JP6602814B2 - 通信中継システム及び方法 - Google Patents

通信中継システム及び方法 Download PDF

Info

Publication number
JP6602814B2
JP6602814B2 JP2017085542A JP2017085542A JP6602814B2 JP 6602814 B2 JP6602814 B2 JP 6602814B2 JP 2017085542 A JP2017085542 A JP 2017085542A JP 2017085542 A JP2017085542 A JP 2017085542A JP 6602814 B2 JP6602814 B2 JP 6602814B2
Authority
JP
Japan
Prior art keywords
transmission
reception switching
base station
timing
switching timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085542A
Other languages
English (en)
Other versions
JP2018186339A (ja
JP2018186339A5 (ja
Inventor
敏則 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017085542A priority Critical patent/JP6602814B2/ja
Priority to CN201810003955.0A priority patent/CN108738126B/zh
Priority to US15/959,901 priority patent/US10644862B2/en
Publication of JP2018186339A publication Critical patent/JP2018186339A/ja
Publication of JP2018186339A5 publication Critical patent/JP2018186339A5/ja
Application granted granted Critical
Publication of JP6602814B2 publication Critical patent/JP6602814B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Description

本発明の実施形態は、通信中継システム及び方法に関する。
携帯電話、スマートフォン等の移動通信端末装置で利用される無線伝送方式としては、異なる二つの周波数帯域をそれぞれ下り信号/上り信号としてペアで使用するFDD(Frequency Division Duplex)方式と、同一の周波数帯域を下り信号及び上り信号で共用し、時分割で使用するTDD(Time Division Duplex)方式と、が知られている。
また、移動通信端末装置を屋内等の不感地帯で使用可能とするためのレピータシステム(通信中継システム)を複数の事業者(キャリア:通信サービス提供会社)で共用する共用リピータシステムが知られている。
特開2007−006163号公報 特開平11−008879号公報 特開平08−237731号公報
ところで、FDD方式の無線伝送方式においては、下りの周波数帯域と上りの周波数帯域との間には、一定の周波数間隔(Gap)が必要であり、利用可能な周波数が逼迫してきていることなどにより、近年では、TDD方式の無線伝送方式の利用が増えてきている。
従って共用リピータシステムにおいてもTDD方式の無線伝送方式を利用した装置が増加していくことが考えられる。
そして、TDD方式の無線伝送方式を採用した共用リピータシステムにおいては、隣接帯域で使用する異なる事業者間で時分割のタイミングにずれが生じると、相互に干渉が発生し、サービス品質の劣化あるいはサービスが停止する虞があった。
本発明は、上記に鑑みてなされたものであって、例えば、異なる事業者の基地局間の時分割タイミングのずれを抑制し、サービス品質の向上及びサービスの継続性を確保することが可能な通信中継システム及び方法を提供することを目的としている。
実施形態の通信中継システムは、上り信号及び下り信号の送受信を時分割で切り替えて通信を行う際の送受信切替タイミングが相互に独立している複数の基地局システムに対応して設けられ、対応する基地局システムからの無線信号をディジタル信号に変換して送信する複数の高周波ユニットと、高周波ユニットからディジタル信号を受信し、対応する子局装置を介して、移動通信端末装置との間の通信を行う親局装置と、を有し、移動通信端末装置と基地局システムとの間の通信の中継を行う通信中継システムである。
親局装置のタイミング検出部は、ディジタル信号に基づいて、親局装置と各高周波ユニットとの間における送受信切替タイミングをそれぞれ検出する。
保護状態検出部は、基地局システムの同期保護状態をそれぞれ検出する。
これにより設定部は、保護状態検出部の検出結果に基づいて、複数の送受信切替タイミングのうち、より長い時間同期がとれている状態が継続している、基地局システムに対応する送受信切替タイミングを基準送受信切替タイミングとして設定し、高周波ユニットに通知する。
高周波ユニットの補正部は、通知された基準送受信切替タイミングに合わせて送受信切替タイミングのずれを補正する。
図1は、実施形態の通信中継システムの概要構成ブロック図である。 図2は、第1態様における親局装置とRFUとの間の接続構成説明図である。 図3は、PTPによる時刻同期処理手順の説明図である。 図4は、送受信切替タイミングの設定処理の処理フローチャートである。 図5は、第2態様における親局装置とRFUとの間の接続構成説明図である。 図6は、第3態様における親局装置とRFUとの間の接続構成説明図である。 図7は、第4態様における親局装置と、RFU及び子局装置との間の接続構成説明図である。 図8は、第5態様における親局装置とRFUとの間の接続構成説明図である。 図9は、第5態様における第1変形例の説明図である。 図10は、第5態様における第2変形例の説明図である。
次に図面を参照して、実施形態について詳細に説明する。
図1は、実施形態の通信中継システムを有する通信システムの概要構成ブロック図である。
通信システム10は、大別すると、図1に示すように、基地局システム11−1〜11−7と、通信中継システム20と、アンテナユニットANT1〜ANT8と、移動通信端末装置16−1〜16−7と、を備えている。
上記構成において、通信中継システム20は、高周波ユニット(Radio Frequency Unit:以下、RFUという)12−1〜12−6と、親局装置13と、子局装置14−1〜14−8と、を備えている。
次に通信システム10の構成について詳細に説明する。
まず、基地局システム11−1〜11−7の構成について説明する。
基地局システム11−1は、GNSS(Global Navigation Satellite System)からのGNSS信号を受信して基準時刻データDST1を出力するグランドマスタークロック(GMC)ユニット21−1と、基準時刻データDST1に基づいて制御を行いキャリア周波数帯f1の高周波通信信号SC1を介して通信を行う基地局装置(図1中、BSと表示)22−1と、を備えている。なお、図中、GMCユニットをGMCと表記するものとする(以下、同様)。
基地局システム11−2は、GNSS信号を受信して基準時刻データDST2を出力するグランドマスタークロック(GMC)ユニット21−2と、基準時刻データDST2に基づいて制御を行いキャリア周波数帯f1の高周波通信信号SC2を介して通信を行う基地局装置22−2と、を備えている。
基地局システム11−3は、GNSS信号を受信して基準時刻データDST3を出力するグランドマスタークロック(GMC)ユニット21−3と、基準時刻データDST3に基づいて制御を行いキャリア周波数帯f2の高周波通信信号SC3を介して通信を行う基地局装置22−3と、を備えている。
基地局システム11−4は、GNSS信号を受信して基準時刻データDST4を出力するグランドマスタークロック(GMC)ユニット21−4と、基準時刻データDST4に基づいて制御を行いキャリア周波数帯f2の高周波通信信号SC4を介して通信を行う基地局装置22−4と、を備えている。
基地局システム11−5は、GNSS信号を受信して基準時刻データDST5を出力するグランドマスタークロック(GMC)ユニット21−5と、基準時刻データDST5に基づいて制御を行いキャリア周波数帯f1の高周波通信信号SC5を介して通信を行う基地局装置22−5と、を備えている。
基地局システム11−6は、GNSS信号を受信して基準時刻データDST6を出力するグランドマスタークロック(GMC)ユニット21−6と、基準時刻データDST6に基づいて制御を行いキャリア周波数帯f3の高周波通信信号SC6を介して通信を行う基地局装置22−6と、を備えている。
基地局システム11−7は、GNSS信号を受信して基準時刻データDST7を出力するグランドマスタークロック(GMC)ユニット21−7と、基準時刻データDST7に基づいて制御を行いキャリア周波数帯f3の高周波通信信号SC7を介して通信を行う基地局装置22−7と、を備えている。
次に通信中継システム20の構成についてそれぞれ説明する。
まず、通信中継システム20を構成しているRFU12−1〜12−6について説明する。
RFU12−1は、基地局システム11−1から複数の移動体通信端末装置に対応する複数の高周波通信信号SC1を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD1に多重化して光ケーブルLC1を介して親局装置13に送信する。
RFU12−2は、基地局システム11−2から複数の移動体通信端末装置に対応する複数の高周波通信信号SC2を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD2に多重化して光ケーブルLC2を介して親局装置13に送信するするとともに、基地局システム11−3から複数の移動体通信端末装置に対応する複数の高周波通信信号SC3を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD3に多重化して光ケーブルLC3を介して親局装置13に送信する。
RFU12−3は、基地局システム11−4から複数の移動体通信端末装置に対応する複数の高周波通信信号SC4を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD4に多重化して光ケーブルLC4を介して親局装置13に送信する。
RFU12−4は、基地局システム11−5から複数の移動体通信端末装置に対応する複数の高周波通信信号SC5を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD5に多重化して光ケーブルLC5を介して親局装置13に送信する。
RFU12−5は、基地局システム11−6から複数の移動体通信端末装置に対応する複数の高周波通信信号SC6を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD6に多重化して光ケーブルLC6を介して親局装置13に送信する。
RFU12−6は、基地局システム11−7から複数の移動体通信端末装置に対応する複数の高周波通信信号SC7を同軸ケーブル等の複数の通信ケーブルを介して受信し、光ディジタル信号SLD7に多重化して光ケーブルLC7を介して親局装置13に送信する。
次に通信中継システム20を構成している子局装置14−1〜14−8について説明する。
子局装置14−1は、キャリア周波数帯f1を利用しアンテナユニットANT1を介して移動通信端末装置と通信を行うサブユニット(図1中、SUBと表示)15−1と、キャリア周波数帯f2を利用しアンテナユニットANT1を介して移動通信端末装置と通信を行うサブユニット15−2と、を備えている。
子局装置14−2は、キャリア周波数帯f1を利用しアンテナユニットANT2を介して移動通信端末装置と通信を行うサブユニット15−3と、キャリア周波数帯f2を利用しアンテナユニットANT2を介して移動通信端末装置と通信を行うサブユニット15−4と、を備えている。
子局装置14−3は、キャリア周波数帯f1を利用しアンテナユニットANT3を介して移動通信端末装置と通信を行うサブユニット15−5と、キャリア周波数帯f3を利用しアンテナユニットANT3を介して移動通信端末装置と通信を行うサブユニット15−6と、を備えている。
子局装置14−4は、キャリア周波数帯f1を利用しアンテナユニットANT4を介して移動通信端末装置と通信を行うサブユニット15−7を備えている。
子局装置14−5は、キャリア周波数帯f1を利用してアンテナユニットANT5を介して移動通信端末装置と通信を行うサブユニット15−8と、キャリア周波数帯f2を利用しアンテナユニットANT5を介して移動通信端末装置と通信を行うサブユニット15−9と、を備えている。
子局装置14−6は、キャリア周波数帯f1を利用しアンテナユニットANT6を介して移動通信端末装置と通信を行うサブユニット15−10と、キャリア周波数帯f2を利用しアンテナユニットANT6を介して移動通信端末装置と通信を行うサブユニット15−11と、キャリア周波数帯f3を利用しアンテナユニットANT6を介して移動通信端末装置と通信を行うサブユニット15−12と、を備えている。
子局装置14−7は、キャリア周波数帯f2を利用しアンテナユニットANT7を介して移動通信端末装置と通信を行うサブユニット15−13を備えている。
子局装置14−8は、キャリア周波数帯f3を利用しアンテナユニットANT7を介して移動通信端末装置と通信を行うサブユニット15−14を備えている。
続いて通信中継システム20を構成している親局装置について説明する。
親局装置13は、RFU12−1〜12−6側である事業者間の遅延差及び子局装置14−1〜14−8側の遅延差を補正して、アンテナユニットANT1〜ANT7における実効的な送受信切替タイミング(TDDタイミング)のずれを抑制している。これは、上記構成において、アンテナユニットANT1〜ANT8は、送受信波が互いに干渉可能な範囲に配置されているものとすると、事業者毎の送受信切替タイミングがずれていると、相互に干渉し、正しい通信を行うことができなくなるからである。
そこで、本実施形態においては、親局装置13が送受信切替タイミングのずれを検出調整することでアンテナユニットANT1〜ANT8の送受信切替タイミングのずれに起因する相互干渉を防止しているのである。
これによれば、子局装置14−1〜14−8側だけで相互干渉を防止する場合と比較して子局装置14−1〜14−8側の負担を大きく低減することが出来、システム構築コスト及びシステム運営コストを低減することが可能となる。
ここで、TDDタイミングのずれの原因について説明する。
TDDタイミングのずれの原因としては、(1)事業者間の遅延差及び(2)子局装置間の遅延差が挙げられる。
事業者間の遅延差として、例えば、以下の五つが考えられる。
(1.1) 各事業者におけるグランドマスタークロック(GMC)ユニット21−1〜21−6の個体差によるGMC(基準クロック)同士のずれ。
(1.2) 各事業者における基地局装置22−1〜22−7の個体差による(処理)遅延差。
(1.3) 各事業者の基地局装置22−1〜22−7と対応するRFU12−1〜12−6までの信号線路長の差よる(伝送)遅延差。
(1.4) 各RFU12−1〜12−6における検出回路の個体差による(処理)遅延差。
(1.5) 各RFU12−1〜12−6と親局装置13との間の光ケーブルLC1〜LC6のケーブル長の差による(伝送)遅延差。
また、子局装置における遅延差として、例えば、以下の二つが考えられる。
(2.1) 各子局装置14−1〜14−8と親局装置13との間の光ケーブルのケーブル長の差による(伝送)遅延差。
(2.2) 各子局装置14−1〜14−8の個体差による(処理)遅延差。
上述したTDDタイミングのずれの原因のうち、(2)子局装置における遅延差についての補正は従来様々な手法で行われているので、以下、(1)事業者間の遅延差についての補正について説明する。
事業者間の遅延差については、親局装置13から見た場合、事業者間の遅延差は、実効的には、各RFU12−1〜12−6と親局装置13との間に発生している遅延差と見做せる。このため、各RFU12−1〜12−6と親局装置13との間に発生している遅延差(ずれ)を補正すれば良いこととなる。
この場合において、親局装置13、RFU12−1〜12−6あるいは子局装置14−1〜14−8のそれぞれが絶対基準となるタイミング(タイミング信号)を有しているか否かにより処理態様が異なることとなる。
この場合の態様としては、全ての状態の組合せが想定可能であるが、現実的な観点から以下の5つの態様を例として説明を行う。
(1)第1態様:親局装置13及び全てのRFU12−1〜12−6が絶対基準となるタイミング(タイミング信号)を有している場合。
(2)第2態様:親局装置13のみが絶対基準となるタイミング(タイミング信号)を有している場合。
(3)第3態様:いずれか一つのRFU(例えば、RFU12−1)のみが絶対基準となるタイミング(タイミング信号)を有している場合。
(4)第4態様:いずれか一つの子局装置14−Xのみが絶対基準となるタイミング(タイミング信号)を有している場合。
(5)第5態様:親局装置13、RFU12−1〜12−6あるいは子局装置14−1〜14−8のいずれもが絶対基準となるタイミング(タイミング信号)を有していない場合。
以下、これらの順番で構成及び動作を説明する。
(1)親局装置13及び全てのRFU12−1〜12−6が絶対基準となるタイミング(タイミング信号)を有している場合。
この場合において、絶対基準となるタイミングを有する態様としては、親局装置13及び全てのRFU12−1〜12−6が全て、GPS受信機、GMCユニット、地上ディジタルチューナあるいは電波時計のいずれかを備えている(あるいは接続されている)場合が考えられる。
また、親局装置13、RFU12−1〜12−6及びあるいは、子局装置14−1〜14−8のうち、少なくともいずれか一つの装置がGPS受信機、GMCユニット、地上ディジタルチューナあるいは電波時計のいずれかを備え、他の全ての装置がIEEE1588に規定されたPTP(Precision Time Protocol)に対応している場合等が考えられる。
ここでは、親局装置13がGMCユニットに接続され、RFU12−1〜12−6の全てがIEEE1588に規定されたPTP(Precision Time Protocol)に対応している場合を例として時刻同期手順について説明する。
PTPは、LAN(Local Area Network)につながった機器間での時刻同期を行うためのものであり、本例においては、親局装置13とRFU12−1〜12−6とは、光ケーブルLC1〜LC6で接続されたLANとして機能している。
この場合において、親局装置13は、RFU12−1〜12−6、ひいては、基地局システム11−1〜11−6との間で全体として時刻同期をとる必要があるが、まずは、RFU12−1と、親局装置13との間で個別に時刻同期を行う手順について説明する。
図2は、第1態様における親局装置とRFUとの間の接続構成説明図である。
親局装置13と、RFU12−1との間で個別に時刻同期を行う場合に、親局装置13は、BC(Boundary Clock)としてGMCユニット25からLAN26を介して伝送される時刻情報を補正してRFU12−1に再配信する機能を有し、PTPにおいてGMCユニット21は、スレーブとして機能している親局装置13に対してマスタとして機能し、さらに親局装置13はRFU12−1に対してマスタとして機能するものとし、RFU12−1は、スレーブとして機能しているものとする。
図3は、PTPによる時刻同期処理手順の説明図である。
まず、時刻t0において、親局装置13は、時刻同期精度情報の通知をするためのアナウンスメッセージ(Announce Message)AMをRFU12−1に対して送信する。
これによりRFU12−1は、その後所定時間内に時刻同期精度情報を送信される旨を把握する。
続いて時刻t1において、親局装置13は、イベントメッセージ(Event Message)としてのシンクメッセージ(Sync Message)SMをRFU12−1に対して送信する。
この場合において、シンクメッセージSMには、当該シンクメッセージSMの送信時刻である時刻t1が記録されている。
そして、時刻t2において、RFU12−1はシンクメッセージSMを受信すると、受信時刻t2を記録する。
さらにRFU12−1は、時刻t3において、シンクメッセージSMを受信した旨を親局装置13に通知するために、ディレイリクエストメッセージ(Delay Request Message)DRMを送信する。
この場合において、ディレイリクエストメッセージDRQMには、当該ディレイリクエストメッセージDRMの送信時刻である時刻t3が記録されている。
そして、時刻t4において、親局装置13は、ディレイリクエストメッセージDRMを受信すると、受信時刻t4を記録する。
さらに親局装置13は、ディレイリクエストメッセージDRMの受信時刻t4を記録したディレイレスポンスメッセージ(Delay Response Message)DRPMをRFU12−1に送信する。
次に上記状態における時刻差の算出方法について説明する。
ここで、RFU12−1が有する時計の時刻と、親局装置13が有する時計の時刻とは、オフセット時間TOF1だけずれているものとする。
したがって、上述の例の場合、親局装置13(マスタ)からRFU12−1(スレーブ)方向の時刻差及びRFU12−1(スレーブ)から親局装置13(マスタ)方向への時刻差は、いずれの方向でも伝送遅延時間DLY1が等しい場合、以下の関係が成立する。
・親局装置13(マスタ)からRFU12−1(スレーブ)方向の時刻差
t2−t1=DLY1+TOF1 …(1)
・RFU12−1(スレーブ)から親局装置13(マスタ)方向の時刻差
t4−t3=DLY1−TOF …(2)
これらの結果、RFU12−1は、式(1)と式(2)との和から伝送遅延時間DLY1を算出し、式(1)と式(2)との差からオフセット時間TOF1を算出する。
すなわち、
DLY1=((t2−t1)+(t4−t3))/2 …(3)
TOF1=((t2−t1)−(t4−t3))/2 …(4)
同様にして、RFU12−2は、親局装置13に対応するオフセット時間TOF2及び伝送遅延時間DLY2を算出し、RFU12−3は、親局装置13に対応するオフセット時間TOF3及び伝送遅延時間DLY3を算出し、RFU12−4は、親局装置13に対応するオフセット時間TOF4及び伝送遅延時間DLY4を算出し、RFU12−5は、親局装置13に対応するオフセット時間TOF5及び伝送遅延時間DLY5を算出し、RFU12−6は、親局装置13に対応するオフセット時間TOF6及び伝送遅延時間DLY6を算出する。
これらの結果、RFU12−1〜12−6は、算出した伝送遅延時間DLY1〜DLY6及びオフセット時間TOF1〜TOF6に基づいて、当該RFU12−1〜12−6内の時刻補正を常に行い、高精度の時刻同期を実現することとなる。
次に送受信切替タイミングの設定について説明する。
図4は、送受信切替タイミングの設定処理の処理フローチャートである。
まず、親局装置13は、事業者毎(本例では、RFU毎)に送受信切替タイミングを検出する(ステップS11)。
続いて親局装置13は、全事業者に対応する送受信切替タイミングの検出が済んでいるか否かを判別する(ステップS12)。
ステップS12の判別において、未だ全事業者に対応する送受信切替タイミングの検出が済んでいない場合には(ステップS12;No)、親局装置13は、再び処理をステップS11に移行して処理を行う。
ステップS12の判別において、全事業者に対応する送受信切替タイミングの検出が済んだ場合には(ステップS12;Yes)、親局装置13は、送受切替タイミングの選択対象である事業者のうち、同期保護状態がより優れた基地局システム11−1〜11−7に対応する事業者を選択する(ステップS13)。
この場合において、同期保護状態としては、同期が取れているにも関わらず、瞬時的な符号誤りによって同期が取れていないと誤って判断されないように、所定数の連続した通信フレームにおいて同期が取れていないのを確認する前方保護と、同期が取れていないにも関わらず、瞬時的な符号誤りによって同期が取れていると誤って判断されないように、所定数の連続した通信フレームにおいて同期が取れているのを確認する後方保護と、があるが、いずれにせよより長い時間同期が取れている状態が継続している同期保護状態を、同期保護状態がより優れた状態であるとされる。
続いて、親局装置13は、選択した事業者の送受信切替タイミングは、他の事業者の送受信切替タイミングより所定の閾値時間以上異なっているか否かを判別する(ステップS14)。
ここで、所定の閾値時間は、当該事業者において採用している時間情報を取得するための計時装置(時計)が故障しているなどによる送受信切替タイミングの異常を検出するために設定される時間であり、想定される計時装置の精度に比較して生じ得ない送受信切替タイミングを排除するために用いている。
ステップS14の判別において、選択した事業者の送受信切替タイミングが他の事業者の送受信切替タイミングより所定の閾値時間以上異なっている場合には(ステップS14;Yes)、当該送受信切替タイミングは、たとえ同期保護状態が優れていたとしても信頼性の観点から採用できないので、当該事業者を選択対象から除外し(ステップS16)、再び処理をステップS13に移行し、残った事業者を選択対象として上述した処理を行うこととなる。
一方、ステップS14の判別において、選択した事業者の送受信切替タイミングと他の事業者の送受信切替タイミングとの違い(差)が所定の閾値時間未満である場合には(ステップS14;No)、親局装置13は、(時刻同期がなされている状態で)、選択した事業者の送受信切替タイミング、すなわち、親局装置13とRFU12−1〜12−6との間における正常な送受信切替タイミングのうちで同期保護状態がより優れた基地局システム11−1〜11−7に対応する送受信切替タイミングを基準送受信切替タイミングとして設定して、RFU12−1〜12−6に通知して処理を終了する(ステップS15)。
これにより、RFU12−1〜12−6は、同期している時刻を用いて、基準送受信切替タイミングに切替を行うように基準送受信切替タイミングに合わせて送受信切替タイミングのずれを補正する。
この結果、親局装置13とRFU12−1〜12−6との間における送受信切替タイミングのうち、同期保護状態がより優れた基地局システムに対応する送受信切替タイミングに同期して送受信の切替を行えるので、異なる事業者間の時分割タイミングのずれを抑制し、サービス品質の向上及びサービスの継続性を確保することができる。
以上の説明は、親局装置13にGMCユニットが接続されている場合のものであったが、親局装置13にGPS受信機、地上ディジタルチューナあるいは電波時計のいずれかを備えている(あるいは接続されている)場合であっても同様の手順により適用が可能である。
(2)親局装置13のみが絶対基準となるタイミング(タイミング信号)を有している場合。
この場合において、絶対基準となるタイミングを有する態様としては、親局装置13のみGPS受信機、GMCユニット、地上ディジタルチューナあるいは電波時計のいずれかを備えている(あるいは接続されている)場合であって、RFU12−1〜12−6の全てがIEEE1588に規定されたPTPに対応していない場合等が考えられる。
図5は、第2態様における親局装置とRFUとの間の接続構成説明図である。
この場合においては、親局装置13は、絶対基準となるタイミングをGPSユニット31から取得し、取得した絶対基準となるタイミングに対応づけてRFU12−1〜12−6に対し、基準タイミング信号Stを同時並行して送出する。
この結果、各RFU12−1〜12−6は、対応する光ケーブルLC1〜LC6の伝送線路長に応じた補正を行い、実効的にRFU12−1〜12−6との間で遅延差が無い状態(あるいは所定許容値範囲内の状態)とすることが可能となる。
そして、(1)の場合と同様に、時刻同期がなされている状態で、RFU12−1〜12−6は、親局装置13とRFU12−1〜12−6との間における送受信切替タイミングのうち、同期保護状態がより優れた基地局システム11−1〜11−7に対応する送受信切替タイミングを基準送受信切替タイミングに切替を行うように基準送受信切替タイミングに合わせて送受信切替タイミングのずれを補正するので、異なる事業者間の時分割タイミングのずれを抑制し、サービス品質の向上及びサービスの継続性を確保することができる。
(3)いずれか一つのRFU(例えば、RFU12−1)のみが絶対基準となるタイミング(タイミング信号)を有している場合。
図6は、第3態様における親局装置とRFUとの間の接続構成説明図である。
図6においては、RFU12−1は、地上ディジタル放送チューナ35から絶対基準となるタイミングとして、TOT(Time Offset Table)と呼ばれる時刻情報を取得し、いわゆる電波時計と同様の精度で時刻情報を取得し、絶対基準となるタイミングに対応づけて親局装置13に対し、基準タイミング信号St0として送出し、親局装置13は、基準タイミング信号St0に基づいてRFU12−2〜12−6に対し、タイミング信号Stを同時並行して送出する。
この結果、親局装置13は、対応する光ケーブルLC1の伝送線路長に応じた伝送遅延の補正を行い、各RFU12−2〜12−6は、光ケーブルLC1の伝送線路長及び対応する光ケーブルLC2〜LC6の伝送線路長に応じた伝送遅延の補正を行い、実効的にRFU12−1〜12−6との間で遅延差が無い状態(あるいは所定許容値範囲内の状態)とすることが可能となる。
そして、(1)の場合と同様に、時刻同期がなされている状態で、RFU12−1〜12−6は、親局装置13とRFU12−1〜12−6との間における送受信切替タイミングのうち、同期保護状態がより優れた基地局システムに対応する基準送受信切替タイミングに切替を行うように基準送受信切替タイミングに合わせて送受信切替タイミングのずれを補正するので、異なる事業者間の時分割タイミングのずれを抑制し、サービス品質の向上及びサービスの継続性を確保することができる。
(4)いずれか一つの子局装置14−X(X:1〜8)のみが絶対基準となるタイミング(タイミング信号)を有している場合。
図7は、第4態様における親局装置と、RFU及び子局装置との間の接続構成説明図である。
図7においては、子局装置14−1のみが絶対基準となるタイミング(タイミング信号)を有している。
図7においては、子局装置14−1は、電波時計37から絶対基準となるタイミングとして、時刻情報を取得し、絶対基準となるタイミングに対応づけて親局装置13に対し、基準タイミング信号St0として送出し、親局装置13は、対応する光ケーブルLC11の伝送線路長に応じた補正を行った基準タイミング信号St0に基づいてRFU12−1〜12−6に対し、基準タイミング信号Stを同時並行して送出する。
この結果、各RFU12−1〜12−6は、光ケーブルLC11の伝送線路長及び対応する光ケーブルLC1〜LC6の伝送線路長に応じた補正を行い、実効的にRFU12−1〜12−6との間で遅延差が無い状態(あるいは所定許容値範囲内の状態)とすることが可能となる。
この状態で、親局装置13は、親局装置13とRFU12−1〜12−6との間における送受信切替タイミングのうち、同期保護状態がより優れた基地局システムに対応する送受信切替タイミングを基準送受信切替タイミングとして設定して、RFU12−1〜12−6に通知する。したがって、親局装置13とRFU12−1〜12−6との間における送受信切替タイミングのうち、同期保護状態がより優れた基地局システム11−1〜11−7に対応する送受信切替タイミングを基準送受信切替タイミングとして送受信切替タイミングのずれを補正することとなる。
したがって、異なる事業者間の時分割タイミングのずれを抑制し、サービス品質の向上及びサービスの継続性を確保することができる。
なお、親局装置13と、各子局装置14−1〜14−8との間では、一または複数の光ケーブルで接続されているが、同一の子局装置の光ケーブル同士では、伝送線路長は、同一であるとみなして構わない。
(5)親局装置13、RFU12−1〜12−6あるいは子局装置14−1〜14−8のいずれもが絶対基準となるタイミング(タイミング信号)を有していない場合。
図8は、第5態様における親局装置とRFUとの間の接続構成説明図である。
そして、この状態で、親局装置13は、親局装置13とRFU12−1〜12−6との間における送受信切替タイミングのうち、同期保護状態がより優れた基地局システム11−1〜11−7に対応する送受信切替タイミングを基準送受信切替タイミングとして設定した所定の基準タイミング信号St1をRFU12−1〜12−6に送出する。
これにより、RFU12−1〜12−6は、対応する光ケーブルLC1〜LC6の伝送線路長に応じた補正を行い、実効的にRFU12−1〜12−6との間で遅延差が無い状態(あるいは所定許容値範囲内の状態)とする。
しがたがって、送受信切替タイミングのずれが補正され、異なる事業者間の時分割タイミングのずれを抑制し、サービス品質の向上及びサービスの継続性を確保することができる。
また、親局装置にタイミングジェネレータを接続し、親局装置13は、タイミングジェネレータに対応するタイミング信号をRFU12−1〜12−6に送信し、各RFU12−1〜12−6は、対応する光ケーブルLC1〜LC6の伝送線路長に応じた補正を行い、実効的にRFU12−1〜12−6同士で親局装置13に対し遅延差が無い状態(あるいは所定許容値範囲内の状態)とするようにしてもよい。
図9は、第5態様における第1変形例の説明図である。
本第1変形例においては、親局装置13に監視装置40を接続し、監視装置40において親局装置13及びRFU12−1〜12−6から送受信切替タイミングに対応する信号Sc0〜Sc6を受信し、これらに基づいて基準送受信切替タイミング(例えば、所定のしきい値時間内に位置する送受信切替タイミングのうち同期保護状態がより優れた基地局システム11−1〜11−7に対応する送受信切替タイミング)を設定し、対応する基準タイミング信号St2を親局装置13に送信し、親局装置13は基準タイミング信号St2をRFU12−1〜12−6に送信し、各RFU12−1〜12−6は、対応する光ケーブルLC1〜LC6の伝送線路長に応じた補正を行い、実効的にRFU12−1〜12−6同士で親局装置13に対し遅延差が無い状態(あるいは所定許容値範囲内の状態)とする。
この場合において、監視装置40から出力される基準タイミング信号St2については、親局装置13及びRFU12−1〜12−6から送受信切替タイミングに関わらず、監視装置40において、オペレータ(監視装置40が通信中継システム20の設置場所に対して遠隔地に設置されている場合)あるいは作業者(監視装置40が通信中継システム20の設置場所に設置されている場合)が適宜設定した送受信切替タイミングとすることも可能である。
図10は、第5態様における第2変形例の説明図である。
本第2変形例においては、親局装置13に対し、絶対基準となるタイミング(タイミング信号)を有している他の親局装置13Aを光ケーブルLC21を介して接続する。
この結果、親局装置13にとって他の親局装置13Aは、GPS受信機、GMCユニット、地上ディジタルチューナあるいは電波時計のいずれかと等価となるため、親局装置13は、上述した第2態様と同様の手順でRFU12−1〜12−6との間で遅延差が無い状態(あるいは所定許容値範囲内の状態)とすることが可能となる。
本実施形態の親局装置13は、CPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置と、HDD、CDドライブ装置などの外部記憶装置と、を備えており、通常のコンピュータを利用したハードウェア構成となっている。
本実施形態の親局装置13あるいはRFU12−1〜12−6で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、DVD、USBメモリ等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
また、本実施形態の親局装置13あるいはRFU12−1〜12−6で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の通信中継装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
また、本実施形態の通信中継装置のプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
10 通信中継システム
11−1〜11−7 基地局システム
12−1〜12−6 RFU
13 親局装置
13A 親局装置
14−1〜14−8 子局装置
15−1〜15−14 サブユニット
16 移動通信端末装置
21−1〜21−6、25 GMCユニット
22−1〜22−6 基地局装置
26 LAN
31 GPSユニット
35 地上ディジタル放送チューナ
37 電波時計
40 監視装置
ANT1〜ANT7 アンテナユニット
LC1〜LC7、LC11、LC21 光ケーブル
St、St0、St1、St2 基準タイミング信号

Claims (10)

  1. 上り信号及び下り信号の送受信を時分割で切り替えて通信を行う際の送受信切替タイミングが相互に独立している複数の基地局システムに対応して設けられ、対応する前記基地局システムからの無線信号をディジタル信号に変換して送信する複数の高周波ユニットと、前記高周波ユニットから前記ディジタル信号を受信し、対応する子局装置を介して、移動通信端末装置との間の通信を行う親局装置と、を有し、前記移動通信端末装置と前記基地局システムとの間の通信の中継を行う通信中継システムであって、
    前記親局装置は、前記ディジタル信号に基づいて、前記親局装置と各前記高周波ユニットとの間における前記送受信切替タイミングをそれぞれ検出するタイミング検出部と、前記基地局システムの同期保護状態をそれぞれ検出する保護状態検出部と、前記保護状態検出部の検出結果に基づいて、複数の前記送受信切替タイミングのうち、より長い時間同期がとれている状態が継続している、前記基地局システムに対応する送受信切替タイミングを基準送受信切替タイミングとして設定し、前記高周波ユニットに通知する設定部と、を備え、
    前記高周波ユニットは、通知された前記基準送受信切替タイミングに合わせて送受信切替タイミングのずれを補正する補正部を備えた、
    通信中継システム。
  2. 前記設定部は、前記基準送受信切替タイミングに相当するタイミング信号を前記補正部に送信する、
    請求項1記載の通信中継システム。
  3. 上り信号及び下り信号の送受信を時分割で切り替えて通信を行う際の送受信切替タイミングが相互に独立している複数の基地局システムと、移動通信端末装置と、の間で通信の中継を行う通信中継システムであって、
    前記基地局システムの同期保護状態をそれぞれ検出する保護状態検出部と、
    前記保護状態検出部の検出結果に基づいて、複数の前記送受信切替タイミングのうち、より長い時間同期がとれている状態が継続している、前記基地局システムに対応する送受信切替タイミングを基準送受信切替タイミングとして設定する設定部と、
    前記基準送受信切替タイミングに合わせて前記複数の基地局システムとの間における送受信切替タイミングのずれを補正する補正部と、
    を備えた通信中継システム。
  4. 前記送受信切替タイミングをそれぞれ検出するタイミング検出部と
    備えた、請求項3記載の通信中継システム。
  5. 親局装置と、前記複数の基地局システムのそれぞれからの信号をディジタル信号に変換して前記親局装置に送信する複数の高周波ユニットと、を備え、
    前記親局装置は、前記タイミング検出部、前記保護状態検出部及び前記設定部を有し、
    前記高周波ユニットは、前記補正部を有する、
    請求項4記載の通信中継システム。
  6. 前記タイミング検出部は、前記送受信切替タイミングとして、前記高周波ユニットとの間における送受信切替タイミングを検出する、
    請求項5記載の通信中継システム。
  7. 前記補正部は、前記親局装置と前記高周波ユニットとの間の伝送遅延量を考慮して、前記補正を行う、
    請求項6記載の通信中継システム。
  8. 前記設定部は、前記基準送受信切替タイミングに相当するタイミング信号を前記補正部に送信する、
    請求項5乃至請求項7のいずれか一項に記載の通信中継システム。
  9. 上り信号及び下り信号の送受信を時分割で切り替えて通信を行う際の送受信切替タイミングが相互に独立している複数の基地局システムに対応して設けられ、対応する前記基地局システムからの無線信号をディジタル信号に変換して送信する複数の高周波ユニットと、前記高周波ユニットから前記ディジタル信号を受信し、対応する子局装置を介して、移動通信端末装置との間の通信を行う親局装置と、を有し、前記移動通信端末装置と前記基地局システムとの間の通信の中継を行う通信中継システムで実行される方法であって、
    前記ディジタル信号に基づいて、前記親局装置と各前記高周波ユニットとの間における前記送受信切替タイミングをそれぞれ検出する過程と、
    前記基地局システムの同期保護状態をそれぞれ検出する過程と、
    前記同期保護状態の検出結果に基づいて、複数の前記送受信切替タイミングのうち、より長い時間同期がとれている状態が継続している、前記基地局システムに対応する送受信切替タイミングを基準送受信切替タイミングとして設定する過程と、
    前記基準送受信切替タイミングに合わせて送受信切替タイミングのずれを補正する過程と、
    を備えた方法。
  10. 上り信号及び下り信号の送受信を時分割で切り替えて通信を行う際の送受信切替タイミングが相互に独立している複数の基地局システムと、移動通信端末装置と、の間で通信の中継を行う通信中継システムで実行される方法であって、
    前記基地局システムの同期保護状態をそれぞれ検出する過程と、
    前記同期保護状態の検出結果に基づいて、複数の前記送受信切替タイミングのうち、より長い時間同期がとれている状態が継続している、前記基地局システムに対応する送受信切替タイミングを基準送受信切替タイミングとして設定する過程と、
    前記基準送受信切替タイミングに合わせて前記複数の基地局システムとの間における送受信切替タイミングのずれを補正する過程と、
    を備えた方法。
JP2017085542A 2017-04-24 2017-04-24 通信中継システム及び方法 Active JP6602814B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017085542A JP6602814B2 (ja) 2017-04-24 2017-04-24 通信中継システム及び方法
CN201810003955.0A CN108738126B (zh) 2017-04-24 2018-01-03 通信中继系统及方法
US15/959,901 US10644862B2 (en) 2017-04-24 2018-04-23 Communication repeater system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085542A JP6602814B2 (ja) 2017-04-24 2017-04-24 通信中継システム及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019185017A Division JP2020010404A (ja) 2019-10-08 2019-10-08 通信中継システム及び方法

Publications (3)

Publication Number Publication Date
JP2018186339A JP2018186339A (ja) 2018-11-22
JP2018186339A5 JP2018186339A5 (ja) 2019-07-04
JP6602814B2 true JP6602814B2 (ja) 2019-11-06

Family

ID=63854209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085542A Active JP6602814B2 (ja) 2017-04-24 2017-04-24 通信中継システム及び方法

Country Status (3)

Country Link
US (1) US10644862B2 (ja)
JP (1) JP6602814B2 (ja)
CN (1) CN108738126B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207237A (ja) * 2017-05-31 2018-12-27 株式会社東芝 通信中継システム及び方法
CN110730498B (zh) * 2019-10-23 2022-09-30 深圳市慧宇系统有限公司 一种导航定位授时同步系统及其同步方法
CN113630821B (zh) * 2020-05-09 2023-03-10 华为技术有限公司 通信方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998781B2 (ja) 1995-02-27 2000-01-11 日本電信電話株式会社 基地局装置及び基地局集線制御装置
JP3302615B2 (ja) 1997-06-18 2002-07-15 三菱電機株式会社 無線基地局
JP2004221914A (ja) * 2003-01-15 2004-08-05 Fujitsu Ten Ltd 移動体通信システム
JP4380220B2 (ja) * 2003-05-20 2009-12-09 パナソニック電工株式会社 無線中継装置
KR101291850B1 (ko) * 2004-05-13 2013-07-31 퀄컴 인코포레이티드 업링크 및 다운링크 동기화를 위해 다운링크를 검출하는 비-주파수 변환 리피터
JP4410158B2 (ja) 2005-06-24 2010-02-03 株式会社東芝 通信システム及びそれに用いられる親機中継装置
WO2009138876A2 (en) * 2008-05-13 2009-11-19 Mobileaccess Networks Ltd. Multiple data services over a distributed antenna system
US8693342B2 (en) * 2011-10-28 2014-04-08 Adc Telecommunications, Inc. Distributed antenna system using time division duplexing scheme
US9158864B2 (en) * 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
CN110830227B (zh) * 2013-07-04 2022-08-19 韩国电子通信研究院 用于多连接性的方法
EP3064031B1 (en) * 2013-10-30 2019-05-08 Andrew Wireless Systems GmbH Switching sub-system for distributed antenna systems using time division duplexing
CN105101389B (zh) * 2014-05-08 2020-04-03 索尼公司 无线通信系统中的方法和装置
JP6352729B2 (ja) * 2014-08-26 2018-07-04 株式会社東芝 レピータシステム、レピータ装置及びタイミング信号生成方法
CN106716886B (zh) * 2014-09-04 2018-11-16 瑞典爱立信有限公司 通信网络节点和其中执行的方法
CA2959371C (en) * 2014-10-31 2021-11-02 Commscope Technologies Llc Multichannel i/q interface between a base station and a repeater
JP2017069669A (ja) * 2015-09-29 2017-04-06 富士通株式会社 時刻同期装置、基地局装置、及び、時刻同期方法
JP2017098694A (ja) * 2015-11-20 2017-06-01 富士通株式会社 通信装置,及びその時刻同期方法
JP2018093362A (ja) * 2016-12-02 2018-06-14 富士通株式会社 通信制御装置、無線通信装置及び遅延調整方法

Also Published As

Publication number Publication date
JP2018186339A (ja) 2018-11-22
CN108738126A (zh) 2018-11-02
US10644862B2 (en) 2020-05-05
US20180309562A1 (en) 2018-10-25
CN108738126B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
JP6577511B2 (ja) 通信中継システム及び方法
JP6602814B2 (ja) 通信中継システム及び方法
JP2017076927A (ja) 無線制御装置、無線通信システムおよび送信タイミング補正方法
JP2018207238A (ja) 通信中継システム
JP6602813B2 (ja) 通信中継システム及び方法
JP6577510B2 (ja) 通信中継システム及び方法
JP2020010403A (ja) 通信中継システム及び方法
JP2020010404A (ja) 通信中継システム及び方法
JP2020010350A (ja) 通信中継システム及び方法
JP2018186352A (ja) 通信中継システム及び方法
JP6608869B2 (ja) 通信中継システム、親局装置、及び方法
JP6577512B2 (ja) 通信中継システム及び方法
JP2018207237A (ja) 通信中継システム及び方法
JP7042557B2 (ja) 通信中継システム及び方法
JP2018186345A (ja) 通信中継システム及び方法
JP2020010349A (ja) 通信中継システム及び方法
JP2018186344A (ja) 通信中継システム及び方法
JP2020010348A (ja) 通信中継システム及び方法
JP2018207235A (ja) 通信中継システム
JP2010062813A (ja) 無線同期方法、無線通信システム、及び無線基地局
JP2014212488A (ja) 同期装置、同期システム、同期プログラム、及び同期方法
JP2007150561A (ja) 移動無線通信システム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150