JP6611000B2 - コールドクルーシブル溶解炉 - Google Patents

コールドクルーシブル溶解炉 Download PDF

Info

Publication number
JP6611000B2
JP6611000B2 JP2015198435A JP2015198435A JP6611000B2 JP 6611000 B2 JP6611000 B2 JP 6611000B2 JP 2015198435 A JP2015198435 A JP 2015198435A JP 2015198435 A JP2015198435 A JP 2015198435A JP 6611000 B2 JP6611000 B2 JP 6611000B2
Authority
JP
Japan
Prior art keywords
metal
conductive segment
cooling water
cold crucible
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015198435A
Other languages
English (en)
Other versions
JP2017072283A (ja
Inventor
昌宏 田所
北斗 山口
弘樹 西河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2015198435A priority Critical patent/JP6611000B2/ja
Publication of JP2017072283A publication Critical patent/JP2017072283A/ja
Application granted granted Critical
Publication of JP6611000B2 publication Critical patent/JP6611000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、誘導加熱により被溶解金属を溶解する溶解炉に関し、溶解を炉本体が冷却されつつ行うコールドクルーシブル溶解炉に関する。
従来、被溶解金属を誘導加熱により溶解する装置として、例えば、銅などの金属で形成され、内部に冷却水路を有する炉本体と、炉本体の外周側に配置された誘導加熱コイルとを備えたコールドクルーシブル溶解炉がある。このコールドクルーシブル溶解炉で炉本体に収容された被溶解金属を溶解する場合、誘導加熱コイルによって被溶解金属を誘導加熱するとともに、冷却水路に冷却水を通すことによって炉本体を冷却する。これにより、炉本体に収容された被溶解金属は、外周側において炉本体に抜熱されるため、この外周側で被溶解金属が冷却されて凝固したスカルが形成され、内部のみが溶融することとなる。このため、被溶解金属が溶解した溶湯は、スカルによって炉本体と隔離されることにより炉本体からの汚染が防止される。また、炉本体は、上記のように金属で形成されていることから、急速溶解したとしても割れなどの損傷が生じる恐れがない。このため、コールドクルーシブル溶解炉では、高純度の溶湯を高速で生成することが可能である。
例えば、特許文献1に記載のコールドクルーシブル溶解炉は、被溶解金属を収容する収容凹部を有する炉本体と、前記炉本体を冷却する冷却手段と、前記炉本体の外周側に配置され、前記炉本体の収容凹部に収容された被溶解金属を誘導加熱する誘導加熱コイルとを備える。炉本体は、収容凹部の少なくとも一部を規定する複数の導電性セグメントを備える。
各導電性セグメントの横断面形状に関しては、例えば特許文献2の図2に示されている。各導電性セグメントにおける収容凹部を向いた面は、収容凹部を取り巻く、一定曲率の湾曲面の一部を形成している。
前記被溶解金属、つまり、コールドクルーシブル溶解炉で生成する鋳塊の材料としては、従来、コバルト、チタン、タンタルのような高融点材料(各導電性セグメントを構成する材料よりも融点の高い材料)を用いてきた。しかし、最近では、前記高融点材料に低融点材料(例えばすずなど、各導電性セグメントを構成する材料よりも融点の低い材料)を混ぜて特殊な材料(例えば医療用の生体埋め込み部品に用いられる生体金属)の鋳塊をコールドクルーシブル溶解炉で生成したいというニーズがある。
ここで、例えば、各導電性セグメントを構成する金属に銅が含まれており、被溶解金属に、前記低融点材料として銅と親和性の高い特定の金属(例えばすず)が含まれている場合に問題が生じることがある。具体的には、各導電性セグメントを構成する材料である銅の融点よりも加熱された被溶解金属が低温であっても、各導電性セグメント中の銅に対して、前記特定の金属(すず)が反応して合金を形成してしまうことがある。そうなると、各導電性セグメントにクラックが生じる等して損傷することがある。
特開2009−85525号公報 特開平2−302586号公報
そこで本発明は、各導電性セグメントを構成する金属に対して親和性の高い特定の金属が含まれた被溶解金属を溶解する場合であっても、問題なく使用できるコールドクルーシブル溶解炉を提供することを課題とする。
本発明は、被溶解金属を収容する収容凹部を有する炉本体と、前記炉本体の外周側に配置され、前記収容凹部に収容された被溶解金属を誘導加熱して溶湯とする誘導加熱コイルとを備え、前記炉本体は、前記収容凹部の少なくとも一部を規定する複数の導電性セグメントを備え、前記複数の導電性セグメントの各々は、内部に冷却水路を有し、外部または内部に、前記冷却水路の内面から各導電性セグメントにおける前記収容凹部を向いた面までの距離を均一化する肉厚調整部を有し、前記各導電性セグメントの横断面形状は、角部を有する形状であり、前記肉厚調整部は、前記角部のうちで前記収容凹部側の角部が有する、平面である面取部または湾曲面であるアール部により構成されるコールドクルーシブル溶解炉である。
この構成によれば、各導電性セグメントが肉厚調整部を有する。このため、各導電性セグメントにおいて冷却水路から収容凹部を向いた面までの肉厚を均一化できることから、冷却水路に冷却水等の冷却媒体を通すことによる各導電性セグメントの冷却に、部分によるばらつきが生じにくくなる。よって、各導電性セグメントにおける収容凹部を向いた面の表面温度を、被溶解金属に含まれる特定の金属の融点よりも低下させることが可能である。
また、この構成によれば、各導電性セグメントの角部に平面または湾曲面を機械加工することで容易に肉厚調整部を形成できる。
そして、前記面取部または前記アール部は、前記各導電性セグメントに誘導加熱時の磁束が浸透する浸透深さを基準として、当該浸透深さの5倍以下の寸法を有するものとできる。
この構成によれば、面取部またはアール部を、浸透深さを基準として、当該浸透深さの5倍以下の寸法で形成することにより、各導電性セグメントにおいて、磁束が通過することにより発熱する領域(横断面における面積)を縮小させることができる。このため、発熱を抑制できることから、各導電性セグメントの冷却効率が良好である。よって、各導電性セグメントにおける収容凹部側の表面の温度をより有効に低下させられる。
そして、前記各導電性セグメントを構成する材料は銅を含む金属とできる。
この構成によれば、被溶解金属に銅と親和性の高い特定の金属(例えばすず)が含まれていても、銅を含む金属からなる導電性セグメントを損傷させることを抑制できる。
本発明によると、各導電性セグメントにおける収容凹部を向いた面の表面温度を、被溶解金属に含まれる特定の金属の融点よりも低下させることが可能である。このため、各導電性セグメントを構成する金属に対して親和性の高い特定の金属が含まれた被溶解金属を溶解する場合であっても、各導電性セグメントを損傷させることなく、問題なく使用できる。
本発明の一実施形態に係るコールドクルーシブル溶解炉の概要を示す、一部を断面視表示した側面図である。 同コールドクルーシブル溶解炉における複数の導電性セグメントの形状を示す横断面図である。 同コールドクルーシブル溶解炉における複数の導電性セグメントの寸法を示す横断面図である。 本発明の他実施形態に係る各導電性セグメントの形状を示す横断面図であり、(A)はスリットが内外連通しない参考例を示し、(B)は角部にアール部を形成したものを示し、(C)は冷却水路の横断面形状を四角形とした参考例を示す。
図1は、本発明の一実施形態のコールドクルーシブル溶解炉を示している。このコールドクルーシブル溶解炉の基本的な構成は特許文献1記載のものと同じである。つまり、このコールドクルーシブル溶解炉1は、被溶解金属Wを収容する収容凹部10aを有する炉本体10と、炉本体10を冷却する冷却手段20と、炉本体10の外周側に配置された誘導加熱コイル30とを備える。被溶解金属Wとしては、例えば鋳鉄や酸化鉄が挙げられるが、その他様々な金属を適用可能である。後述のように、本実施形態の導電性セグメント12は、肉厚調整部Xを構成する面取部12e(図2参照)を備えたことにより、導電性セグメント12の冷却に、部分によるばらつきが生じにくくなる。このため、被溶解金属Wに銅と親和性の高い特定の金属(例えばすず)が含まれていても、当該金属の融点よりも導電性セグメント12における、収容凹部10a側の表面の温度を低下させることができるので、導電性セグメント12を損傷させることなくコールドクルーシブル溶解炉1を使用できる。なお、本実施形態のコールドクルーシブル溶解炉1は、大気中に設置されて被溶解金属Wの溶解を行うものとしてもよいし、真空槽等、気密状態で密閉可能な槽(図示しない)の内部に設置されて、例えば真空雰囲気中で被溶解金属Wの溶解を行うものとしてもよい。
炉本体10は、収容凹部10aの底面壁を構成するように形成されたベース体11と、収容凹部10aの側面壁を構成するようにベース体11上に平面視略円形状に配設された複数の導電性セグメント12…12とを有する。そして、互いに固定されたベース体11と複数の導電性セグメント12…12とによって、上部が開口して被溶解金属Wを収容する収容凹部10aが形成されている。つまり、複数の導電性セグメント12…12は、平面視において収容凹部10aの、被溶解金属Wを収容可能な空間の外縁を周回するよう設けられることで、収容凹部10aの少なくとも一部を規定している。なお、本実施形態のコールドクルーシブル溶解炉1はバッチ処理を行うよう構成されているが、本発明はこれに限定されず、例えばベース体11を下方に移動可能とし、冷却により固形化した鋳塊(インゴット)を収容凹部10aの下方に引き抜きできるよう構成することもできる。この構成を採用したコールドクルーシブル溶解炉1では、被溶解金属Wを収容凹部10aに上方から連続的に投入しつつ、下方から連続引き抜きを行うことで連続鋳造を行うことができるため、長尺の鋳塊を得ることができる。
前記ベース体11は、略円柱状に形成された柱状部13と、柱状部13の下端部から外周側へ張り出したフランジ部14とを有する。柱状部13の上面は、収容凹部10aを構成する内面15のうち底面15aを形成していて、この底面15aは熱緩衝部材40によって覆われている。また、フランジ部14には、各導電性セグメント12に対応する位置で、それぞれ上下方向に連通する複数の締結孔11aと、冷却水路11bとが形成されている。
導電性セグメント12は、上下方向に立設された側壁部16と、側壁部16の下端から曲折された取付部17とによって、縦断面略L字形に形成されている。導電性セグメント12の材質としては、熱衝撃に強く、必要な機械的強度を有するとともに、冷却手段20による冷却を有効に行えるもの、例えば、銅(純銅)、または、クロム銅、ベリリウム銅などの銅合金が選択される。
側壁部16は、内側面が下部においてベース体11の柱状部13に当接するとともに、上部が柱状部13から上方へ突出し、収容凹部10aを構成する内面15のうち壁面15bを形成している。また、取付部17には、ベース体11のフランジ部14の締結孔11a及び冷却水路11bとそれぞれ連通するようにして複数の締結孔12a及び冷却水路12bが形成されている。そして、互いに連通するベース体11のフランジ部14及び導電性セグメント12の取付部17の締結孔11a,12aには、固定ボルト18が挿通され、ナット18aによって締め付けられていて、これにより導電性セグメント12とベース体11とは一体となっている。
ここで、ベース体11に固定された各導電性セグメント12は、平面視において周方向に隣接するもの同士が隙間Gを有して配置されている。この隙間Gにより、隣接する導電性セグメント12,12同士は電気的に絶縁されている。また、各導電性セグメント12において、幅方向略中央部には厚さ方向に連通するスリット12cが形成されている。スリット12cは、図示しないが、取付部17にも形成されているとともに、側壁部16において、下端部から上方まで(ただし、上端部には至らない)形成されている。前記隙間G及びスリット12cは、溶解した被溶解金属Wが外方に漏れ出ること(湯差し)を防止するために、有する空間が耐火材料で埋められることもできる。スリット12cを横断する位置における、各導電性セグメント12の有する横断面形状(スリット12cを挟む2領域の各形状)は扇形または台形とされている。各導電性セグメント12は、前記横断面形状の四隅に対応して角部を有する。これら角部のうち収容凹部10a側(炉本体10の径内側)である2箇所の角部には、図2に示すように、後述する肉厚調整部Xを構成する面取部12eが形成されている。そして、側壁部16においてスリット12cを挟む幅方向の両側には、それぞれ冷却水路12bが形成されている。本実施形態の冷却水路12bは、内面の横断面形状が円形とされた水路である。この側壁部16における一方と他方の冷却水路12b,12bは、側壁部16の上端部に形成された連通水路12dによって互いに接続されている。そして、各冷却水路12bは、それぞれベース体11の冷却水路11bと連通している。
これにより、冷却媒体供給源(図示しない)から冷却水等の冷却媒体をベース体11の冷却水路11bに供給すれば、供給された冷却媒体は、ベース体11の冷却水路11b、導電性セグメント12の一方の冷却水路12b、連通水路12d、導電性セグメント12の他方の冷却水路12b、ベース体11の冷却水路11bを順次通って外部に排出される。このため、導電性セグメント12及びベース体11は、この冷却媒体によって冷却される。すなわち、冷却媒体供給源、冷却水路11b,12b、連通水路12dによって冷却手段20が構成されている。この冷却手段20は、各導電性セグメント12の収容凹部10a側の表面温度を被溶解金属Wの溶解温度以下とできる冷却能力を有している。
導電性セグメント12の外部または内部には、冷却水路12bの内面から導電性セグメント12における収容凹部10aを向いた面までの距離を均一化する肉厚調整部Xを有する。本実施形態では、この肉厚調整部Xを構成するものとして、図2に示すように、導電性セグメント12の外部に面取部12eが形成されている。前述のように、スリット12cを横断する位置における、各導電性セグメント12の有する横断面形状(スリット12cを挟んだ2領域の各形状)は扇形または台形とされている。面取部12eは、この扇形または台形における四隅の角部のうちで収容凹部10a側の2箇所の角部に形成されている。
このように面取部12eを形成することにより、冷却水路12bの内面から導電性セグメント12における収容凹部10aを向いた面までの厚み寸法を均一化できる。前記「均一化」とは、導電性セグメント12におけるどの位置でも厚み寸法を等しくすることを意味するのではなく、位置による厚み寸法の差を小さくすることを意味している。つまり、導電性セグメント12における収容凹部10aを向いた面のうち、図3に示す周方向の中央での厚み寸法D1と、角部での厚み寸法D2との差を、図3に破線で示したように面取部12eを形成しない場合(厚み寸法D3)との差よりも、面取部12eを形成した分小さくできる。このように厚み寸法の差を小さくできたことにより、冷却水路12bを通る冷却媒体による導電性セグメント12の冷却にばらつきが生じにくい。具体的には、導電性セグメント12における収容凹部10a側の角部の温度を、面取部12eを形成しない場合よりも低下させることができる。よって、被溶解金属Wとして、銅と親和性の高い特定の金属(例えばすず)が含まれていても、当該特定の金属の融点(すずの場合約232℃)よりも導電性セグメント12における表面(収容凹部10a側の表面)の温度を低下させることができるため、導電性セグメント12を損傷させることなくコールドクルーシブル溶解炉1を使用できる。
また、面取部12eは、導電性セグメント12の角部に平面ができるように形成すればいいので、導電性セグメント12に対する機械加工により容易に肉厚調整部Xを形成できるというメリットがある。
本実施形態の面取部12eは、各導電性セグメント12に誘導加熱時の磁束が浸透する浸透深さδを基準とした寸法を有する。誘導加熱時の磁束は、隣接する導電性セグメント12,12同士の間の隙間Gにおける空間、スリット12cにおける空間、そして、前記各空間に面した導電性セグメント12の一部を通過する。浸透深さδとは、各導電性セグメント12において磁束が通過する領域の、前記各空間に面した表面からの深さを示す(図3の二点鎖線で示した部分を参照)。浸透深さδ(cm)は以下の計算式で規定される。ただし、この計算式は一例に過ぎず、他の計算式等により浸透深さδを導出することも可能である。

δ=5.04√{ρ/(μ・f)}

(ρ…各導電性セグメントを構成する材料の比抵抗(μΩcm)、μ…透磁率、f…誘導加熱に係る通電周波数(Hz))
本実施形態では、炉本体10の平面視における周方向に沿う面取部12eの寸法が、浸透深さδを基準としてあまりに大きい寸法であると、溶湯に対する接触面積が大きくなってしまうため好ましくない。このため、前記面取部12eの寸法は、浸透深さδの5倍以下となるよう設定されている。
導電性セグメント12は、磁束が通過することにより発熱する。このため、面取部12eを、浸透深さδを基準とした寸法で形成することにより、導電性セグメント12において自ら発熱する領域(横断面における面積)を縮小させることができる。このため、導電性セグメント12の発熱を抑制できることから、冷却水路12bを通る冷却媒体による、導電性セグメント12の冷却効率が良好となり、導電性セグメント12における収容凹部10a側の表面の温度を有効に低下させられる。
誘導加熱コイル30は、炉本体10の外周側に巻回されることで炉本体10を囲んでおり、図示しない電源装置によって高周波交流電力が供給される。この高周波交流電力により交番磁場を発生させ、収容凹部10aに収容された被溶解金属Wを誘導加熱することが可能である。
熱緩衝部材40は、ベース体11の柱状部13の形状と対応した略円板状の部材で、底面15aの全体を覆っている。熱緩衝部材40は、被溶解金属Wより融点の高い耐火物によって形成されており、炉本体10を形成する材質よりも熱伝導率が低く、炉本体10と同等の機械的強度を有するとともに、被溶解金属Wを加熱溶解する際に要求される耐熱衝撃性を有するものが選択される。より具体的には、熱緩衝部材40を形成する耐火物は、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化ジルコニウムなどの酸化物からなるものが好ましい。また、炭化ケイ素などを含むものとしてもよい。また、この熱緩衝部材40は、底面15aに加え、壁面15bの一部を覆ってもよい。
以上、本発明の一実施形態につき説明してきたが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態に変更可能である。
例えば、前記実施形態のスリット12cは、導電性セグメント12の厚さ方向に連通(貫通)するものであった。参考例として、図4(A)に示すように、スリット12cを導電性セグメント12の外周側に連通(貫通)しないように形成することもできる。
また、肉厚調整部Xを構成するものとして、前記実施形態における導電性セグメント12では、横断面形状における角部に、平面である面取部12eが形成されていたが、図4(B)に示すように、湾曲面であるアール部12fが形成されることもできる。面取部12eと同様、アール部12fであっても導電性セグメント12への機械加工により容易に肉厚調整部Xを形成できる。
また、前記実施形態は、各導電性セグメント12の外部(冷却水路12bから離れた部分)に肉厚調整部Xを有するものであったが、各導電性セグメント12の内部(冷却水路12bに近い部分)に肉厚調整部Xを有するものであってもよい。参考例として、図4(C)に示すように、例えば導電性セグメント12の横断面形状における角部には加工を施さず、冷却水路12bの内面の横断面形状を、導電性セグメント12の横断面形状と対称である扇形または台形としたり、正方形等の多角形としたりすることで、冷却水路12bの内面から収容凹部10aを向いた面までの距離を均一化することができる。この場合の肉厚調整部Xは、冷却水路12bの角部12gにより構成される。
1 コールドクルーシブル溶解炉
10 炉本体
10a 収容凹部
12b 冷却水路
12e 肉厚調整部、面取部
12f 肉厚調整部、アール部
12g 肉厚調整部、冷却水路の角部
15 炉本体の内面
30 誘導加熱コイル
40 熱緩衝部材
W 被溶解金属
X 肉厚調整部

Claims (3)

  1. 被溶解金属を収容する収容凹部を有する炉本体と、前記炉本体の外周側に配置され、前記収容凹部に収容された被溶解金属を誘導加熱して溶湯とする誘導加熱コイルとを備え、
    前記炉本体は、前記収容凹部の少なくとも一部を規定する複数の導電性セグメントを備え、
    前記複数の導電性セグメントの各々は、内部に冷却水路を有し、外部または内部に、前記冷却水路の内面から各導電性セグメントにおける前記収容凹部を向いた面までの距離を均一化する肉厚調整部を有し、幅方向略中央部には厚さ方向に連通するスリットが形成されており、
    前記各導電性セグメントの横断面形状は、角部を有する形状であり、
    前記肉厚調整部は、前記角部のうちで、前記各導電性セグメントにおいて前記スリットを挟む2領域の各々における前記収容凹部側の2箇所の角部が有する、平面である面取部または湾曲面であるアール部により構成されるコールドクルーシブル溶解炉。
  2. 前記面取部または前記アール部は、前記各導電性セグメントに誘導加熱時の磁束が浸透する浸透深さを基準として、当該浸透深さの5倍以下の寸法を有する、請求項に記載のコールドクルーシブル溶解炉。
  3. 前記各導電性セグメントを構成する材料は銅を含む金属である、請求項1または2に記載のコールドクルーシブル溶解炉。
JP2015198435A 2015-10-06 2015-10-06 コールドクルーシブル溶解炉 Active JP6611000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015198435A JP6611000B2 (ja) 2015-10-06 2015-10-06 コールドクルーシブル溶解炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198435A JP6611000B2 (ja) 2015-10-06 2015-10-06 コールドクルーシブル溶解炉

Publications (2)

Publication Number Publication Date
JP2017072283A JP2017072283A (ja) 2017-04-13
JP6611000B2 true JP6611000B2 (ja) 2019-11-27

Family

ID=58538226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198435A Active JP6611000B2 (ja) 2015-10-06 2015-10-06 コールドクルーシブル溶解炉

Country Status (1)

Country Link
JP (1) JP6611000B2 (ja)

Also Published As

Publication number Publication date
JP2017072283A (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
KR101956914B1 (ko) 잉곳의 전자기 주조에 사용하기 위한 바닥부 개방형 전기 유도식 저온 도가니
JP2007524798A (ja) 渦電流ダンピングを用いるコールドクルーシブル誘導加熱炉
JPH02287091A (ja) 誘導炉
KR100564770B1 (ko) 고 용해효율 전자기 연속주조장치
JP2018145071A (ja) 結晶育成装置
JP6611000B2 (ja) コールドクルーシブル溶解炉
US20080179038A1 (en) Apparatus For Continuous Casting of Magnesium Billet or Slab Using Electromagnetic Field and the Method Thereof
JP6107193B2 (ja) 光ファイバ線引炉
JP5000149B2 (ja) コールドクルーシブル誘導溶解装置
JP6365700B2 (ja) 単結晶引き上げ装置
JP2007163057A (ja) コールドクルーシブル誘導加熱溶解炉
JP6931748B1 (ja) 傾斜誘導ユニットによる浮揚熔解装置及び方法
JP6842030B2 (ja) 底部出湯ノズル、底部出湯ノズル型溶解炉
JP2009085525A (ja) コールドクルーシブル溶解炉
JP2014194289A (ja) コールドクルーシブル溶解炉
JP5654339B2 (ja) 誘導加熱式アルミニウム溶解・保持炉
JP4506057B2 (ja) コールドクルーシブル溶解鋳造装置
KR20200047107A (ko) 단결정 용액성장 장치 및 단결정 용액성장 방법
KR20100039464A (ko) 유도 가열용 냉각 도가니
JP2008049358A (ja) 誘導溶解装置
US20170048933A1 (en) Air-cooled induction heating device
JP2015021691A (ja) コールドクルーシブル溶解炉及びその製造方法
JP2002327989A (ja) 誘導加熱式水冷坩堝炉
JP6086276B2 (ja) コールドクルーシブル溶解炉
JP2008051376A (ja) 誘導溶解装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191004

R150 Certificate of patent or registration of utility model

Ref document number: 6611000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250