JP6607792B2 - Heat spreader - Google Patents

Heat spreader Download PDF

Info

Publication number
JP6607792B2
JP6607792B2 JP2016007436A JP2016007436A JP6607792B2 JP 6607792 B2 JP6607792 B2 JP 6607792B2 JP 2016007436 A JP2016007436 A JP 2016007436A JP 2016007436 A JP2016007436 A JP 2016007436A JP 6607792 B2 JP6607792 B2 JP 6607792B2
Authority
JP
Japan
Prior art keywords
heat spreader
wall portion
housing
heat
closing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016007436A
Other languages
Japanese (ja)
Other versions
JP2017130494A (en
Inventor
幸夫 宮地
進一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016007436A priority Critical patent/JP6607792B2/en
Publication of JP2017130494A publication Critical patent/JP2017130494A/en
Application granted granted Critical
Publication of JP6607792B2 publication Critical patent/JP6607792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、ヒートスプレッダに関する。   The present invention relates to a heat spreader.

特許文献1には、複数のグラフェンシートを積層して形成されたグラファイト構造体の側面を取り囲むように4つの銅板を配置し、これらの銅板とグラファイト構造体とをインサート材(ろう材)によって接合(ろう付け)したグラファイト複合体が開示されている。   In Patent Document 1, four copper plates are arranged so as to surround a side surface of a graphite structure formed by laminating a plurality of graphene sheets, and these copper plates and the graphite structure are joined by an insert material (brazing material). A (brazed) graphite composite is disclosed.

特開2012−238733号公報JP 2012-238733 A

ところで、特許文献1に開示されたグラファイト複合体の構造では、グラファイト構造体と銅板とをろう付けする際に、グラファイト構造体と銅板との間から加熱溶融したろう材が流出する虞がある。ろう材が流出した場合には、グラファイト構造体と銅板との間の空隙が増加する。   By the way, in the structure of the graphite complex disclosed in Patent Document 1, when the graphite structure and the copper plate are brazed, there is a possibility that the brazing material heated and melted from between the graphite structure and the copper plate. When the brazing material flows out, the gap between the graphite structure and the copper plate increases.

本発明は、製造時におけるろう材の流出が抑制されたヒートスプレッダを提供することを目的とする。   An object of this invention is to provide the heat spreader by which the outflow of the brazing material at the time of manufacture was suppressed.

本発明の請求項1に記載のヒートスプレッダは、複数の熱伝導層を積層して形成され、積層方向に隣接する前記熱伝導層同士がろう材によって接合された積層体と、金属材料で構成されると共に一方の面が開放された箱形状とされ、内部に前記積層体が収容されて前記積層体とろう材によって接合された筐体と、金属材料で構成され、前記筐体の開放部を閉塞すると共に前記筐体及び前記積層体にそれぞれろう材によって接合された閉塞部材と、を有し、前記閉塞部材の縁部には、側壁部が設けられ、前記側壁部は、前記筐体の周壁部を取り囲んでいるThe heat spreader according to claim 1 of the present invention is formed by laminating a plurality of heat conductive layers, and is composed of a laminated body in which the heat conductive layers adjacent in the stacking direction are joined together by a brazing material, and a metal material. And a box shape in which one side is opened, the casing in which the stacked body is accommodated and joined by a brazing material and the stacked body, and a metal material, with closing have a, a closing member joined by a brazing material to each of the housing and the laminate, the edges of the closing member, the side wall portion is provided, the side wall portion, of the housing Surrounds the peripheral wall .

請求項1に記載のヒートスプレッダでは、筐体の内部に積層体を収容し、筐体の開放部を閉塞部材で閉塞する構造としているため、例えば、筒状の筐体で積層体の外周のみを囲う構造と比べて、ろう付け時(言い換えると、ろう材を用いた接合時)に加熱溶融されたろう材(加熱されて溶融状態となったろう材)が筐体の内部から外部に流出しにくい。すなわち、上記ヒートスプレッダでは、製造時(ろう付け時)におけるろう材の流出が抑制される。   In the heat spreader according to claim 1, since the laminated body is accommodated in the housing and the opening portion of the housing is closed with a closing member, for example, only the outer periphery of the laminated body is covered with a cylindrical housing. Compared to the enclosing structure, the brazing material heated and melted at the time of brazing (in other words, at the time of joining using the brazing material) (the brazing material heated and melted) is less likely to flow out from the inside of the housing. That is, in the heat spreader, the outflow of the brazing material at the time of manufacture (at the time of brazing) is suppressed.

また、請求項に記載のヒートスプレッダでは、閉塞部材の側壁部が筐体の周壁部を取り囲んでいるため、例えば、閉塞部材の側壁部が筐体の周壁部を取り囲まない構造と比べて、筐体の開放面積が大きくなるように周壁部が傾く変形を抑制できる。このため、上記ヒートスプレッダでは、ろう付け時における各熱伝導層の熱膨張が、閉塞部材の側壁部によって筐体の周壁部の上記変形が抑制されることで、抑制される。その結果、上記ヒートスプレッダでは、各熱伝導層の熱膨張方向の違いや熱膨張率の違いによって筐体の周壁部と積層体との間の空隙が増加するのが抑制される。 Further, in the heat spreader according to claim 1 , since the side wall portion of the closing member surrounds the peripheral wall portion of the housing, for example, the side wall portion of the closing member does not surround the peripheral wall portion of the housing. The deformation in which the peripheral wall portion is inclined so as to increase the open area of the body can be suppressed. For this reason, in the said heat spreader, the thermal expansion of each heat conductive layer at the time of brazing is suppressed by suppressing the said deformation | transformation of the surrounding wall part of a housing | casing by the side wall part of a closure member. As a result, in the heat spreader, an increase in the gap between the peripheral wall portion of the housing and the laminated body due to a difference in thermal expansion direction and a difference in thermal expansion coefficient of each heat conductive layer is suppressed.

本発明の請求項に記載のヒートスプレッダは、請求項に記載のヒートスプレッダにおいて、前記熱伝導層は、炭素系材料で構成されており、積層方向に隣接する前記熱伝導層同士の配向が異なる。 The heat spreader according to claim 2 of the present invention is the heat spreader according to claim 1 , wherein the heat conductive layer is made of a carbon-based material, and the orientations of the heat conductive layers adjacent to each other in the stacking direction are different. .

請求項に記載のヒートスプレッダでは、熱伝導層を炭素系材料で構成し、積層方向に隣接する熱伝導層同士の配向を異ならせているため、例えば、積層方向に隣接する熱伝導層同士の配向が同じものと比べて、ろう付け時における各熱伝導層の熱膨張を抑える効果が向上する。また、上記熱伝導層によって形成される積層体の熱伝導率が向上する。 In the heat spreader according to claim 2 , since the heat conductive layer is made of a carbon-based material and the orientation of the heat conductive layers adjacent to each other in the stacking direction is different, for example, between the heat conductive layers adjacent to each other in the stacking direction. Compared with the same orientation, the effect of suppressing the thermal expansion of each heat conductive layer during brazing is improved. Moreover, the heat conductivity of the laminated body formed with the said heat conductive layer improves.

本発明の請求項に記載のヒートスプレッダは、請求項又は請求項に記載のヒートスプレッダにおいて、前記側壁部の内面は、前記周壁部の外面にろう材によって接合されている。 The heat spreader according to claim 3 of the present invention is the heat spreader according to claim 1 or 2 , wherein the inner surface of the side wall portion is joined to the outer surface of the peripheral wall portion by a brazing material.

請求項に記載のヒートスプレッダでは、閉塞部材の側壁部の内面を筐体の周壁部の外面にろう材によって接合(ろう付け)しているため、例えば、側壁部の内面を周壁部の外面にろう付けしない構造と比べて、閉塞部材と筐体との接合力が向上する。 In the heat spreader according to claim 3 , since the inner surface of the side wall portion of the closing member is joined (brazed) to the outer surface of the peripheral wall portion of the housing by a brazing material, for example, the inner surface of the side wall portion is connected to the outer surface of the peripheral wall portion. Compared with a structure that is not brazed, the bonding force between the closing member and the housing is improved.

本発明の請求項に記載のヒートスプレッダは、請求項のいずれか1項に記載のヒートスプレッダにおいて、前記側壁部の先端は、前記周壁部の根元よりも前記筐体の前記一方の面に対して反対側の他方の面側に位置している。 The heat spreader according to a fourth aspect of the present invention is the heat spreader according to any one of the first to third aspects, wherein the tip of the side wall portion has the one surface of the casing more than the root of the peripheral wall portion. It is located on the other surface side on the opposite side.

請求項に記載のヒートスプレッダでは、閉塞部材の側壁部の先端を筐体の周壁部の根元よりも筐体の他方の面側に位置させていることから、例えば、側壁部の先端が周壁部の根元よりも周壁部の先端側に位置している構造と比べて、ろう付け時における各熱伝導層の熱膨張を抑える効果が向上する。 In the heat spreader according to claim 4 , since the tip of the side wall portion of the closing member is positioned on the other surface side of the housing from the base of the peripheral wall portion of the housing, for example, the tip of the side wall portion is the peripheral wall portion. The effect of suppressing the thermal expansion of each heat conductive layer during brazing is improved as compared with the structure positioned on the tip side of the peripheral wall portion with respect to the base of the metal.

本発明の請求項に記載のヒートスプレッダは、請求項のいずれか1項に記載のヒートスプレッダにおいて、前記側壁部の内面の少なくとも一部は、前記側壁部の厚みが根元側から先端側へ向かって漸減するように傾斜し、前記周壁部の外面の少なくとも一部は、前記周壁部の厚みが根元側から先端側へ向かって漸減するように傾斜している。 The heat spreader according to claim 5 of the present invention is the heat spreader according to any one of claims 1 to 4 , wherein at least a part of the inner surface of the side wall portion has a thickness of the side wall portion from the root side to the tip side. The outer wall of the peripheral wall portion is inclined so that the thickness of the peripheral wall portion gradually decreases from the base side toward the distal end side.

請求項に記載のヒートスプレッダでは、閉塞部材の側壁部の内面の少なくとも一部を該側壁部の厚みが根元側から先端側へ向かって漸減するように傾斜させ、筐体の周壁部の外面の少なくとも一部を該周壁部の厚みが根元側から先端側へ向かって漸減するように傾斜させている。この構造により、上記ヒートスプレッダでは、ろう付け時における各熱伝導層の熱膨張を抑える効果を確保しつつ、閉塞部材の側壁部及び筐体の周壁部の厚みをそれぞれ薄くすることが可能となり、コスト低減や軽量化を図ることが可能となる。 In the heat spreader according to claim 5 , at least a part of the inner surface of the side wall portion of the closing member is inclined so that the thickness of the side wall portion gradually decreases from the root side toward the tip side, and the outer surface of the peripheral wall portion of the housing At least a part is inclined so that the thickness of the peripheral wall portion gradually decreases from the base side toward the tip side. With this structure, in the heat spreader, it is possible to reduce the thickness of the side wall portion of the closing member and the peripheral wall portion of the housing while ensuring the effect of suppressing the thermal expansion of each heat conductive layer during brazing. Reduction and weight reduction can be achieved.

本発明の請求項に記載のヒートスプレッダは、請求項及び請求項を引用する請求項のいずれか1項に記載のヒートスプレッダにおいて、前記炭素系材料は、グラファイトを含んでいる。 The heat spreader of claim 6 of the present invention, in the heat spreader according to any one of claims 3-5 quoting claims 2 and 2, the carbonaceous material comprises graphite.

請求項6に記載のヒートスプレッダでは、熱伝導層を構成する炭素系材料にグラファイトを含ませている。グラファイトは、熱伝導性が高いため、積層体の熱伝導性能が向上する。さらに、グラファイトは、熱膨張率が低いため、ろう付け時における各熱伝導層の熱膨張を抑えることができる。   In the heat spreader according to the sixth aspect, graphite is included in the carbon-based material constituting the heat conductive layer. Since graphite has high thermal conductivity, the thermal conductivity of the laminate is improved. Furthermore, since graphite has a low coefficient of thermal expansion, the thermal expansion of each heat conductive layer during brazing can be suppressed.

以上説明したように本発明は、製造時におけるろう材の流出が抑制されたヒートスプレッダを提供することができる。   As described above, the present invention can provide a heat spreader in which the outflow of the brazing material during production is suppressed.

本発明の第1実施形態に係るヒートスプレッダの断面図である。It is sectional drawing of the heat spreader which concerns on 1st Embodiment of this invention. 図1の矢印2で指し示す部分の拡大図である。It is an enlarged view of the part pointed by the arrow 2 of FIG. 本発明の第2実施形態に係るヒートスプレッダの断面図である。It is sectional drawing of the heat spreader which concerns on 2nd Embodiment of this invention. 図3の矢印4で指し示す部分の拡大図である。FIG. 4 is an enlarged view of a portion indicated by an arrow 4 in FIG. 3. 本発明の第3実施形態に係るヒートスプレッダの断面図である。It is sectional drawing of the heat spreader which concerns on 3rd Embodiment of this invention. 図5の矢印6で指し示す部分の拡大図である。FIG. 6 is an enlarged view of a portion indicated by an arrow 6 in FIG. 5. 本発明の第4実施形態に係るヒートスプレッダの断面図である。It is sectional drawing of the heat spreader which concerns on 4th Embodiment of this invention. 図7の矢印8で指し示す部分の拡大図である。FIG. 8 is an enlarged view of a portion indicated by an arrow 8 in FIG. 7. 比較例のヒートスプレッダの断面図である。It is sectional drawing of the heat spreader of a comparative example. 図9の矢印10で指し示す部分の拡大図である。FIG. 10 is an enlarged view of a portion indicated by an arrow 10 in FIG. 9.

(第1実施形態)
本発明の第1実施形態に係るヒートスプレッダ20について図1及び図2を用いて説明する。
(First embodiment)
A heat spreader 20 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に示されるように、ヒートスプレッダ20は、平板状とされ、発熱体である半導体素子90(図1では二点鎖線で示す)と放熱体であるヒートシンク92(図1では二点鎖線で示す)との間に配設されて、半導体素子90からの熱をヒートシンク92へ伝達する装置である。なお、半導体素子90は、図示しない基板上に配置されており、この基板、半導体素子90、ヒートスプレッダ20、及び、ヒートシンク92によってパワーモジュールが構成されている。   As shown in FIG. 1, the heat spreader 20 has a flat plate shape, and a semiconductor element 90 (indicated by a two-dot chain line in FIG. 1) that is a heating element and a heat sink 92 (indicated by a two-dot chain line in FIG. 1). ) To transfer heat from the semiconductor element 90 to the heat sink 92. The semiconductor element 90 is disposed on a substrate (not shown), and a power module is configured by the substrate, the semiconductor element 90, the heat spreader 20, and the heat sink 92.

ヒートスプレッダ20は、積層体22と、一方の面(本実施形態では、上面)が開放された箱形状とされ、内部に積層体22が収容される筐体24と、筐体24の開放部25を閉塞する閉塞部材26と、を有している。なお、本実施形態のヒートスプレッダ20では、厚み方向(矢印H方向)の一方側(本実施形態では、上方側)に閉塞部材26が配置され、厚み方向の他方側(本実施形態では、下方側)に筐体24が配置されている。   The heat spreader 20 has a laminated body 22, a box shape in which one surface (the upper surface in the present embodiment) is opened, a housing 24 in which the laminated body 22 is accommodated, and an open portion 25 of the housing 24. And a closing member 26 for closing. In the heat spreader 20 of the present embodiment, the closing member 26 is disposed on one side (the upper side in the present embodiment) in the thickness direction (arrow H direction), and the other side in the thickness direction (the lower side in the present embodiment). ) Is provided with a casing 24.

積層体22は、炭素系材料で構成されると共に配向が異なる複数(本実施形態では2つ)の熱伝導層28、30を積層して形成されている。具体的には、積層体22は、熱伝導率が高く、熱膨張率が低い炭素系材料で構成された2つの熱伝導層28、30を配向が直交するように積層して形成されている。この積層体22は、積層方向に隣接する熱伝導層28と熱伝導層30とがろう材32(図2参照)によって接合(所謂、ろう付け)されている。   The laminate 22 is formed by laminating a plurality (two in this embodiment) of heat conductive layers 28 and 30 that are made of a carbon-based material and have different orientations. Specifically, the laminate 22 is formed by laminating two thermal conductive layers 28 and 30 made of a carbon-based material having a high thermal conductivity and a low thermal expansion coefficient so that the orientations are orthogonal to each other. . In this laminated body 22, the heat conduction layer 28 and the heat conduction layer 30 adjacent in the lamination direction are joined (so-called brazing) by a brazing material 32 (see FIG. 2).

熱伝導層28、30を構成する炭素系材料としては、グラファイト、ダイヤモンド、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。なお、本実施形態では、グラフェンシートを複数枚重ねて形成したグラファイト層を熱伝導層28、30としている。   Examples of the carbon-based material constituting the heat conductive layers 28 and 30 include graphite, diamond, carbon nanofiber, and carbon nanotube. In the present embodiment, the graphite layers formed by stacking a plurality of graphene sheets are used as the heat conductive layers 28 and 30.

また、本実施形態では、ヒートスプレッダ20の厚み方向(以下、適宜「スプレッダ厚み方向」と記載する。)と積層体22の積層方向が同じ方向とされている。   In the present embodiment, the thickness direction of the heat spreader 20 (hereinafter referred to as “spreader thickness direction” as appropriate) and the stacking direction of the stacked body 22 are the same.

筐体24は、金属材料で構成されており、スプレッダ厚み方向の一方側に開放された部分が上記開放部25とされている。また、筐体24のスプレッダ厚み方向の他方側の面(本実施形態では、下面)24Aには、ヒートシンク92が取り付けられる。   The casing 24 is made of a metal material, and a portion opened to one side in the spreader thickness direction is the opening portion 25. A heat sink 92 is attached to the other surface (lower surface in the present embodiment) 24A in the spreader thickness direction of the casing 24.

筐体24の内部には、積層体22が収容されており、筐体24の底面24B上には、積層体22の積層方向の他方側の面(本実施形態では、下面)22Aが対向して配置され、底面24Bと面22Aがろう材32によって接合されている。具体的には、積層体22の積層方向の他方側(本実施形態では、下方側)に位置する熱伝導層30の積層方向の他方側の面(面22Aを構成する部位)と底面24Bがろう付けされている。
また、筐体24の内壁面24Cには、積層体22の積層方向と直交する方向の面(本実施形態では、側方の面)22Cが対向して配置され、内壁面24Cに側面22Cがろう材32によって接合されている。具体的には、積層体22を構成する熱伝導層28、30の各側面(側面22Cを構成する部位)と内壁面24Cがろう付けされている。
The laminated body 22 is accommodated inside the housing 24, and the other surface (lower surface in the present embodiment) 22 </ b> A in the laminating direction of the laminated body 22 faces the bottom surface 24 </ b> B of the housing 24. The bottom surface 24B and the surface 22A are joined by a brazing material 32. Specifically, the other side surface (part constituting the surface 22A) and the bottom surface 24B in the stacking direction of the heat conducting layer 30 located on the other side (the lower side in the present embodiment) of the stack 22 in the stacking direction. It is brazed.
Further, a surface (in this embodiment, a side surface) 22C in a direction orthogonal to the stacking direction of the stacked body 22 is disposed on the inner wall surface 24C of the casing 24 so as to face the inner wall surface 24C. Joined by a brazing material 32. Specifically, each side surface (part constituting the side surface 22C) and the inner wall surface 24C of the heat conductive layers 28 and 30 constituting the laminated body 22 are brazed.

筐体24を構成する金属材料としては、銅、青銅、銀、金、チタン、ニッケル、鉄(鋼)、アルミ等が挙げられる。なお、本実施形態では、筐体24を構成する金属材料として銅を用いている。   Examples of the metal material constituting the casing 24 include copper, bronze, silver, gold, titanium, nickel, iron (steel), and aluminum. In the present embodiment, copper is used as the metal material constituting the housing 24.

閉塞部材26は、金属材料で構成されると共に平板状に形成されている。この閉塞部材26の表面(スプレッダ厚み方向の一方側の面(本実施形態では、上面))26Aには、半導体素子90が取り付けられる。なお、本発明は上記構成に限定されず、閉塞部材26の表面26Aにヒートシンク92が取り付けられ、筐体24の面24Aに半導体素子90が取り付けられてもよい。   The closing member 26 is made of a metal material and is formed in a flat plate shape. A semiconductor element 90 is attached to the surface 26 </ b> A (the surface on one side in the spreader thickness direction (the upper surface in the present embodiment)) 26 </ b> A of the closing member 26. The present invention is not limited to the above configuration, and the heat sink 92 may be attached to the surface 26A of the closing member 26, and the semiconductor element 90 may be attached to the surface 24A of the housing 24.

また、閉塞部材26の裏面(スプレッダ厚み方向の他方側の面(本実施形態では、下面))26Bは、縁部26Cが筐体24の開放部25の縁部(筐体24のスプレッダ厚み方向の一方側の端部24D)にろう材32によって接合されている。また、この裏面26Bは、閉塞部材26の中央部26D(閉塞部材26の縁部26Cよりも内側の部分)が積層体22の積層方向の一方側の面(本実施形態では、上面)22Bに対向して配置され、中央部26Dと面22Bがろう材32によって接合されている。具体的には、積層体22の積層方向の一方側(本実施形態では、上方側)に位置する熱伝導層28の積層方向の一方側の面(面22Bを形成する部位)と裏面26Bの中央部26Dとがろう付けされている。   Further, the back surface (the other surface in the spreader thickness direction (the lower surface in this embodiment)) 26B of the closing member 26 has an edge portion 26C that is an edge portion of the open portion 25 of the housing 24 (the spreader thickness direction of the housing 24). Are joined by brazing material 32 to one end 24D). Further, the back surface 26B has a central portion 26D of the closing member 26 (a portion inside the edge portion 26C of the closing member 26) on one side surface (upper surface in the present embodiment) 22B in the stacking direction of the stacked body 22. It arrange | positions facing and the center part 26D and the surface 22B are joined by the brazing material 32. FIG. Specifically, the one side surface (site forming the surface 22B) and the back surface 26B in the laminating direction of the heat conducting layer 28 located on one side (in the present embodiment, the upper side) of the laminated body 22 are stacked. The central portion 26D is brazed.

閉塞部材26を構成する金属材料としては、筐体24と同様の材料が挙げられる。なお、本実施形態では、閉塞部材26を構成する金属材料として銅を用いている。   Examples of the metal material constituting the closing member 26 include the same material as that of the housing 24. In the present embodiment, copper is used as the metal material constituting the closing member 26.

図2に示されるように、ろう材32は、積層方向に隣接する熱伝導層28と熱伝導層30との間、積層体22と筐体24との間、積層体22と閉塞部材26との間、及び、筐体24と閉塞部材26との間に層状に配置されている。このろう材32は、熱伝導層28と熱伝導層30との間に介在して熱伝導層28と熱伝導層30とを接合するろう材層32Aと、積層体22の面22Aと筐体24の底面24Bとの間に介在して面22Aと底面24Bとを接合するろう材層32Bと、積層体22の面22Bと閉塞部材26の中央部26Dとの間に介在して面22Bと中央部26Dとを接合するろう材層32Cと、積層体22の側面22Cと筐体24の内壁面24Cとの間に介在して側面22Cと内壁面24Cとを接合するろう材層32Dと、筐体24の開放部25の縁部と閉塞部材26の裏面26Bの縁部26Cとの間に介在して開放部25の縁部(端部24D)と閉塞部材26の縁部26Cとを接合するろう材層32Eと、を有している。   As shown in FIG. 2, the brazing material 32 includes the heat conductive layer 28 and the heat conductive layer 30 adjacent to each other in the stacking direction, the stack 22 and the housing 24, and the stack 22 and the closing member 26. Between the casing 24 and the closing member 26. The brazing material 32 is interposed between the heat conductive layer 28 and the heat conductive layer 30 to join the heat conductive layer 28 and the heat conductive layer 30, the surface 22 A of the laminate 22, and the housing. A brazing filler metal layer 32B which is interposed between the bottom surface 24B of 24 and joins the surface 22A and the bottom surface 24B, and is interposed between the surface 22B of the laminate 22 and the central portion 26D of the closing member 26; A brazing filler metal layer 32C that joins the central portion 26D, a brazing filler metal layer 32D that is interposed between the side face 22C of the laminate 22 and the inner wall face 24C of the housing 24, and joins the side face 22C and the inner wall face 24C; The edge part (end part 24D) of the opening part 25 and the edge part 26C of the closing member 26 are joined between the edge part of the opening part 25 of the housing 24 and the edge part 26C of the back surface 26B of the closing member 26. And a brazing filler metal layer 32E.

ろう材32としては、銅、銀、チタン、亜鉛、りん、金等を主成分とする材料が挙げられる。なお、本実施形態では、ろう材32として、銅、銀、チタン等を主成分とする合金を用いている。また、筐体24及び閉塞部材26を構成する金属材料がアルミの場合には、アルミを主成分とする合金(軟ろう)を用いたろう付け(はんだ付け)としてもよい。   Examples of the brazing material 32 include materials mainly composed of copper, silver, titanium, zinc, phosphorus, gold, and the like. In the present embodiment, the brazing material 32 is made of an alloy mainly composed of copper, silver, titanium, or the like. Moreover, when the metal material which comprises the housing | casing 24 and the closure member 26 is aluminum, it is good also as brazing (soldering) using the alloy (soft brazing) which has aluminum as a main component.

なお、本実施形態のヒートスプレッダ20は、箔状とされたろう材32を熱伝導層28と熱伝導層30との間、積層体22と筐体24との間、積層体22と閉塞部材26との間、及び、筐体24と閉塞部材26との間にそれぞれ配置すると共に各構成部材をそれぞれ組み付け、組付け状態で筐体24と閉塞部材26とを加圧しつつ、ろう材32を加熱溶融させてヒートスプレッダ20を構成する各構成部材(筐体24、閉塞部材26、熱伝導層28、30)をろう付け(ろう材32によって接合)している。   In the heat spreader 20 of the present embodiment, the brazing filler metal 32 is formed between the heat conductive layer 28 and the heat conductive layer 30, between the stacked body 22 and the housing 24, and between the stacked body 22 and the closing member 26. And between the casing 24 and the closing member 26, and each component is assembled, and the brazing material 32 is heated and melted while pressing the casing 24 and the closing member 26 in the assembled state. The constituent members (the casing 24, the closing member 26, and the heat conductive layers 28 and 30) constituting the heat spreader 20 are brazed (joined by a brazing material 32).

次に、ヒートスプレッダ20の作用並びに効果について説明する。
ヒートスプレッダ20では、半導体素子90からの熱が閉塞部材26に入力される。閉塞部材26に入力された熱は、積層体22を介して筐体24へ伝達され、ヒートシンク92から放熱される。これにより、半導体素子90が冷却される。
Next, the operation and effect of the heat spreader 20 will be described.
In the heat spreader 20, heat from the semiconductor element 90 is input to the closing member 26. The heat input to the closing member 26 is transmitted to the casing 24 through the stacked body 22 and is radiated from the heat sink 92. Thereby, the semiconductor element 90 is cooled.

ヒートスプレッダ20では、筐体24の内部に積層体22を収容し、筐体24の開放部25を閉塞部材26で閉塞する構造としているため、例えば、矩形筒状の筐体で積層体22の外周のみを囲う構造と比べて、ろう付け時(言い換えると、ろう材32を用いた接合時)に加熱溶融されたろう材(加熱されて溶融状態となったろう材)28が筐体24の内部から外部に流出しにくい。すなわち、ヒートスプレッダ20では、製造時(ろう付け時)におけるろう材32の流出が抑制される。
これにより、ヒートスプレッダ20を構成する各構成部材間の空隙の増加が抑制され、製造されたヒートスプレッダ20が不良品になりにくくなる、すなわち、不良品の発生率が低下する。
Since the heat spreader 20 has a structure in which the laminated body 22 is accommodated in the housing 24 and the open portion 25 of the housing 24 is closed by the closing member 26, for example, the outer periphery of the laminated body 22 is formed by a rectangular cylindrical housing. Compared with the structure that surrounds only the brazing material (in other words, at the time of joining using the brazing material 32), the brazing material (the brazing material that has been heated and melted) 28 is heated from the inside of the housing 24 to the outside. Difficult to leak. That is, in the heat spreader 20, the outflow of the brazing material 32 at the time of manufacture (at the time of brazing) is suppressed.
Thereby, the increase in the space | gap between each structural member which comprises the heat spreader 20 is suppressed, and the manufactured heat spreader 20 becomes difficult to become a defective product, ie, the incidence rate of a defective product falls.

また、ヒートスプレッダ20では、熱伝導層28、30を構成する炭素系材料にグラファイトを含ませている。グラファイトは、熱伝導性が高いため、熱伝導層28、30によって形成される積層体22の熱伝導性が向上する。さらに、グラファイトは、熱膨張率が低いため、ろう付け時における熱伝導層28、30の熱膨張を抑えることができる。   Further, in the heat spreader 20, graphite is included in the carbon-based material constituting the heat conductive layers 28 and 30. Since graphite has high thermal conductivity, the thermal conductivity of the laminate 22 formed by the thermal conductive layers 28 and 30 is improved. Furthermore, since graphite has a low coefficient of thermal expansion, the thermal expansion of the heat conductive layers 28 and 30 during brazing can be suppressed.

(第2実施形態)
次に、本発明の第2実施形態に係るヒートスプレッダ40について図3及び図4を用いて説明する。なお、第1実施形態と同様の構成については同じ符号を付し、説明を適宜省略する。
(Second Embodiment)
Next, the heat spreader 40 which concerns on 2nd Embodiment of this invention is demonstrated using FIG.3 and FIG.4. In addition, the same code | symbol is attached | subjected about the structure similar to 1st Embodiment, and description is abbreviate | omitted suitably.

図3及び図4に示されるように、ヒートスプレッダ40は、第1実施形態と同様の積層体22及び筐体24と、閉塞部材42とを有している。このヒートスプレッダ40は、閉塞部材42の構成以外は、第1実施形態と同様の構成のため、以下では閉塞部材42の構成について説明する。   As shown in FIGS. 3 and 4, the heat spreader 40 includes the same laminate 22 and casing 24 as in the first embodiment, and a closing member 42. Since this heat spreader 40 has the same configuration as that of the first embodiment except for the configuration of the closing member 42, the configuration of the closing member 42 will be described below.

閉塞部材42は、金属材料で構成されており、平板状に形成された閉塞部44と、閉塞部44の縁部に設けられた側壁部46と、を有している。   The closing member 42 is made of a metal material, and includes a closing portion 44 formed in a flat plate shape, and a side wall portion 46 provided at an edge of the closing portion 44.

閉塞部44の表面(スプレッダ厚み方向の一方側の面(本実施形態では、上方の面))44Aには、半導体素子90が取り付けられる。
また、閉塞部44の裏面(スプレッダ厚み方向の他方側の面(本実施形態では、下面))44Bは、筐体24の開放部25の縁部(端部24D)にろう材32によって接合、すなわち、ろう付けされている。また、閉塞部44の裏面44Bは、積層体22の面22Bに対向して配置され、面22Bにろう材32によって接合されている。具体的には、積層体22の熱伝導層28の積層方向の一方側の面と閉塞部44の裏面44Bとがろう付けされている。
A semiconductor element 90 is attached to the surface 44 </ b> A (a surface on one side in the spreader thickness direction (an upper surface in the present embodiment)) 44 </ b> A of the blocking portion 44.
Further, the back surface (the other surface in the spreader thickness direction (the lower surface in the present embodiment)) 44B of the closing portion 44 is joined to the edge portion (end portion 24D) of the open portion 25 of the housing 24 by the brazing material 32. That is, it is brazed. Further, the back surface 44B of the closing portion 44 is disposed to face the surface 22B of the stacked body 22, and is joined to the surface 22B by the brazing material 32. Specifically, the surface on the one side in the stacking direction of the heat conductive layer 28 of the stacked body 22 and the back surface 44B of the closing portion 44 are brazed.

側壁部46は、閉塞部44の縁部からスプレッダ厚み方向の他方側(本実施形態では、下方)に突出し、筐体24の周壁部24Eを取り囲んでいる。具体的には、側壁部46は、閉塞部44の縁部に沿って連続して形成されており、周壁部24Eを外側から取り囲んでいる。なお、本発明は上記構成に限定されず、側壁部46が閉塞部44の縁部に沿って断続して形成されていてもよい。   The side wall portion 46 protrudes from the edge of the closing portion 44 to the other side in the spreader thickness direction (downward in the present embodiment), and surrounds the peripheral wall portion 24E of the housing 24. Specifically, the side wall portion 46 is formed continuously along the edge portion of the closing portion 44, and surrounds the peripheral wall portion 24E from the outside. In addition, this invention is not limited to the said structure, The side wall part 46 may be formed intermittently along the edge part of the obstruction | occlusion part 44. FIG.

側壁部46の先端46Aは、スプレッダ厚み方向において、周壁部24Eの根元24Fよりも筐体24の面24A側に位置している。なお、本実施形態では、側壁部46の先端46Aを形成する先端面が筐体24の面24Aと水平方向において面一とされている。   The tip 46A of the side wall 46 is located on the surface 24A side of the casing 24 with respect to the root 24F of the peripheral wall 24E in the spreader thickness direction. In the present embodiment, the front end surface forming the front end 46A of the side wall portion 46 is flush with the surface 24A of the housing 24 in the horizontal direction.

側壁部46の内面46Bは、筐体24の周壁部24Eの外面24G(筐体24の外面と同じ)にろう材32によって接合されている、すなわち、ろう付けされている。なお、本実施形態のろう材32は、側壁部46の内面46Bと周壁部24Eの外面24Gとの間に配置された層状のろう材層32Fを有しており、このろう材層32Fによって内面46Bと外面24Gとが接合されている。   The inner surface 46B of the side wall 46 is joined to the outer surface 24G of the peripheral wall 24E of the housing 24 (same as the outer surface of the housing 24) by the brazing material 32, that is, brazed. The brazing material 32 of the present embodiment has a layered brazing material layer 32F disposed between the inner surface 46B of the side wall portion 46 and the outer surface 24G of the peripheral wall portion 24E. 46B and the outer surface 24G are joined.

閉塞部材42を構成する金属材料としては、第1実施形態の閉塞部材26と同様の材料が挙げられる。なお、本実施形態では、閉塞部材42を構成する金属材料として銅を用いている。   Examples of the metal material constituting the closing member 42 include the same materials as the closing member 26 of the first embodiment. In the present embodiment, copper is used as the metal material constituting the closing member 42.

次に、本実施形態のヒートスプレッダ40の作用並びに効果について説明する。なお、第1実施形態のヒートスプレッダ20と同様の構成で得られる作用並びに効果については説明を省略する。   Next, the operation and effect of the heat spreader 40 of this embodiment will be described. In addition, description is abbreviate | omitted about the effect | action and effect obtained by the structure similar to the heat spreader 20 of 1st Embodiment.

ヒートスプレッダ40では、閉塞部材42の側壁部46が筐体24の周壁部24Eを取り囲んでいるため、例えば、第1実施形態のヒートスプレッダ20と比べて、筐体24の開放部25の開放面積が大きくなるように周壁部24Eが傾く変形を抑制できる。具体的には、ヒートスプレッダ40では、側壁部46の根元46Cで周壁部24Eの先端(端部24D)を支持するため、周壁部24Eが根元24Fと先端とで両端支持され、例えば、第1実施形態のヒートスプレッダ20のように周壁部24Eの根元24Fのみの片端支持の構造と比べて、筐体24の開放部25の開放面積が大きくなるように周壁部24Eが傾く上記変形を抑制できる。
これにより、ヒートスプレッダ40では、ろう付け時における熱伝導層28、30の熱膨張が、閉塞部材42の側壁部46によって筐体24の周壁部24Eの上記変形が抑制されることで、抑制される。その結果、ヒートスプレッダ40では、配向の異なる熱伝導層28、30の熱膨張方向(積層方向と直交する方向)の違いや熱膨張率の違いによって周壁部24Eと積層体22との間の空隙が増加するのが抑制される。
In the heat spreader 40, since the side wall portion 46 of the closing member 42 surrounds the peripheral wall portion 24E of the housing 24, for example, the open area of the open portion 25 of the housing 24 is larger than that of the heat spreader 20 of the first embodiment. Thus, the deformation in which the peripheral wall portion 24E is inclined can be suppressed. Specifically, in the heat spreader 40, since the tip (end portion 24D) of the peripheral wall portion 24E is supported by the base 46C of the side wall portion 46, the peripheral wall portion 24E is supported at both ends by the root 24F and the tip. As compared to the structure of the one-end support of only the root 24F of the peripheral wall 24E as in the heat spreader 20 of the embodiment, the above-described deformation in which the peripheral wall 24E tilts so that the open area of the open portion 25 of the housing 24 can be suppressed.
Thereby, in the heat spreader 40, the thermal expansion of the heat conductive layers 28 and 30 at the time of brazing is suppressed by suppressing the deformation of the peripheral wall portion 24E of the casing 24 by the side wall portion 46 of the closing member 42. . As a result, in the heat spreader 40, there is a gap between the peripheral wall portion 24E and the laminated body 22 due to a difference in thermal expansion direction (direction orthogonal to the stacking direction) of the thermally conductive layers 28 and 30 having different orientations or a difference in thermal expansion coefficient. The increase is suppressed.

また、ヒートスプレッダ40では、ろう付け時における熱伝導層28、30の熱膨張を抑えられるため、製造後の寸法精度を確保できる。これにより、例えば、ろう付け時における熱伝導層28、30の熱膨張を抑えにくい構造を採用したもののように、熱膨張により変形した筐体の外面を削って寸法調整する必要がなく、製造効率を向上させられる。   Moreover, since the heat spreader 40 can suppress the thermal expansion of the heat conductive layers 28 and 30 during brazing, the dimensional accuracy after manufacture can be ensured. As a result, for example, a structure that hardly suppresses thermal expansion of the heat conductive layers 28 and 30 at the time of brazing is employed, and it is not necessary to adjust the dimensions by scraping the outer surface of the housing deformed by thermal expansion. Can be improved.

ヒートスプレッダ40では、閉塞部材42の側壁部46の内面46Bを筐体24の周壁部24Eの外面24Gにろう付けしているため、例えば、側壁部46の内面46Bを周壁部24Eの外面24Gにろう付けしない構造と比べて、閉塞部材42と筐体24との接合力が向上する。   In the heat spreader 40, since the inner surface 46B of the side wall portion 46 of the closing member 42 is brazed to the outer surface 24G of the peripheral wall portion 24E of the housing 24, for example, the inner surface 46B of the side wall portion 46 is brazed to the outer surface 24G of the peripheral wall portion 24E. Compared with a structure that is not attached, the bonding force between the closing member 42 and the housing 24 is improved.

ヒートスプレッダ40では、閉塞部材42の側壁部46の先端46Aを筐体24の周壁部24Eの根元24Fよりも筐体24の面24A側に位置させていることから、例えば、側壁部46の先端46Aが周壁部24Eの根元24Fよりも先端(端部24D)側に位置している構造と比べて、ろう付け時における熱伝導層28、30の熱膨張を抑える効果が向上する。   In the heat spreader 40, the distal end 46A of the side wall 46 of the closing member 42 is positioned closer to the surface 24A of the casing 24 than the root 24F of the peripheral wall 24E of the casing 24. As compared with the structure in which the peripheral wall portion 24E is positioned closer to the tip (end portion 24D) side than the root 24F, the effect of suppressing the thermal expansion of the heat conductive layers 28 and 30 during brazing is improved.

なお、ヒートスプレッダ40では、グラファイトを含む炭素系材料で熱伝導層28、30をそれぞれ構成し、さらに、積層方向に隣接する熱伝導層28、30の配向を異ならせているため、熱伝導層28、30の熱膨張方向が異なる。このため、例えば、積層方向に隣接する熱伝導層28、30の配向が同じものと比べて、ろう付け時における熱伝導層28、30の熱膨張を抑える効果が向上する。また、熱伝導層28、30によって形成される積層体22の熱伝導率が向上する。   In the heat spreader 40, the heat conductive layers 28 and 30 are made of a carbon-based material containing graphite, and the orientation of the heat conductive layers 28 and 30 adjacent to each other in the stacking direction is made different. , 30 have different thermal expansion directions. For this reason, the effect which suppresses the thermal expansion of the heat conductive layers 28 and 30 at the time of brazing improves compared with the thing with the same orientation of the heat conductive layers 28 and 30 adjacent to the lamination direction, for example. In addition, the thermal conductivity of the laminate 22 formed by the heat conductive layers 28 and 30 is improved.

(第3実施形態)
次に、本発明の第3実施形態に係るヒートスプレッダ50について図5及び図6を用いて説明する。なお、第2実施形態と同様の構成については同じ符号を付し、説明を適宜省略する。
(Third embodiment)
Next, a heat spreader 50 according to a third embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the structure similar to 2nd Embodiment, and description is abbreviate | omitted suitably.

図5及び図6に示されるように、ヒートスプレッダ50は、第2実施形態のヒートスプレッダ40と同様の積層体22、筐体24及び閉塞部材42を有している。このヒートスプレッダ50は、筐体24と閉塞部材42の位置関係を第2実施形態のヒートスプレッダ40と上下逆さにする構成以外は、第2実施形態と同様の構成である。なお、本実施形態では、筐体24の面22Aに半導体素子90が取り付けられ、閉塞部材42の表面44Aにヒートシンク92が取り付けられる。   As shown in FIGS. 5 and 6, the heat spreader 50 includes the stacked body 22, the casing 24, and the closing member 42 similar to the heat spreader 40 of the second embodiment. The heat spreader 50 has the same configuration as that of the second embodiment except that the positional relationship between the casing 24 and the closing member 42 is turned upside down with respect to the heat spreader 40 of the second embodiment. In the present embodiment, the semiconductor element 90 is attached to the surface 22A of the housing 24, and the heat sink 92 is attached to the surface 44A of the closing member 42.

次に、本実施形態のヒートスプレッダ50の作用並びに効果について説明する。なお、第2実施形態のヒートスプレッダ40と同様の構成で得られる作用並びに効果については説明を省略する。   Next, the operation and effect of the heat spreader 50 of this embodiment will be described. In addition, description is abbreviate | omitted about the effect | action and effect obtained by the structure similar to the heat spreader 40 of 2nd Embodiment.

ヒートスプレッダ50では、筐体24と閉塞部材42の位置関係を第2実施形態のヒートスプレッダ40と上下逆さにしていることから、ろう付け時に加熱溶融されたろう材32が側壁部46の内面46Bと周壁部24Eの外面24Gとの間から流出しにくい。具体的には、側壁部46の内面46Bと周壁部24Eの外面24Gとの間の空間が上方に向かって開放されているため、例えば、上記空間が下方に向かって開放されているものと比べて、加熱溶融されたろう材32が外部に流出しにくい。これにより、外部からの汚染等に対してヒートスプレッダ50の信頼性が向上する。   In the heat spreader 50, since the positional relationship between the casing 24 and the closing member 42 is upside down with respect to the heat spreader 40 of the second embodiment, the brazing material 32 that is heated and melted during brazing is connected to the inner surface 46B of the side wall portion 46 and the peripheral wall portion. It is difficult to flow out from between the outer surface 24G of 24E. Specifically, since the space between the inner surface 46B of the side wall portion 46 and the outer surface 24G of the peripheral wall portion 24E is opened upward, for example, compared with a case where the space is opened downward. Thus, the heated and melted brazing material 32 is unlikely to flow out. This improves the reliability of the heat spreader 50 against external contamination and the like.

(第4実施形態)
次に、本発明の第4実施形態に係るヒートスプレッダ60について図7及び図8を用いて説明する。なお、第2実施形態と同様の構成については同じ符号を付し、説明を適宜省略する。
(Fourth embodiment)
Next, the heat spreader 60 which concerns on 4th Embodiment of this invention is demonstrated using FIG.7 and FIG.8. In addition, the same code | symbol is attached | subjected about the structure similar to 2nd Embodiment, and description is abbreviate | omitted suitably.

図7及び図8に示されるように、ヒートスプレッダ60は、第2実施形態と同様の積層体22と、筐体62及び閉塞部材64とを有している。このヒートスプレッダ60は、筐体62及び閉塞部材64の構成以外は、第2実施形態と同様の構成のため、以下では筐体62及び閉塞部材64の構成について説明する。   As shown in FIGS. 7 and 8, the heat spreader 60 includes the same laminate 22 as that of the second embodiment, a housing 62 and a closing member 64. Since the heat spreader 60 has the same configuration as that of the second embodiment except for the configuration of the housing 62 and the closing member 64, the configuration of the housing 62 and the closing member 64 will be described below.

筐体62は、周壁部62A及び該周壁部62Aの外面62B(筐体62の外面)の構成を除いて第2実施形態の筐体24と同様の構成である。周壁部62Aの外面62Bは、周壁部62Aの厚みT1が根元側から先端(上端)側へ向かって漸減するように傾斜している。   The casing 62 has the same configuration as that of the casing 24 of the second embodiment except for the configuration of the peripheral wall 62A and the outer surface 62B of the peripheral wall 62A (the outer surface of the casing 62). The outer surface 62B of the peripheral wall portion 62A is inclined so that the thickness T1 of the peripheral wall portion 62A gradually decreases from the root side toward the tip (upper end) side.

閉塞部材64は、側壁部64A及び該側壁部64Aの内面64Bの構成を除いて第2実施形態の閉塞部材42と同様の構成である。側壁部64Aの内面64Bは、側壁部64Aの厚みT2が根元側から先端(下端)側へ向かって漸減するように傾斜している。   The closing member 64 has the same configuration as the closing member 42 of the second embodiment except for the configuration of the side wall portion 64A and the inner surface 64B of the side wall portion 64A. The inner surface 64B of the side wall portion 64A is inclined so that the thickness T2 of the side wall portion 64A gradually decreases from the root side toward the tip (lower end) side.

また、筐体62の周壁部62Aの外面62Bと、閉塞部材64の側壁部64Aの内面64Bとが対向している。なお、外面62Bと内面64Bとの間には、ろう材層32Eが配置され、外面62Bと内面64Bとがろう材層32Eによって接合されている。   Further, the outer surface 62B of the peripheral wall portion 62A of the housing 62 and the inner surface 64B of the side wall portion 64A of the closing member 64 are opposed to each other. A brazing material layer 32E is disposed between the outer surface 62B and the inner surface 64B, and the outer surface 62B and the inner surface 64B are joined by the brazing material layer 32E.

次に、本実施形態のヒートスプレッダ60の作用並びに効果について説明する。なお、第2実施形態のヒートスプレッダ40と同様の構成で得られる作用並びに効果については説明を省略する。   Next, the operation and effect of the heat spreader 60 of this embodiment will be described. In addition, description is abbreviate | omitted about the effect | action and effect obtained by the structure similar to the heat spreader 40 of 2nd Embodiment.

ヒートスプレッダ60では、筐体62の周壁部62Aの外面62Bを厚みT1が根元側から先端側へ向かって漸減するように傾斜させ、閉塞部材64の側壁部64Aの内面64Bを厚みT2が根元側から先端側へ向かって漸減するように傾斜させている。この構造により、ヒートスプレッダ60では、ろう付け時における熱伝導層28、30の熱膨張を抑える効果を確保しつつ、筐体62の周壁部62A及び閉塞部材64の側壁部64Aの各厚みT1、T2をそれぞれ薄くすることが可能となり、コスト低減や軽量化を図ることが可能となる。特に、本実施形態では、外面62B全体を厚みT1が根元側から先端側へ向かって漸減するように傾斜させ、内面64B全体を厚みT2が根元側から先端側へ向かって漸減するように傾斜させているため、軽量化をより図ることが可能となる。   In the heat spreader 60, the outer surface 62B of the peripheral wall portion 62A of the housing 62 is inclined so that the thickness T1 gradually decreases from the root side toward the tip side, and the inner surface 64B of the side wall portion 64A of the closing member 64 is inclined from the root side. It is inclined to gradually decrease toward the tip side. With this structure, in the heat spreader 60, the thicknesses T1 and T2 of the peripheral wall portion 62A of the housing 62 and the side wall portion 64A of the closing member 64 are secured while ensuring the effect of suppressing the thermal expansion of the heat conductive layers 28 and 30 during brazing. Thus, it is possible to reduce the thickness and weight of the device. In particular, in this embodiment, the entire outer surface 62B is inclined so that the thickness T1 gradually decreases from the root side toward the tip side, and the entire inner surface 64B is inclined so that the thickness T2 gradually decreases from the root side toward the tip side. Therefore, it is possible to further reduce the weight.

第4実施形態のヒートスプレッダ60では、外面62B全体及び内面64B全体をそれぞれ傾斜させているが、本発明はこの構成に限定されず、外面62Bの一部及び内面64Bの一部をそれぞれ傾斜させる構成としてもよい。この場合においても、コスト低減や軽量化を図ることが可能である。   In the heat spreader 60 of the fourth embodiment, the entire outer surface 62B and the entire inner surface 64B are inclined, but the present invention is not limited to this configuration, and a configuration in which a part of the outer surface 62B and a part of the inner surface 64B are inclined. It is good. Even in this case, cost reduction and weight reduction can be achieved.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and various modifications other than the above can be implemented without departing from the spirit of the present invention. Of course.

次に、本発明の作用並びに効果を立証するため、本発明に係る実施例のヒートスプレッダを3種、比較例のヒートスプレッダを1種用意し、以下の実験1、2を行った。   Next, in order to prove the operation and effect of the present invention, three types of heat spreaders of the example according to the present invention and one type of heat spreader of the comparative example were prepared, and the following experiments 1 and 2 were performed.

(実験1)
実験1では、実施例1のヒートスプレッダと比較例のヒートスプレッダを用いた。
(Experiment 1)
In Experiment 1, the heat spreader of Example 1 and the heat spreader of the comparative example were used.

実施例1:本発明の第1実施形態のヒートスプレッダ20と同じ構造のヒートスプレッダ。
・積層体22を構成する熱伝導層28、30として高温熱分解グラファイトを用いた。この高温熱分解グラファイトは、X−Y平面内における熱伝導率が1700W/m・K、Z(厚み)平面内における熱伝導率が7W/m・Kである。また、熱伝導層28、30の寸法は、いずれも縦19mm、横19mm、厚み1mmである。
・筐体24は、銅製で、寸法が縦20mm、横20mm、高さ2.5mm、厚み0.5mmである。
・閉塞部材26は、銅製で、寸法が縦20mm、横20mm、厚み0.5mmである。
・ろう材32は、銅、銀、チタンを主成分とし、厚みが50μmの箔であり、各構成部材の間に挟まれ、高温(700〜800℃)で1分〜5分間の間で加熱して各構成部材を接合(ろう付け)する。
Example 1: A heat spreader having the same structure as the heat spreader 20 of the first embodiment of the present invention.
High-temperature pyrolytic graphite was used as the heat conductive layers 28 and 30 constituting the laminate 22. This high-temperature pyrolytic graphite has a thermal conductivity in the XY plane of 1700 W / m · K and a thermal conductivity in the Z (thickness) plane of 7 W / m · K. Moreover, as for the dimension of the heat conductive layers 28 and 30, all are 19 mm in length, 19 mm in width, and 1 mm in thickness.
The case 24 is made of copper and has dimensions of 20 mm in length, 20 mm in width, 2.5 mm in height, and 0.5 mm in thickness.
The closing member 26 is made of copper and has dimensions of 20 mm in length, 20 mm in width, and 0.5 mm in thickness.
The brazing material 32 is a foil having a thickness of 50 μm mainly composed of copper, silver, and titanium, sandwiched between the constituent members, and heated at a high temperature (700 to 800 ° C.) for 1 minute to 5 minutes. Then, each component member is joined (brazed).

比較例:第1実施形態の積層体22を底板100、4枚の側板102、天板104で取り囲み、各構成部材間にろう材32を挟み、高温で加熱して各構成部材を接合したヒートスプレッダ106(図9及び図10参照)
・積層体22は、実施例1と同じ。
・底板100は、銅製で、寸法が縦20mm、横20mm、厚み0.5mmである。
・側板102は、銅製で、寸法が縦19mm、横19.5mm、厚み0.5mmである
・天板104は、銅製で、寸法が縦20mm、横20mm、厚み0.5mmである。
Comparative Example: A heat spreader in which the laminate 22 of the first embodiment is surrounded by the bottom plate 100, the four side plates 102, and the top plate 104, the brazing material 32 is sandwiched between the constituent members, and the constituent members are joined by heating at a high temperature. 106 (see FIGS. 9 and 10)
-The laminated body 22 is the same as Example 1.
The bottom plate 100 is made of copper and has dimensions of 20 mm in length, 20 mm in width, and 0.5 mm in thickness.
The side plate 102 is made of copper and has dimensions of 19 mm in length, 19.5 mm in width, and 0.5 mm in thickness. The top plate 104 is made of copper and has dimensions of 20 mm in length, 20 mm in width, and 0.5 mm in thickness.

実験1では、実施例1のヒートスプレッダと比較例のヒートスプレッダを複数製造し、製造されたヒートスプレッダの空隙量を測定し、その測定結果を評価した。なお、空隙量が一定以下のものを不良品として評価した。   In Experiment 1, a plurality of heat spreaders of Example 1 and a heat spreader of a comparative example were manufactured, the gap amount of the manufactured heat spreader was measured, and the measurement results were evaluated. In addition, the thing with the void amount below fixed was evaluated as a defective product.

表1に示されるように、比較例1のヒートスプレッダではろう材の流出によって各構成部材間の空隙量が増加し、その結果、不良品の発生率が50%になったと推測される。一方、実施例1のヒートスプレッダでは、ろう材が各構成部材間から流出しにくい構造のため、ろう材が各構成部材間に行き渡り、その結果、不良品の発生率が10%程度に抑えられたと推測される。   As shown in Table 1, it is estimated that in the heat spreader of Comparative Example 1, the amount of voids between the constituent members increased due to the outflow of the brazing material, and as a result, the incidence of defective products was 50%. On the other hand, in the heat spreader of Example 1, since the brazing material is difficult to flow out between the constituent members, the brazing material spreads between the constituent members, and as a result, the occurrence rate of defective products was suppressed to about 10%. Guessed.

(実験2)
実験2では、実施例1〜3の各ヒートスプレッダを用いた。
(Experiment 2)
In Experiment 2, each heat spreader of Examples 1 to 3 was used.

実施例2:本発明の第2実施形態のヒートスプレッダ40と同じ構造のヒートスプレッダ。
・積層体22は、実施例1と同じ。
・筐体24は、実施例1と同じ。
・閉塞部材42は、銅製で、寸法が縦21mm、横21mm、高さ20mm、厚み0.5mmである。
・ろう材32は、実施例1と同じ。
Example 2: A heat spreader having the same structure as the heat spreader 40 of the second embodiment of the present invention.
-The laminated body 22 is the same as Example 1.
The casing 24 is the same as that in the first embodiment.
The closing member 42 is made of copper and has dimensions of 21 mm in length, 21 mm in width, 20 mm in height, and 0.5 mm in thickness.
The brazing material 32 is the same as in the first embodiment.

実施例3:本発明の第4実施形態のヒートスプレッダ60と同じ構造のヒートスプレッダ。
・積層体22は、実施例1と同じ。
・筐体62は、銅製で、寸法が縦20mm、横20mm、高さ2.5mm、厚み0.5mmである。
・閉塞部材64は、銅製で、寸法が縦21mm、横21mm、高さ20mm、厚み0.5mmである。
・ろう材32は、実施例1と同じ。
Example 3: A heat spreader having the same structure as the heat spreader 60 of the fourth embodiment of the present invention.
-The laminated body 22 is the same as Example 1.
The case 62 is made of copper and has dimensions of 20 mm in length, 20 mm in width, 2.5 mm in height, and 0.5 mm in thickness.
The closing member 64 is made of copper and has dimensions of 21 mm in length, 21 mm in width, 20 mm in height, and 0.5 mm in thickness.
The brazing material 32 is the same as in the first embodiment.

実験2では、実施例1〜3の各ヒートスプレッダをそれぞれ複数製造し、製造されたヒートスプレッダの寸法を測定し、その結果を評価した。なお、寸法精度が一定以下のものを不良品として評価した。   In Experiment 2, a plurality of heat spreaders of Examples 1 to 3 were manufactured, the dimensions of the manufactured heat spreaders were measured, and the results were evaluated. In addition, the thing with dimensional accuracy below fixed was evaluated as inferior goods.

実施例1のヒートスプレッダでは、グラファイトで形成される熱伝導層28、30のろう付け時における熱膨張で筐体24の周壁部24Eが変形することがある。このような変形が生じるとヒートスプレッダの寸法が基準値を満たさないため、研磨などの後工程が生じる。しかし、ヒートスプレッダの変形量が大き過ぎると、研磨によってグラファイトが露出してしまい不良品となることがある。そのため、表2に示されるように、実施例1では不良品が10%程度発生している。一方、実施例2のヒートスプレッダでは、筐体24の周壁部24Eの先端が閉塞部材42の側壁部46の根元46Cで抑えられる(支持される)構造のため、ろう付け時における熱伝導層28、30の熱膨張による周壁部24Eの変形が抑えられるため、ヒートスプレッダの寸法精度が確保される。このため、実施例2のヒートスプレッダでは、不良品の発生が5%以下に抑えられている。   In the heat spreader of the first embodiment, the peripheral wall 24E of the housing 24 may be deformed due to thermal expansion during brazing of the heat conductive layers 28 and 30 formed of graphite. When such a deformation occurs, the heat spreader dimensions do not satisfy the reference value, and therefore, a post-process such as polishing occurs. However, if the amount of deformation of the heat spreader is too large, the graphite may be exposed by polishing, resulting in a defective product. Therefore, as shown in Table 2, in Example 1, about 10% of defective products are generated. On the other hand, in the heat spreader of the second embodiment, since the distal end of the peripheral wall portion 24E of the housing 24 is suppressed (supported) by the root 46C of the side wall portion 46 of the closing member 42, the heat conductive layer 28 during brazing, Since the deformation of the peripheral wall 24E due to the thermal expansion of 30 is suppressed, the dimensional accuracy of the heat spreader is ensured. For this reason, in the heat spreader of Example 2, the occurrence of defective products is suppressed to 5% or less.

