JP6636331B2 - 血流予備量比の算出 - Google Patents
血流予備量比の算出 Download PDFInfo
- Publication number
- JP6636331B2 JP6636331B2 JP2015552198A JP2015552198A JP6636331B2 JP 6636331 B2 JP6636331 B2 JP 6636331B2 JP 2015552198 A JP2015552198 A JP 2015552198A JP 2015552198 A JP2015552198 A JP 2015552198A JP 6636331 B2 JP6636331 B2 JP 6636331B2
- Authority
- JP
- Japan
- Prior art keywords
- model
- vascular
- flow
- vessel
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1075—Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
- A61B2576/023—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7285—Specific aspects of physiological measurement analysis for synchronizing or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
- A61B5/7289—Retrospective gating, i.e. associating measured signals or images with a physiological event after the actual measurement or image acquisition, e.g. by simultaneously recording an additional physiological signal during the measurement or image acquisition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/04—Indexing scheme for image data processing or generation, in general involving 3D image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
- G06T2207/30104—Vascular flow; Blood flow; Perfusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30172—Centreline of tubular or elongated structure
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- General Physics & Mathematics (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Hematology (AREA)
- Quality & Reliability (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Artificial Intelligence (AREA)
- Pulmonology (AREA)
Description
本出願は、参照により内容全体が本明細書に組み込まれている、2013年1月15日に出願した米国仮特許出願第61/752,526号、2013年9月29日に出願した米国仮特許出願第14/040,688号、および2013年10月24日に出願した国際特許出願第PCT/IL2013/050869号の優先権の利益を主張するものである。
Sharmaらの米国公開特許出願第2012/0072190号、
Taylorの米国公開特許出願第2012/0053921号、
Steinbergらの米国公開特許出願第2010/0220917号、
Steinbergらの米国公開特許出願第2010/0160764号、
Sharmaらの米国公開特許出願第2012/0072190号、
Steinbergらの米国公開特許出願第2012/0230565号、
Kangらの米国公開特許出願第2012/0150048号、
Edicらの米国公開特許出願第2013/0226003号、
Kassabらの米国公開特許出願第2013/0060133号、
Mittalらの米国公開特許出願第2013/0324842号、
SuriおよびJasjitの米国公開特許出願第2012/0177275号、
Taylorらの米国特許第6,236,878号、
Taylorの米国特許第8,311,750号、
Hizengaらの米国特許第7,657,299号、
Bullittらの米国特許第8,090,164号、
Tangらの米国特許第8,554,490号、
Weeseらの米国特許第7,738,626号、
Hartらの米国特許第8,548,778号、
Jerry T. WongおよびSabee Molloiによる論文、名称「Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study」、Phys. Med. Biol. 53(2008年)3995〜4011頁、
Weickertによる論文、名称「A Scheme for Coherence−Enhancing Diffusion Filtering with Optimized Rotation Invariance」、Journal of Visual Communication and Image Representation、第13巻、1−2号、2002年3月、103〜118頁(2002年)、
J. Weickertによる書籍「Anisotropic Diffusion in Image Processing」、B. G. Teubner (Stuttgart)、1998年の論説、
A.F Frangi、W.J. Niessen、K.L. Vincken、M.A. Viergeverによる論文、名称「Multiscale vessel enhancement filtering」、Medical Image Computing and Computer−Assisted Intervention−MICCA’98、
Jerry T WongおよびSabee Molloiによる論文、名称「Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study」、Phys. Med. Biol. 53(2008年)3995〜4011頁、
S. Molloi、J.T. Wong、D. A. Chalyan、およびH. Leによる論文、名称「Quantification of Fractional Flow Reserve Using Angiographic Image Data」、O. Doessel and W.C. Schlegel (Eds.): WC 2009, IFMBE Proceedings 25/II, 901〜904頁、2009年、
Jerry T. Wong、Huy Le、William M. Suh、David A. Chalyan、Toufan Mehraien、Morton J. Kern、Ghassan S. Kassab、およびSabee Molloiによる論文、名称「Quantification of fractional flow reserve based on angiographic image data」、Int J Cardiovasc Imaging (2012年) 28:13〜22頁、
Shigeho Takarada、Zhang Zhang、およびSabee Molloiによる論文、名称「An angiographic technique for coronary fractional flow reserve measurement: in vivo validation」、2012年8月31日にInt J Cardiovasc Imagingにてオンライン公開、
A. M. Seifalian、D. J. Hawkes、A. C. Colchester、およびK. E. Hobbsによる論文、名称「A new algorithm for deriving pulsatile blood flow waveforms tested using stimulated dynamic angiographic data」、Neuroradiology、第31巻、263〜269頁、1989年、
A. M. Seifalian、D. J. Hawkes、C. R. Hardingham、A. C. Colchester、およびJ. F. Reidyによる論文、名称「Validation of a quantitative radiographic technique to estimate pulsatile blood flow waveforms using digital subtraction angiographic data」、J. Biomed. Eng.、第13巻、第3号、225〜233頁、1991年5月、
D. J. Hawkes、A. M. Seifalian、A. C. Colchester、N. Iqbal、C. R. Hardingham、C. F. Bladin、およびK. E. Hobbsによる論文、名称「Validation of volume blood flow measurements using three dimensional distance−concentration functions derived from digital X−ray angiograms」、Invest. Radiol、第29巻、第4号、434〜442頁、1994年4月、
A. M. Seifalian、D. J. Hawkes、C. Bladin、A. C. F. Colchester、およびK. E. F. Hobbsによる論文、名称「Blood flow measurements using 3D distance−concentration functions derived from digital X−ray angiograms」、Cardiovascular Imaging, J. H. C. Reiber and E. E. van der Wall, Eds. Norwell, MA, The Netherlands: Kluwer Academic、1996年、425〜442頁、
K. R. Hoffmann、K. Doi、およびL. E. Fencilによる論文、名称「Determination of instantaneous and average blood flow rates from digital angiograms of vessel phantoms using distance−density curves」、Invest. Radiol、第26巻、第3号、207212頁、1991年3月、
S. D. Shpilfoygel、R. Jahan、R. A. Close、G. R. Duckwiler、およびD. J. Valentinoによる論文、名称「Comparison of methods for instantaneous angiographic blood flow measurement」、Med. Phys.、第26巻、第6号、862〜871頁、1999年6月、
D. W. Holdsworth、M. Drangova、およびA. Fensterによる論文、名称「Quantitative angiographic blood flow measurement using pulsed intra−arterial injection」、Med. Phys.、第26巻、第10号、2168〜2175頁、1999年10月、
Joan C. Tuinenburg、Gerhard Koning、Andrei Rares、Johannes P. Janssen、Alexandra J. Lansky、Johan H. C. Reiberによる論文、名称「Dedicated bifurcation analysis: basic principles」、Int J Cardiovasc Imaging (2011年) 27:167〜174頁、
Salvatore Davide Tomasello、Luca Costanzo、およびAlfredo Ruggero Galassiによる論文、名称「Quantitative Coronary Angiography in the Interventional Cardiology」、Advances in the Diagnosis of Coronary Atherosclerosis、
Johannes P. Janssen、Andrei Rares、Joan C. Tuinenburg、Gerhard Koning、Alexandra J. Lansky、Johan H. C. Reiberによる論文、名称「New approaches for the assessment of vessel sizes in quantitative (cardio−)vascular X−ray analysis」、Int J Cardiovasc Imaging (2010年) 26:259〜271頁、
Kirkeeide R L.編集Reiber J H CおよびSerruys P Wによる論文、名称「Coronary obstructions, morphology and physiologic significance Quantitative Coronary Arteriography」、The Netherlands: Kluwer、1991年、229〜244頁、
Kevin Sprague、Maria Drangova、Glen Lehmann、Piotr Slomka、David Levin、Benjamin Chow、およびRobert deKempによる論文、名称「Coronary x−ray angiographic reconstruction and image orientation」、Med Phys、2006年3月、33(3):707〜718頁、
Adamantios Andriotis、Ali Zifan、Manolis Gavaises、Panos Liatsis、Ioannis Pantos、Andreas Theodorakakos、Efstathios P. Efstathopoulos、およびDemosthenes Katritsisによる論文、名称「A New Method of Three−dimensional Coronary Artery Reconstruction From X−Ray Angiography: Validation Against a Virtual Phantom and Multislice Computed Tomography」、Catheter Cardiovasc Interv、2008年1月1日、71(1):28〜43頁、
Kenji Fusejima, MDによる論文、名称「Noninvasive Measurement of Coronary Artery Blood Flow Using Combined Two−Dimensional and Doppler Echocardiography」、JACC第10巻、第5号、1987年11月、1024〜31頁、
Carlo Caiati、Cristiana Montaldo、Norma Zedda、Alessandro Bina、およびSabino Ilicetoによる論文、名称「New Noninvasive Method for Coronary Flow Reserve Assessment: Contrast−Enhanced Transthoracic Second Harmonic Echo Doppler」、Circulation、the American Heart Association、1999年、99:771〜778頁、
Harald Lethena、Hans P Triesa、Stefan Kerstinga、およびHeinz Lambertzaによる論文、名称「Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery−A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements」、European Heart Journal (2003年) 24、1567〜1575頁、
Paolo Vocia、Francesco Pizzutoa、およびFrancesco Romeobによる論文、名称「Coronary flow: a new asset for the echo lab?」、European Heart Journal (2004年) 25、1867〜1879頁、
Siogkasらによる論文要録、名称「Quantification of the effect of Percutaneous Coronary Angioplasty on a stenosed Right Coronary Artery」、Information Technology and Applications in Biomedicine (ITAB)、2010年第10回IEEE International Conference on、
Patrick MeimounおよびChristophe Tribouilloyによるレビュー論文、名称「Non−invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world」、European Journal of Echocardiography (2008年) 9、449〜457頁、
Carlo Caiati、Norma Zedda、Mauro Cadeddu、Lijun Chen、Cristiana Montaldo、Sabino Iliceto、Mario Erminio Lepera、およびStefano Favaleによる論文、名称「Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast−enhanced transthoracic harmonic echo Doppler」、European Heart Journal (2009年) 30、1797〜1806頁、
Bullittらの論文、名称「Determining malignancy of brain tumors by analysis of vessel shape」、Medical Image Computing and Computer−Assisted Intervention−MICCAI 2004。
複数の2−D画像を受信し、複数の2−Dを血管系の第1の血管モデルに変換し、血管系の狭窄セグメントを通る流れを表す第1の血管モデルに基づき少なくとも1つの特性を決定し、第1の血管モデルに対応する要素を備える、第2の血管モデルと、狭窄セグメントを通る流れの少なくとも1つの特性を狭窄の効果が低減される対応するセグメントを通るかのような流れの特性に変更することを含む少なくとも1つの修正とを生成し、第1のモデルと第2のモデルとを比較する流動指数を算出するように構成されたコンピュータを備える、システムが実現される。
本発明のいくつかの実施形態によれば、FFR特性は、第1の3−D血管樹モデルと第2の3−D血管樹モデルとを生成してから10秒以内に算出される、
本発明のいくつかの実施形態によれば、FFR特性は、少なくとも95%の感度を有する圧力測定決定FFR指数の予測因子である。
1つまたは複数の血管特性、たとえば、直径、半径、流量、流動抵抗、および/または曲率の関数に対する1つまたは複数の1−D軸を備える血管の広がり、
3−D空間内の位置の関数に対する1つまたは複数の1−D軸を備える血管の広がり、
血管の広がりに沿った位置に関するノード(たとえば、血管セグメントの端部を接続するノード)として記述される、血管の広がりの間の接続性、
血管の広がりの1−D軸がマッピングされる2−D画像、
1つの軸に沿った血管の広がりを備える2−Dフレーム、および第2の軸に沿った血管の広がりに直交する画像データ。
いくつかの実施形態では、血管系をモデル化するためのデータは、医療撮像データを備える。
リアルタイムでの使用に関係する本発明のいくつかの実施形態における目的は、血管モデルの高速算出と、解剖学的および/またはその機能パラメータの高速算出であり、これにより、リアルタイム診断意志決定のためのフィードバックを返す。
本発明のいくつかの実施形態では、血管系モデルは、樹モデル、適宜、3−D樹モデルを備える。しかし、モデルの空間的次元は、アプリケーションの要求条件に適合するように異なる解剖学的レベルおよび/または処理段階で適宜調整される。たとえば、2−D画像は、1−D血管セグメントモデルの識別および構築を可能にする3−D血管樹情報を抽出するように適宜組み合わされる。次いで、1−Dセグメントのモデルは、いくつかの実施形態では、その接続性に従って、他の空間的関係の詳細を保存しつつ、または保存せずに、論理的にリンクされる。いくつかの実施形態では、空間的情報は、たとえば、円(直径)、楕円(長軸/短軸)、または他の表現のパラメータによって断面領域を近似することによって圧縮または符号化される。いくつかの実施形態では、血管樹に沿った領域は、非空間的情報、たとえば、流動抵抗、算出された流量、弾性、および/またはサンプリングされおよび/または拡張された血管セグメント領域、および/または血管樹のノードに関連付けられている別の動的もしくは静的特性を備える。
次に図13を参照すると、これは本発明のいくつかの例示的な実施形態による、血管モデル構築における段階の例示的な概要を説明する流れ図である。
この実施形態の計算手順は、潜在的に、計算流体力学のシミュレーションおよび分析を採用する従来の技術に関して、縮小された計算を必要とする。計算流体力学は、実質的な計算能力および/または時間を必要とすることは認識されている。たとえば、流体力学のシミュレーションが標準的なPC上で実行される場合、CPU時間として数日を要する。この時間は、並列処理を適用するスーパーコンピュータを使用することで幾分短縮されるが、そのような計算プラットフォームは、医療施設でのそのような専用の使用には一般的には利用可能でない。この実施形態の計算手順は、流体力学のシミュレーションに基づかず、したがって、スーパーコンピュータを必要とすることなく、普通の市販のコンポーネントに基づき、たとえば、標準的なPCとして構成されているコンピューティングプラットフォーム上に実装され得る。
本発明のいくつかの実施形態において、元の撮像データから算出されたモデルは、「狭窄モデル」として処置され、これは、患者血管(心臓血管)系内の狭窄部の配置を潜在的に反映するためそう称される。いくつかの実施形態では、この狭窄モデルは、血管機能を示す指数を算出するために使用される。指数は、血管再生の必要性も示すことができる。本発明の実施形態に適している指数の代表的な例は、限定することなく、FFRを含む。
本発明のいくつかの実施形態では、血管画像に基づくパラメータの自動決定は、血管疾病スコアを算出するために使用される。いくつかの実施形態では、撮像された血管は、心臓血管である。
画像取得
次に図14を参照すると、これは本発明のいくつかの例示的な実施形態による、血管モデル構築における段階の詳細の例示的な概要を説明する流れ図である。詳細は、以下で図14のブロックを順に実行する過程で参照される追加の図でも説明される。
次に、図15を参照すると、これは本発明のいくつかの例示的な実施形態による、撮像システムのための撮像座標の例示的な配置構成1500の概略図を示している。
本発明のいくつかの実施形態では、中心線の対応関係を見つけるための処理がブロック30に続く(図14)。中心線の対応関係を見つける目標は、異なる2−D画像間の対応関係を見つけることであり(潜在的に異なる角度からであるが、空間の同じ領域を撮像する点)、したがって、目標血管系の3−D再構築が行われ得る。
次に図18A〜18Bを参照すると、これは本発明のいくつかの例示的な実施形態による、画像間の算出された対応関係から悪い光線交差を無視するための「心臓シェル」制約条件の算出の態様を示している。
次に、図19A〜19Dを参照すると、これは本発明のいくつかの例示的な実施形態による、血管枝間の相同の識別を示す。
ブロック40において、本発明のいくつかの実施形態では、2−D中心線の3−Dマッピングが実行される。いくつかの実施形態では、ブロック41で、3−Dマッピングは、最適な投影対の識別から始まる。いくつかの異なる画像が取得される場合、3−D空間内への血管中心線のそれぞれの領域の異なる(相同ではあるけれども)投影が潜在的にいくつかあり、それぞれが2−D画像の異なる対に基づく。
次に、図21を参照すると、これは本発明のいくつかの例示的な実施形態による、エッジグラフ51を生成することと、エッジグラフ52に沿って接続経路を見つけることとを含む処理操作の簡略化された流れ図である。
次に図3Aを参照すると、これは、本発明の例示的な一実施形態により生成される、冠状血管樹モデル310の画像305である。
いくつかの実施形態では、圧力および/または流量、および/または流動抵抗、および/または剪断応力、および/または流速などの、物理的特性を含む、冠状血管樹内の流体流の物理的モデルが算出される。
いくつかの実施形態では、流れは、超音波測定から算出される。上述の超音波技術のいくつかの変更形態は、上述の文献において報告されており、その内容は、参照により本明細書に組み込まれている。Kenji Fusejimaによる上述の論文、名称「Noninvasive Measurement of Coronary Artery Blood Flow Using Combined Two−Dimensional and Doppler Echocardiography」、Carlo Caiatiらによる論文、名称「New Noninvasive Method for Coronary Flow Reserve Assessment : Contrast−Enhanced Transthoracic Second Harmonic Echo Doppler」、Harald Lethenaらによる論文、名称「Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery−A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements」、Paolo Vociaらによる論文、名称「Coronary flow: a new asset for the echo lab?」、Patrick Meimounらによるレビュー論文、名称「Non−invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world」、およびCarlo Caiatiらによる論文、名称「Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast−enhanced transthoracic harmonic echo Doppler」。
いくつかの実施形態では、血管が健康な構造に対して血管再生されたかのように病気の血管の構造が推定される。そのような構造は、狭窄血管が血管再生で元の通常直径に戻されたかのように、膨張構造と称される。
次に、血管系の物理的特性のモデルを生成するための方法のいくつかの例示的な実施形態について説明する。
Rs=[808 1923 1646 1569 53394 10543 55341 91454 58225]であり、ここで、流れに対する抵抗は単位mmHg*s/mLである。
次に、図24を参照すると、これは、本発明のいくつかの例示的な実施形態について、FFR指数(FFRpressure)と画像ベースのFFR指数(FFRflow)との差の、その平均の関数としてのブランドアルトマンプロット2400である。
本発明のいくつかの実施形態では、画像処理技術および数値計算は、圧力によって導出される血流予備量比(FFR(pressure))と機能的に等価である生理学的指数(たとえば、FFRflow)を決定するために組み合わされる。いくつかの実施形態では、機能的等価は直接的であり、いくつかの実施形態では、機能的等価は、さらなる較正係数(たとえば、血管幅へのオフセット、血液粘度の変化、または単に、等価係数および/または機能を表す)の適用を備える。上述の技術の統合は、潜在的に、診断カテーテル挿入時に血流の低侵襲評価を行うことを可能にし、冠状動脈病変の機能的有意性の適切な推定を行う。
被験者の血管系の樹モデルを生成することと、狭窄モデルは被験者の血管系の少なくとも1つの枝の血管中心線に沿った1つまたは複数の位置における被験者の血管系の幾何学的測定を備える(1910)、
狭窄モデルの流動特性を取得すること(1915)と、
狭窄モデルとして患者の血管系の類似の広がりの第2のモデルを生成すること(1920)と、
通常モデルの流動特性を取得すること(1925)と、
狭窄モデルにおける流動特性と、通常モデルにおける流動特性とに基づき、血管再生の必要性を示す指数を算出することと(1930)とを含む、血管評価のための方法を示す。
被験者の血管系の複数の2−D画像を取り込むこと(2010)と、
複数の取り込まれた2−D画像のうちの少なくともいくつかを使用して、被験者の血管系の樹モデルを生成することと、ここにおいて、樹モデルは被験者の血管系の少なくとも1つの枝の血管中心線に沿った1つまたは複数の位置における被験者の血管系の幾何学的測定を備える(2015)、
第1の樹モデルの流動特性のモデルを生成すること(2020)とを含む血管評価のための方法を示す。
いくつかの実施形態では、第1の狭窄モデルの広がりは、狭窄部と、狭窄部の近位の血管のセクションと、狭窄部の遠位の血管のセクションとを含むのに過不足のない広がりである。
例示的な実装において、近位動脈圧力Pa[mmHg]が与えられた場合、注目するセグメントを通る流量Qs[mL/s]は、適宜、濃度距離時間曲線の分析結果と、直径d(l)[cm]および/または容積V(l)[ml]をセグメント長の関数として含む、注目するセグメントの幾何学的説明とに基づき、ヨウ素造影剤の濃度から導出される。
冠状動脈の基点などの血管の基点を通る全入口流量Qtotal[ml/s]は、適宜、濃度距離時間曲線の分析結果に基づき、造影剤(ヨウ素など)の濃度から導出される。いくつかの実施形態では、特に、左前下行枝(LAD)冠状動脈などの大血管については、流量は、適宜、経胸腔的エコードップラーおよび/またはMRIおよびSPECTなどの他のモダリティを使用して記録される。
血管樹セグメントに沿った動脈長の幾何学的記述(Li[cm])、たとえば、注目するセグメントの下流における最大1〜2の生成、および注目するセグメントの下流における累積的な冠部長(Lcrown[cm])、Lcrown=ΣLi、
血管樹セグメントに沿った動脈容積の幾何学的記述(Vi[ml])、たとえば、注目するセグメントの下流における最大1〜2の生成、および注目するセグメントの下流における累積的な冠部容積(Vcrown[ml])、Vcrown=ΣVi、
注目する動脈セグメントに対する心筋質量(LV質量)分布M[ml](いくつかの実施形態では、LV質量は、適宜、たとえば、経胸腔的エコードップラーを使用して算出される)、
および
上で説明されているような解剖学的パラメータをセグメントを通る通常の流量(狭窄なし)Qn[mL/s]と相関させる基準パラメータKまたは関数F、たとえば、
動脈圧力から、セグメントの遠位における抵抗(Rn、[mmHg*s/mL])が、たとえば、Rn=Pa/Qnで、算出される、
幾何学的形状から、セグメント内の狭窄部の局所的抵抗Rs[mmHg*s/mL]が、たとえば、以下の方法のうちの1つまたは複数を使用して推定される、
ルックアップテーブル、
上述のKirkeeideの文献で説明されているような経験的関数、および/または
ポアズイユ抵抗の累積和Rs=(128μ)/π∫(dl)/(d4)、ここに、積分は、セグメント(dl)のサンプルにわたり、dはそれぞれのサンプルの動脈直径であり、μは0.035g・cm-1・s-1であり、適宜血液粘度である、
セグメントに対する全抵抗Rt[mmHg*s/mL]は、適宜、Rt=Rn+Tsとして算出される、
狭窄セグメントを通る流量Qs[mL/s]は、適宜、Qs=Pa/Rtとして算出される、
セグメントに対する血流予備量比(FFR)などの指数は、適宜、FFR=Qs/Qnとして算出される。
次に図12Aを参照すると、これは、本発明の例示的な一実施形態により構築される血管評価のためのシステムのハードウェア実装の簡素化された図である。
次に、図22を参照すると、これは本発明のいくつかの例示的な実施形態による、自動VSSTスコアリングシステム700の簡略化された概略図である。
本発明のいくつかの例示的な実施形態は、侵襲性を最小限度に抑えてある、すなわち、これらは、冠状動脈をガイドワイヤで探ることを控えることを可能にし、したがって、侵襲的FFRカテーテル手技と比較して患者に対する危険性を最小にする。
追加の時間または侵襲的機器のない計算方法、
「ボーダーライン」病変および多枝病変における予後診断のメリット、
冠状動脈血管再生の必要性を評価するための信頼できる指数を提供する、
血管再生手技を評価し、および/または最適化するための方法、
カテーテル挿入、入院、および追跡治療の費用を節約する戦略、
血管造影に続く不要な冠状動脈インターベンションを防ぐ、
「ワンストップショップ」包括的病変評価。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] 心臓血管系の第1の血管モデルを受信することと、
前記血管系の狭窄セグメントを通る流れを表す前記第1の血管モデルに基づき少なくとも1つの特性を決定することと、
第2の血管モデルを生成することと、
前記第1の血管モデルに対応する要素と、
流れの少なくとも1つの特性の差異を含む少なくとも1つの修正形態とを備える、
前記第1のモデルと前記第2のモデルとを比較する流動指数を算出することとを備える、血管評価のための方法。
[2] 流れの少なくとも1つの特性の前記差異は、狭窄セグメントを通る流れの少なくとも1つの特性と、前記第2のモデルの対応するセグメントの中の流れの特性との間の差異を備える[1]に記載の方法。
[3] 前記第1の血管モデルは、複数の2−D血管造影画像に基づき算出される[1]に記載の方法。
[4] 前記血管造影画像は、主要なヒト冠状動脈からの少なくとも第3の分岐点に従って血管セグメントに対して10%以内で血管幅の決定を行うことを可能にする十分な解像度を有している[3]に記載の方法。
[5] 前記流動指数は、前記狭窄セグメントから狭窄を取り除くためにインターベンションによって達成可能である流動増加の予測を備える[1]に記載の方法。
[6] 前記比較流動指数は、前記第1の血管モデルと前記第2の血管モデルとの対応する流動特性の比に基づき算出される[1]乃至[5]のいずれか一項に記載の方法。
[7] 前記比較流動指数は、前記狭窄セグメントと非狭窄セグメントとの対応する流動特性の比に基づき算出される[1]乃至[6]のいずれか一項に記載の方法。
[8] 狭窄部1カ所当たりの単一の数として前記比較流動指数を報告することを備える[1]乃至[7]のいずれか一項に記載の方法。
[9] 流れの前記少なくとも1つの特性は、流量を備える[1]乃至[8]のいずれか一項に記載の方法。
[10] 前記比較流動指数は、狭窄血管を通る前記最大の流れと前記狭窄が取り除かれた前記狭窄血管を通る前記最大の流れとの比を備える血流予備量指数を表す指数を備える[9]に記載の方法。
[11] 前記比較流動指数は、血管再生の推奨を決定する際に使用される[9]乃至[10]のいずれか一項に記載の方法。
[12] 前記比較流動指数は、狭窄を取り除くことによって流れを復元するため容量を示す値を備える[10]に記載の方法。
[13] 前記第1の血管モデルおよび前記第2の血管モデルは、血管セグメントデータの接続された枝を備え、それぞれの前記枝は流れに対する対応する血管抵抗に関連付けられる[1]乃至[12]のいずれか一項に記載の方法。
[14] 前記第1の血管モデルは、血管壁の径方向に詳細な3−D記述を含まない[13]に記載の方法。
[15] 前記第2の血管モデルは、前記第1の血管モデルにおける狭窄血管を置き換える比較的大きな直径を有する血管を備える、通常モデルである[1]乃至[13]のいずれか一項に記載の方法。
[16] 前記第2の血管モデルは、隣接する非狭窄血管の特性に基づき狭窄血管を正常化することによって得られる正常化された血管を備える、通常モデルである[1]乃至[13]のいずれか一項に記載の方法。
[17] 流れの前記少なくとも1つの特性は、前記狭窄セグメントと流れで接続する複数の血管セグメントの特性に基づき算出される[1]乃至[13]のいずれか一項に記載の方法。
[18] 流れの前記特性は、流体流に対する抵抗を備える[1]乃至[17]のいずれか一項に記載の方法。
[19] 前記第1の血管モデルにおいて、狭窄血管と、前記狭窄血管の下流にある血管枝の冠部とを識別することと、前記冠部内の流体流れに対する前記抵抗を算出することとをさらに備え、
ここにおいて、前記流動指数は、前記冠部の容積に基づき、また流体流に対する前記抵抗への前記狭窄血管の寄与分に基づき算出される[18]に記載の方法。
[20] 前記第1の血管モデルは、三次元空間内の血管位置の表現を備える[1]から[19]のいずれか一項に記載の方法。
[21] それぞれの血管モデルは、血管系の2つの連続する分岐部の間にある前記血管系の一部に対応する[1]乃至[20]のいずれか一項に記載の方法。
[22] それぞれの血管モデルは、前記血管系の分岐部を含む前記血管系の一部に対応する[1]乃至[20]のいずれか一項に記載の方法。
[23] それぞれの血管モデルは、前記血管系の少なくとも1つの分岐部を前記狭窄セグメントを超えて拡張する前記血管系の一部に対応する[1]乃至[20]のいずれか一項に記載の方法。
[24] それぞれの血管モデルは、前記血管系の少なくとも3つの分岐部を前記狭窄セグメントを超えて拡張する前記血管系の一部に対応する[23]に記載の方法。
[25] 前記血管モデルは、血管セグメントに沿った経路を備え、前記経路のそれぞれは前記複数の2−D画像内の位置までのその広がりに沿ってマッピングされる[3]に記載の方法。
[26] 前記心臓血管系の画像を取得することと、その第1の血管モデルを構築することとをさらに備える[1]に記載の方法。
[27] それぞれの血管モデルは、前記画像の解像度が正しい値の10%以内で血管幅の決定を可能にする限り遠位に拡張する前記血管系の一部に対応する[26]に記載の方法。
[28] 前記第1の血管モデルおよび前記第2の血管モデルのうちの少なくとも一方は、前記少なくとも1つの血管モデルを生成するために使用される画像の取得時に人工的に拡張されている血管系のモデルである[1]に記載の方法。
[29] プログラム命令が格納され、前記命令がコンピュータによって読み込まれると被験者の血管系の複数の2−D画像を受信して[1]に記載の方法を実行することをコンピュータに行わせる、コンピュータ可読媒体を備える、コンピュータソフトウェア製品。
[30] 血管系の一部の複数の2−D画像を受信し、
前記複数の2−Dを前記血管系の第1の血管モデルに変換し、
前記血管系の狭窄セグメントを通る流れを表す前記第1の血管モデルに基づき少なくとも1つの特性を決定し、
前記第1の血管モデルに対応する要素と、
狭窄セグメントを通る流れの前記少なくとも1つの特性を、狭窄の効果が低減される対応するセグメントを通るかのように流れの特性に変えることを含む少なくとも1つの修正形態とを備える第2の血管モデルを生成し、
前記第1のモデルと前記第2のモデルとを比較する流動指数を算出するように構成されたコンピュータを備える血管評価のためのシステム。
[31] 前記コンピュータは、前記第1の血管モデルを受信する5分以内に前記流動指数を算出するように構成される[30]に記載のシステム。
[32] 前記コンピュータは、前記2−D画像の取得の5分以内に前記流動指数を算出するように構成される[30]に記載のシステム。
[33] 前記コンピュータは、前記撮像デバイスからリモートの位置に配置される[30]に記載のシステム。
[34] 心臓血管系の血管モデルを受信することと、
前記血管系の狭窄セグメントと前記狭窄セグメントへの冠部血管とを通る流れを表す前記血管モデルに基づき少なくとも第1の流動特性を決定することと、
前記狭窄セグメントによる前記流れの制限を受けることなく、前記冠部血管を通る流れを表す前記血管モデルに基づき少なくとも第2の流動特性を決定することと、
前記第1の流動特性と前記第2の流動特性とを比較する流動指数を算出することとを備える血管評価のための方法。
Claims (16)
- 狭窄セグメントを有する心臓血管系の血管機能を評価するためのプロセッサーを備えるコンピュータの作動方法において、前記プロセッサーによって実行される方法は、
第1の投影角度で記録された心臓血管系の第1の医療用画像および第2の投影角度で記録された心臓血管系の第2の医療用画像を医療用撮像装置から受信することと、
少なくとも以下のステップを実行することによって、前記第1の医療用画像および前記第2の医療用画像に基づいて前記心臓血管系をモデリングする少なくとも一つの直径または断面積を有する第1の血管モデルを作成することと、
(i)第1および第2の医療用画像のそれぞれにおいて、心臓血管系の枝を通過する血管中心線を決定することと、
(ii)前記第1および第2の投影角度の間の差を考慮して、前記第1および第2の医療用画像に関する互いの血管中心線の対応を決定することによって、前記第1および第2の医療用画像の心臓血管系の枝の間の一致を識別することと、
(iii)ステップ(ii)において識別された一致のそれぞれについて、第1の医療用画像および第2の医療用画像の血管中心線の血管端で始まる経路追跡を使用して心臓血管系の二分岐部または三分岐部での互いに接続された枝を識別することと、そして、
(iv)ステップ(i)から決定された血管中心線、ステップ(ii)から識別された一致、およびステップ(iii)から心臓血管系の二分岐部または三分岐部での互いに接続された、識別された枝を使用して第1の血管モデルを作成することと、
前記第1の血管モデル中の前記狭窄セグメントを通る流れの特性に関する第1の値を決定することと、ここで、前記第1の値は第1の血管モデルの狭窄セグメントにおける心臓血管系の直径または断面積の少なくとも一つから計算された第1の抵抗であり、
狭窄セグメントの少なくとも一部の幾何学的形状に少なくとも1つの修正を行って、前記第1の血管モデルから第2の血管モデルを生成することと、
前記第2の血管モデルに対する前記狭窄セグメントを通る流れの特性に関する第2の値を決定することと、ここで、前記第2の値は第2の血管モデルの狭窄セグメントにおける心臓血管系の直径または断面積の少なくとも一つから計算された第2の抵抗であり、
前記第1の血管モデルによってモデル化される前記心臓血管系の血管機能を定量化する流動指数を算出することを備え、ここにおいて、前記算出することは、前記第1の血管モデルおよび前記第2の血管モデルにおける流れの特性に関する第1および第2の値を比較することに基づく方法。 - 前記第1の医療用画像および前記第2の医療用画像は、2−D血管造影画像を含む請求項1に記載の方法。
- 前記2−D血管造影画像は、血管セグメントに対して10%以内の精度の血管幅の決定を行うことを可能にする十分な解像度を有している請求項2に記載の方法。
- 前記流動指数は、前記第1の血管モデルおよび前記第2の血管モデルにおける流れの特性に関する第1および第2の値の比に基づき算出される請求項1に記載の方法。
- 前記流動指数に基づいて血管再生の提案を決定することをさらに含む請求項1に記載の方法。
- 前記第1の血管モデルおよび前記第2の血管モデルは、血管セグメントデータの接続された枝を備え、それぞれの前記枝は流れに対する対応する血管抵抗に関連付けられる請求項1に記載の方法。
- 前記第1の血管モデルは、前記心臓血管系の血管壁の径方向の3−D記述を含む請求項6に記載の方法。
- 前記第2の血管モデルは、前記第1の血管モデルにおける前記狭窄セグメントより大きな径を有する推定再生血管を備える請求項1に記載の方法。
- 前記第2の血管モデルは、隣接する非狭窄セグメントの特性に基づき前記狭窄セグメントを正常化することによって得られる正常化された血管を備える請求項1に記載の方法。
- 前記第1の血管モデルおよび前記第2の血管モデルのそれぞれは、血管系の少なくとも3つの分岐部が狭窄セグメントを超えて遠位に拡張する、前記血管系の一部に対応する請求項1に記載の方法。
- 前記第1の血管モデルは、前記心臓血管系の血管セグメントに沿った経路を備える請求項2に記載の方法。
- 前記第1の血管モデルおよび前記第2の血管モデルのそれぞれは、前記狭窄セグメントから遠位に拡張する前記心臓血管系の一部に対応する請求項1に記載の方法。
- プログラム命令が格納され、前記プログラム命令がコンピュータによって読み込まれると請求項1の方法を実行することを前記コンピュータに行わせる、コンピュータ可読媒体を備える、コンピュータソフトウェア製品。
- 狭窄セグメントを有する心臓血管系の血管機能を評価するためのシステムにおいて、
第1の投影角度で記録された心臓血管系の第1の医療用画像および第2の投影角度で記録された心臓血管系の第2の医療用画像を医療用撮像装置から受信し、
少なくとも以下のステップを実行することによって、前記第1の医療用画像および前記第2の医療用画像に基づいて、前記心臓血管系をモデリングする少なくとも一つの直径または断面積を有する第1の血管モデルを作成し、
(i)第1および第2の医療用画像のそれぞれにおいて心臓血管系の枝を通過する血管中心線を決定することと、
(ii)前記第1および第2の投影角度の間の差を考慮して、前記第1および第2の医療用画像に関する互いの血管中心線の対応を決定することによって、前記第1および第2の医療用画像の心臓血管系の枝の間の一致を識別することと、
(iii)ステップ(ii)において識別された一致のそれぞれについて、第1の医療用画像および第2の医療用画像の血管中心線の血管端で始まる経路追跡を使用して心臓血管系の二分岐部または三分岐部での互いに接続された枝を識別することと、そして、
(iv)ステップ(i)から決定された血管中心線、ステップ(ii)から識別された一致、およびステップ(iii)から心臓血管系の二分岐部または三分岐部での互いに接続された、識別された枝を使用して第1の血管モデルを作成すること、
前記狭窄セグメントを通る前記第1の血管モデル中の流れの特性に関する第1の値を決定し、ここで、前記第1の値は第1の血管モデルの狭窄セグメントにおける心臓血管系の直径または断面積の少なくとも一つから計算された第1の抵抗であり、
狭窄セグメントの少なくとも一部の幾何学的形状に少なくとも1つの修正を生じさせて、前記第1の血管モデルから第2の血管モデルを生成し、
前記第2の血管モデルに対する前記狭窄セグメントを通る流れの特性に関する第2の値をさらに決定し、ここで、第2の値は第2の血管モデルの狭窄セグメントにおける心臓血管系の直径または断面積の少なくとも一つから計算された第2の抵抗であり、
前記第1の血管モデルによってモデリングされた前記心臓血管系の前記血管機能を定量化する流動指数を算出するように構成されたコンピュータを備え、ここにおいて、前記コンピュータは、前記第1の血管モデルと前記第2の血管モデルにおける流れの特性に関する第1および第2の値を比較することによって、前記流動指数を算出するシステム。 - 前記コンピュータは、前記第1の医療用画像および前記第2の医療用画像の受信から5分以内に前記流動指数を算出するように構成される請求項14に記載のシステム。
- 前記第1の血管モデルからの前記第2の血管モデルの生成は、前記狭窄セグメントによる流れの制限を無視することを含む請求項1に記載の方法。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361752526P | 2013-01-15 | 2013-01-15 | |
US61/752,526 | 2013-01-15 | ||
US14/040,688 | 2013-09-29 | ||
US14/040,688 US9858387B2 (en) | 2013-01-15 | 2013-09-29 | Vascular flow assessment |
ILPCT/IL2013/050869 | 2013-10-24 | ||
PCT/IL2013/050869 WO2014064702A2 (en) | 2012-10-24 | 2013-10-24 | Automated measurement system and method for coronary artery disease scoring |
PCT/IL2014/050043 WO2014111929A1 (en) | 2013-01-15 | 2014-01-15 | Calculating a fractional flow reserve |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018216396A Division JP7039442B2 (ja) | 2013-01-15 | 2018-11-19 | 血管モデルの作成方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016511649A JP2016511649A (ja) | 2016-04-21 |
JP2016511649A5 JP2016511649A5 (ja) | 2017-02-16 |
JP6636331B2 true JP6636331B2 (ja) | 2020-01-29 |
Family
ID=51165823
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015552198A Active JP6636331B2 (ja) | 2013-01-15 | 2014-01-15 | 血流予備量比の算出 |
JP2015553226A Active JP6542129B2 (ja) | 2013-01-15 | 2014-01-15 | リアルタイムの診断上有用な結果 |
JP2018216396A Active JP7039442B2 (ja) | 2013-01-15 | 2018-11-19 | 血管モデルの作成方法 |
JP2019109686A Active JP6790179B2 (ja) | 2013-01-15 | 2019-06-12 | リアルタイムの診断上有用な結果 |
JP2020189338A Withdrawn JP2021045558A (ja) | 2013-01-15 | 2020-11-13 | 血管モデルの作成方法 |
JP2022124490A Pending JP2022169579A (ja) | 2013-01-15 | 2022-08-04 | リアルタイムで診断上有用な結果 |
JP2024103653A Pending JP2024153627A (ja) | 2013-01-15 | 2024-06-27 | 血流予備量比の算出 |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015553226A Active JP6542129B2 (ja) | 2013-01-15 | 2014-01-15 | リアルタイムの診断上有用な結果 |
JP2018216396A Active JP7039442B2 (ja) | 2013-01-15 | 2018-11-19 | 血管モデルの作成方法 |
JP2019109686A Active JP6790179B2 (ja) | 2013-01-15 | 2019-06-12 | リアルタイムの診断上有用な結果 |
JP2020189338A Withdrawn JP2021045558A (ja) | 2013-01-15 | 2020-11-13 | 血管モデルの作成方法 |
JP2022124490A Pending JP2022169579A (ja) | 2013-01-15 | 2022-08-04 | リアルタイムで診断上有用な結果 |
JP2024103653A Pending JP2024153627A (ja) | 2013-01-15 | 2024-06-27 | 血流予備量比の算出 |
Country Status (7)
Country | Link |
---|---|
US (5) | US9858387B2 (ja) |
EP (3) | EP3753494A1 (ja) |
JP (7) | JP6636331B2 (ja) |
KR (1) | KR20150110609A (ja) |
CN (1) | CN105190630A (ja) |
IL (2) | IL239961B (ja) |
WO (3) | WO2014111927A1 (ja) |
Families Citing this family (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8200466B2 (en) | 2008-07-21 | 2012-06-12 | The Board Of Trustees Of The Leland Stanford Junior University | Method for tuning patient-specific cardiovascular simulations |
US9405886B2 (en) | 2009-03-17 | 2016-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | Method for determining cardiovascular information |
US8315812B2 (en) | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US9814433B2 (en) | 2012-10-24 | 2017-11-14 | Cathworks Ltd. | Creating a vascular tree model |
US10210956B2 (en) | 2012-10-24 | 2019-02-19 | Cathworks Ltd. | Diagnostically useful results in real time |
US10595807B2 (en) | 2012-10-24 | 2020-03-24 | Cathworks Ltd | Calculating a fractional flow reserve |
EP2943902B1 (en) | 2012-10-24 | 2020-03-11 | CathWorks Ltd. | Automated measurement system and method for coronary artery disease scoring |
US9858387B2 (en) | 2013-01-15 | 2018-01-02 | CathWorks, LTD. | Vascular flow assessment |
JP6334902B2 (ja) * | 2012-11-30 | 2018-05-30 | キヤノンメディカルシステムズ株式会社 | 医用画像処理装置 |
US20140276027A1 (en) * | 2013-03-15 | 2014-09-18 | Volcano Corporation | Devices, Systems, and Methods for Preservation of Arteriovenous Access Sites |
WO2015059706A2 (en) | 2013-10-24 | 2015-04-30 | Cathworks Ltd. | Vascular characteristic determination with correspondence modeling of a vascular tree |
EP3066597A1 (en) * | 2013-11-08 | 2016-09-14 | Piskin, Senol | Operation scenario flow and mechanical modeling and analysis system of cardiovascular repair operations for newborn and foetus |
US9390232B2 (en) * | 2014-03-24 | 2016-07-12 | Heartflow, Inc. | Systems and methods for modeling changes in patient-specific blood vessel geometry and boundary conditions |
US9087147B1 (en) * | 2014-03-31 | 2015-07-21 | Heartflow, Inc. | Systems and methods for determining blood flow characteristics using flow ratio |
US9514530B2 (en) | 2014-04-16 | 2016-12-06 | Heartflow, Inc. | Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions |
US9058692B1 (en) | 2014-04-16 | 2015-06-16 | Heartflow, Inc. | Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions |
US9449145B2 (en) * | 2014-04-22 | 2016-09-20 | Heartflow, Inc. | Systems and methods for virtual contrast agent simulation and computational fluid dynamics (CFD) to compute functional significance of stenoses |
CN106537392B (zh) * | 2014-04-22 | 2019-07-26 | 西门子保健有限责任公司 | 用于冠状动脉中的血液动力学计算的方法和系统 |
US9747525B2 (en) | 2014-06-16 | 2017-08-29 | Siemens Healthcare Gmbh | Method and system for improved hemodynamic computation in coronary arteries |
US9888968B2 (en) | 2014-07-22 | 2018-02-13 | Siemens Healthcare Gmbh | Method and system for automated therapy planning for arterial stenosis |
US10658085B2 (en) * | 2014-08-29 | 2020-05-19 | Knu-Industry Coorporation Foundation | Method for determining patient-specific blood vessel information |
US11141123B2 (en) | 2014-12-02 | 2021-10-12 | Koninklijke Philips N.V. | Fractional flow reserve determination |
WO2016092420A1 (en) | 2014-12-08 | 2016-06-16 | Koninklijke Philips N.V. | Devices, systems, and methods for vessel assessment and intervention recommendation |
US10580141B2 (en) * | 2015-01-16 | 2020-03-03 | Koninklijke Philips N.V. | Vessel lumen sub-resolution segmentation |
JP6656807B2 (ja) * | 2015-02-10 | 2020-03-04 | キヤノンメディカルシステムズ株式会社 | X線診断装置 |
WO2018031714A1 (en) | 2016-08-11 | 2018-02-15 | Foundry Innovation & Research 1, Ltd. | Systems and methods for patient fluid management |
AU2016219018B2 (en) | 2015-02-12 | 2020-10-29 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
EP3062248A1 (en) | 2015-02-27 | 2016-08-31 | Pie Medical Imaging BV | Method and apparatus for quantitative flow analysis |
CN112998664B (zh) | 2015-04-16 | 2025-06-17 | 斯普瑞特医疗公司 | 用于神经病学的微光探针 |
WO2017017086A1 (en) | 2015-07-27 | 2017-02-02 | Koninklijke Philips N.V. | Revascularisation localisation and pre and post quantitative coronary angiography |
US11039813B2 (en) | 2015-08-03 | 2021-06-22 | Foundry Innovation & Research 1, Ltd. | Devices and methods for measurement of Vena Cava dimensions, pressure and oxygen saturation |
US11031136B2 (en) | 2015-08-05 | 2021-06-08 | Koninklijke Philips N.V. | Assistance device and method for an interventional hemodynamic measurement |
US11087459B2 (en) | 2015-08-14 | 2021-08-10 | Elucid Bioimaging Inc. | Quantitative imaging for fractional flow reserve (FFR) |
US12026868B2 (en) | 2015-08-14 | 2024-07-02 | Elucid Bioimaging Inc. | Quantitative imaging for detecting histopathologically defined plaque erosion non-invasively |
US12008751B2 (en) | 2015-08-14 | 2024-06-11 | Elucid Bioimaging Inc. | Quantitative imaging for detecting histopathologically defined plaque fissure non-invasively |
US11113812B2 (en) | 2015-08-14 | 2021-09-07 | Elucid Bioimaging Inc. | Quantitative imaging for detecting vulnerable plaque |
US11676359B2 (en) | 2015-08-14 | 2023-06-13 | Elucid Bioimaging Inc. | Non-invasive quantitative imaging biomarkers of atherosclerotic plaque biology |
US11094058B2 (en) | 2015-08-14 | 2021-08-17 | Elucid Bioimaging Inc. | Systems and method for computer-aided phenotyping (CAP) using radiologic images |
US10176408B2 (en) | 2015-08-14 | 2019-01-08 | Elucid Bioimaging Inc. | Systems and methods for analyzing pathologies utilizing quantitative imaging |
US11071501B2 (en) | 2015-08-14 | 2021-07-27 | Elucid Bioiwaging Inc. | Quantitative imaging for determining time to adverse event (TTE) |
WO2017040484A1 (en) | 2015-08-31 | 2017-03-09 | Gentuity, Llc | Imaging system includes imaging probe and delivery devices |
CN108348206B (zh) | 2015-11-05 | 2022-07-29 | 皇家飞利浦有限公司 | 用于无创血流储备分数(ffr)的侧支流建模 |
WO2017083401A1 (en) | 2015-11-10 | 2017-05-18 | Heartflow, Inc. | Systems and methods for anatomical modeling using information from a procedure |
US10327726B2 (en) * | 2015-11-18 | 2019-06-25 | Lightlab Imaging, Inc. | X-ray image feature detection and registration systems and methods |
US10492754B2 (en) * | 2015-11-20 | 2019-12-03 | International Business Machines Corporation | Real-time cloud-based virtual fractional flow reserve estimation |
WO2017141803A1 (ja) * | 2016-02-16 | 2017-08-24 | 株式会社Pentas | ステントの長さ予測装置、ステントの長さ予測プログラム、およびステントの長さ予測方法 |
CN105769174A (zh) * | 2016-03-08 | 2016-07-20 | 济南市第三人民医院 | 心血管内科检测仪 |
DE102016203860A1 (de) * | 2016-03-09 | 2017-09-14 | Siemens Healthcare Gmbh | Vorrichtung und Verfahren zum Ermitteln zumindest eines individuellen fluiddynamischen Kennwerts einer Stenose in einem mehrere serielle Stenosen aufweisenden Gefäßsegment |
WO2017160994A1 (en) * | 2016-03-16 | 2017-09-21 | Heartflow, Inc. | Systems and methods for estimating healthy lumen diameter and stenosis quantification in coronary arteries |
IL263066B2 (en) | 2016-05-16 | 2023-09-01 | Cathworks Ltd | Selecting blood vessels from images |
EP3457930B1 (en) * | 2016-05-16 | 2023-11-15 | Cathworks Ltd. | System for vascular assessment |
CN106073894B (zh) * | 2016-05-31 | 2017-08-08 | 博动医学影像科技(上海)有限公司 | 基于植入虚拟支架的血管压力降数值及血流储备分数的评估方法和系统 |
US11701018B2 (en) | 2016-08-11 | 2023-07-18 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11206992B2 (en) | 2016-08-11 | 2021-12-28 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
DE102016215976A1 (de) * | 2016-08-25 | 2018-03-01 | Siemens Healthcare Gmbh | Ermittelung einer klinischen Kenngröße mit einer Kombination unterschiedlicher Aufnahmemodalitäten |
WO2018064336A1 (en) * | 2016-09-28 | 2018-04-05 | Lightlab Imaging, Inc. | Stent planning systems and methods using vessel representation |
JP7109429B2 (ja) | 2016-09-30 | 2022-07-29 | コーニンクレッカ フィリップス エヌ ヴェ | 狭窄評価用の機能的指標を決定する装置 |
KR101809149B1 (ko) * | 2016-11-25 | 2017-12-14 | 한국과학기술연구원 | 순환계질환 발생잠재도를 판단하는 장치 및 그 방법 |
CN110300546B (zh) | 2016-11-29 | 2023-03-31 | 铸造创新&研究第一有限责任公司 | 用于监测患者脉管系统和流体状态的系统和方法 |
US10748451B2 (en) * | 2016-12-15 | 2020-08-18 | Duke University | Methods and systems for generating fluid simulation models |
TWI638335B (zh) * | 2017-01-11 | 2018-10-11 | 國立臺灣大學 | 一種矯正具有假影之擴散影像的方法 |
DE102017200489A1 (de) * | 2017-01-13 | 2018-07-19 | Siemens Healthcare Gmbh | Verfahren zur Reduzierung von aufgrund von Gefäßüberlagerungen auftretenden Artefakten in einem vierdimensionalen Angiographiedatensatz, Bildverarbeitungseinrichtung, Computerprogramm und elektronisch lesbarer Datenträger |
EP3375364B1 (en) * | 2017-01-23 | 2024-08-28 | Shanghai United Imaging Healthcare Co., Ltd. | System and method for analyzing blood flow state |
CN106887000B (zh) * | 2017-01-23 | 2021-01-08 | 上海联影医疗科技股份有限公司 | 医学图像的网格化处理方法及其系统 |
CN106886993B (zh) * | 2017-02-07 | 2019-12-24 | 贺永明 | 17节段心肌评分系统 |
JP6653673B2 (ja) * | 2017-02-28 | 2020-02-26 | 富士フイルム株式会社 | 血流解析装置および方法並びにプログラム |
EP3382641A1 (en) * | 2017-03-30 | 2018-10-03 | Koninklijke Philips N.V. | Contrast injection imaging |
EP3602485B1 (en) * | 2017-03-31 | 2023-10-11 | Koninklijke Philips N.V. | Interaction monitoring of non-invasive imaging based ffr |
RU2645407C1 (ru) * | 2017-04-04 | 2018-02-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" | Способ моделирования нарушения кровотока по магистральной артерии |
EP3404614B1 (en) * | 2017-05-15 | 2020-02-26 | Siemens Healthcare GmbH | Method for reconstructing a reconstruction data set of a vessel segment, imaging device, computer program, and storage medium |
US11779238B2 (en) | 2017-05-31 | 2023-10-10 | Foundry Innovation & Research 1, Ltd. | Implantable sensors for vascular monitoring |
WO2018220143A1 (en) | 2017-05-31 | 2018-12-06 | Foundry Innovation And Research 1, Ltd | Implantable ultrasonic vascular sensor |
JP7270331B2 (ja) * | 2017-06-15 | 2023-05-10 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置及び画像処理装置 |
CN107341801B (zh) * | 2017-07-14 | 2020-05-19 | 合肥工业大学 | 一种基于多普勒血流声谱图的血流量测量方法 |
CN110998744B (zh) * | 2017-08-01 | 2024-04-05 | 西门子医疗有限公司 | 针对弥漫性和串联性病变中冠状动脉疾病的非侵入性评估和治疗指导 |
KR102744520B1 (ko) | 2017-10-06 | 2024-12-20 | 에모리 유니버시티 | 하나 이상의 동맥 세그먼트에 대한 혈역학 정보를 결정하기 위한 방법 및 시스템 |
US11684242B2 (en) | 2017-11-28 | 2023-06-27 | Gentuity, Llc | Imaging system |
CN108022650B (zh) * | 2017-12-07 | 2020-11-17 | 博动医学影像科技(上海)有限公司 | 管腔建模方法及计算血管压力差的方法与系统 |
KR102232202B1 (ko) * | 2017-12-21 | 2021-03-26 | 사회복지법인 삼성생명공익재단 | 심근 허혈 진단 시스템 및 이의 작동 방법 |
CN110825566B (zh) * | 2017-12-30 | 2020-12-01 | 深圳北芯生命科技有限公司 | 具有数据恢复功能的ffr主机 |
US11523788B2 (en) | 2018-01-11 | 2022-12-13 | Canon Medical Systems Corporation | Medical information processing apparatus, medical information processing system, and medical information processing method |
JP7160659B2 (ja) * | 2018-01-11 | 2022-10-25 | キヤノンメディカルシステムズ株式会社 | 医用情報処理装置、医用情報処理システム及び医用情報処理方法 |
US10580526B2 (en) * | 2018-01-12 | 2020-03-03 | Shenzhen Keya Medical Technology Corporation | System and method for calculating vessel flow parameters based on angiography |
CN108403093B (zh) * | 2018-02-27 | 2021-12-14 | 京东方科技集团股份有限公司 | 用于确定血管的位置的装置及其方法 |
CN110226923B (zh) * | 2018-03-05 | 2021-12-14 | 苏州润迈德医疗科技有限公司 | 一种无需血管扩张剂测量血流储备分数的方法 |
CN108665449B (zh) * | 2018-04-28 | 2022-11-15 | 杭州脉流科技有限公司 | 预测血流矢量路径上的血流特征的深度学习模型及装置 |
EP3564963B1 (en) * | 2018-05-02 | 2024-10-23 | Siemens Healthineers AG | System and methods for fast computation of computed tomography based fractional flow reserve |
US10937549B2 (en) * | 2018-05-22 | 2021-03-02 | Shenzhen Keya Medical Technology Corporation | Method and device for automatically predicting FFR based on images of vessel |
EP3806742B1 (en) | 2018-06-15 | 2024-04-17 | Pie Medical Imaging BV | Method and apparatus for quantitative hemodynamic flow analysis |
CN110613476B (zh) * | 2018-06-19 | 2022-09-23 | 青岛海信医疗设备股份有限公司 | 超声信号的处理方法和装置 |
CN108742562B (zh) * | 2018-06-20 | 2021-04-20 | 博动医学影像科技(上海)有限公司 | 基于高血脂信息获取血管压力差的方法及装置 |
US11200666B2 (en) | 2018-07-03 | 2021-12-14 | Caroline Choi | Method for diagnosing, predicting, determining prognosis, monitoring, or staging disease based on vascularization patterns |
WO2020018858A1 (en) * | 2018-07-20 | 2020-01-23 | University Of Louisville Research Foundation, Inc. | Method and system for assessing a coronary stenosis |
CN110599444B (zh) * | 2018-08-23 | 2022-04-19 | 深圳科亚医疗科技有限公司 | 预测血管树的血流储备分数的设备、系统以及非暂时性可读存储介质 |
WO2020061001A1 (en) | 2018-09-17 | 2020-03-26 | Gentuity, Llc | Imaging system with optical pathway |
PL427234A1 (pl) * | 2018-09-28 | 2020-04-06 | Fundacja Rozwoju Kardiochirurgii Im. Profesora Zbigniewa Religi | Sposób modelowania naczyń krwionośnych i przepływu krwi w tych modelach naczyń krwionośnych |
CN109523515A (zh) * | 2018-10-18 | 2019-03-26 | 深圳市孙逸仙心血管医院(深圳市心血管病研究所) | 血流储备分数的计算方法 |
CN111227822B (zh) * | 2018-11-28 | 2022-02-11 | 苏州润迈德医疗科技有限公司 | 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法 |
EP3891704A1 (en) * | 2018-12-07 | 2021-10-13 | Mayo Foundation for Medical Education and Research | Systems and methods for quantifying vessel features in ultrasound doppler images |
CN109567776B (zh) * | 2018-12-31 | 2021-08-10 | 深圳北芯生命科技股份有限公司 | 用于测试ffr主机系统的导管模拟器 |
KR20230020886A (ko) * | 2019-01-06 | 2023-02-13 | 코바노스, 인크. | 전자 환자 데이터를 기반으로 한 가상 스트레스 테스트 |
CN109583146A (zh) * | 2019-01-18 | 2019-04-05 | 深圳市阅影科技有限公司 | 冠状动脉血流动力仿真数据处理方法和装置 |
CN109938705B (zh) * | 2019-03-06 | 2022-03-29 | 智美康民(珠海)健康科技有限公司 | 三维脉波的显示方法、装置、计算机设备及存储介质 |
CN109907741B (zh) * | 2019-03-06 | 2022-04-01 | 智美康民(珠海)健康科技有限公司 | 三维脉波的显示方法、装置、计算机设备及存储介质 |
JP7434008B2 (ja) * | 2019-04-01 | 2024-02-20 | キヤノンメディカルシステムズ株式会社 | 医用画像処理装置およびプログラム |
WO2020201942A1 (en) * | 2019-04-01 | 2020-10-08 | Cathworks Ltd. | Methods and apparatus for angiographic image selection |
CN110120031B (zh) * | 2019-04-02 | 2022-05-31 | 四川锦江电子科技有限公司 | 一种得到血管血流储备分数的方法和装置 |
US10861157B2 (en) * | 2019-04-04 | 2020-12-08 | Medtronic Vascular, Inc. | System and methods for determining modified fractional flow reserve values |
CN109907772B (zh) * | 2019-04-15 | 2020-11-10 | 博动医学影像科技(上海)有限公司 | 获取冠脉血流量及血流速度的方法和装置 |
US11308621B2 (en) * | 2019-04-15 | 2022-04-19 | Pulse Medical Imaging Technology (Shanghai) Co. Ltd. | Method and apparatus for acquiring blood flow volume and blood flow velocity of coronary artery |
US12239412B2 (en) | 2019-05-21 | 2025-03-04 | Spryte Medical, Inc. | Systems and methods for OCT-guided treatment of a patient |
EP3998939A4 (en) | 2019-07-19 | 2023-08-09 | Cathworks Ltd. | FUNCTIONAL EFFECTS OF VASCULAR LESIONS |
CN110415243B (zh) * | 2019-08-02 | 2021-11-09 | 四川锦江电子科技有限公司 | 一种血管造影图像数据处理方法和图像数据处理装置 |
EP3899864A4 (en) | 2019-08-05 | 2022-08-31 | Elucid Bioimaging Inc. | Combined assessment of morphological and perivascular disease markers |
US11980735B2 (en) | 2019-08-07 | 2024-05-14 | Wisconsin Alumni Research Foundation | Dynamic agent injection for cardiovascular characterization |
EP4027873A4 (en) | 2019-09-09 | 2023-09-20 | Medhub Ltd | AUTOMATED ANALYSIS OF IMAGE DATA TO DETERMINE A FRACTIONAL FLOW RESERVE |
EP4033964B1 (en) | 2019-09-23 | 2025-04-09 | Cathworks Ltd. | Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device |
JP7626758B2 (ja) | 2019-09-25 | 2025-02-04 | マテリアライズ・ナムローゼ・フエンノートシャップ | 流体および空気の流れを評価するシステムおよび方法 |
WO2021117043A1 (en) * | 2019-12-10 | 2021-06-17 | Medhub Ltd | Automatic stenosis detection |
CN113034425B (zh) * | 2019-12-25 | 2024-05-28 | 阿里巴巴集团控股有限公司 | 数据处理方法、设备及存储介质 |
US12048575B2 (en) * | 2020-03-10 | 2024-07-30 | GE Precision Healthcare LLC | Systems and methods for registration of angiographic projections with computed tomographic data |
US12329556B2 (en) * | 2020-03-20 | 2025-06-17 | Koninklijke Philips N.V. | 3-D measurements grid tool for x-ray images |
KR102227605B1 (ko) * | 2020-08-25 | 2021-03-16 | (주)제이엘케이 | 말초동맥 진단영상 학습장치와 방법, 및 상기 학습장치와 방법을 통해 구축된 학습모델을 사용하는 유의한 말초동맥 질환 진단 장치 및 방법 |
JP7623682B2 (ja) | 2021-02-22 | 2025-01-29 | 国立大学法人山口大学 | 画像処理装置、画像処理プログラム、画像処理方法 |
EP4075446A1 (en) | 2021-04-18 | 2022-10-19 | Kardiolytics Inc. | Method and system for modelling blood vessels and blood flow under high-intensity physical exercise conditions |
WO2022236271A1 (en) * | 2021-05-05 | 2022-11-10 | Heartflow, Inc. | Systems and methods for processing electronic images to determine a planar mapping |
KR102425857B1 (ko) | 2021-07-01 | 2022-07-29 | 주식회사 메디픽셀 | 혈관 분할에 기초하여 혈관 영상을 처리하는 방법 및 장치 |
WO2023023144A1 (en) | 2021-08-17 | 2023-02-23 | Boston Scientific Scimed, Inc. | Intravascular imaging system with automated calcium analysis and treatment guidance |
CN113876304B (zh) * | 2021-09-08 | 2024-08-06 | 深圳市中科微光医疗器械技术有限公司 | 一种基于oct图像和造影图像确定ffr的方法及装置 |
US12315076B1 (en) | 2021-09-22 | 2025-05-27 | Cathworks Ltd. | Four-dimensional motion analysis of a patient's coronary arteries and myocardial wall |
CN113975617A (zh) * | 2021-11-05 | 2022-01-28 | 深圳市福妍堂中医药创新发展有限公司 | 一种调节女性月经失调的药械方法及系统 |
NL2029877B1 (en) | 2021-11-23 | 2023-06-15 | Undercurrent Laboratory B V | Image based analysis of a vessel structure |
EP4195143A1 (en) * | 2021-12-10 | 2023-06-14 | Koninklijke Philips N.V. | A system and method for processing temporal vessel images |
CN114334160B (zh) * | 2021-12-24 | 2023-11-28 | 北京阅影科技有限公司 | 求解血管功能学指标的方法、装置及计算机可读存储介质 |
KR102542972B1 (ko) * | 2022-07-04 | 2023-06-15 | 재단법인 아산사회복지재단 | 3차원 혈관 구조를 생성하는 방법 및 장치 |
CN115546174B (zh) * | 2022-10-20 | 2023-09-08 | 数坤(北京)网络科技股份有限公司 | 图像处理方法、装置、计算设备及存储介质 |
CN116051491A (zh) * | 2022-12-30 | 2023-05-02 | 深圳北芯生命科技股份有限公司 | 血管血液流量的计算方法 |
KR102611037B1 (ko) * | 2023-07-04 | 2023-12-08 | 주식회사 휴런 | 뇌와 관련된 정보로부터의 혈관 함수를 추출하기 위한 장치 및 방법 |
CN116649925B (zh) * | 2023-07-28 | 2023-10-31 | 杭州脉流科技有限公司 | 颅内动脉狭窄功能学评估的方法和装置 |
KR102727162B1 (ko) * | 2023-08-18 | 2024-11-07 | 주식회사 메디픽셀 | 의료 영상들을 매칭하는 방법 및 장치 |
EP4548838A1 (en) | 2023-10-30 | 2025-05-07 | Medlytic Labs | Comuter-implemented method and system for calculating a pressure drop along vessels |
EP4550265A1 (en) | 2023-10-31 | 2025-05-07 | Medipixel, Inc. | Method and electronic device for generating 3-dimensional blood vessel profile data |
Family Cites Families (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5182045A (en) | 1989-03-29 | 1993-01-26 | The Clorox Company | Late peracid precursors |
US5150292A (en) | 1989-10-27 | 1992-09-22 | Arch Development Corporation | Method and system for determination of instantaneous and average blood flow rates from digital angiograms |
JPH08131429A (ja) * | 1994-11-11 | 1996-05-28 | Toshiba Corp | 管状体像再生方法およびその装置 |
US6047080A (en) | 1996-06-19 | 2000-04-04 | Arch Development Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
US6236878B1 (en) | 1998-05-22 | 2001-05-22 | Charles A. Taylor | Method for predictive modeling for planning medical interventions and simulating physiological conditions |
DE69930756T2 (de) * | 1998-09-10 | 2006-08-31 | Percardia, Inc. | Tmr vorrichtung |
US6605053B1 (en) * | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
AU7443200A (en) * | 1999-09-22 | 2001-04-24 | Florence Medical Ltd. | A method and system for determination of ffr based on flow rate measurements |
US6953476B1 (en) * | 2000-03-27 | 2005-10-11 | Neovasc Medical Ltd. | Device and method for treating ischemic heart disease |
JP2004008304A (ja) * | 2002-06-04 | 2004-01-15 | Hitachi Ltd | 複数方向の投影映像を用いた3次元形状の生成方法および表示方法 |
US7020510B2 (en) | 2002-07-25 | 2006-03-28 | Koninklijke Philips Electronics, N.V. | Optimal view map V.0.01 |
US7113623B2 (en) | 2002-10-08 | 2006-09-26 | The Regents Of The University Of Colorado | Methods and systems for display and analysis of moving arterial tree structures |
JP2004201730A (ja) * | 2002-12-24 | 2004-07-22 | Hitachi Ltd | 複数方向の投影映像を用いた3次元形状の生成方法 |
AU2004268576A1 (en) | 2003-08-21 | 2005-03-10 | Ischem Corporation | Automated methods and systems for vascular plaque detection and analysis |
WO2005020155A1 (en) * | 2003-08-21 | 2005-03-03 | Philips Intellectual Property & Standards Gmbh | Device and method for generating a three-dimensional vascular model |
US8090164B2 (en) | 2003-08-25 | 2012-01-03 | The University Of North Carolina At Chapel Hill | Systems, methods, and computer program products for analysis of vessel attributes for diagnosis, disease staging, and surgical planning |
WO2005031635A1 (en) * | 2003-09-25 | 2005-04-07 | Paieon, Inc. | System and method for three-dimensional reconstruction of a tubular organ |
EP1805744A2 (en) | 2004-08-10 | 2007-07-11 | The General Hospital Corporation | Methods and apparatus for simulation of endovascular and endoluminal procedures |
EP1846753B1 (en) | 2005-02-04 | 2012-11-07 | Koninklijke Philips Electronics N.V. | System for the determination of vessel geometry and flow characteristics |
WO2007002685A2 (en) * | 2005-06-24 | 2007-01-04 | Volcano Corporation | Co-registration of graphical image data representing three-dimensional vascular features |
EP1917641A2 (en) * | 2005-08-17 | 2008-05-07 | Koninklijke Philips Electronics N.V. | Method and apparatus for automatic 4d coronary modeling and motion vector field estimation |
US20080294038A1 (en) | 2005-12-09 | 2008-11-27 | Koninklijke Philips Electronics, N.V. | Model-Based Flow Analysis and Visualization |
US8538508B2 (en) * | 2005-12-09 | 2013-09-17 | Siemens Aktiengesellschaft | Method and apparatus for ECG-synchronized optically-based image acquisition and transformation |
JP5379960B2 (ja) * | 2006-05-12 | 2013-12-25 | 株式会社東芝 | 3次元画像処理装置及び再構成領域指定方法 |
US10217220B2 (en) * | 2007-01-23 | 2019-02-26 | Dtherapeutics, Llc | Methods for the determination of transit time in circulatory systems and applications of the same |
US8781193B2 (en) | 2007-03-08 | 2014-07-15 | Sync-Rx, Ltd. | Automatic quantitative vessel analysis |
JP5109027B2 (ja) * | 2007-03-30 | 2012-12-26 | 国立大学法人京都大学 | 血管状態評価装置、血管状態評価方法および血管状態評価プログラム |
WO2009056147A1 (en) * | 2007-10-31 | 2009-05-07 | Aarhus Universitet | Method for calculating pressures in a fluid stream through a tube section, especially a blood vessel with atherosclerotic plaque |
US8428316B2 (en) * | 2007-12-03 | 2013-04-23 | Siemens Aktiengesellschaft | Coronary reconstruction from rotational X-ray projection sequence |
WO2009119908A1 (ja) * | 2008-03-28 | 2009-10-01 | テルモ株式会社 | 生体組織立体モデル及びその製造方法 |
US8145293B2 (en) | 2008-06-16 | 2012-03-27 | Siemens Medical Solutions Usa, Inc. | Adaptive medical image acquisition system and method |
US8155411B2 (en) * | 2008-07-22 | 2012-04-10 | Pie Medical Imaging B.V. | Method, apparatus and computer program for quantitative bifurcation analysis in 3D using multiple 2D angiographic images |
AU2009292925A1 (en) | 2008-09-22 | 2010-03-25 | Dtherapeutics, Llc | Devices, systems, and methods for determining fractional flow reserve |
US10362962B2 (en) | 2008-11-18 | 2019-07-30 | Synx-Rx, Ltd. | Accounting for skipped imaging locations during movement of an endoluminal imaging probe |
US8554490B2 (en) | 2009-02-25 | 2013-10-08 | Worcester Polytechnic Institute | Automatic vascular model generation based on fluid-structure interactions (FSI) |
US20120150048A1 (en) | 2009-03-06 | 2012-06-14 | Bio-Tree Systems, Inc. | Vascular analysis methods and apparatus |
US8428319B2 (en) * | 2009-04-24 | 2013-04-23 | Siemens Aktiengesellschaft | Automatic measurement of morphometric and motion parameters of the coronary tree from a rotational X-ray sequence |
EP3363350B1 (en) * | 2009-09-23 | 2019-12-11 | Lightlab Imaging, Inc. | Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods |
US8315355B2 (en) * | 2009-10-28 | 2012-11-20 | Siemens Aktiengesellschaft | Method for operating C-arm systems during repeated angiographic medical procedures |
US8224056B2 (en) | 2009-12-15 | 2012-07-17 | General Electronic Company | Method for computed tomography motion estimation and compensation |
US20120177275A1 (en) | 2010-04-20 | 2012-07-12 | Suri Jasjit S | Coronary Artery Disease Prediction using Automated IMT |
US8157742B2 (en) | 2010-08-12 | 2012-04-17 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US8315812B2 (en) * | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
KR101014879B1 (ko) * | 2010-08-13 | 2011-02-15 | 김지훈 | 그물조직사를 함유하는 휨 방지용 고무 매트 및 그 제조 방법 |
US9119540B2 (en) | 2010-09-16 | 2015-09-01 | Siemens Aktiengesellschaft | Method and system for non-invasive assessment of coronary artery disease |
US9107639B2 (en) * | 2011-03-15 | 2015-08-18 | Medicinsk Bildteknik Sverige Ab | System for synchronously visualizing a representation of first and second input data |
US10186056B2 (en) * | 2011-03-21 | 2019-01-22 | General Electric Company | System and method for estimating vascular flow using CT imaging |
CN103732132A (zh) * | 2011-06-13 | 2014-04-16 | 安吉奥梅特里克斯公司 | 用于分析解剖学参数和功能参数的多功能导丝组件和系统 |
US9314584B1 (en) * | 2011-06-27 | 2016-04-19 | Bayer Healthcare Llc | Method and apparatus for fractional flow reserve measurements |
US9974508B2 (en) | 2011-09-01 | 2018-05-22 | Ghassan S. Kassab | Non-invasive systems and methods for determining fractional flow reserve |
US8948487B2 (en) | 2011-09-28 | 2015-02-03 | Siemens Aktiengesellschaft | Non-rigid 2D/3D registration of coronary artery models with live fluoroscopy images |
US10162932B2 (en) * | 2011-11-10 | 2018-12-25 | Siemens Healthcare Gmbh | Method and system for multi-scale anatomical and functional modeling of coronary circulation |
US10034614B2 (en) | 2012-02-29 | 2018-07-31 | General Electric Company | Fractional flow reserve estimation |
US10373700B2 (en) * | 2012-03-13 | 2019-08-06 | Siemens Healthcare Gmbh | Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance |
US9135699B2 (en) * | 2012-03-15 | 2015-09-15 | Siemens Aktiengesellschaft | Method and system for hemodynamic assessment of aortic coarctation from medical image data |
US8548778B1 (en) | 2012-05-14 | 2013-10-01 | Heartflow, Inc. | Method and system for providing information from a patient-specific model of blood flow |
US20130324842A1 (en) | 2012-05-29 | 2013-12-05 | The Johns Hopkins University | Method for Estimating Pressure Gradients and Fractional Flow Reserve from Computed Tomography Angiography: Transluminal Attenuation Flow Encoding |
EP2879573A4 (en) | 2012-08-03 | 2016-08-03 | Volcano Corp | DEVICES, SYSTEMS AND METHODS FOR EVALUATING A VESSEL |
US9265473B2 (en) * | 2012-09-25 | 2016-02-23 | The Johns Hopkins University | Method for estimating flow rates and pressure gradients in arterial networks from patient specific computed tomography angiogram-based contrast distribution data |
US9675301B2 (en) | 2012-10-19 | 2017-06-13 | Heartflow, Inc. | Systems and methods for numerically evaluating vasculature |
US10210956B2 (en) | 2012-10-24 | 2019-02-19 | Cathworks Ltd. | Diagnostically useful results in real time |
US10595807B2 (en) | 2012-10-24 | 2020-03-24 | Cathworks Ltd | Calculating a fractional flow reserve |
US9814433B2 (en) | 2012-10-24 | 2017-11-14 | Cathworks Ltd. | Creating a vascular tree model |
EP2943902B1 (en) | 2012-10-24 | 2020-03-11 | CathWorks Ltd. | Automated measurement system and method for coronary artery disease scoring |
US9858387B2 (en) | 2013-01-15 | 2018-01-02 | CathWorks, LTD. | Vascular flow assessment |
US9042613B2 (en) * | 2013-03-01 | 2015-05-26 | Heartflow, Inc. | Method and system for determining treatments by modifying patient-specific geometrical models |
WO2015059706A2 (en) | 2013-10-24 | 2015-04-30 | Cathworks Ltd. | Vascular characteristic determination with correspondence modeling of a vascular tree |
US10331852B2 (en) * | 2014-01-17 | 2019-06-25 | Arterys Inc. | Medical imaging and efficient sharing of medical imaging information |
US10636146B2 (en) * | 2015-05-12 | 2020-04-28 | Singapore Health Services Pte Ltd | Medical image processing methods and systems |
US10872698B2 (en) * | 2015-07-27 | 2020-12-22 | Siemens Healthcare Gmbh | Method and system for enhancing medical image-based blood flow computations using physiological measurements |
EP3228245B1 (en) * | 2016-04-05 | 2021-05-26 | Siemens Healthcare GmbH | Determining arterial wall property with blood flow model |
-
2013
- 2013-09-29 US US14/040,688 patent/US9858387B2/en active Active
-
2014
- 2014-01-15 EP EP20190353.1A patent/EP3753494A1/en active Pending
- 2014-01-15 JP JP2015552198A patent/JP6636331B2/ja active Active
- 2014-01-15 EP EP14710059.8A patent/EP2946321B1/en active Active
- 2014-01-15 KR KR1020157021982A patent/KR20150110609A/ko not_active Withdrawn
- 2014-01-15 JP JP2015553226A patent/JP6542129B2/ja active Active
- 2014-01-15 WO PCT/IL2014/050039 patent/WO2014111927A1/en active Application Filing
- 2014-01-15 WO PCT/IL2014/050043 patent/WO2014111929A1/en active Application Filing
- 2014-01-15 CN CN201480014756.XA patent/CN105190630A/zh active Pending
- 2014-01-15 WO PCT/IL2014/050044 patent/WO2014111930A1/en active Application Filing
- 2014-01-15 EP EP14708097.2A patent/EP2946319B1/en active Active
-
2015
- 2015-07-15 IL IL239961A patent/IL239961B/en active IP Right Grant
- 2015-07-15 IL IL239960A patent/IL239960B/en active IP Right Grant
-
2017
- 2017-06-30 US US15/640,138 patent/US9977869B2/en active Active
-
2018
- 2018-05-21 US US15/985,359 patent/US10141074B2/en active Active
- 2018-11-19 JP JP2018216396A patent/JP7039442B2/ja active Active
- 2018-11-26 US US16/200,230 patent/US10395774B2/en active Active
-
2019
- 2019-06-12 JP JP2019109686A patent/JP6790179B2/ja active Active
- 2019-08-26 US US16/551,506 patent/US10803994B2/en active Active
-
2020
- 2020-11-13 JP JP2020189338A patent/JP2021045558A/ja not_active Withdrawn
-
2022
- 2022-08-04 JP JP2022124490A patent/JP2022169579A/ja active Pending
-
2024
- 2024-06-27 JP JP2024103653A patent/JP2024153627A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6790179B2 (ja) | リアルタイムの診断上有用な結果 | |
US12217872B2 (en) | Diagnostically useful results in real time | |
US11406337B2 (en) | Calculating a fractional flow reserve | |
US10470730B2 (en) | Creating a vascular tree model | |
EP3061015A2 (en) | Vascular characteristic determination with correspondence modeling of a vascular tree | |
US12315076B1 (en) | Four-dimensional motion analysis of a patient's coronary arteries and myocardial wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180305 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181119 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20181119 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20181128 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20181204 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20181221 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20190108 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20190604 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20190716 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20190805 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20190820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191002 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20191023 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20191119 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20191119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6636331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |