en) * 1979-07-17 1983-02-04 株式会社クボタ Biological denitrification treatment method
JPH0330618A (en) * 1989-06-27 1991-02-08 Sekine:Kk Method for heating cattle barn
JPH05234322A (en) * 1992-02-24 1993-09-10 Meidensha Corp Method and apparatus for waste water processing using sulfuric bacteria
JP4563621B2 (en) * 2001-07-23 2010-10-13 新日鐵化学株式会社 Nitrate nitrogen biochemical removal equipment
EP1453584A4 (en) * 2001-12-13 2009-10-28 Environmental Operating Soluti Process and apparatus for waste water treatment
JP4180303B2 (en) * 2002-05-17 2008-11-12 新日鐵化学株式会社 Removal method of nitrate nitrogen in waste water
US7025883B1 (en) * 2003-09-30 2006-04-11 Ok Technologies, Llc Autotrofic sulfur denitration chamber and calcium reactor
JP2006224087A (en) * 2005-01-20 2006-08-31 Nippon Steel Chem Co Ltd Treatment method of wastewater containing nitrate nitrogen
JP2011218283A (en) * 2010-04-08 2011-11-04 Swing Corp Apparatus and method of treating organic waste
KR20140115820A (en) * 2013-03-22 2014-10-01 주식회사 팬아시아워터 Apparatus and method for treating sludge

Also Published As

Publication number Publication date
JP2017100088A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CN203845918U (en) Energy-saving emission-reducing type town sewage treatment system
CN203768124U (en) Ecological filter for micro-polluted water treatment
KR101241817B1 (en) Treatment method of leachates from landfill and device thereof
CN103951064A (en) Ecological filter used for micro-polluted water treatment
JP4775944B2 (en) Wastewater treatment method and apparatus
CN103265145A (en) Method for purifying river water with low load and low temperature by using natural biofilm reactor
CN105439286B (en) A kind of vertical current sewage ecological treatment system
Surampalli et al. Phosphorus removal in ponds
WO2009151190A1 (en) Combined organic sewage disposal installation using effective microorganism
JP6644222B2 (en) Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system
WO2016100990A1 (en) Heat transfer wastewater treatment system
JP2006130397A (en) Waste water treatment system
CN205011584U (en) Sewage treatment system based on MBR
CN111995193A (en) Integrated intelligent device and method for advanced treatment of medical wastewater
CN101172693A (en) Artificial wet land water treatment technology
KR101345790B1 (en) Purifying and reusing system of wastewater using microbial permanent cultivation structure and surplus wastes
CN206927755U (en) Integrated sewage treating apparatus
CN105060632A (en) Town sewage treatment system and method
JPH08281284A (en) Combined septic tank
JP2009142810A (en) Water purifying treatment method
JP2005319360A (en) Method and apparatus for anaerobic ammonia oxidation
JP2022125959A (en) Water bottom purifier
CN103011417A (en) Method for efficiently treating ammonia nitrogen sewage at low temperature
KR100561170B1 (en) Aeration-type constructed wetland system and method for advanced treatment of sewage, wastewater and the like using thereit
CN1318327C (en) Advanced wastewater treatment using floating filter media

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6644222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250