また、実施例3のヒートスプレッダにおいても実施例2と同様に、ヒートスプレッダの寸法精度が確保されており、不良品の発生が5%以下に抑えられている。加えて、実施例3のヒートスプレッダでは、周壁部62Aの厚みT1を根元から先端に向かって薄くし、側壁部64Aの厚みT2を根元から先端に向かって薄くしているため、実施例2のヒートスプレッダと比べて、重量が軽くなっている。このため、実施例3のヒートスプレッダは、不良品の発生率は、実施例2のヒートスプレッダと同等だが、軽量化の観点で実施例2のヒートスプレッダよりも優れていることが分かる。   In the heat spreader of the third embodiment, as in the second embodiment, the dimensional accuracy of the heat spreader is ensured, and the occurrence of defective products is suppressed to 5% or less. In addition, in the heat spreader of the third embodiment, the thickness T1 of the peripheral wall portion 62A is thinned from the root toward the tip, and the thickness T2 of the side wall portion 64A is thinned from the root to the tip, so the heat spreader of the second embodiment. The weight is lighter than that. For this reason, it can be seen that the heat spreader of Example 3 has the same defective product occurrence rate as the heat spreader of Example 2, but is superior to the heat spreader of Example 2 in terms of weight reduction.

20 ヒートスプレッダ
22 積層体
24 筐体
24A 面(他方の面)
24E 周壁部
24F 根元
24G 外面
25 開放部
26 閉塞部材
28 熱伝導層
30 熱伝導層
40 ヒートスプレッダ
42 閉塞部材
46 側壁部
46B 内面
46C 根元
50 ヒートスプレッダ
60 ヒートスプレッダ
62 筐体
62A 周壁部
62B 外面
64 閉塞部材
64A 側壁部
64B 内面
20 heat spreader 22 laminate 24 casing 24A surface (the other surface)
24E peripheral wall portion 24F root 24G outer surface 25 open portion 26 closing member 28 heat conduction layer 30 heat conduction layer 40 heat spreader 42 closing member 46 side wall portion 46B inner surface 46C root 50 heat spreader 60 heat spreader 62 housing 62A peripheral wall portion 62B outer surface 64 closing member 64A side wall Part 64B Inner surface

Claims (6)

複数の熱伝導層を積層して形成され、積層方向に隣接する前記熱伝導層同士がろう材によって接合された積層体と、
金属材料で構成されると共に一方の面が開放された箱形状とされ、内部に前記積層体が収容されて前記積層体とろう材によって接合された筐体と、
金属材料で構成され、前記筐体の開放部を閉塞すると共に前記筐体及び前記積層体にそれぞれろう材によって接合された閉塞部材と、
を有し、
前記閉塞部材の縁部には、側壁部が設けられ、
前記側壁部は、前記筐体の周壁部を取り囲んでいる、ヒートスプレッダ。
A laminated body formed by laminating a plurality of heat conductive layers, wherein the heat conductive layers adjacent in the laminating direction are joined together by a brazing material;
It is made of a metal material and has a box shape with one side open, the housing in which the laminated body is accommodated and joined by the brazing material and the laminated body,
A closing member that is made of a metal material, closes the opening of the housing, and is joined to the housing and the laminate by a brazing material,
Have
A side wall is provided at the edge of the closing member,
The side wall portion is a heat spreader surrounding the peripheral wall portion of the housing.
前記熱伝導層は、炭素系材料で構成されており、積層方向に隣接する前記熱伝導層同士の配向が異なる、請求項1に記載のヒートスプレッダ。   The heat spreader according to claim 1, wherein the heat conductive layer is made of a carbon-based material, and the orientation of the heat conductive layers adjacent to each other in the stacking direction is different. 前記側壁部の内面は、前記周壁部の外面にろう材によって接合されている、請求項2又は請求項2に記載のヒートスプレッダ。   The heat spreader according to claim 2 or 2, wherein an inner surface of the side wall portion is joined to an outer surface of the peripheral wall portion by a brazing material. 前記側壁部の先端は、前記周壁部の根元よりも前記筐体の前記一方の面に対して反対側の他方の面側に位置している、請求項1〜3のいずれか1項に記載のヒートスプレッダ。   The front end of the side wall portion is located on the other surface side opposite to the one surface of the housing from the base of the peripheral wall portion. Heat spreader. 前記側壁部の内面の少なくとも一部は、前記側壁部の厚みが根元側から先端側へ向かって漸減するように傾斜し、
前記周壁部の外面の少なくとも一部は、前記周壁部の厚みが根元側から先端側へ向かって漸減するように傾斜している、請求項1〜4のいずれか1項に記載のヒートスプレッダ。
At least a part of the inner surface of the side wall portion is inclined such that the thickness of the side wall portion gradually decreases from the root side toward the tip side,
The heat spreader according to any one of claims 1 to 4, wherein at least a part of the outer surface of the peripheral wall portion is inclined so that the thickness of the peripheral wall portion gradually decreases from the root side toward the tip side.
前記炭素系材料は、グラファイトを含む、請求項2及び請求項2を引用する請求項3〜5のいずれか1項に記載のヒートスプレッダ。   The heat spreader according to any one of claims 3 to 5, wherein the carbon-based material includes graphite.
JP2016007436A 2016-01-18 2016-01-18 Heat spreader Expired - Fee Related JP6607792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016007436A JP6607792B2 (en) 2016-01-18 2016-01-18 Heat spreader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007436A JP6607792B2 (en) 2016-01-18 2016-01-18 Heat spreader

Publications (2)

Publication Number Publication Date
JP2017130494A JP2017130494A (en) 2017-07-27
JP6607792B2 true JP6607792B2 (en) 2019-11-20

Family

ID=59396696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007436A Expired - Fee Related JP6607792B2 (en) 2016-01-18 2016-01-18 Heat spreader

Country Status (1)

Country Link
JP (1) JP6607792B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087716A (en) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 Semiconductor device
US10483186B2 (en) * 2017-11-08 2019-11-19 Toyota Jidosha Kabushiki Kaisha Semiconductor device with heat radiator
CN111656515B (en) * 2018-01-30 2024-04-26 京瓷株式会社 Electronic component mounting substrate, electronic device, and electronic module
JP7142864B2 (en) * 2018-09-28 2022-09-28 株式会社カネカ Method for producing anisotropic graphite composite
JP7213482B2 (en) * 2018-09-28 2023-01-27 株式会社カネカ Graphite composites and semiconductor packages
JP7494726B2 (en) 2020-12-18 2024-06-04 セイコーエプソン株式会社 Heat conducting structure and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092987A (en) * 1996-09-13 1998-04-10 Shin Etsu Polymer Co Ltd Cooling structure for semiconductor device
JP2001313345A (en) * 2000-04-28 2001-11-09 Kyocera Corp Package for accommodating semiconductor device
JP2008028187A (en) * 2006-07-21 2008-02-07 Toshiba Corp Thermal diffusion member and method for manufacturing same
JP4466644B2 (en) * 2006-12-26 2010-05-26 住友電気工業株式会社 heatsink
JP2011023670A (en) * 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
JP2011258755A (en) * 2010-06-09 2011-12-22 Denso Corp Heat spreader and cooling device for heating element
JP5707810B2 (en) * 2010-09-22 2015-04-30 サンケン電気株式会社 Manufacturing method of semiconductor module
JP5930604B2 (en) * 2011-05-12 2016-06-08 株式会社サーモグラフィティクス Method for manufacturing anisotropic heat conduction element
JP6026900B2 (en) * 2013-01-30 2016-11-16 京セラ株式会社 Electronic component storage package and electronic device using the same
DE112013006640B4 (en) * 2013-02-20 2018-05-03 Mitsubishi Electric Corporation Cooling device and cooling module equipped with power module

Also Published As

Publication number Publication date
JP2017130494A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6607792B2 (en) Heat spreader
JP5788069B1 (en) Flat type heat pipe
JP4558012B2 (en) Semiconductor package heat dissipation plate and semiconductor device
JP6112077B2 (en) Semiconductor device
CN102574361B (en) Laminate and manufacture method thereof
TW200921871A (en) Heat conductor
JP2015532531A5 (en)
JP2016149431A (en) Semiconductor module
US20200413566A1 (en) Heat conducting structure, manufacturing method thereof, and mobile device
JP6344477B2 (en) Semiconductor module
JP6754973B2 (en) Graphite radiator plate
JP6643481B2 (en) Semiconductor module and method of manufacturing semiconductor module
WO2013157535A1 (en) Heat pipe
JP2010232545A (en) Semiconductor device
JP2017152606A (en) Heat radiation substrate, semiconductor package using the same, and semiconductor module
WO2022138711A1 (en) Composite material, semiconductor package, and method for manufacturing composite material
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP2022178275A (en) Heat sink and semiconductor package
JP2014053442A (en) Plate laminated type cooling device
JP2018041868A (en) Heat dissipation substrate
JP6380076B2 (en) Semiconductor device
JP2013243212A (en) Thermal diffusion device
JP6327513B2 (en) Semiconductor device and manufacturing method thereof
JP7084278B2 (en) heatsink
JP6040570B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6607792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees