JP2004201730A - 複数方向の投影映像を用いた3次元形状の生成方法 - Google Patents

複数方向の投影映像を用いた3次元形状の生成方法 Download PDF

Info

Publication number
JP2004201730A
JP2004201730A JP2002371294A JP2002371294A JP2004201730A JP 2004201730 A JP2004201730 A JP 2004201730A JP 2002371294 A JP2002371294 A JP 2002371294A JP 2002371294 A JP2002371294 A JP 2002371294A JP 2004201730 A JP2004201730 A JP 2004201730A
Authority
JP
Japan
Prior art keywords
blood vessel
frame image
interest
target
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002371294A
Other languages
English (en)
Inventor
Michio Oikawa
道雄 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002371294A priority Critical patent/JP2004201730A/ja
Publication of JP2004201730A publication Critical patent/JP2004201730A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】ほぼ周期的な動きを行う心臓のような動体を複数方向から撮影した映像を用いて3次元形状の動きを求める場合、時系列データが大量となり、処理の負荷が高い。
【解決手段】複数方向の冠状動脈造影映像1から、拍動同位相として抽出したフレーム画像から血管を抽出し(ステップ100)、ステップ100の抽出にて利用した抽出パラメータを利用して連続するフレーム画像上の血管の移動量を推定して血管を自動抽出し(ステップ102)、拍動1周期分のフレーム画像から血管を抽出し、各フレーム画像の血管細線を求め(ステップ104)、対応を求めることで1周期分の血管3次元情報を計算し(ステップ108)、血管の4次元データ9を生成する。
【効果】ユーザは1つのフレーム画像について血管抽出するだけで、時系列の映像データ全てについて自動的に血管が抽出され、3次元血管の動きが再構成可能である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、血管などの枝状構造を複数方向から撮影した映像から、枝状構造の3次元情報を生成する方法に関し、主にX線により撮影した造影された血管、特に心臓の冠状動脈造影透視映像(CAG: Coronary Artery angioGraphy)から、3次元情報を生成する方法に関する。
【0002】
【従来の技術】
本発明に関連する従来技術として、以下の非特許文献1乃至4が知られている。
直交する左右2方向の冠状動脈造影画像列から、3次元形状を計算する方法について非特許文献1,2で述べられている。非特許文献1では、線状のものを抽出するフィルタを用い、非特許文献2では造影剤を注入する前と後の画像の差分により血管を抽出している。
【0003】
また、左右画像における血管の対応付けにおいて、造影剤の広がる時系列情報とエピポーラ直線を利用する方法について非特許文献1で述べられており、VRMLのモデルで表示する方法については非特許文献2に述べられている。
【0004】
さらに、血管径の変化による狭窄率の計測や、造影剤の行き渡る速度の計測について非特許文献1に述べられている。
【0005】
また、1方向の冠状動脈造影画像から、血管像を抽出し、血管をセグメントに分割し、解剖学的な特徴から血管セグメントの同定を行い、血管径から狭窄判定を行い、レポートを作成するシステムについて非特許文献3で述べられている。
【0006】
また、非特許文献4では、冠状動脈造影画像から血管の中心線を抽出する方法が述べられている。
【0007】
【非特許文献1】T. Saito, et al.「Three-Dimensional Quantitative Coronary Angiography」IEEE Transactions on Biomedical Engineering,Vol.37,No.8,pp.768-777(August 1990)。
【非特許文献2】内田、他「2方向観測画像列からの3次元血管形状抽出情報統合表示と遠隔診断のためのそのVRMLによる表現」画像電子学会第7回メディア統合技術研究会(1996).
【非特許文献3】柳原、他「血管走行図を伴う冠動脈径レポートシステムの試作」MEDICAL IMAGING TECHNOLOGY,Vol.19,No.3,pp.187-195(May 2001)。
【非特許文献4】Carsten Steger「An Unbiased Detector of Curvilinear Structures」IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.20,No.2,pp.113-125(February 1998)。
【0008】
【発明が解決しようとする課題】
冠状動脈造影画像の撮影条件は一定でないため、血管領域の抽出を完全に自動化することは困難である。また、ほぼ周期的な動きを行う心臓のような動体を複数方向から撮影した映像を用いて3次元形状の動きを求める場合、時系列データが大量となるため、すべてを手動で処理すると、ユーザの負荷が高いという課題が存在する。
【0009】
さらに他の目的は、血管の重なりがあった場合に、2方向からの血管画像の対応づけが困難であるという従来の課題を解決し、自動的に対応づけが行えるようにすることである。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、前のフレーム画像と次のフレーム画像を利用して血管の動きをするステップを設け、抽出パラメータを動きに合わせて補正することにより、自動的に連続する時系列のフレーム画像から血管領域を抽出することを可能としたものである。
【0011】
また、血管の3次元位置計算をする際に複数の対応点が存在した場合に1点を選択するために、対応点らしさの確率分布を利用して1点を選択するステップを設けることで、自動的に3次元位置計算を行うことを可能としたものである。
【0012】
【発明の実施の形態】
以下、本発明の実施例について、動体として心臓を対象とし、血管を造影してX線により撮影した透視映像を利用した1例について図1のフローチャートに沿って説明する。
【0013】
まず、2方向からの冠状動脈造影映像を撮影し、映像データ1を取得する。次に、映像データ1から拍動1周期分のフレーム画像を選択する(ステップ100)。映像データ1を撮影したときに、心電図や脈波を同時に計測していれば、そのデータを元にして1周期分を選択することが可能である。あるいは、心電図や脈波データが存在しない場合には、前記映像データ1のフレーム画像の平均ピクセル値の変化の周期性から、拍動1周期分のフレーム画像を選択することが可能である。
【0014】
続いて、選択された拍動1周期分の2方向のフレーム画像について、上記の方法と同様に心電図や脈波データかフレーム画像の平均ピクセル値を用いることにより、拍動の同位相となるフレーム画像の対応づけを行う(ステップ102)。
【0015】
ステップ100で選択された1周期分のフレーム画像の最初のフレーム画像について、ユーザが抽出パラメータを指定し、血管領域を抽出する(ステップ104)。以下では、抽出手法として領域拡張法を想定する。
【0016】
続いて次のフレーム画像が存在するかを確認し(ステップ106)、存在する場合には、現在血管を抽出したフレーム画像と次のフレーム画像との違いから血管の動きを推定する(ステップ108)。具体的な例について図2を用いて説明する。
【0017】
現在血管抽出したフレーム画像が10、次のフレーム画像が11であるとする。フレーム画像10における血管領域12を領域拡張法により抽出する際に、点16〜19をシード点として指定したものとする。次のフレーム画像11においては血管形状が14のように変化している。その形状変化により点16〜19に対応する点が点26〜29になるはずであるとする。このとき、フレーム画像10において、シード点を中心として事前に指定した大きさの注目領域21〜24を考える。次のフレーム画像11においても、フレーム画像10のシード点とした点16〜19を中心として注目領域31〜34を設定する。
【0018】
ここで、注目領域31〜34を上下左右に移動させ、フレーム画像10の注目領域21〜24ともっとも相関のある位置を求める。例えば,それぞれの領域についてピクセル値の差分をとり、平均を求め、指定移動範囲内で求めた前記ピクセル値の差分平均値について最小となるときもっとも相関が高いと考え、各注目領域の移動量が血管の動きであると推定する。前記移動範囲は冠状動脈造影映像1のフレームレートに依存して、事前に指定しておく。すなわち、フレームレートが高ければ、フレーム画像間の血管形状変化は少ないので、移動範囲は小さくてよい。逆にフレームレートが低ければ、移動範囲は大きくすればよい。本実施例によれば、血管の局所的な動きを推定することが可能である。
ここで図1のフローチャートに戻り、説明を続ける。ステップ108で推定された血管の動きから、抽出パラメータを補正し、次の画像フレーム11の血管を自動的に抽出する。すなわち、抽出パラメータとして、領域拡張のためのシード点を、推定された血管の動きに合せて移動することにより、シード点を図2の点26〜29の位置へ移動する。また、フレーム画像10における注目領域21〜24のピクセル値と、フレーム画像11において注目領域21〜24とそれぞれもっとも相関が高い位置に設定された注目領域31〜34のピクセル値を利用して、領域拡張条件の局所的ピクセル値変化の許容しきい値や大局的ピクセル値変化の許容しきい値を決定する。例えば領域内ピクセル値のヒストグラムの変化が小さくなれば局所的ピクセル値変化の許容しきい値を下げ、領域内ピクセル値の平均とシード点のピクセル値の差が大きくなっていれば、大局的ピクセル値変化の許容しきい値を大きくすることにより、血管抽出の精度を上げることが可能である。
【0019】
なお、上記の手法では領域拡張法による抽出を想定したが、差分による背景除去や、微分やラプラシアンなどのエッジ処理フィルタなどを利用したり、それらを組合せて利用してもよい。その場合には上記のステップ108における注目領域は、フレーム画像10において抽出した血管上の点として、分岐点や、端点から指定距離離れた点などを中心として設定すればよい。また、ステップ110においては、領域内ピクセル値の変化から、エッジ処理フィルタのしきい値などを補正すればよい。
【0020】
以上のステップ108と110を1周期分のフレーム画像全てについて適用することにより、自動的に血管の動きを考慮した血管領域の抽出が可能である。
【0021】
血管抽出が終了したら、ステップ111で血管抽出結果を確認し、抽出漏れや抽出あふれ領域が存在する場合には修正を行う。造影された血管のピクセル値が背景のピクセル値と十分異なっていればステップ111での修正作業は発生しない。
【0022】
次に、全フレーム画像について抽出した血管を細線化し(ステップ112)、全フレーム画像の血管を構造化する(ステップ114)。例えば、分岐する毎に血管をセグメントとして、分岐情報を記憶することにより構造化する。
【0023】
続いてステップ102で対応づけされた同位相のフレーム画像ペアについて、血管構造の対応づけを行う。図4を用いて説明する。
【0024】
第1透視方向のフレーム画像(以下第1透視画像)55と同位相の第2透視方向のフレーム画像(以下第2透視画像)56が対応づけられているとする。ステップ114により、第1透視画像55の血管はセグメントS11(57)、S12(58)、S13(59)に構造化されている。同様に第2透視画像56の血管はセグメントS21(60)、S22(61)、S23(62)に構造化されているとする。このとき、第1透視方向と第2透視方向は、画像の垂直方向を軸として回転しただけの透視方向の違いであるとすると、第2透視画像56におけるエピポーラ直線は70〜72のように水平な直線となる。このエピポーラ直線を利用し、造影開始点であるカテーテル先端位置、すなわちセグメントS11及びS21の端点、セグメントS12、S13及びS22、S23への分岐点とを対応づけることが可能であり、それにより、血管構造の対応づけができる。すなわち、セグメントS11とS21、S12とS22、S13とS23が対応することとなる。
【0025】
ここで、2方向からの造影映像を同時に撮影できない場合には,心臓の動きや呼吸動、体動などの影響で、カテーテル先端位置や分岐点がエピポーラ直線と対応がつかないことが考えられる。その場合には、第2透視方向の血管形状を、エピポーラ直線に対応点が乗るように変形することで、対応づけすればよい。
【0026】
以上の方法により、血管構造が対応づけされた同位相のフレーム画像の全ペアについて、透視条件から幾何学的に血管の3次元形状を求める(ステップ116)。すると、拍動1周期分の血管3次元データ3を生成することができる。
【0027】
ここで、ステップ116について、図6のフローチャートに沿いながら、図4、図5、図7を用いて更に詳しく説明する。
【0028】
図6では一つの同位相フレーム画像ペアに注目して説明する。ステップ115により、同位相フレーム画像ペアの血管構造の対応づけがされている。そこで、第1透視画像の血管上の点について、全て3次元化計算が終了したかを確認し(ステップ202)、終了していなければ、エピポーラ直線を用い、第2透視画像上で、現在選択した第1透視画像上の血管点に対応する点が、ステップ115で求めた対応する血管セグメントに存在するかを調べる(ステップ204)。その結果対応点が存在する場合、対応点が1点であるかを調べ(ステップ206)、1点であれば、その対応点に関し、直前の対応点位置からの距離を求め、しきい値以下であれば(ステップ207)、透視条件により幾何学的に血管点の3次元位置を計算し(ステップ208)、次に計算すべき点を選択する(ステップ214)。ここで、ステップ207の目的は、血管形状の連続性を保つためであり、何らかの問題により直前の対応位置とかけ離れた対応関係が求められた場合、その対応は誤りであると判定することが可能となる。
【0029】
例えば、図4の点63の場合、セグメントS11(57)に対応するセグメントS21(60)上に点67が1点のみ存在するため、ステップ204、206、208により、3次元位置が計算される。また、点64においては、エピポーラ線71上には、点68、69の2点が存在するが、ステップ204では、対応するセグメントのみの対応点を求めるため、点68のみが対応点として求められることになる。
【0030】
次に、ステップ204において、対応血管セグメントに対応点が存在しない場合には、第2透視画像上の対応血管セグメントに接続する血管セグメントに対応点が存在するかを調べる(ステップ210)。図7を用いて説明する。
【0031】
第1透視画像78の血管はセグメントS11(91)、S12(92)、S13(93)に構造化され、第2透視画像79の血管はセグメントS21(94)、S22(95)、S23(96)に構造化されている。このときステップ115により、S11とS21、S12とS23、S13とS22が対応づけされているとする。
【0032】
すると、点80、81については、図6のステップ204において、対応点が対応セグメントに存在すると判定されるが、点82〜85については、対応セグメントには対応点が存在しないと判定される。これは、セグメントS12の血管が、第2透視方向では一部が血管セグメントS21と重なってしまっているためである。そこで、このような場合には、第2透視画像の対応セグメントに接続するセグメント、すなわちこの例ではS21とS23について、対応点が存在するかを調べる。その結果、点82、84に対しては点88が、点83に対しては点87が、点85に対しては点89が対応点として求まる。後はステップ204で対応点が見つかった場合と同様にステップ206に進む。以上の方法によれば、血管の重なりが存在する場合にも、血管形状の3次元化を行うことが可能である。
もし、ステップ210においても対応点が見つからなかった場合には、第2透視画像では造影剤が薄れるなどして血管が抽出されなかったことが想定されるため、対応点なしとして3次元化せずに、次の3次元化すべき点を選択する(ステップ214)。
【0033】
また、ここでステップ206において、対応点が複数存在した場合、事前に設定した確率分布によって、もっとも対応点らしいと考えられる1点を選択する(ステップ212)。図5を用いて、確率分布の例を説明する。
【0034】
構造化された血管上の点について、カテーテル位置から遠ざかる方向を正として、血管構造として記憶された点の順番を距離として考えるとする。すると、血管形状の連続性から、第2透視画像上の対応点は直前の対応点よりも正の距離に進んだ点が対応する確率がもっとも高いと考えられる。しかし、血管の重なりや、呼吸動などによる位置ずれの影響も考えられることから、図5のように横軸に血管構造上の点の距離をとったとき、直前の対応点位置76から0.9の距離分正方向に進んだ位置を中心とする確率分布75を定義することにより、自然な対応点を自動的に選択することが可能となる。ここで、確率分布75のピーク中心を、前の対応位置から1進んだ位置としなかったのは、複数の対応点が存在した場合に、確率が同じになることを避けるためである。
【0035】
例えば、図4の点65については、対応点として点73、74が候補となるが、図5の確率分布を用いることにより、点73が選択される。また、点66に対しても点73、74が候補となるが、点74が対応点として選択される。
【0036】
以上の方法を用いることにより、ステップ210で対応セグメント以外の複数の対応点が求められた場合にも、対応点を1点求めることが可能となる。
【0037】
次に、以上の実施例により得られた拍動1周期分の血管の3次元データから、心臓実質の拍動1周期分の3次元データを求める実施例について図3を用いて説明する。
【0038】
まず、あらかじめ心臓実質の標準3次元モデル41を作成しておく。同時に左右の冠状動脈について標準3次元モデル42、43を作成しておく。冠状動脈は心臓実質の表面に存在することから、冠状動脈と心臓実質を関連づけることが可能となる。
【0039】
次に、前記の実施例により作成した拍動1周期分の血管3次元データ3との関連付けを行う。例えば、ある位相の血管3次元データが44、45であったとするとき、その血管上の点と、冠状動脈標準3次元モデル42、43との対応をユーザが指示する。例えば、図3のように、血管3次元データ44、45と冠状動脈標準3次元モデル42、46を表示し、ユーザが、点37と点53、点38と点54、点50と点46、点51と点47、点52と点48をマウスクリックなどにより対応づける。点36、39、49については、図3の角度では冠状動脈標準3次元モデル上には見えていないが、そのような場合には、心臓実質41を非表示にしたり、回転して表示するなどして表示して、対応づけを行う。
【0040】
次に、対応づけされた点を制御点として、モーフィング技術により、冠状動脈標準3次元モデル42、46を血管3次元データ44、45に合うように変形させる。さらに、心臓実質標準3次元モデル41と冠状動脈標準3次元モデル42、46との関係から、心臓実質標準3次元モデル41もモーフィングにより変形させる。
【0041】
以上の処理を1周期分の血管3次元データ3を用いて行うことにより、心臓実質の1周期分の3次元データを作成することが可能である。
【0042】
本手法によれば、拍動に同期してX線CTを撮影するなどの方法を用いずに、2方向の血管造影透視映像を利用することにより、心臓実質の3次元的な形状の動きを求めることが可能となる。
【0043】
ここで、拍動1周期分の血管3次元データ3として、太さのある血管データを生成する実施例について、図8のフローに沿って、図9、図10を用いながら説明する。
【0044】
図1のステップ100からステップ116を行った後に、2方向の冠状動脈造影映像1の透視条件について、第1透視方向と第2透視方向はある軸(以下、透視方向回転軸)回りの回転だけであるかどうかを調べる(ステップ300)。以下一つの同位相フレーム画像ペアに着目して説明する。1軸のみの回転であった場合、各方向の透視画像上の細線化した血管について、血管上の各点について、透視画像上における透視方向回転軸に垂直な方向(以下、回転軸に垂直な方向)の血管半径を、ステップ111後の細線化前の血管抽出画像を用いて求める。この時、ステップ112の細線化手法が、従来技術の文献(4)で示したStegerの手法のような血管の中心線を求めることができる手法であれば、血管半径は細線化した血管上の点から同じ値として求められるが、中心線とならない細線化手法を用いた場合には、血管半径が異なることになる.
次に、透視方向回転軸回りの回転角度αを利用し、透視方向回転軸に垂直方向の血管断面形状を推定する(ステップ304)。例えば、ステップ112の細線化手法は抽出された血管の中心線を求めることができるとして、第1透視方向における血管径がa、第2透視方向における血管径がbであるとするとき、図10の340に示すような血管断面を推定する。図10は透視方向回転軸方向から見たときの血管断面形状であり、点線346は第1透視画像面、点線342は第2透視画像面を示している。この形状推定方法の例を図9を用いて説明する。
【0045】
横軸に角度をとり、第1透視方向の回転軸に垂直な方向の血管半径aを0度の縦軸にとる(点321)。次に、透視方向回転軸回りの回転角度αの位置には第2透視方向の回転軸に垂直な方向の血管半径bをプロットする(点322)。同様に点323、324をプロットする。細線化された血管位置が血管の中心線でない場合には、点323、324の血管半径の長さを変えれば良い。さらに、滑らかな血管断面形状とするため、点325、326、320をプロットし、プロットされた点をスプライン曲線330により滑らかに接続する。
【0046】
以上のように求められたスプライン曲線330の0〜360度の範囲を用いて、図10に示した血管断面形状340を生成する。すなわち、点321が点341に、点322が点342に、点323が点343に、点324が点344に対応することになる。
【0047】
以上のように生成した血管断面形状を、細線化された血管点に対し、透視方向回転軸に垂直面内の断面形状として太さ情報を付加し、太さを持った血管の3次元形状を生成する(ステップ306)。
【0048】
次に、ステップ330において、1軸のみの回転でない場合、各透視画像上の細線化した血管について、血管上の各点について、各透視画像上の血管走行方向に垂直な方向の血管直径を、細線化前の血管抽出画像から求める(ステップ308)。次に、各透視方向の血管直径の平均を求め、注目している血管上の点に対する血管直径とする(ステップ310)。そして、第1透視画像の注目している血管点に対し、第1透視画像上の血管走行に垂直でかつ、第1透視画像に垂直な方向の円形断面として太さ情報を付加し、太さを持った血管3次元形状を生成する(ステップ312)。
【0049】
以上の実施例により、診療の際に重要な情報となる狭窄が発生している部分について可視化することが可能となる。また、定量的な狭窄の推定が可能となる。
【0050】
【発明の効果】
本発明によれば、ユーザは拍動1周期分のデータについて、最初のフレーム画像の血管抽出だけをすることで、1周期分の3次元血管形状や心臓形状を生成することが可能となり、3次元的な動きが可視化できるなどの効果がある。
【図面の簡単な説明】
【図1】本発明の1実施例の全体フロー図である。
【図2】図1の血管の動き推定方法を説明する血管画像の例である。
【図3】図1の拍動1周期分の血管3次元データから心臓実質の1周期分の3次元形状を生成する方法の説明図である。
【図4】血管を構造化し、対応点を探して血管の3次元形状を求める方法を説明する図である。
【図5】血管点の対応づけを自動的に行うための確率分布の例である。
【図6】図1の血管3次元位置情報を計算する部分の詳細な実施例のフロー図である。
【図7】図6における血管が重なった際の対応点を求める方法の説明図である。
【図8】太さを持った血管3次元形状を求める実施例のフロー図である。
【図9】図8の血管断面の直径を求める例である。
【図10】図9の例で求められた血管断面の例である。
【符号の説明】
12、14.造影された冠状動脈、41.心臓実質の標準3次元データ、44、45.3次元化された冠状動脈、75.対応点を自動的に決定するための確率分布、340.血管の断面形状

Claims (6)

  1. 投影条件が既知である、周期的な動体を撮影した複数方向の投影映像から1周期分のフレーム画像を選択するステップと、
    動体の同じ状態の(以下同位相とする)フレーム画像(以下同位相フレーム画像ペア)を選択するステップと、
    該選択した1周期分の最初の同位相フレーム画像ペアについて、抽出パラメータを指定し、注目対象を抽出するステップと、
    それ以外の同位相フレーム画像ペアについて、前のフレーム画像から注目対象の変化を推定し、該推定された注目対象の変化により抽出パラメータを補正し、該補正抽出パラメータにより注目対象を抽出ステップを有し、
    前記1周期分の全フレーム画像について、抽出された注目対象の形状を線表現するステップと、
    同位相フレーム画像ペアについて該線表現された注目対象の対応をとることにより、1周期分の3次元情報を求めるステップを有することを特徴とする、3次元形状生成方法。
  2. 請求項1記載の方法において、前のフレーム画像から注目対象の変化を推定するステップは、前のフレーム画像と現在のフレーム画像の局所的な画像のマッチング情報に基づき、局所的な注目対象の変化を推定することを特徴とする、3次元形状生成方法。
  3. 請求項1記載の方法において、注目対象を抽出する方法として領域拡張法を用い、前記推定された注目対象の変化から抽出するパラメータを補正するステップにおいて、領域拡張の元となる点の位置を該注目対象の推定された動きに合わせて移動することを特徴とする、3次元形状生成方法。
  4. 請求項1記載の方法において、同位相フレーム画像ペアについて線表現された注目対象の対応をとるステップは、幾何学的な情報に基づいて対応点を探索した場合に、複数の対応点候補が見つかった場合に、直前の対応関係を用い、対応点らしさの確率分布により、1つの対応点を選択するステップを含むことを特徴とする、3次元形状生成方法。
  5. 請求項1記載の方法において求められた注目対象の動きの1周期分の3次元形状と、事前に用意した標準的な動体の3次元モデルデータの対応を取るステップと、該対応に合せて標準的な動体の3次元モデルデータを変形することにより、1周期分の注目対象を含む動体の3次元形状を生成することを特徴とする、3次元形状生成方法。
  6. 請求項1記載の方法において、同位相フレーム画像ペアについて該線表現された注目対象の対応をとることにより、1周期分の3次元情報を求めるステップは、
    線表現される前の画像から線の太さを推定し、太さを持った注目対象の3次元形状を生成することを特徴とする、3次元形状生成方法。
JP2002371294A 2002-12-24 2002-12-24 複数方向の投影映像を用いた3次元形状の生成方法 Pending JP2004201730A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371294A JP2004201730A (ja) 2002-12-24 2002-12-24 複数方向の投影映像を用いた3次元形状の生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371294A JP2004201730A (ja) 2002-12-24 2002-12-24 複数方向の投影映像を用いた3次元形状の生成方法

Publications (1)

Publication Number Publication Date
JP2004201730A true JP2004201730A (ja) 2004-07-22

Family

ID=32810210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371294A Pending JP2004201730A (ja) 2002-12-24 2002-12-24 複数方向の投影映像を用いた3次元形状の生成方法

Country Status (1)

Country Link
JP (1) JP2004201730A (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192151A (ja) * 2005-01-14 2006-07-27 Toshiba Corp 画像処理装置
JP2006255217A (ja) * 2005-03-18 2006-09-28 Hitachi Medical Corp X線画像診断装置
JP2008006083A (ja) * 2006-06-29 2008-01-17 Toshiba Corp 3次元画像生成装置
JP2008529638A (ja) * 2005-02-10 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像処理装置及び方法
JP2008220494A (ja) * 2007-03-09 2008-09-25 Toshiba Corp 医用画像処理装置および医用画像処理方法
JP2009261651A (ja) * 2008-04-25 2009-11-12 Johns Hopkins Univ 画像処理装置及びプログラム
JP2010512915A (ja) * 2006-12-22 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 対象物を撮像する撮像システム及び撮像方法
JP2012040196A (ja) * 2010-08-19 2012-03-01 Toshiba Corp 画像処理装置
KR101118612B1 (ko) 2006-12-01 2012-03-14 캐논 가부시끼가이샤 촬상장치 및 그 제어 방법
WO2014038428A1 (ja) * 2012-09-07 2014-03-13 株式会社 日立メディコ 画像処理装置及び画像処理方法
WO2014091977A1 (ja) * 2012-12-12 2014-06-19 コニカミノルタ株式会社 画像処理装置及びプログラム
WO2014192990A1 (ko) * 2013-05-28 2014-12-04 연세대학교 산학협력단 혈관영상에서의 움직임 추정 방법 및 그 장치
KR20150124775A (ko) * 2014-04-29 2015-11-06 주식회사 코어라인소프트 의료 영상 처리 방법 및 그 장치
JP2016007435A (ja) * 2014-06-25 2016-01-18 株式会社東芝 X線診断装置
US9607378B2 (en) 2013-04-05 2017-03-28 Panasonic Corporation Image region mapping device, 3D model generating apparatus, image region mapping method, and image region mapping program
US9750474B2 (en) 2013-04-05 2017-09-05 Panasonic Corporation Image region mapping device, 3D model generating apparatus, image region mapping method, and image region mapping program
WO2018074661A1 (ko) * 2016-10-19 2018-04-26 순천향대학교 산학협력단 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치 및 방법
WO2018159708A1 (ja) * 2017-02-28 2018-09-07 富士フイルム株式会社 血流解析装置および方法並びにプログラム
JP2018149092A (ja) * 2017-03-13 2018-09-27 キヤノンメディカルシステムズ株式会社 X線診断装置、画像処理装置及び画像処理プログラム
US10236083B2 (en) 2014-07-17 2019-03-19 Fujitsu Limited Visualization apparatus and visualization method
JP2019088792A (ja) * 2013-01-15 2019-06-13 キャスワークス・リミテッドCathWorks Ltd. 血管モデルの作成方法
CN111415335A (zh) * 2020-03-11 2020-07-14 北京深睿博联科技有限责任公司 血管标注方法和装置

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192151A (ja) * 2005-01-14 2006-07-27 Toshiba Corp 画像処理装置
JP4703193B2 (ja) * 2005-01-14 2011-06-15 株式会社東芝 画像処理装置
JP2008529638A (ja) * 2005-02-10 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像処理装置及び方法
JP4679190B2 (ja) * 2005-03-18 2011-04-27 株式会社日立メディコ X線画像診断装置
JP2006255217A (ja) * 2005-03-18 2006-09-28 Hitachi Medical Corp X線画像診断装置
JP2008006083A (ja) * 2006-06-29 2008-01-17 Toshiba Corp 3次元画像生成装置
KR101118612B1 (ko) 2006-12-01 2012-03-14 캐논 가부시끼가이샤 촬상장치 및 그 제어 방법
JP2010512915A (ja) * 2006-12-22 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 対象物を撮像する撮像システム及び撮像方法
JP2008220494A (ja) * 2007-03-09 2008-09-25 Toshiba Corp 医用画像処理装置および医用画像処理方法
JP2009261651A (ja) * 2008-04-25 2009-11-12 Johns Hopkins Univ 画像処理装置及びプログラム
JP2012040196A (ja) * 2010-08-19 2012-03-01 Toshiba Corp 画像処理装置
CN104507392A (zh) * 2012-09-07 2015-04-08 株式会社日立医疗器械 图像处理装置及图像处理方法
WO2014038428A1 (ja) * 2012-09-07 2014-03-13 株式会社 日立メディコ 画像処理装置及び画像処理方法
JPWO2014038428A1 (ja) * 2012-09-07 2016-08-08 株式会社日立製作所 画像処理装置及び画像処理方法
US9396395B2 (en) 2012-09-07 2016-07-19 Hitachi Medical Corporation Image processing apparatus and image processing method, configured to apply threshold conditions to specify target pixel
WO2014091977A1 (ja) * 2012-12-12 2014-06-19 コニカミノルタ株式会社 画像処理装置及びプログラム
CN104853677A (zh) * 2012-12-12 2015-08-19 柯尼卡美能达株式会社 图像处理装置以及程序
JP5578297B1 (ja) * 2012-12-12 2014-08-27 コニカミノルタ株式会社 画像処理装置及びプログラム
US9639952B2 (en) 2012-12-12 2017-05-02 Konica Minolta, Inc. Image-processing apparatus and storage medium
JP2019088792A (ja) * 2013-01-15 2019-06-13 キャスワークス・リミテッドCathWorks Ltd. 血管モデルの作成方法
JP2021045558A (ja) * 2013-01-15 2021-03-25 キャスワークス・リミテッドCathWorks Ltd. 血管モデルの作成方法
US9607378B2 (en) 2013-04-05 2017-03-28 Panasonic Corporation Image region mapping device, 3D model generating apparatus, image region mapping method, and image region mapping program
US9750474B2 (en) 2013-04-05 2017-09-05 Panasonic Corporation Image region mapping device, 3D model generating apparatus, image region mapping method, and image region mapping program
WO2014192990A1 (ko) * 2013-05-28 2014-12-04 연세대학교 산학협력단 혈관영상에서의 움직임 추정 방법 및 그 장치
KR20150124775A (ko) * 2014-04-29 2015-11-06 주식회사 코어라인소프트 의료 영상 처리 방법 및 그 장치
KR101638597B1 (ko) * 2014-04-29 2016-07-11 주식회사 코어라인소프트 의료 영상 처리 방법 및 그 장치
JP2016007435A (ja) * 2014-06-25 2016-01-18 株式会社東芝 X線診断装置
US10236083B2 (en) 2014-07-17 2019-03-19 Fujitsu Limited Visualization apparatus and visualization method
KR101852689B1 (ko) * 2016-10-19 2018-06-11 순천향대학교 산학협력단 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치 및 방법
WO2018074661A1 (ko) * 2016-10-19 2018-04-26 순천향대학교 산학협력단 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치 및 방법
WO2018159708A1 (ja) * 2017-02-28 2018-09-07 富士フイルム株式会社 血流解析装置および方法並びにプログラム
JPWO2018159708A1 (ja) * 2017-02-28 2019-07-25 富士フイルム株式会社 血流解析装置および方法並びにプログラム
US11266322B2 (en) 2017-02-28 2022-03-08 Fujifilm Corporation Blood flow analysis apparatus, blood flow analysis method, and blood flow analysis program
JP2018149092A (ja) * 2017-03-13 2018-09-27 キヤノンメディカルシステムズ株式会社 X線診断装置、画像処理装置及び画像処理プログラム
US10937226B2 (en) 2017-03-13 2021-03-02 Canon Medical Systems Corporation Medical image processing apparatus, reconstruction method and X-ray diagnostic apparatus based on a change of a density of a contrast agent over time
CN111415335A (zh) * 2020-03-11 2020-07-14 北京深睿博联科技有限责任公司 血管标注方法和装置
CN111415335B (zh) * 2020-03-11 2023-12-22 北京深睿博联科技有限责任公司 血管标注方法和装置

Similar Documents

Publication Publication Date Title
JP2004201730A (ja) 複数方向の投影映像を用いた3次元形状の生成方法
EP3659114B1 (en) Evaluating cardiac motion using an angiography image
US10438363B2 (en) Method, apparatus and program for selective registration three-dimensional tooth image data to optical scanning tooth model
US9256940B2 (en) Vascular outlining with ostia visualization
JP5129480B2 (ja) 管状臓器の3次元再構成を行うシステム及び血管撮像装置の作動方法
US7574026B2 (en) Method for the 3d modeling of a tubular structure
US20060036167A1 (en) Vascular image processing
JP4559501B2 (ja) 心機能表示装置、心機能表示方法およびそのプログラム
US20160117797A1 (en) Image Processing Apparatus and Image Processing Method
CN102715906B (zh) 从c臂血管造影术的单扫描估算3d心脏运动的方法和系统
JP2014140742A (ja) 動いている器官の目標エリア内のオブジェクトを追跡するための方法および装置
JP2006246941A (ja) 画像処理装置及び管走行トラッキング方法
JP2008142543A (ja) 3次元画像処理装置及びx線診断装置
JP2019500146A (ja) 体部の3次元モデル
EP1917641A2 (en) Method and apparatus for automatic 4d coronary modeling and motion vector field estimation
US9058664B2 (en) 2D-2D fusion for interventional guidance in trans-catheter aortic valve implantation
JP2004008304A (ja) 複数方向の投影映像を用いた3次元形状の生成方法および表示方法
KR101900679B1 (ko) 혈관 특징 정보를 기반으로 하는 삼차원 심혈관 정합 방법, 이를 수행하기 위한 기록 매체 및 장치
US20080009715A1 (en) Rotational stereo roadmapping
JP2021133243A (ja) デジタルマンモグラフィイメージングのための方法およびシステム
CN107049343B (zh) 图像处理装置以及放射线摄影装置
JP2007260398A (ja) 心臓のコンピュータ断層撮影表示における階段状アーチファクトの低減方法およびメモリ媒体
Blondel et al. Automatic trinocular 3D reconstruction of coronary artery centerlines from rotational X-ray angiography
JP6419551B2 (ja) X線診断装置、画像処理装置及び画像処理プログラム
WO2017003424A1 (en) Metric 3d stitching of rgb-d data