JP4563621B2 - Nitrate nitrogen biochemical removal equipment - Google Patents

Nitrate nitrogen biochemical removal equipment Download PDF

Info

Publication number
JP4563621B2
JP4563621B2 JP2001221999A JP2001221999A JP4563621B2 JP 4563621 B2 JP4563621 B2 JP 4563621B2 JP 2001221999 A JP2001221999 A JP 2001221999A JP 2001221999 A JP2001221999 A JP 2001221999A JP 4563621 B2 JP4563621 B2 JP 4563621B2
Authority
JP
Japan
Prior art keywords
tank
water
denitrification
sulfur
downcomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001221999A
Other languages
Japanese (ja)
Other versions
JP2003033794A (en
Inventor
徹 大石
俊明 宮永
靖浩 平戸
哲男 市口
敦 谷田貝
Original Assignee
新日鐵化学株式会社
株式会社ニッチツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社, 株式会社ニッチツ filed Critical 新日鐵化学株式会社
Priority to JP2001221999A priority Critical patent/JP4563621B2/en
Publication of JP2003033794A publication Critical patent/JP2003033794A/en
Application granted granted Critical
Publication of JP4563621B2 publication Critical patent/JP4563621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、硝酸性窒素の生物化学的除去装置に関し、さらに詳しくは、排水中の硝酸性窒素を効率的に除去する簡便な生物化学的除去装置に関する。
【0002】
【従来の技術】
近年、排水全般の汚染問題、特に硝酸性窒素問題が深刻化していることから、環境省は平成11年3月、水質汚濁に係る人の健康の保護に関する環境基準及び地下水の水質汚濁に係る環境基準項目として、「硝酸性窒素及び亜硝酸性窒素」を含む3項目を新たに追加告示している。しかし、農業排水は未処理のまま河川や湖沼に垂れ流しされており、浄化槽式の家庭排水も硝酸性窒素を除去することなく放流されているのが現状である。
【0003】
排水中の硝酸性窒素を除去する技術として、メタノールや汚泥中の有機炭素源を水素供与体として脱窒する従属栄養性脱窒技術が知られている。この技術は、使用細菌以外の分解系の影響を受け、基質当たりの脱窒率は低く、また用いたメタノールや発生した汚泥を外界に排出しないよう厳しく管理された設備が必要となる。すなわち、単一の脱窒槽に被処理水を通水させるだけでは水質浄化ができず、多くの処理施設が必要となり、ポンプ、攪拌装置などの電源も必要なうえ、設備の保守点検が欠かせない。
【0004】
これに対し、硫黄や硫黄化合物を用いた独立栄養性脱窒技術では、硫黄酸化細菌による脱窒が選択的に行われるので、基質当たりの脱窒効率が高く、しかも生成物である硫酸イオンは水質環境の制限因子ではないので、処理水中に0.1%以下の含有率であれば、カルシウム化合物によるpH調整を行うことでそのまま放流して差し支えない。
【0005】
特開平6-182393号公報には、硫黄粉粒体で形成した流動床式反応槽に、硝酸性窒素を含む排水を通して脱窒させる方法が記載されている。この方法は、脱窒により発生した窒素ガスが気泡として脱窒資材の表面を覆い、以後の脱窒を阻害するため、動力費のかさむ流動床式を採用している。また、脱窒に伴い生成する硫酸酸性を別途矯正する必要があること、原水を常時強制通水させないと強酸性となって脱窒が停止することなどの難点がある。
【0006】
このような従来脱窒方法を抜本的に改善するものとして、WO2000/18694号公報には、通性嫌気性硫黄酸化細菌を利用した、単体硫黄及び硫黄酸化細菌に対する炭素源からなる脱窒資材が記載されている。この脱窒資材は、硫黄酸化細菌の栄養源である硫黄と菌体合成に必要な炭素源を資材内にほぼ同量共存させることで、効率よく脱窒を行わせることを可能にした画期的なものである。しかも、脱窒系以内で生成されるカルシウムイオンと硫酸イオンはほぼ等量で、常に略中性を保てるため、pH低下による脱窒能の低下は起こらない。この脱窒資材は、攪拌や曝気が不要で、かごやネットなどに詰めて排水中に置くだけでよく、例えば下水暗渠や農業排水暗渠などに設置すればよく、無電源でかつメンテナンスフリーの脱窒処理が可能となり、処理コストが従来法に較べて格段に低下し、簡便でかつ普遍的な脱窒処理を実現した。
【0007】
一方、小規模な施設園芸設備の排水、家畜飼育設備のし尿排水、家庭排水などを対象にした簡便な脱窒装置が望まれているが、従来の処理設備は、大規模で設備費用や運転費用が高くなり、普遍的な導入が困難という問題がある。
【0008】
【発明が解決しようとする課題】
したがって、本発明の目的は、排水中の硝酸性窒素を効率的に除去でき、且つ設備費用や運転費用が低廉な生物化学的除去装置を提供することにある。
【0009】
【課題を解決するための手段】
すなわち、本発明は、槽内に通性嫌気性硫黄酸化細菌、硫黄と炭酸カルシウムを含む粒状又は塊状の生物化学的脱窒資材が充填され、槽下部に排水等の被処理水の入口と出口を備え、槽内には脱窒資材と接触しつつ上昇した処理水を降下させる降下管を有し、該降下管は上端が槽内頂部近傍で開口し下端が被処理水の出口と連結されている竪型処理槽であって、最初の処理槽の入口から入る被処理水は降下管の上端まで上昇させるに足りる水位を有するか又は該処理槽の入口にそのための加圧手段を有すると共に、且つ、竪型処理槽を直列に複数連結し、該複数の竪型処理槽は、前の処理槽の出口と次の処理槽の入口が連結されると共に、最初の処理槽からの水位により、順次後続の処理槽に被処理水が流れるように前記降下管の開口位置高さが最初の処理槽から最終処理槽に向かって順次低くなるように構成されていること、及び脱窒資材の充填高さが、降下管の上端より低いことを特徴とする硝酸性窒素の生物化学的除去装置である。
【0010】
【発明の実施の形態】
本発明の硝酸性窒素の生物化学的除去装置(以下「本発明装置」という)について、図面を参照して具体的に説明する。図1は、本発明装置の一例を示す概念図である。参照符号1で示す本発明装置は、生物化学的脱窒資材(詳細は後記する)が充填された3槽の竪型処理槽5、11及び17を直列したものである。
【0011】
硝酸性窒素を含む排水等の被処理水2は、ポンプ3で昇圧され、入口4から第1の竪型処理槽5に導入される。脱窒資材6が充填された第1処理槽5は、中心部に降下管7と、下部に出口8を備えている。降下管7は、脱窒資材6と接触しながら上昇した処理水を槽下部に降下させるため、その上端が槽内頂部近傍で開口し、その下端が出口8と連結されている。脱窒資材6は、降下管7の開口部と同じ高さかやや低い高さまで充填されており、脱窒資材6との接触により部分的に脱窒された被処理水は、降下管7を降下して出口8から排出され、パイプ9を経て入口10から第2処理槽11に導入される。
【0012】
第2処理槽11は、脱窒資材12が充填され、降下管13と出口14を備えており、降下管13の開口位置の高さが、第1処理槽5の降下管7のそれより低く位置させている以外は、第1処理槽5と同様な構成としている。このように構成すると、第2処理槽11に入った被処理水は、降下管13の開口位置の高さまで十分到達するので、入口10の前後で昇圧しなくてよい。そして、脱窒資材12との接触により更に脱窒された被処理水は、降下管13を降下して出口14から排出され、パイプ15を経て入口16から第3処理槽17に導入される。
【0013】
第3処理槽17は、脱窒資材18が充填され、降下管19と出口20を備えており、降下管19の開口位置の高さが、第2処理槽11の降下管13のそれより低く位置させている以外、第2処理槽11と同様な構成としている。脱窒資材18との接触により所定の脱窒率まで脱窒された処理水は、降下管19を降下して出口20から排出され、放流されるかあるいは再利用される。
【0014】
なお、本発明は、図1及び前記説明に限定されるものではなく、本発明の目的が達成される範囲内で各要素の置換や設計変更を含む。
例えば、本発明装置1を地下に設置するなど、被処理水2が降下管5の上端まで上昇させるに足りる水位を有する場合、ポンプ3は不要である。また、処理槽は、2槽以上であればよく、処理水量が多い場合は4槽、5槽としてもよい。冬季には水温が低く脱窒反応が遅くなるので、被処理水2を温めたり、第1処理槽5の周囲に電熱ヒーターを巻いたりすることが好ましい。さらに、出口8や出口14に、脱窒反応で生成したセッコウを抜き出すためのセッコウ抜きを設けてもよい。そして、図1に示すように、処理槽5、11、17の頂部に、キャップ式蓋21、22、23を被せるようにしておくと、処理槽5などの脱窒資材6などが消耗したとき、キャップ式蓋21を外して簡単に脱窒資材を追加することができる。
【0015】
本発明装置に用いる脱窒資材は、通性嫌気性硫黄酸化細菌、単体硫黄及び硫黄酸化細菌用炭素源を含むものである。
通性嫌気性硫黄酸化細菌は、Thiobacillus denitrificans単離菌株又はThiobacillus denitrificans等を含む土壌細菌群として使用され、水中の溶存酸素が少ない状態下においてCO2を炭素源、単体硫黄を電子供与体、そして排水中のNO3などNOXを電子受容体として増殖する微生物で、この時NOXはN2にまで還元され水中から除去される。この通性嫌気性硫黄酸化細菌は、増殖・脱窒に有機物を必要とせず、単体硫黄とCO2により脱窒を行うことから、栄養源を液体の状態でなく固形担体として保持することが可能であり、これによって栄養源の流失を防ぎ、頻繁な栄養源添加が不必要となる。
【0016】
本発明装置から通性嫌気性硫黄酸化細菌をの流亡を防ぐには、事前に本発明による硝酸性窒素除去装置内又は別途準備した培養タンク内で、単体硫黄及び硫黄酸化細菌用炭素源が混合一体化された造粒物を、Thiobacillus denitrificans単離菌株又はそれらを含む土壌細菌群を添加した硝酸性窒素含有溶液に浸漬して、その造粒物の表面、空隙内部等に付着させる操作を行うことが好ましい。
【0017】
また、通性嫌気性硫黄酸化細菌は、それを含有する土壌粒子、土壌コロイドとして本発明装置内に添加してもよい。さらに、通性嫌気性硫黄酸化細菌が利用できる窒素化合物を本来含有する石炭、亜炭、泥炭等に予め通性嫌気性硫黄酸化細菌を表面に付着させた粒子として添加してもよい。そして、これらの通性嫌気性硫黄酸化細菌含有粒子等は、単体硫黄及び硫黄酸化細菌用炭素源が混合一体化された造粒物に吸着又は付着させて、ここで前記菌を増殖させることが好ましい。この際、必要に応じて、通性嫌気性硫黄酸化細菌を物理的に保持するロックウール、ガラス繊維、セラミック繊維、炭素繊維等の繊維状担体を前記造粒物中に混合又は近接して配置してもよい。前記造粒物中から少しづつ滲出する硫黄や炭素源により、脱窒が進行するように近接して配置することが有利である。
【0018】
この通性嫌気性硫黄酸化細菌が必要とする炭素源としては、炭酸カルシウム、炭酸マグネシウム、炭酸鉄、炭酸マンガン等の水に対して実質的に溶解せず、硫黄酸化細菌の活動で生じた硫酸イオンと水中で反応して炭酸ガスを放出する炭酸塩を使用できる。また、通性嫌気性硫黄酸化細菌が必要とする単体硫黄としては、天然硫黄や石油精製、各種工業プラントの副産硫黄が使用できる。
【0019】
本発明装置に使用する脱窒資材は、直径0.5〜50mm程度の単独粒として充填してもよいが、好ましくはこれらを微粉砕した後、混合し、溶融又はプレス成形法により一体化した物を更に直径1〜50mmに造粒した粒状物である。
【0020】
【実施例】
実施例1
内径175mm、長さ1650mm、1550mm、1450mmの硬質ポリエチレンパイプを用い、槽底部に入口とその反対側に出口を設け、それぞれ底部から1550mm、1450mm、1350mmの位置に開口部を有する降下管と出口を連結して、処理槽5、11、17とした。この処理槽5、11、17に、それぞれ降下管の開口部より10mm下まで脱窒資材を充填し(充填量はそれぞれ13リットル、12リットル、11リットル)、処理槽5の出口と処理槽11の入口、処理槽11の出口と処理槽17の入口を連結して、図1に示す本発明装置1を構成した。
脱窒資材として、石灰石粉末100重量部と硫黄粉末120重量部を混合し、650kg/cm2で圧縮成形して得られた粒径5〜20mmの粒状物を使用した。各処理槽には、通性嫌気性硫黄酸化細菌であるThiobacillus denitrificansを付着させた粒状物10重量部に対し、硫黄酸化細菌を付着させてない新規粒状物を90重量部の割合で混合したものをそれぞれ充填した。
本発明装置1に付設したポンプ3より、NO3 -で表される硝酸濃度100mg/リットルである排水を導入し、硝酸性窒素の除去試験を実施した。
外気温度を25℃で1t/日の排水をポンプで送給したところ、最終の処理水は、硝酸濃度0.1mg/リットルであり、脱窒率は99.9%であった。
【0021】
【発明の効果】
以上、説明した本発明の生物化学的除去装置によれば、排水中の硝酸性窒素を簡便な装置と低廉な運転費用で効率よく除去できる。この生物化学的除去装置は、小規模な施設園芸設備の排水、家畜飼育設備のし尿排水、家庭排水などの脱窒装置として好適であり、地下水や河川、湖沼の汚染対策に大きく貢献できる。
【図面の簡単な説明】
【図1】図1は、本発明装置の一例を示す概念図である。
【符号の説明】
4,10,16 : 入口
5,11,17 : 竪型処理槽
6,12,18 : 脱窒資材
7,13,19 : 降下管
8,14,20 : 出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biochemical removal apparatus for nitrate nitrogen, and more particularly to a simple biochemical removal apparatus that efficiently removes nitrate nitrogen from waste water.
[0002]
[Prior art]
In recent years, the pollution problem of wastewater in general, especially the nitrate nitrogen problem, has become serious. In March 1999, the Ministry of the Environment established environmental standards for the protection of human health related to water pollution and the environment related to groundwater water pollution. Three new items including “nitric nitrogen and nitrite nitrogen” are newly announced as standard items. However, agricultural wastewater is drained into rivers and lakes without treatment, and septic tank-type domestic wastewater is also discharged without removing nitrate nitrogen.
[0003]
As a technique for removing nitrate nitrogen in wastewater, a heterotrophic denitrification technique for denitrifying methanol or organic carbon source in sludge as a hydrogen donor is known. This technology is affected by degradation systems other than the bacteria used, has a low denitrification rate per substrate, and requires strictly controlled equipment so that the methanol used and the generated sludge are not discharged to the outside world. In other words, it is not possible to purify the water by simply passing the water to be treated through a single denitrification tank, and many treatment facilities are required, and power supplies such as pumps and agitators are also required. Absent.
[0004]
In contrast, in the autotrophic denitrification technology using sulfur and sulfur compounds, denitrification by sulfur-oxidizing bacteria is selectively performed, so that the denitrification efficiency per substrate is high, and the product sulfate ion is Since it is not a limiting factor of the water quality environment, if the content is 0.1% or less in the treated water, it can be discharged as it is by adjusting the pH with a calcium compound.
[0005]
Japanese Patent Application Laid-Open No. 6-182393 describes a method of denitrifying a fluidized bed type reaction tank formed of sulfur powder through drainage containing nitrate nitrogen. This method employs a fluidized bed method in which the nitrogen gas generated by the denitrification covers the surface of the denitrification material as bubbles and inhibits the subsequent denitrification, so that the power cost is increased. In addition, there is a problem that it is necessary to separately correct the acidity of sulfuric acid generated with denitrification, and that denitrification stops due to strong acidity if raw water is not always forced.
[0006]
In order to drastically improve such a conventional denitrification method, WO2000 / 18694 discloses a denitrification material comprising a carbon source for simple sulfur and sulfur-oxidizing bacteria using facultative anaerobic sulfur-oxidizing bacteria. Are listed. This denitrification material is an epoch-making that enables efficient denitrification by allowing sulfur, which is a nutrient source for sulfur-oxidizing bacteria, to coexist in the material with almost the same amount of carbon source necessary for cell synthesis. Is something. In addition, calcium ions and sulfate ions produced within the denitrification system are approximately equal in quantity and can always be kept substantially neutral, so that the denitrification ability does not decrease due to a decrease in pH. This denitrification material does not require agitation and aeration. It only needs to be packed in a basket or net and placed in drainage. For example, it can be installed in sewage culverts or agricultural drainage culverts. Processing became possible, and the processing cost was significantly reduced compared to the conventional method, realizing a simple and universal denitrification process.
[0007]
On the other hand, a simple denitrification device for drainage of small-scale horticultural equipment, human waste for domestic animal breeding equipment, household wastewater, etc. is desired. There is a problem that costs are high and universal introduction is difficult.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a biochemical removal apparatus that can efficiently remove nitrate nitrogen in waste water and that has low equipment and operating costs.
[0009]
[Means for Solving the Problems]
That is, the present invention is such that the tank is filled with facultative anaerobic sulfur-oxidizing bacteria, granular or massive biochemical denitrification material containing sulfur and calcium carbonate, and the inlet and outlet of the water to be treated such as drainage at the bottom of the tank the provided, the tank has a downcomer lowering the treated water was increased while contacting with the de窒資material, connecting該降under tube has a lower end open upper end, in the vicinity of the top tank and the outlet of the water to be treated The treated water entering from the entrance of the first treatment tank has a water level sufficient to rise to the upper end of the downcomer, or has a pressurizing means for the treatment tank at the entrance of the treatment tank. In addition, a plurality of vertical processing tanks are connected in series, and the plurality of vertical processing tanks are connected to the outlet of the previous processing tank and the inlet of the next processing tank, and the water level from the first processing tank. , the opening position of the drop tube to the water to be treated flows successively to a subsequent treatment vessel Saga by being composed of the first treatment tank so that successively lower toward the final treatment bath, and the filling height of de窒資material, the nitrate nitrogen, wherein the lower than the upper end of the downcomer organism Chemical removal device .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The nitrate nitrogen biochemical removal apparatus of the present invention (hereinafter referred to as “the present invention apparatus”) will be specifically described with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of the apparatus of the present invention. The apparatus of the present invention indicated by reference numeral 1 is a series of three vertical processing tanks 5, 11 and 17 filled with a biochemical denitrification material (details will be described later).
[0011]
Water to be treated 2 such as waste water containing nitrate nitrogen is pressurized by a pump 3 and introduced into a first vertical processing tank 5 from an inlet 4. The first treatment tank 5 filled with the denitrification material 6 includes a downcomer 7 at the center and an outlet 8 at the bottom. The downcomer 7 has its upper end opened near the top in the tank and is connected to the outlet 8 in order to lower the treated water that has risen while contacting the denitrification material 6 to the lower part of the tank. The denitrification material 6 is filled to the same height as the opening of the downcomer pipe 7 or slightly lower, and the treated water partially denitrified by the contact with the denitrification material 6 descends the downcomer pipe 7. Then, it is discharged from the outlet 8 and introduced into the second treatment tank 11 from the inlet 10 through the pipe 9.
[0012]
The second treatment tank 11 is filled with denitrification material 12 and includes a downcomer 13 and an outlet 14, and the height of the opening position of the downcomer 13 is lower than that of the downcomer 7 of the first treatment tank 5. The configuration is the same as that of the first treatment tank 5 except that it is positioned. If comprised in this way, since the to-be-processed water which entered into the 2nd treatment tank 11 will fully reach the height of the opening position of the downcomer 13, it does not need to be pressurized before and after the inlet 10. The treated water further denitrified by contact with the denitrification material 12 descends the downcomer 13 and is discharged from the outlet 14, and is introduced into the third treatment tank 17 from the inlet 16 through the pipe 15.
[0013]
The third treatment tank 17 is filled with denitrification material 18 and includes a downcomer 19 and an outlet 20, and the height of the opening position of the downcomer 19 is lower than that of the downcomer 13 of the second treatment tank 11. It is set as the structure similar to the 2nd processing tank 11 except having been located. The treated water denitrified to the predetermined denitrification rate by contact with the denitrification material 18 descends the downcomer 19 and is discharged from the outlet 20 to be discharged or reused.
[0014]
In addition, this invention is not limited to FIG. 1 and the said description, The replacement of each element and a design change are included within the range in which the objective of this invention is achieved.
For example, the pump 3 is unnecessary when the water 2 to be treated has a water level sufficient to raise the upper end of the downcomer pipe 5, such as installing the device 1 of the present invention underground. Moreover, a processing tank should just be 2 tanks or more, and when there are many amounts of treated water, it is good also as 4 tanks and 5 tanks. Since the water temperature is low and the denitrification reaction is slow in winter, it is preferable to warm the water to be treated 2 or to wind an electric heater around the first treatment tank 5. Furthermore, you may provide the outlet 8 and the outlet 14 for extracting the gypsum generated by the denitrification reaction. As shown in FIG. 1, when the cap-type lids 21, 22, and 23 are placed on top of the processing tanks 5, 11, and 17, the denitrification material 6 such as the processing tank 5 is consumed. The denitrification material can be easily added by removing the cap-type lid 21.
[0015]
The denitrification material used in the apparatus of the present invention contains facultative anaerobic sulfur-oxidizing bacteria, elemental sulfur, and a carbon source for sulfur-oxidizing bacteria.
The facultative anaerobic sulfur-oxidizing bacterium is used as a soil bacterium group including Thiobacillus denitrificans isolated strain or Thiobacillus denitrificans and the like, under a state of low dissolved oxygen in water, CO 2 as a carbon source, simple sulfur as an electron donor, and A microorganism that grows using NO x such as NO 3 in the waste water as an electron acceptor. At this time, NO x is reduced to N 2 and removed from the water. This facultative anaerobic sulfur-oxidizing bacterium does not require organic substances for growth and denitrification, and denitrification is performed with simple sulfur and CO 2 , so that it is possible to retain the nutrient source as a solid carrier rather than in a liquid state This prevents the loss of nutrients and eliminates the need for frequent addition of nutrients.
[0016]
In order to prevent the facultative anaerobic sulfur-oxidizing bacteria from flowing away from the apparatus of the present invention, a mixture of simple sulfur and a carbon source for sulfur-oxidizing bacteria is mixed in advance in the nitrate nitrogen removal apparatus according to the present invention or in a separately prepared culture tank. The integrated granulated product is immersed in a nitrate nitrogen-containing solution to which Thiobacillus denitrificans isolated strain or soil bacteria group containing them is added, and is attached to the surface of the granulated product, the inside of the void, etc. It is preferable.
[0017]
The facultative anaerobic sulfur-oxidizing bacteria may be added to the apparatus of the present invention as soil particles or soil colloids containing the bacteria. Furthermore, you may add as a particle | grains which made the facultative anaerobic sulfur oxidation bacteria adhere to the surface beforehand to coal, lignite, peat, etc. which originally contain the nitrogen compound which facultative anaerobic sulfur oxidation bacteria can utilize. These facultative anaerobic sulfur-oxidizing bacteria-containing particles and the like can be adsorbed or adhered to a granulated material in which elemental sulfur and a carbon source for sulfur-oxidizing bacteria are mixed and integrated, and the bacteria can be grown here. preferable. At this time, if necessary, a fibrous carrier such as rock wool, glass fiber, ceramic fiber, or carbon fiber that physically holds the facultative anaerobic sulfur-oxidizing bacteria is mixed or placed in the granulated product. May be. It is advantageous to arrange them close to each other so that denitrification proceeds by the sulfur or carbon source exuding little by little from the granulated material.
[0018]
The carbon source required by this facultative anaerobic sulfur-oxidizing bacterium is sulfuric acid produced by the activity of the sulfur-oxidizing bacteria that does not substantially dissolve in water such as calcium carbonate, magnesium carbonate, iron carbonate, and manganese carbonate. Carbonates that react with ions in water to release carbon dioxide can be used. Moreover, natural sulfur, petroleum refining, and by-product sulfur of various industrial plants can be used as the elemental sulfur required for facultative anaerobic sulfur-oxidizing bacteria.
[0019]
The denitrification material used in the apparatus of the present invention may be filled as single grains having a diameter of about 0.5 to 50 mm, preferably after finely pulverizing, mixing, and integrating by melting or press molding. This is a granular product obtained by granulating the product to a diameter of 1 to 50 mm.
[0020]
【Example】
Example 1
Using a rigid polyethylene pipe with an inner diameter of 175 mm, lengths of 1650 mm, 1550 mm and 1450 mm, an inlet is provided at the bottom of the tank and an outlet at the opposite side, and a downcomer and outlet having openings at positions 1550 mm, 1450 mm and 1350 mm from the bottom, respectively. These were connected to process tanks 5, 11, and 17. The treatment tanks 5, 11, and 17 are filled with denitrification materials up to 10 mm below the opening of the downcomer (filling amounts are 13 liters, 12 liters, and 11 liters, respectively). 1, the outlet of the processing tank 11 and the inlet of the processing tank 17 were connected to form the apparatus 1 of the present invention shown in FIG. 1.
As a denitrification material, a granular material having a particle diameter of 5 to 20 mm obtained by mixing 100 parts by weight of limestone powder and 120 parts by weight of sulfur powder and compression molding at 650 kg / cm 2 was used. In each treatment tank, 10 parts by weight of particulate matter to which Thiobacillus denitrificans, which is a facultative anaerobic sulfur-oxidizing bacterium, is admixed at a ratio of 90 parts by weight of new particulate matter to which sulfur-oxidizing bacteria are not attached. Respectively.
Waste water with a nitric acid concentration of 100 mg / liter represented by NO 3 was introduced from the pump 3 attached to the device 1 of the present invention, and a nitrate nitrogen removal test was conducted.
When 1 t / day of waste water was pumped at an outside air temperature of 25 ° C., the final treated water had a nitric acid concentration of 0.1 mg / liter and a denitrification rate of 99.9%.
[0021]
【The invention's effect】
As described above, according to the biochemical removal apparatus of the present invention described above, nitrate nitrogen in waste water can be efficiently removed with a simple apparatus and low operating costs. This biochemical removal apparatus is suitable as a denitrification apparatus for drainage of small-scale horticultural facilities, human wastewater for livestock breeding facilities, household drainage, and the like, and can greatly contribute to countermeasures against contamination of groundwater, rivers and lakes.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a device of the present invention.
[Explanation of symbols]
4, 10, 16: inlet 5, 11, 17: vertical processing tank 6, 12, 18: denitrification material 7, 13, 19: downcomer pipe 8, 14, 20: outlet

Claims (1)

  1. 槽内に通性嫌気性硫黄酸化細菌、硫黄と炭酸カルシウムを含む粒状又は塊状の生物化学的脱窒資材が充填され、槽下部に排水等の被処理水の入口と出口を備え、槽内には脱窒資材と接触しつつ上昇した処理水を降下させる降下管を有し、該降下管は上端が槽内頂部近傍で開口し下端が被処理水の出口と連結されている竪型処理槽であって、最初の処理槽の入口から入る被処理水は降下管の上端まで上昇させるに足りる水位を有するか又は該処理槽の入口にそのための加圧手段を有すると共に、且つ、竪型処理槽を直列に複数連結し、該複数の竪型処理槽は、前の処理槽の出口と次の処理槽の入口が連結されると共に、最初の処理槽からの水位により、順次後続の処理槽に被処理水が流れるように前記降下管の開口位置高さが最初の処理槽から最終処理槽に向かって順次低くなるように構成されていること、及び脱窒資材の充填高さが、降下管の上端より低いことを特徴とする硝酸性窒素の生物化学的除去装置。The tank is filled with facultative anaerobic sulfur-oxidizing bacteria, granular or massive biochemical denitrification material containing sulfur and calcium carbonate , and has an inlet and outlet for water to be treated such as drainage at the bottom of the tank. said while contacting with de窒資material lowers elevated treated water having a downcomer,該降under tube vertical processing upper end is open lower end in the vicinity of the top tank is connected with the outlet of the water to be treated The water to be treated entering from the inlet of the first treatment tank has a water level sufficient to rise to the upper end of the downcomer pipe, or has a pressurizing means therefor at the inlet of the treatment tank, and has a vertical shape A plurality of processing tanks are connected in series, and the plurality of vertical processing tanks are connected to the outlet of the previous processing tank and the inlet of the next processing tank , and sequentially follow the processing according to the water level from the first processing tank. open position the height of the downcomer as the water to be treated flows if the first processing tank to the bath That is configured to be sequentially lower toward the final treatment bath, and the filling height of de窒資material, biochemical removing apparatus nitrate nitrogen, wherein the lower than the upper end of the downcomer.
JP2001221999A 2001-07-23 2001-07-23 Nitrate nitrogen biochemical removal equipment Expired - Fee Related JP4563621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221999A JP4563621B2 (en) 2001-07-23 2001-07-23 Nitrate nitrogen biochemical removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221999A JP4563621B2 (en) 2001-07-23 2001-07-23 Nitrate nitrogen biochemical removal equipment

Publications (2)

Publication Number Publication Date
JP2003033794A JP2003033794A (en) 2003-02-04
JP4563621B2 true JP4563621B2 (en) 2010-10-13

Family

ID=19055563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221999A Expired - Fee Related JP4563621B2 (en) 2001-07-23 2001-07-23 Nitrate nitrogen biochemical removal equipment

Country Status (1)

Country Link
JP (1) JP4563621B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
CN1325396C (en) * 2003-10-31 2007-07-11 四川省宜宾五粮液集团有限公司 Anaerobic mud bed reactor
JP4756260B2 (en) * 2004-11-10 2011-08-24 独立行政法人農業・食品産業技術総合研究機構 Method for treating inorganic nitrogen / phosphorus water with suspension
JP4578278B2 (en) * 2005-03-02 2010-11-10 クリオン株式会社 Sewage treatment apparatus and treatment method
JP4532315B2 (en) * 2005-03-17 2010-08-25 新日鐵化学株式会社 Biological nitrification denitrification treatment system and denitrification treatment method
JP6644222B2 (en) * 2015-12-02 2020-02-12 国立研究開発法人農業・食品産業技術総合研究機構 Sulfur denitrification technology of swine wastewater by a reactor equipped with a simple heating system
US9994466B2 (en) 2016-10-04 2018-06-12 Georgia Aquarium Inc. Removing nitrate from water
JP6935653B2 (en) * 2016-12-14 2021-09-15 一般財団法人畜産環境整備機構 Sulfur material for denitrification
CN109231440B (en) * 2018-04-26 2020-09-22 知和环保科技有限公司 Assembled reactor for removing nitrate nitrogen in water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123694A (en) * 1989-10-04 1991-05-27 Meitetsu Kankyo Kaihatsu Kk Material and apparatus for purifying sewage utilizing inclined surface
JPH0889990A (en) * 1994-09-20 1996-04-09 Takuo Yukimoto Two-line parallel oxidation facility
JPH09215990A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Method and facility for clarifying lakes and marshes
WO2000018694A1 (en) * 1998-09-25 2000-04-06 Nitchitsu Co, Ltd. Denitrifying composition for removing nitrate nitrogen and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123694A (en) * 1989-10-04 1991-05-27 Meitetsu Kankyo Kaihatsu Kk Material and apparatus for purifying sewage utilizing inclined surface
JPH0889990A (en) * 1994-09-20 1996-04-09 Takuo Yukimoto Two-line parallel oxidation facility
JPH09215990A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Method and facility for clarifying lakes and marshes
WO2000018694A1 (en) * 1998-09-25 2000-04-06 Nitchitsu Co, Ltd. Denitrifying composition for removing nitrate nitrogen and process for producing the same

Also Published As

Publication number Publication date
JP2003033794A (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JP3302227B2 (en) Wastewater treatment device and wastewater treatment method
US5514277A (en) Treatment of wastewater and sludges
Mahmood et al. Sources of sulfide in waste streams and current biotechnologies for its removal
US5599443A (en) Apparatus for waste water treatment using charcoal biologically activated
US5954963A (en) Process for biologically treating water
KR101830130B1 (en) An autothermal aerobic/anaerobic digestion system in swine farms
US5908555A (en) Anoxic biotreatment cell
JP4329359B2 (en) Denitrification method
US6387267B1 (en) Liquid waste treatment bioreactor process and apparatus
JP4563621B2 (en) Nitrate nitrogen biochemical removal equipment
JP5773541B2 (en) Biological purification agent of treated water, biological purification system, and biological purification method
JP2004002509A (en) Method for desulfurizing fermentation gas and apparatus therefor
TWI285190B (en) The closed sulfur circulation system
JP4554833B2 (en) Apparatus and method for removing nitrate nitrogen in waste water
WO2004028983A1 (en) A method of processing organic wastewater
CN103435157B (en) Low-energy and intelligent three-dimensional ecological internal circulation nitrification method and apparatus
KR100460942B1 (en) Process for Treating Waste Water and Device Thereof Using Septic Tank and Sequencing Batch Reactor
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
KR20050083703A (en) Method of removing nitrate nitrogen and device used for the method
CN105254123B (en) Coking advanced waste treatment system and its reuse technology
JP4596533B2 (en) Wastewater treatment method
KR100336484B1 (en) A Soil Clothing-Style Contact Oxidation Apparatus with Recycle of Nitrified Liquid and Contact Oxidation Method of Using the Same
EP0739859B1 (en) Apparatus and method for waste water treatment using charcoal biologically activated
KR20030018238A (en) Anaerobic apparatus for fire extinguishing
HUE025875T2 (en) A process for the thermophilic aerobic treatment of concentrated organic waste water and the related plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees