JP6600704B2 - 煤センサシステム - Google Patents

煤センサシステム Download PDF

Info

Publication number
JP6600704B2
JP6600704B2 JP2018017170A JP2018017170A JP6600704B2 JP 6600704 B2 JP6600704 B2 JP 6600704B2 JP 2018017170 A JP2018017170 A JP 2018017170A JP 2018017170 A JP2018017170 A JP 2018017170A JP 6600704 B2 JP6600704 B2 JP 6600704B2
Authority
JP
Japan
Prior art keywords
sensor
substrate
soot
undulations
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017170A
Other languages
English (en)
Other versions
JP2018081113A (ja
Inventor
ケイヴァン・ヘダーヤト
ジョン・ハート
エリック・マットソン
マーク・ウィルソン
ノーマン・ポワリエ
Original Assignee
ストーンリッジ・インコーポレッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ストーンリッジ・インコーポレッド filed Critical ストーンリッジ・インコーポレッド
Publication of JP2018081113A publication Critical patent/JP2018081113A/ja
Application granted granted Critical
Publication of JP6600704B2 publication Critical patent/JP6600704B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Description

本出願は2011年5月26日に出願された米国仮特許出願第61/490310号明細書の優先権を主張し、その開示の全体は参照によって本明細書に組み込まれている。
本開示は、一般的に煤センサに関連し、より具体的には、排気ガス流内の煤を検出するセンサシステムに関連する。
煤センサは、エンジン排出用途、例えば搭載された診断システム(OBD)に用いられうる。この種のセンサは微粒子物質のビルドアップ、例えばエンジン排気ガス内の煤の濃度を検出し、測定するのに用いられうる。特にディーゼルエンジンにおいて、排気ガスが大気中に放出される際に可能な限り低い煤粒子の濃度であることが望ましい。内燃エンジンの動作状態をモニターするために、内燃機関に関連した排気システム内に煤センサを配置することがこの目的に適している。煤センサは、ディーゼル粒子フィルタ(DPF)の上流または下流に配置されうる。DPFから下流に配置される場合、DPFをモニターする機能もまた、煤センサを用いることで発揮されうる。DPFが故障した場合、煤センサはエンジン排気内の過剰な煤を検出し、車両エンジン制御ユニット(ECU)に警告を発しうる。
煤センサは、比較的単純な抵抗性デバイスでありうる。図1は搭載加熱素子を有する煤センサの既知の構成の1つの概略的な上面図であり、図2は図1の煤センサの概略的な底面図である。センサ100は、第1の表面104及び第1の表面104と対向する第2の表面106を画定する非導電性基板102を含みうる。感知エレメント108は、基板102の第1の表面104上に形成され、第1電極110及び分離した第2電極112を画定する導電性材料を含む。導電性材料は、高温に耐性を有するように選択された貴金属であってもよく、第1及び第2電極110、112はそれらの間に開回路を確立するように互いに電気的に離隔されていてもよい。
図示されるように、第1及び第2電極110、112は、第1及び第2電極110、112の間の外周を最大化する、互い違いに組んだ状態の「指」を有して構成されうる。第1電極110は、指の第1の組114を画定し、第2電極112は分離した指の第2の組116を画定する。動作時には、排気からの煤(図示されない)が感知素子108上に付着すると、煤に含まれる炭素が第1電極110と第2電極112とを電気的に接続し、それらの間の電気抵抗を効果的に低下させる。電極間の抵抗は煤の存在量の指標として測定される。
図3は、図1、2の煤センサの線3−3に沿って取られた拡大部分図である。図2、3に示されるように、いくつかの応用例において、センサ100はまた基板102の第2の表面106上に実装された搭載加熱素子118も有する。搭載加熱素子118は、抵抗加熱を介して煤センサ100を加熱するように構成される。例えば、基板102の第1及び/または第2の表面104、106上に集められた煤を除去するのに好適でありうる。既知の抵抗を有する白金線を含みうる搭載加熱素子118は活性化されて、比較的高温、例えば650℃まで感知素子108を加熱し、それによって堆積した煤粒子を焼却しうる。
上述した種類の煤センサは、排気システム内に存在する状況下で故障する可能性がある。電極は直接排気ガス流にさらされており、特定の排気物質によって電極の腐食及び/またはセンサ表面の汚染につながる恐れがあり、煤の蓄積の測定に干渉的な影響を与えうる。さらに、この煤センサの感知素子は、感知素子の配線内の損傷を感知することが可能な診断機能を有しない。さらに、この煤センサに含まれる搭載加熱素子は、高流動条件の間、蓄積された煤を十分に焼却するのに必要な高温に到達することが困難であった。
特許請求の範囲の対象の特徴及び利点は、それと合致した実施形態の以下の詳細な説明から明らかになり、説明は添付した図を参照して考慮されるべきである。
煤センサの概略的な上面図である。 図1の煤センサの概略的な底面図である。 図1、2の煤センサの線3−3に沿って取られた拡大部分図である。 本開示に合致する煤センサの概略的な上面図である。 本開示に合致する図4の煤センサの線5−5に沿って取られた一部の部分図である。 本開示に合致する他の実施例に従う、図4の煤センサの線5−5に沿って取られた一部の部分図である。 図5Bの煤センサの一部の拡大図である。 本開示に合致する煤センサの他の実施形態の概略的な上面図である。 図7の煤センサの一部の拡大図である。 本開示に合致する他の実施形態に従う図7の煤センサの一部の拡大図である。 本開示に合致する他の実施形態に従う図7の煤センサの一部の拡大図である。 本開示に合致する煤センサティップの斜視図である。 図9の煤センサティップの線10−10に沿って取られた拡大斜視部分図である。 本開示に合致する煤センサシステムの例示的な実施形態のブロック図である。 パシベーション層を含む図7の煤センサの概略的な上面図である。 本開示に合致する煤センサの他の実施形態の概略的な上面図である。 図13の煤センサの一部の拡大図である。 煤感知モードにある図13の煤センサの概略的な上面図である。 再生モードにある図13の煤センサの概略的な上面図である。 第1及び第2の再生モードにある図13の煤センサの概略的な上面図及び関連した回路である。 第1及び第2の再生モードにある図13の煤センサの概略的な上面図及び関連した回路である。 第1及び第2の再生モードにある図13の煤センサの概略的な上面図及び関連した回路である。 第1及び第2の再生モードにある図13の煤センサの概略的な上面図及び関連した回路である。 本開示に合致する煤センサアセンブリの部分斜視図である。 図18の煤センサアセンブリの実施形態の斜視図である。 図18の煤センサアセンブリの実施形態の斜視図である。 図18の煤センサアセンブリの一部の拡大斜視図である。 本開示に合致する他の煤センサアセンブリの分解斜視図である。 組み立てられた状態の図20の煤センサアセンブリの斜視図である。 図21の煤センサアセンブリの線A−Aに沿って取られた部分図である。 図21の煤センサアセンブリの線B−Bに沿って取られた断面図である。 図20の煤センサアセンブリの一部の実施形態の斜視図である。 図20の煤センサアセンブリの一部の実施形態の断面図である。 図20の煤センサアセンブリの一部の他の実施形態の斜視図である。 図20の煤センサアセンブリの一部の他の実施形態の断面図である。 図13の煤センサに結合された回路の概略図である。 図13の煤センサに結合された信号処理システムのブロック図である。 図26の信号保護回路の概略図である。 本開示に合致する例示的な煤センサに関連する抵抗に対する出力電圧のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対する出力電圧のプロットを含む。 本開示に合致する例示的な煤センサに関連する回路の概略図である。 本開示に合致する例示的な煤センサに関連する回路の概略図である。 図30A〜30Bの回路に関連する時間に対する抵抗のプロットである。 本開示に合致する例示的な煤センサに関連する空気の流量率に対する供給電力のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対する供給電圧のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対する供給電圧のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対する供給電圧のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対する供給電圧のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対する抵抗のプロットである。 図34のプロットに関連する時間に対する煤蓄積のプロットである。 本開示に合致する例示的な煤センサに関連する時間に対するセンサの反応のプロットである。
本開示は一般的に煤粒子を検出するための煤センサ及び煤センサシステムに指向される。一般に、本開示に合致する煤センサシステムは、第1の表面及び第1の表面に対向する第2の表面を画定する基板を含む。少なくとも1つの導電性材料の連続的なループを有する少なくとも1つの素子が、基板の第1の表面上に配置される。少なくとも1つの素子は基板の少なくとも第1の表面上の煤の蓄積を感知する第1のモードで動作し、基板の少なくとも第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成される。第1及び第2の電気的コンタクトは少なくとも1つの素子の対向する端部に配置される。回路は第1及び第2の電気的コンタクトに電気的に結合され、基板の第1の表面及び素子上に蓄積された煤の量を決定し、煤の蓄積に応じて素子の加熱を制御するように構成される。
本開示に合致する煤センサ及び/または煤センサシステムは、ディーゼルエンジンを有する自動車の排気システム内に位置されるように構成されるものであってもよい。さらに、煤センサ及び/または煤センサシステムは、オイル加熱システムにおける家庭用技術の分野における使用のために構成されてもよく、例えば、用途に応じて適切に設計された支持を有して提供される。自動車の排気システムにおける使用に関して、本開示に合致する煤センサシステムは、排気ガス流から煤の蓄積を検出するように構成されてもよい。さらに、煤センサシステムは、自動車の搭載診断システムに結合され通信するように構成されるものであってもよい。さらに、煤センサは、ディーゼルエンジンを有する自動車のディーゼル粒子フィルタ(DPF)の下流に配置されてもよく、センサはDPFの動作をモニターするように構成されてもよい。
図4を参照すると、本開示に合致する煤センサの実施形態が概略的に示されている。煤センサ400は、例えば誘電体または非導電性材料からなり、第1の表面404(例えば図5Aに示されるように上面)及び第1の表面404と対向する第2の表面406(例えば図5Aに示されるように下面)を画定する基板402を含む。煤センサ400は、基板402の第1の表面404上に形成されたセンサ素子408を含む。センサ素子408は、基板402上に配置された導電性材料の少なくとも1つの連続的なループ410を含む。ループ410はどのような規則的及び/または不規則な幾何学的形状、例えば蛇行、らせん状、長方形、円形などをとるものであってもよい。
図示された例示的な実施形態において、ループ410は複数の起伏部412の第1の組及び複数の起伏部412のそれぞれの範囲内であって間に画定される複数の間隙G1、G2を含む蛇行構成に配置される。図示された実施形態において、センサの側部413に隣接する折り返し部411を含むループ410の部分は間隙G1によって離隔され、センサの側部417に隣接する折り返し部415を含むループ410の部分は、間隙G2によって離隔され、間隙G1は間隙G2よりも広い。本明細書で用いられるような「蛇行」という用語は、どのような形状の折り返し部を含む構成も指し、例えば図4に示されるような弓型、角型、弓型と角形などとの組み合わせを含み、さらに均一な及び/または異なる大きさの間隙によって離隔された折り返し部を含む。
センサ素子408はさらにループ410の両端における第1及び第2の電気的コンタクト414、416を含む。第1及び第2の電気的コンタクト414、416は、ループ410を通る電流を提供する回路に結合するように構成されるものであってもよい。図示された実施形態において、入力電流Isenseが第1の電気的コンタクト414(または第2の電気的コンタクト416)に提供されるものであってもよい。
senseの値はセンサ400上に置かれた煤の量を表しうる。図示された実施形態において、例えば、煤粒子428は、センサ素子408上に含む、基板402の第1の表面404上に蓄積されるとして示される。煤428がセンサ素子上に蓄積していくと、ループ410の抵抗値が変化し、これはIsenseの値を変化させる。Isenseの値はそのためセンサ上に蓄積された煤の量を表す。
センサ素子400はさらに基板402の第1の表面404上に形成された加熱素子418を含む。加熱素子418は、基板402上に配置された導電性材料の少なくとも1つの連続的なループ420を含む。ループ420はどのような規則的な及び/または不規則な幾何学的形状をとってもよく、例えば蛇行、らせん、長方形、円形、などをとることができ、長さの少なくとも一部にセンサ素子ループ410に隣接して位置されうる。
図示された例示的な実施形態において、ループ420は複数の起伏部412の第1の組と相補的であり編み込まれている複数の起伏部422の第2の組を含む蛇行形状構成に配置される。加熱素子418はさらにループ420の両端に第1及び第2の電気的コンタクト424、426を含む。第1及び第2の電気的コンタクト424、426は、ループ420を通して電流を提供するための回路に結合するように構成されてもよい。図示された実施形態において、入力電力Iheaterは第1の電気的コンタクト424(または第2の電気的コンタクト426)に提供されてもよい。1つの実施形態において、例えば、煤428の閾量がセンサ素子408上に、例えばIsenseの閾値に到達するように決定されるように蓄積すると、加熱素子電流Iheaterは加熱素子418に加熱させ、煤428を少なくとも部分的に除去、例えば焼却するように印加されてもよく、それによって連続的な使用のためにセンサ400を洗浄/再生する。
センサ素子408は、金、白金、オスミウム、ロジウム、イリジウム、ルテニウム、アルミニウム、チタン、ジルコニウム及びその類似したもののような導電性材料または金属を、前述の金属の少なくとも1つを含む酸化物、合金及び組み合わせと同様に含むものであってもよい。加熱素子418は様々な材料を含むものであってもよい。例えば、材料は白金、金、パラジウム及びそれに類似するもの並びに/または合金、酸化物及びそれらの組み合わせを含むものであってもよい。基板402は、非導電性及び/または電気的絶縁性材料を含むものであってもよい。材料はアルミナ、ジルコニア、イットリア、酸化ランタン、シリカ及び/または上述の少なくとも1つを含む組み合わせ、または導通を妨げることができ構造的な集積及び/または物理的な保護を提供することができるどのような類似した材料を含むがそれに限定されない酸化物を含んでもよい。さらに、煤センサ400は、厚膜及び/または薄膜構造を含むものであってもよい。
図5Aは、本開示の1つの実施形態に合致する図4の煤センサ400の線5−5に沿って取られた一部の部分図である。図示された実施形態において、煤粒子428は少なくともセンサ素子408上に蓄積される。特に、排気ガス流にさらされた場合には、煤粒子428はセンサ素子408のループ410の複数の起伏部412のそれぞれの内部であって間に画定される複数の間隙G1及び/またはG2の少なくとも1つの内に蓄積しうる。センサ素子408にどのような煤粒子もないときには、第1及び第2の電気的コンタクト414、416の間に形成されるセンサ素子408の電気的回路は第1の抵抗を有する。煤粒子428がセンサ素子408上、特に複数の間隙G1及び/またはG2の少なくとも1つに蓄積すると、煤粒子428がループ410と接触し、第1及び第2の電気的コンタクト414、416間の抵抗が変化しうる。抵抗は、煤粒子428が集まり蓄積するにつれて増加しうる。加熱素子418は、蓄積された煤粒子428を煤センサ408から除去することが望まれる際に活性化されうる。加熱素子418は、煤粒子428が焼却される温度に達するように構成されうる。
図5Bは、本開示に合致する他の実施形態に従う図4の煤センサの線5−5に沿って取られた一部の部分図であり、図6は図5Bの煤センサの一部の拡大図である。1つの実施形態において、保護層532は基板402の第1の表面404上に形成され、それぞれセンサ及び加熱素子408、418の起伏部412、422の少なくとも一部を覆う。保護層532は、排気ガス流からセンサ素子408の起伏部412の少なくとも一部を絶縁するように構成されてもよい。保護層532はセンサ素子408の起伏部412によって画定される複数の間隙G1に対応し複数の間隙G1に位置合わせされる複数のチャネル534をさらに確定する。
図6を参照すると、複数のチャネル534のそれぞれはセンサ素子の少なくとも一部、例えば起伏部412の端部636を排気ガス流動及び煤粒子428にさらす。図示された実施形態において、複数のチャネル534のそれぞれは、煤粒子428を複数のチャネル534及び対応する間隙G1の少なくとも1つに蓄積できるような大きさ及び/または形であり、煤粒子428は露出されたセンサ素子408の導電性材料の少なくとも一部、例えば起伏部412の端部636と接触する。
図7は、本開示に合致する煤センサの他の実施形態の概略的な上面図であり、図8Aは図7の煤センサの一部の拡大図である。この実施形態は図4の実施形態に類似しており、類似した構成要素は400ではなく700台の類似した参照符号で示されている。煤センサ700は、第1の表面704を画定する基板702を含む。センサ素子708及び加熱素子718は、第1の表面704上に形成される。センサ及び加熱素子708、718はそれぞれ、基板702上に配置された導電性材料710、720の少なくとも1つの連続的なループを含む。図4の実施形態に類似して、ループ710、720は起伏部の第1の組712及び第2の組722を含む蛇行構成に配置されるものであってよい。図8Aを参照すると、起伏部の第1の組712及び第2の組722は、起伏部の第1のサブセット828及び第2のサブセット830をさらにそれぞれ画定する。複数の間隙832は、複数の起伏部の第1のサブセット828及び第2のサブセット830のそれぞれの内部であって間に画定される。
センサ素子708はループ710の両端の第1及び第2の電気的コンタクト714、716をさらに含む。第1及び第2の電気的コンタクト714、716は、ループ710を通じて電流を提供するための回路に結合するように構成されるものであってよい。図示された実施形態において、入力電流Isenseは第1の電気的コンタクト714(または第2の電気的コンタクト716)に提供されるものであってよい。同様に、加熱素子718はループ720の両端に第1及び第2の電気的コンタクト724、726をさらに含む。第1及び第2の電気的コンタクト724、726はループ720を通じて電流を提供するための回路に結合するように構成されてもよい。図示された実施形態において、入力電流Iheaterは第1の電気的コンタクト724(または第2の電気的コンタクト726)に提供されうる。
図示された実施形態において、センサ及び加熱素子708、718は図4の実施形態に関して上述されたような互いに離隔され独立して動作されるように構成されてもよい。追加的に、煤センサ700は、それぞれコンタクト724、716に選択的に接続、切断するための加熱素子718及びセンサ素子708の第1及び第2の電気的コンタクト724、716に接続されるスイッチS1をさらに含む。スイッチS1が開状態のとき、感知電流Isenseはコンタクト714、716の間の導電性材料のループ710に関連した抵抗によって決定され、ループ710に堆積された煤粒子によって変化し、それによってセンサ素子が煤粒子を感知することが可能になる。スイッチS1が閉状態の場合、ループ710、720はコンタクト714、726の間の導電性材料の単一の連続的なループを確立するように直列に電気的に接続される。ついで、電流Isenseは、センサ素子708及び加熱素子718の両方を通過してセンサ素子708及び加熱素子718の両方を単一の加熱素子として働かせることを可能とするものであってよい。
図8Bは、本開示に合致する他の実施形態に従う図7の煤センサの一部の拡大図である。図示された実施形態において、センサ素子及び加熱素子708、718は、第1の表面704上に配置された導電性材料の連続的なループ810、820を含む。ループ810、820は、複数の起伏部812、822の第1及び第2の組を含む蛇行構成に配置される。複数の起伏部の第1及び第2の組812、822はさらにそれぞれ複数の起伏部の第1及び第2のサブセット834、836を画定する。複数の間隙838は、複数の起伏部の第1及び第2のサブセット834、836のそれぞれの内部であって間に画定され、間隙838は大きさ及び/または形状の点で実質的に均一である。
図示された実施形態において、ループ810は、図8Aに示されるループ710よりも幅が実質的に狭く、それによってループ810の抵抗をループ710の抵抗よりも大きな値に増加させる。抵抗の増加によって、ループ810はループ710よりも高精度で温度を感知するように構成されることが可能でありうる。
図8Cは、本開示に合致する他の実施形態に従う図7の煤センサの一部の拡大図である。図示された実施形態において、複数の間隙840、842は、複数の起伏部の第1及び第2のサブセット834、836のそれぞれの内部であって間に画定され、間隙840、842は大きさ及び/または形状がさまざまである。例えば、間隙840は幅Wを有し、間隙842は幅Wを有し、幅Wは幅Wよりも一般的に大きい。様々な大きさ及び/または形状の間隙840、842によってセンサ素子708は煤粒子の蓄積を感知する際の反応のより幅広いダイナミックレンジを有することが可能となりうる。
図9は本開示に合致する煤センサティップの斜視図であり、図10は図9の煤センサティップの線10−10に沿って取られた拡大斜視部分図である。ティップ900は、煤センサ1014を少なくとも部分的に閉じ込めるように構成され、煤センサ1014は本開示に合致する実施形態を含むものであってもよい。ティップ900は、外部表面904、内部表面1004、近位端908及び遠位端910を有する実体部902を含む。図示された実施形態において、実体部902は近位端908において概して丸い形状から遠位端910において概して四角形の形状へ徐々に遷移する。実体部902の幾何学的形状は、ティップ900の内部における体積を最小化するように構成される。実体部902は、実体部902の外部表面904から実体部902の内部表面1006への経路1016を画定する、角度を有して配置された少なくとも1つのチャネル912を画定する。
経路1016は、排気ガス流動を煤センサ1014に指向するように構成され、図10の矢印Aで示されるように、煤センサ1014の第1の表面1018に対して90度よりも小さな角度θの向きの側壁によって画定されるものであってもよい。そのため経路1016は、排気ガス流動からの煤が実体部の内部に入ることができるように第1の表面1018に対して90度よりも小さな角度であり、煤センサ1014を煤センサ1014の第1の表面1018に対して90度よりも小さな角度で衝撃するように構成されるものであってよい。実体部902は、実体部の外周全体に沿って位置するように角度を有して配置された複数のチャネル912を画定するものであってもよい。
図11は、本開示に合致する煤センサシステムの1つの例示的な実施形態のブロック図である。煤センサシステム1100は、煤センサ400を含む。明確さ及び説明の目的のために、参照は図4の煤センサ400に対してなされる。しかしながら、煤センサシステム1100は、本開示に合致する煤センサの他の実施形態も含むものであってよいことに注意すべきである。煤センサシステム1100は、煤センサ400に電気的に結合され、煤センサ400に電流を提供するように構成された回路1102をさらに含む。1つの実施形態において、回路1102はそれぞれセンサ素子408及び加熱素子418の第1及び第2の電気的コンタクト414、416、424、426に結合されて電流Isense及び/またはIheaterを提供するものであってよい。
回路1102は、コントローラ1106に電気的に結合され通信するように構成された測定回路1104を含む。測定回路はまた煤センサ400に、例えばセンサ素子408の第1及び第2の電気的コンタクト414、416並びに/または加熱素子418の第1及び第2の電気的コンタクト424、426に電気的に結合される。測定回路1104は、第1及び第2の電気的コンタクト414、416の間に電圧を印加し、Isenseの結果的な値を表すコントローラ1106の出力を提供するように構成されるものであってよい。コントローラ1106は、自動車の既知のエンジン制御ユニット(ECU)であってよく、煤センサ440、測定回路1104及びコントローラの間の通信は既知のCANバスを介して実施されるものであってよい。
センサ素子408を通る電流Isenseの値は煤センサ400上に堆積された煤の量を決定するのに利用されてもよく、センサ400と通ずる排気流内の煤の量をさらに示しうる。前述したように煤が第1及び第2の電気的コンタクト414、416の間に堆積されると、コンタクト414、416間の導電パスの電気抵抗が変化し、Isenseが対応して変化することとなる。Isenseの値がセンサ400上に堆積された煤の量を表す。
測定回路1104はまた、加熱素子の第1及び第2の電気的コンタクト424、426の間に電圧を印加するように構成されてもよい。Isenseの値が所定の閾値に到達すると、コントローラ1106は測定回路1104に出力を提供して測定回路が加熱素子418に電流Iheaterを提供することによって加熱素子418を活性化するものであってよい。加熱素子418の活性化において、加熱素子418は蓄積された煤粒子が焼却される温度まで加熱し、それによって煤センサ400、特にセンサ素子408から煤粒子を除去するものであってよい。
さらに、回路1102はセンサ及び/または加熱素子408、418の開回路及び/または損傷を検出するように構成されてもよい。例えば、センサ素子408が損傷を有すると、センサ素子のコンタクト414、416間の回路は開回路または通常よりも高い抵抗値を有する回路となる。そのため、電流Isenseが所定の閾値まで低下すると、コントローラ1106はセンサ素子内の損傷を示す出力を提供するものであってよい。
図12は、パシベーション層を含む図7の煤センサの概略的な上面図である。図示された実施形態において、煤センサ700は、センサ素子708の少なくとも第1及び第2の電気的コンタクト714、716並びに/または加熱素子718の第1及び第2の電気的コンタクト724、726を画定するパッド部1244を含むものであってよい。煤センサ700はさらに、基板702の第1の表面704上及び少なくともパッド部1244上に配置されるパシベーション層1246を含むものであってよい。パシベーション層1246は、センサ素子708の第1及び第2の電気的コンタクト714、716の間並びに/または加熱素子718の第1及び第2の電気的コンタクト724、726の間のどのような導通も抑制しまたは防ぐように構成されてもよい。さらに、パシベーション層1246は、高い加熱の発生を抑制し及び/または防ぐように構成されてもよい。パシベーション層1246は、非導電性及び/または電気的に絶縁性の材料を含むものであってよい。材料は限定されることなく、アルミナ、ジルコニア、イットリア、酸化ランタン、シリカ及び/または前述の少なくとも1つを含む組み合わせを含む酸化物または導通を抑制することが可能などのような類似の材料も含むものであってよい。さらに、パシベーション層1246は、熱絶縁を提供するように構成された材料を含むものであってもよい。図示された実施形態において、パシベーション層1246は、厚い膜のガラスを含むものであってもよい。
図13は、本開示に合致する煤センサ1300の他の実施形態の概略上面図であり、図14は図13の煤センサ1300の一部の拡大図である。一般的に、煤センサ1300は、第1の表面1304を画定する基板1302を含む。第1のセンサ/加熱素子1308及び第2のセンサ/加熱素子1318は第1の表面1304上に形成される。本明細書でさらに詳細に説明されるように、第1及び第2のセンサ/加熱素子1308、1318は、図4に示されたセンサ素子408と同様に煤の蓄積を感知するようにそれぞれ構成されてもよい。さらに、第1及び第2のセンサ/加熱素子1308、1318は蓄積された煤を加熱して少なくとも部分的に除去、例えば焼却するようにそれぞれ構成されてもよく、それによって連続的な使用のためにセンサ1300を浄化/再生する。
第1及び第2のセンサ/加熱素子1308、1318のそれぞれは、基板1302上に配置された導電性材料の少なくとも1つの連続的なループ1310、1320をそれぞれ含む。図4の実施形態に類似して、ループ1310、1320はそれぞれ起伏部の第1及び第2の組1312、1322を含む蛇行構成に配置されてもよい。図14を参照すると、起伏部の第1及び第2の組1312、1322はさらにそれぞれ起伏部の第1及び第2のサブセット1328、1330を画定する。複数の間隙1332は複数の起伏部の第1及び第2のサブセット1328、1330のそれぞれの内部であって間に画定される。複数の間隙1332は、複数の起伏部の第1及び第2のサブセット1328、1330のそれぞれの内部であって間に画定される。図示されるように、間隙1332は実質的に均一な大きさ及び/または形状を有するものであってもよい。図示された実施形態において、間隙1332は幅Wを有するものであってもよい。間隙1332の幅Wは、10ミクロンから100ミクロンの範囲であってもよい。1つの実施形態において、間隙1332の幅Wは20ミクロンである。複数の間隙1332のいくつかは大きさ及び/または形状が異なるものであってもよく、それによってセンサ/加熱素子1308、1318は煤粒子の蓄積を感知する場合により幅広い応答のダイナミックレンジを有することができるようになる。
図示されるように、第1のセンサ/加熱素子1308は、ループ1310の両端に第1及び第2の電気的コンタクト1314、1316を含む。第1及び第2の電気的コンタクト1314、1316は、ループ1310を介して電流を提供するための回路に結合するように構成されてもよい。同様に、第2のセンサ/加熱素子1318は、ループ1320の両端に第1及び第2の電気的コンタクト1324、1326を含む。第1及び第2の電気的コンタクト1324、1326は、ループ1320を介して電流を提供するための回路に接続するように構成されてもよい。
第1及び第2のセンサ/加熱素子1308、1318は、アルミナ、金、白金、オスミウム、ロジウム、イリジウム、ルテニウム、アルミニウム、チタン、ジルコニウム、及びその類似した導電性材料または金属を、上述の金属の少なくとも1つを含む酸化物、合金及び組み合わせと同様に含むものであってもよい。1つの実施形態において、素子1308、1318はその一部の上に成膜された薄膜白金線を有するアルミナを含むものであってもよい。基板1302は、非導電性及び/または電気的に絶縁性の材料を含むものであってもよい。材料はアルミナ、ジルコニア、イットリア、酸化ランタン、シリカを含むがそれに限定されない酸化物、及び/または上述の少なくとも1つを含む組み合わせ、または導通を妨げることが可能であり構造的な整合性及び/または物理的な保護を提供するどのような類似の材料を含むものであってもよい。さらに、煤センサ1300は、厚い膜及び/または薄膜構造を含むものであってもよい。
本明細書にさらに詳細に説明されるように、煤センサ1300は第1のモード(本明細書では以下「煤感知モード」と称する)で動作するように構成され、第1及び第2のセンサ/加熱素子1308、1310は煤センサ1300の少なくとも第1の表面1304上への煤の蓄積を感知するように構成される。煤センサ1300は、第2のモード(本明細書では以下「再生モード」と称する)で動作するようにさらに構成されることができ、第1及び第2のセンサ/加熱素子1308、1318は第1の表面1304上に蓄積された煤の少なくとも一部を加熱して除去(例えば焼却)するように構成され、それによってセンサ1300を浄化/再生する。
第1及び第2のセンサ/加熱素子1308、1318は、図4の実施形態に関して説明されたように、互いに個別に独立して動作するように構成されてもよい。さらに、煤センサ1300は、コンタクト1316、1326を選択的に接続及び切断するための、それぞれ第1及び第2のセンサ/加熱素子1308、1318の第2の電気的コンタクト1316、1326に接続されたスイッチS1をさらに含むものであってもよい。例えば、スイッチS1が開状態のとき、第1及び第2のセンサ/加熱素子1308、1318は互いに別個に動作しうる。スイッチS1が閉状態のとき、第1及び第2のセンサ/加熱素子1308、1318は互いに電気的に接続されて、コンタクト1314、1324間に伝導性材料の連続的なループを確立しうる。
センサ1300が煤感知モードにある時、図15に示されるように、入力電流Isenseは第1の電気的コンタクト1314(または第2の電気的コンタクト1316)に提供されうる。Isenseの値はセンサ1300上にある煤の量を表すものでありうる。図15に示されるように、スイッチS1が閉状態にあるとき、第1及び第2のセンサ/加熱素子1308、1310は互いに電気的に接続されて、コンタクト1314、1324の間の伝導性材料の連続的なループを確立する。このとき電流Isenseは第1のセンサ/加熱素子1308及び第2のセンサ/加熱素子1318の両方を通過して第1及び第2のセンサ/加熱素子1308、1318が単一のセンサ素子として働くことが可能になりうる。煤粒子1333は図示されるように第1及び第2のセンサ/加熱素子1308、1318上に含む、基板1308の第1の基板上に蓄積される。煤1333がセンサ/加熱素子1308、1318上に蓄積してくると、連続的なループ(例えば、ループ1310、1320からなる)の抵抗が変化し、Isenseの値を変化させる。そのためIsenseの値がセンサ上に蓄積された煤の量を表す。
例えばIsenseの閾値に到達することによって決定されるような煤1333の閾量が第1及び第2のセンサ/加熱素子1308、1318上に蓄積すると、煤センサ1300は図16、17Aから17Bに示されるように再生モードに入るように構成されてもよい。図16に示されるように、センサ1300が再生モードにあるとき、入力電流Iheater1が第1のセンサ/加熱素子1308の第1の電気的コンタクト1314(または第2の電気的コンタクト1316)に提供されうる。同様に、入力電流Iheater2が第2のセンサ/加熱素子1318の第1の電気的コンタクト1324(または第2の電気的コンタクト1326)に提供されうる。1つの実施形態において、例えばIsenseの閾値に到達することによって決定されるように煤1333の閾量が第1及び第2のセンサ/加熱素子1308、1318上に蓄積すると、加熱電流Iheater1及び/またはIheater2が対応する第1及び第2のセンサ/加熱素子1308、1318に煤433を加熱させ、少なくとも部分的に除去、例えば焼却するように印加されてもよく、それによって連続した使用のためにセンサ1300を浄化/再生する。
1つの実施形態において、スイッチS1が開状態であるとき、第1及び第2のセンサ/加熱素子1308、1318は互いに独立に動作するものでありえ、加熱電流Iheater1が第1のセンサ/加熱素子1308のみを加熱させるように印加されうる。同様に、加熱電流Iheater2は第2のセンサ/加熱素子1318のみを加熱するように印加されうる。スイッチS1が閉状態のとき、ループ1310、1320は電気的に互いに接続されてコンタクト1314、1324の間で伝導性材料の単一の連続的なループを確立する。電流Iheater1はこのとき第1のセンサ/加熱素子1308及び第2のセンサ/加熱素子1318の両方を通って素子1308、1318の両方が単一の加熱素子として働き、加熱することができるようにする。
煤センサ1300は、図17Aから17Dに示されるように、第1の再生モード及び第2の再生モードで動作するように構成されてもよい。図17Aは、第1の再生モードにある煤センサ1300を示しており、図17Bは第1の再生モードにある煤センサ1300と関連する回路の概略図を示している。示されるように、第1の再生モードにあるとき、第1及び第2のセンサ/加熱素子1308、1318は互いに平行に配置されてもよい。この構成は第1及び第2のセンサ/加熱素子1308、1318が高温であり抵抗が高く、それによって高い流量条件の間に素子1308、1318の加熱を増加させるために素子1308、1318により多くの入力電流を通過させる必要があるような状況に関して適したものでありうる。
図17Cは、第2の再生モードにある煤センサ1300を図示しており、図17Dは第2の再生モードにある煤センサ1300と関連した回路の概略図を図示している。示されるように、第2の再生モードにあるとき、第1及び第2のセンサ/加熱素子1308、1318は互いに直列に配置されうる。第1及び第2のセンサ/加熱素子1308、1318の直列配置は、一般的に並列配置(図17Aに示される)よりも大きな抵抗となる。そのため、第2の再生モード(例えば、直列構成)での動作は、電流消費を制限することが望ましいような状況及び/または第1及び第2のセンサ/加熱素子1308、1318が冷えており急速加熱が望ましいような状況で好適でありうる。さらに、より高い抵抗は、より高い分解能のために再生の間に素子1308、1318の改善された温度測定も提供しうる。第1及び第2の再生モードは、ソリッドステートスイッチング及びソフトウェア制御で制御されうる。従って、本開示に合致するいくつかの実施形態において煤センサは段階的な加熱を提供するように構成されてもよく、第1及び/または第2の再生モードにおける素子1308、1318の動作は排気流速及び/または排気温度を把握するようにリアルタイムまたはリアルタイムに近い状態で(例えば始動、停止、一時停止、モード間の変更など)制御されうる。
図18は本開示に従う煤センサアセンブリ1800の1つの実施形態の断面斜視図である。一般的に、煤センサアセンブリ1800は第1の端部1804及び第2の端部1806を有するハウジング1802を含む。ハウジング1802は、スラグインサート1810を部分的に閉じ込めるような形状及び/または大きさである。ハウジング1802は、金属及び/または非金属材料を含むものであってもよい。図示されるように、ハウジング1802の第2の端部1806は、スラグインサート1810の一部を受容し、スラグインサート1810をスラグインサート1810の少なくとも一部に結合されたリング1808によって保持するような形状及び/または大きさである。リング1808は、当業者に周知の様々な方法によってハウジング1802に結合されてもよい。1つの実施形態において、リング1808は、ハウジング1802にレーザー溶着されてもよく、それによってハウジング1802とリング1808との間の気密封止を提供する(例えば、空気及び/またはガスに対して実質的に不浸透性である)。
煤センサアセンブリ1800は、スラグインサート1810に結合された煤センサ1300をさらに含む。明確化及び説明の目的のため、図13の煤センサ1300を参照してなされる。しかしながら、煤センサアセンブリ1800は本開示に合致する煤センサの他の実施形態を含むものであってもよいことは注意すべきである。煤センサアセンブリ1800は、少なくともハウジング1802に結合され、少なくとも部分的に煤センサ1300を閉じ込めるように構成されたセンサティップ1812をさらに含む。センサティップ1812は、近位開口端1816及び遠位閉鎖端1818を有するボディ1814を含む。ボディ1814は、外部表面1819A及び内部表面1819Bを含む。
図示された実施形態において、センサティップ1812の近位端1816はハウジング1802の第2の端部1806のフランジ部1822と嵌合結合するように構成されたフランジ部1820を画定するものであってよい。センサティップ1812は、それぞれのフランジ部1820、1822において少なくともハウジング1802に結合されてもよく、フランジ部1820、1822は互いにシールされているものであってもよい。さらに、ハウジング1802は、煤センサ1300に電気的に結合され、煤センサ1300に電流を提供するように構成された回路1102を部分的に閉じ込めるように構成されてもよい。
図19A、19Bは、図18の煤センサアセンブリ1800のスラグインサート1810の斜視図である。図19Aはリング1808から離隔されたスラグインサート1810を示し、図19Bはリング1808に結合されたスラグインサート1810を示している。リング1808は、内部表面1928及び境界を有する周縁部1926を画定するボディ1924を含むものであってもよい。リング1808はスラグインサート1810の少なくとも一部を受容するように構成されてもよい。リング1808は、金属及び/または非金属材料を含むものであってもよい。
図示された実施形態において、スラグインサート1810は、近位端1932及び遠位端1934を有するボディ1930を含む。ボディ1930はまた、リング1808の周縁部1926の境界よりも小さな境界を有する個別部1936も含み、個別部1930はリング1808にフィットし、内部表面1928に結合するように構成される。スラグインサート1810の個別部1936は、当業者に周知の様々な方法によってリング1808の内部表面1928に結合されてもよい。1つの実施形態において、例えば、スラグインサート1810の個別部1936はろう付け法によってリング1808の内部表面1928に接続されてもよく、それによってスラグインサート1810とリング1808との間の実質的な気密封止を提供する。
スラグインサート1810のボディ1930はまた、煤センサ1300の少なくとも一部を支持するように構成された第1の表面1938及び電気的接続、例えば煤センサ1300のリード1944に、矢印1947で示されるように結合された相互接続ワイヤ1946を支持するように構成された第2の表面1940を含む。ボディ1930は、少なくとも第2の表面1940からボディ1930を通してスラグインサート1810の近位端1932まで通ったアパーチャ1942をさらに含む。アパーチャ1942は、相互接続ワイヤ1946を受容し、相互接続ワイヤ1946がハウジング1802内の回路1102からスラグインサート1810の一部を通して(例えばボディ1930)、第2の表面1940まで通すことを可能にするように構成される。
第1の表面1938は、煤センサ1300の少なくとも一部を受容するような形状及び/または大きさのチャネルを画定するものであってもよい。第1の表面1938はさらに煤センサと最小限の接触を提供し、煤センサの再生プロセス(加熱素子の加熱)の間の熱損失を防ぐように構成されてもよい。センサ素子1300は、ガラスで第1の表面1938にシールされてもよく、それによって製品組み立て時の煤センサ1300の耐久性を向上し、振動傾向を低減する。当業者であれば理解するように、煤センサ1300は、他の既知の方法によって第1の表面1938に結合されてもよい。
図示されるように、第2の表面1940は、リードワイヤ1944の一部及びそれに結合される関連する相互接続ワイヤ1946を受容するような形状及び/または大きさのチャネルを画定してもよい。アパーチャ1942を通過する相互接続ワイヤ1946を有するアパーチャ1942は、ガラスのような封止材で充填されてもよく、それによって相互接続ワイヤ1946と関連するアパーチャ1942との間の気密封止を提供する。
スラグインサート1810は、非導電性及び/または電気的に絶縁性の材料を含んでもよい。材料はアルミナ、ジルコニア、イットリア、酸化ランタン、シリカ及び/または少なくともそれらの1つを含む組み合わせ、または導通を阻害することが可能などのような類似の材料も含むがそれに限定されない酸化物を含んでもよい。図示された実施形態において、スラグインサート1810は、セラミック材料を含んでもよい。
図19Cは、図18の煤センサアセンブリ1800の一部の拡大斜視図である。前述のように、煤センサアセンブリ1800は少なくともハウジング1802に結合され、少なくとも部分的に煤センサ1300を閉じ込めるように構成されてもよい。図示された実施形態において、センサティップのボディ1814は、ボディ1814の外部表面1819Aからボディ1814の内部表面1819Bまでの経路1950を画定する角度を有して配置された少なくとも1つのチャネル1948を画定する。図9の実施形態と同様に、経路1950は、煤センサ1300に排気ガス流を導くように構成される。図示された実施形態において、センサティップ1812のボディ1814は、ボディ1814の境界全体に沿って位置する角度をつけて配置された複数のチャネル1948を画定する。煤センサアセンブリ1800は、本開示に合致するセンサティップの他の実施形態を含んでもよいことに注意すべきである。
図示された実施形態において、センサティップ1812の近位端1816はフランジ部1820を画定してもよい。フランジ部1820は、ハウジング1802の第2の端部1806のフランジ部1822と嵌合結合するように構成される。センサティップ1812のフランジ部1820は、ハウジング1802のフランジ部1822にレーザービーム溶接されてもよく、それによって矢印1952に示されるように気密封止を提供する。当業者が容易に理解するように、フランジ部1820、1822はその他の既知の方法によって互いに結合されてもよい。
図20は、本開示に合致する他の煤センサアセンブリ2000の分解斜視図であり、図21は組立てた状態の図20の煤センサアセンブリ2000の斜視図である。一般的に、煤センサアセンブリ2000は、煤センサの一部を受容し、保持するように構成された絶縁部2002を含む。明確化及び説明の目的のため、図13の煤センサ1300が参照される。しかしながら、煤センサアセンブリ2000は、本開示に合致する煤センサの他の実施形態を含んでもよいことには注意すべきである。絶縁部2002は、非導電性及び/または電気的に絶縁性の材料を含んでもよい。材料は、アルミナ、ジルコニア、イットリア、酸化ランタン、シリカ及び/またはそれらの少なくとも1つを含む組み合わせ、または導通を阻害し及び/または比較的高温(例えば600℃)に耐えることの可能な類似の材料を含むがそれに限定されない酸化物を含んでもよい。図示された実施形態において、絶縁部2002は、セラミック材料を含んでもよい。
図示されるように、アセンブリ2000はさらに第1の端部2006及び第2の端部2008を有する内部ハウジング部2004及び第1の端部2006から第2の端部2008まで延設する長手方向に配置された通過経路2010を含む。通過経路2010は、その中に絶縁部2002の一部を受容するような形状及び/または大きさである。本明細書でさらに詳細に説明されるように、内部ハウジング部2004は、相対的に固定された位置でリードワイヤを固定する(図22A、22Bに示される)ように構成された1つ以上の材料を受容するような形状及び/または大きさであってもよい。
図示されるように、煤センサアセンブリ2000は、内部ハウジング部2004の一部に結合されるように構成されたセンサティップをさらに含む。明確化及び説明の目的のため、図18のセンサティップ1812が参照される。しかしながら、煤センサアセンブリ2000が本開示に合致するセンサティップの他の実施形態を含んでもよいことは注意されるべきである。センサティップ1812は、少なくとも内部ハウジング部2004に結合されてもよく、煤センサ1300を部分的に閉じ込めるように構成される。図示された実施形態において、センサティップ1812のフランジ部1820は、内部ハウジング部2004の第2の端部2008上に画定されるフランジ部2012と嵌合結合するように構成される。センサティップ1812は、それぞれフランジ部1820、2012で少なくとも内部ハウジング部2004に結合されてもよく、フランジ部1820、2012は互いにシールされてもよい。
アセンブリ2000は、内部ハウジング部2002の第1の端部2006に隣接して位置する第1のスペーサ部2014をさらに含む。第1のスペーサ部2014の大きさ(例えば幅)は、例えばリードワイヤの望ましい長さに依存するものであってもよい。煤センサアセンブリ2000は、スペーサ部2016に隣接して位置する第2のスペーサ部2016をさらに含む。明確化の目的のために、第2のスペーサ部2016は、部分的に区分して図示されている。第2のスペーサ部2106の大きさ(例えば、幅)は、例えば端子2018の望ましい長さに依存するものであってよい。第1及び第2のスペーサ部2014、2016は、非導電性及び/または電気的に絶縁性の材料を含んでもよい。材料は、アルミナ、ジルコニア、イットリア、酸化ランタン、シリカ及び/またはそれらの少なくとも1つを含む組み合わせ、または導通を阻害することができるどのような類似の材料を含んでもよいがそれに限定されない酸化物を含んでもよい。図示された実施形態において、第1及び/または第2のスペーサ部2014、2016は、セラミック材料を含んでもよい。
煤センサアセンブリ2000は、内部の端子2018のそれぞれの一部を受容し保持するように構成された応力緩和ナゲット2020をさらに含む。ナゲット2020は、ワイヤーハーネスアセンブリ2136にさらに結合されてもよい(図21に示されている)。図示されるように、ナゲット2020は、内部に受容されるそれぞれの端子2018のための1つ以上の通過経路を含んでもよい。ナゲット2020は、2つの相補的な半分の部分を含んでもよく、互いに隣接し相補的に位置するとき、それらは図示されるように一体のナゲット2020を形成するように組み合わされる。ナゲット2020は、その一部の上に画定される半径方向の溝2022をさらに含んでもよい。溝2022は、外部ハウジング部2026の一部がナゲット2020の方へ内部で波形となることが可能となる間隔(例えば空間)を提供してもよく、外部ハウジング部2026の波形部は、ナゲット2020にほとんどまたは全く力を印加しない。
ナゲット2020は、ワイヤーハーネスアセンブリ2136のワイヤーを端子2018に結合する接続(例えば溶着)の応力緩和を提供するように構成されてもよい。例えば、ナゲット2020は、ワイヤーハーネスアセンブリ2136が導入時または通常の使用時に引っ張られた場合に応力緩和を提供しうる。ナゲット2020は、非導電性及び/または電気的に絶縁性の材料を含んでもよい。さらに、ナゲット2020は、プラスチックが上にモールドされた材料を含んでもよい。
図示されるように、グロメット2024がナゲット2020に隣接して位置してもよい。グロメット2024は、中空のチューブ状断面を有してもよく、ワイヤーハーネスアセンブリ2136はグロメット2024を通過し、端子2018に結合されてもよい。グロメット2024は、モールドされた高温ゴムのような柔軟で弾力のある材料を含んでもよい。
煤センサアセンブリ2000は、第1の端部2028及び第2の端部2030を有する外部ハウジング部2026及び第1の端部2028から第2の端部2030まで延設する長手方向に配置された通過経路2032をさらに含む。通過経路2032は、その内部に第1及び第2のスペーサ部2014、2016、端子2018、センサ1300からのリードワイヤとのそれぞれの接続部(図22A、22Bに示されている)、ナゲット2020並びにグロメット2024の一部を受容し、閉じ込めるような形状及び/または大きさである。外部ハウジング部2026は、導通を阻害し、内部の構成要素の構造的な統合性及び/または物理的な保護を提供することができる1つ以上の材料を含んでもよい。外部ハウジング部2026はまた、高温に耐えることができる材料を含んでもよい。
図示された実施形態において、外部ハウジング部2026の第2の端部230は、フランジ部2034を画定する。フランジ部2034は、内部ハウジング部2004の第2の端部2008のフランジ部2012と嵌合結合するように構成される。そのようにして、外部ハウジング部2026は、それぞれのフランジ部2034、2012において少なくとも内部ハウジング部2004と結合されてもよく、フランジ部2034、2012は一般的に緊密なシールを提供するどのような既知の方法によって互いにシールされてもよく、それによって水分及び/またはその他の汚染が第2の端部2030を介して外部ハウジング部2026の通過経路2032に入ることを防止する。
外部ハウジング部2026がアセンブリ2000の構成要素の上に(例えばスライドして)位置するとき、第1の端部2028の位置または近傍の外部ハウジング部2026の一部は波形となってもよく、外部ハウジング部2026の直径が第1の端部2028の位置または近傍で減少してもよい。波形部2138は、通過経路2032内に位置するグロメット2024の一部を圧迫してもよく、グロメット2024の圧迫された部分は一般的に緊密なシールを提供し、水分及び/またはその他の汚染物質が外部ハウジング部2026の第1の端部2028に入ることを防ぐものであってもよい。波形部2138は、外部ハウジング部2028の通過経路2032内でナゲット2020をさらに緊密に保持し固定するものであってもよい。
図22Aは、線A−Aに沿って取られた図21の煤センサアセンブリの上面部分図であり、図22Bは、線B−Bに沿って図21の煤センサアセンブリの側面部分図である。図示されるように、煤センサ1300の一部は絶縁部2002内に位置し、保持される。図示された実施形態において、センサ1300に結合された(例えば、素子1308、1318の第1の電気的コンタクト1314、1323及び第2の電気的コンタクト1324、1326に結合された)リードワイヤ2240は、センサ1300から離れ内部ハウジング部2004の通過経路2010に入り、次いで外部ハウジング部2026の通過経路2032に入るように延設する。リードワイヤ2240は、矢印2242に示されるように、関連する端子2018と結合してもよい。
リードワイヤ2240の一部は、内部ハウジング部2004の内部で相対的に固定された位置に、固定材料2244によって固定されてもよい。1つの実施形態において、固定材料2244は、内部ハウジング部2004の通過経路2010の一部の中に配置され、リードワイヤ2240の一部を完全に取り囲んでもよい。固定材料2244は、液体の形で提供され次いで硬化されてもよい。固定材料2244は、センサ1300及びリードワイヤ2240に対して安定性及び振動保護を提供するように構成されてもよく、それによって熱応答を改善する。固定材料2244は、熱硬化性プラスチックのような水分及び/または腐食耐性材料と同様に、非導電性及び/または電気的に絶縁性の材料を含んでもよい。
1つの実施形態において、固定材料2244は、ガラスを含んでもよく、リードワイヤ2240の一部及びセンサ1300を内部ハウジング部2004の通過経路2010の一部の内部にシールするように用いられてもよく、それによって製品組み立て時の煤センサ1300及び/またはリードワイヤ2240の耐久性を向上させ、振動傾向を低減する。当業者に理解されるように、リードワイヤ2240の一部は例えば様々な既知のポッティング法のようなその他の既知の方法によって内部ハウジング部2004内に固定されシールされてもよい。
図23A、23Bに戻ると、図20の煤センサアセンブリの内部ハウジング部2304の1つの実施形態のそれぞれ斜視図及び部分図が概して図示されている。この実施形態は図20の実施形態に類似しており、類似した構成要素は2000ではなくむしろ2300台の類似した参照符号で示されている。一般的に、内部ハウジング部2304は、第1の端部2306及び第2の端部2308並びに第1の端部2306から第2の端部2308に延設する長手方向に配置された通過経路2310を含む。第2の端部2308は、センサティップ1812のフランジ部1820に嵌合結合するように構成されたフランジ部2312を画定する。内部ハウジング部2304は、内部ハウジング部2304の半径方向に沿って画定された拡張部2314をさらに含む。図23Bに示されるように、拡張部2314は、通過経路2310の内部表面2318上に形成された相補的な凹部2316となる。
前述したように、ガラスのような固定材料2244は、例えば、通過経路2310の一部の中に充填されてその内部に1つ以上のリードワイヤ2240をしっかりと固定するものであってもよい。固定材料2244は、通過経路2310の内部で凹部2316を充填してもよい。固定材料2244が硬化されると、凹部2316は通過経路2310内部で硬化された固定材料2244を動かないように固定する手段を提供してもよい。より具体的には、凹部2316内の固定材料2244の硬化された部分は、少なくとも長手方向(すなわち、内部ハウジング部2304の第1の端部2306から第2の端部2308まで)の硬化された固定材料2244の実質的な移動を防ぐこととなる。さらに、通過経路2310の内部表面2318は、固定材料2244と内部ハウジング部2304との間の相互作用を改善するように構成されてもよい。例えば、1つの実施形態において、内部表面2318は、固定材料2244と内部表面2318との間の改善された相互作用を提供するようなどのような既知の手段(例えば、しかし限定されないが、酸化など)によって粗面化されてもよい。
図24A、24Bは、図20の煤センサアセンブリ2000の内部ハウジング部2404の他の実施形態のそれぞれ斜視図及び部分図である。一般に、内部ハウジング部2404は第1の端部2406及び第2の端部2408並びに第1の端部2406から第2の端部2408へ延設する長手方向に配置された通過経路2410を含む。第2の端部2408は、センサティップ1812のフランジ部1820に嵌合結合するように構成されたフランジ部2412を画定する。内部ハウジング部2404は、内部ハウジング部2404の半径に沿って画定された凹部2414をさらに含む。図24Bに示されるように、凹部2314は一般的に内部表面2418から通過経路2410の中央に向かって延設する一般的に相補的な輪状の尾根部2416となる。
固定材料2244が通過経路2410の内部に充填されるとき、固定材料2244は、通過経路2410の内部の尾根部2416の周囲に結合し、充填してもよい。固定材料2244が硬化されると、尾根部2416は硬化された固定材料2244が動くことを防ぎ、それによって通過経路2410内で硬化した固定材料2244を固定する。図23A、23Bの実施形態と同様に、通過経路2410の内部表面2418は、固定材料2244と内部ハウジング部2404との間の相互作用を改善するように構成されてもよい。例えば、1つの実施形態において、内部表面2418は固定材料2244と内部表面2418との間の改善された相互作用を提供するように様々な既知の手段(例えば、しかしそれに限定はされないが、酸化など)によって粗面化されてもよい。
図25は図13の煤センサに結合された回路の概略図である。図25の回路は、煤センサ1300の煤の集積を促進しようとするときに漏洩電流効果を無効化する手段を提供する。図示されるように、第1及び第2のセンサ/加熱素子(例えばセンサ/加熱素子1及びセンサ/加熱素子2)は、回路2500に結合して第1及び第2のセンサ/加熱素子の導電性材料を通る電流を提供するように構成されてもよく、電流は、例えば38Vの入力電流を供給するように構成された電力供給によって提供されてもよい。図示された実施形態において、回路2500は、第1のトランジスタQs1、第2のトランジスタQs2、第3のトランジスタQs3及び第4のトランジスタQs4を含んでもよい。トランジスタQs1からQs4は、どのような種類のスイッチングデバイスを含んでもよい。図示された実施形態において、トランジスタQs1からQs4はMOSFETを含んでもよい。トランジスタQs1からQs4は、電力供給から第1及び/または第2の加熱素子への電流の印加を制御するように構成されてもよい。
図示されるように、Qhはオフであり、第3のトランジスタQs3がオフであり、これによって抵抗Rs9を介してゲートと同じ電位(0V)をソースに提供する。2.5Vの電圧が第1及び第2のトランジスタQs1、Qs2に印加され、それによって第1及び第2のトランジスタQs1、Qs2の両方がオフになる。第1のトランジスタQs1がオフのとき、5Vの電圧がプルアップ抵抗Rs7を介して第2のトランジスタQs2のドレインに印加されることとなる。2.5Vの電位がそれによって第3のトランジスタQs3のドレイン及び第2のトランジスタQs2のソースに、抵抗R5rを介して提供される。説明されたように構成された回路において、第2のトランジスタQs2はドレインに5Vの電位を有し、ソースに2.5Vの電位を有し、それによって2.5Vのドレイン−ソース間電圧降下となる。さらに、第2のトランジスタQs2のソースに2.5V、ゲートに2.5Vのとき、第2のトランジスタQs2はゲートとソースとの間の電位差が0Vとなる。第3のトランジスタQs3はドレインにおいて2.5Vの電位を有し、ソースは接地され、ソースにおいて0Vの電位であり、その結果ドレイン−ソース間の電圧降下は2.5Vとなり、第2のトランジスタQs2のそれと整合する。第2のトランジスタQs2のゲート及びソースが第3のトランジスタQs3のそれと同一の電位であるので、結果的に生じる第3のトランジスタQs3のゲートとソースとの間の電位差は0Vであり、再び第2のトランジスタQs2のそれと整合する。第2及び第3のトランジスタQs2、Qs3の両方が等しくバイアスされているので、煤の測定を漏洩電流効果が相殺された状態で行うことができる。
図26は、図13の煤センサに結合された交流(AC)結合された信号処理システムのブロック図である。AC結合された信号処理システム2600は、図13に示されるような、入力AC供給電圧Vacを受容するように構成され、煤センサ1300を通して流れる信号電流を受容するように構成された増幅器2602に結合された煤センサ1300を含んでもよく、第1及び第2のセンサ/加熱素子1308、1318の間の抵抗(Rsoot)を含む。システム2600は、増幅器2602に結合されたベースライン再生回路2604をさらに含んでもよい。ベースライン再生回路2604は増幅器2602からの信号を同期的に接地するように構成されてもよい。ピーク検出器2606は、ベースライン再生回路2604に結合され、ベースライン再生回路2604からの信号を受容するように構成されてもよい。さらに、単一増幅オペアンプのようなバッファ2608(図20に示される)が、ピーク検出器2606に結合され、ピーク検出器2606からの信号を受容するように構成されてもよい。システム2600は、バッファ2608に結合され、バッファ2608からの信号を受容するように構成されたローパスフィルタ2610をさらに含んでもよく、ローパスフィルタ2610は受信されたものからスイッチング過渡信号を除去するように構成されてもよい。接地及び入力電力供給の両方に対して500MΩの動的抵抗の仮定で、AC等価回路は接地に対して2つの500MΩの抵抗として示される。さらに、付随的に、2つの500MΩの抵抗は接地とオペアンプ2602の反転入力との間に結合され、そのようにして、AC信号(電流)にはほとんど影響を及ぼさないことがありうる。
図27は、図26の信号処理システムの回路の概略図である。煤センサ1300の回路のトランジスタに発生しうるDC漏洩電流の効果を低減するために、AC結合された手法が実装されることができる。トランジスタのDC漏洩の動的抵抗がDC抵抗よりもずっと大きいものでありうるという事実のために、AC電圧分割器がこの効果に有利である。理想的な一定電流源の動的抵抗は∞Ωである。トランジスタの漏洩の動的抵抗はδv/δiである。一例において、動的抵抗はおよそ500MΩでありうる。この値は、漏洩及び動作点の変化に対してより安定でありうる。
AC結合された信号処理システムの利用によって、トランジスタのDC漏洩を抵抗測定値Rsootから効果的に取り除くことができる。システム2600は漏洩電流のソースの非常に高い動的抵抗という利点を有しうる。例えば、システム2600は、方形波励起及びその結果としてキャパシタを介したAC信号を結合することができるという利点を有し、それによって望ましいAC信号を減衰されることなく回路を通過させることができる(適切な大きさのキャパシタを用いて)。望ましくないDC電圧(トランジスタの漏洩電流のため)及び/または熱効果によるゆっくりと変化する電圧が除去されうる。
図27を参照すると、煤センサ1300は、システム及び/またはセンサに含まれるどのよなソフトウェア及び/またはファームウェア及び/またはハードウェアも考慮に入れた応用に依存して、様々な波形(方形、鋸歯、サイン波など)を有する様々な信号周波数を受容するように構成されてもよい。図示された実施形態において、煤センサ1300は、50Hzの周波数を有する方形波を有する信号を受容するように構成されてもよい。最適な周波数はEMCに対する堅牢性を追加する助けとなり、ハードウェアと同様にソフトウェアおよびファームウェアとより良好に集積されることができ、信号ノイズ比の効果も有し、おそらくは製品寿命に渡って安定性を追加しうることに注意すべきである。
さらに、波は0ボルトの周囲でバランスされてもよく、波は接地に対して周期的に等しく正及び負となりうる。さらに、接地から30Vdcのようなある所定の電圧レベルまで周期的に変化するバランスされていない波形となる標準波形が用いられてもよい。バランスされていない場合は、PtのマイグレーションのためにPt電極の寿命を低下させうる。しかしながら、コストが考慮される限りにおいて、バランスされていない方が、より安価に実装されうる。
AC結合された信号処理システム2600は、煤センサ回路のトランジスタからDC漏洩を効果的に除去するように構成されてもよい。動作中は、ベース再生回路2604は、方形波の低電圧側の間に信号を同期的に接地するように構成されてもよく、それによって1.0μFキャパシタの出力側に0Vベースの方形波を発生させる。さらに、直列接続されたMOSFETが1.0nFキャパシタへこの方形波のピーク値を同期的に通過させる。このキャパシタは次の周期までこのピーク値を保持する。この電圧は単一増幅オペアンプ2608によってバッファされ、次いで出力はローパスフィルタ2610によって低周波側をフィルターされてスイッチング過渡信号を除去する。電流の漏洩がないような一例において、Rsootが100Mである場合、Voutは5v*5.0μA/(3.0μA+100M)=0.24Vである。同様に、Rsootが5Mである場合、Voutは5v*5.0μA/(5.0μA+5.0M)=2.5Vである。
図28は、本開示に合致する例示的な煤センサに関連する、抵抗に対する出力電圧のプロットである。以下の表(直下に示される)は、煤測定周期の間の2つの加熱素子間の抵抗Rsootの測定値並びに25℃及び105℃における対応する出力電圧Voutを含む。
図示された実施形態において、AC結合信号処理システム2600の回路の設計のために、出力電圧Voutは1/Rsootに比例する。このデータは、高度な温度安定性を示している。1/Rsoot法は、Rsootのより低い値において高い解像度を与え、望ましいものである。
図29は、本開示に合致する例示的な煤センサに関連する時間に対する出力電圧のプロットを含む。抵抗Rsootを測定するのに用いられる電圧(ピーク対ピーク)信号は、センサの応答時間に影響を与える可能性がある。電圧が増大すると、応答時間が減少する。AC結合信号処理システムの回路は5Vdc供給で動作するように構成されうるので、チャージポンプまたはその他の手段が実装されてもよく、それによってセンサの励起電圧を増大させる。このことによって5Vdc供給から必要な電流が増大することとなりうる。
図30A、30Bは、本開示に合致する例示的な煤センサに関連する回路の概略図である。図30Aはプルアップ抵抗の構成を示しており、図30Bはプルダウン抵抗の構成を示している。
図31は図30A、30Bのプルアップ及びプルダウン抵抗構成に関連する時間に対する抵抗のプロットを含む。図31は、10Vおよび5Vを含む、2つの分離した励起電圧でのプルアップ及びプルダウン抵抗構成の抵抗値を示している。図示された実施形態において、プルダウン抵抗構成は、より平滑な出力信号を有するわずかに改善されたセンサ応答を発生させる。
図32は、200℃の温度を有する排気ガスにさらされる本開示に合致する例示的な煤センサに関連する空気流量率に対する供給電力のプロットである。本明細書で説明される煤センサの実施形態は0℃から650℃の温度範囲、短期的には950℃で動作するように構成されてもよい。例えば、本開示に合致する煤センサは、150℃から650℃の範囲の排気ガス温度で動作するように構成されてもよい。センサがその再生温度を得るのに必要な電力は、排気温度及び流速とともに変化する。電力はこれらの異なる条件に関して予測可能であり再現可能である。図示された実施形態において、x軸は異なる排気速度を示しており、y軸はセンサが再生温度に到達するのに必要な電力を示している。電力は、第1及び第2の加熱素子を通過する電流と共に第1及び第2の加熱素子に渡る電圧を測定することによって計算される。電圧及び電流を知ることによって、加熱素子の抵抗を計算することも可能となる。加熱素子の温度に対する抵抗の曲線も知られている。再生温度における加熱素子の抵抗をモニターすることにより、加熱素子の抵抗が変化したまたは許容可能なウィンドウ外に偏移したか否かを決定することができる。
煤センサが排気ガス流にさらされると、排気ガス内に存在するある物質はセンサ再生間に加熱素子によって完全に焼却されない可能性がある。これらの材料は例えば灰及び/または酸化鉄を含みうる。これらの物質は時間に渡ってセンサの表面上に蓄積し、センサの応答曲線の遷移を発生させうる(応答曲線とは:センサ表面上に存在する煤のmgに対するセンサ抵抗の変化である)。時間に対するこれらの物質の効果を軽減するような仕組が実装されうる。例えば、露点に達した後、センサは再生サイクルを通して取られることができ、センサは煤がない状態の現在の抵抗値を保存してもよい。この抵抗が以前に見られたものと異なる場合には、オフセットが用いられて期待されるセンサ反応曲線に補正することができる。
1つの態様において、本開示は煤センサ上の煤濃度を予測する方法を有してもよい。この方法はセンサ再生の間の時間を測定し、その時間フレームにおける平均の煤濃度を決定することを含むものであってよい。再生の間の時間は、典型的な煤濃度水準で数分から20分以上よりも短いものであることができる。しかしながら、非常に低い煤の濃度水準では、再生周期の間の時間はずっと長くすることができる。この方法の主な欠点は、特に低い煤の濃度水準では遅くなるかなり長い時間間隔に渡る平均煤濃度水準を提供するのみであるということである。
他の態様において、本開示は煤センサ上の煤の濃度を予測する方法を有する。この方法は上述した前述の方法よりも煤の濃度の決定においてより速くなりうる。センサの実際の反応(時間に対するセンサ抵抗の変化)は時間のより小さな分割、「リアルタイム」でセンサ上に存在する煤の質量を計算するのに用いられる。この方法は時間に対する抵抗値の変化または時間に対する電圧の変化を測定値として用いる。
図33Aから33Dは、本開示に合致する例示的な煤センサに関連する時間に対する供給電圧のプロットである。図33Aから33Dに示された曲線は、15m/sの排気ガス流及び270℃の排気温度で示されている。x軸は時間を分で表しており、y軸は供給電圧のパーセンテージである。曲線のそれぞれで用いられる煤センサは、低電圧側でプルダウン抵抗(図30Bに示されている)に結合されている。電圧測定値(出力信号)は、プルダウン抵抗上で測定される。図33Aから33Dに最も明確にみられるように、煤濃度が増加すると、センサの勾配も増加する。水平の青い線はセンサが再生される供給電圧のパーセンテージを示している。示された青い線は、センサの応答がセンサ応答勾配の線形領域でまず測定可能となるように選択される。センサ再生間の時間間隔を、静的な状態で10%などのようにさらに短縮することが可能である。煤濃度が大きく変化する(センサの曲線の勾配変化によって知られる)場合、他のパーセンテージを使用することが可能である。このことによって、センサ上の煤をより少なくすることとなり、再生がより迅速に行われることを可能とする。
図34は、本開示に合致する例示的な煤センサに関連する時間に対する抵抗のプロットである。煤センサは約10.4mg/mの既知の煤濃度、約15.5m/sの流量率及び約273℃の温度を有する排気ガスにさらされた。煤センサの抵抗は、全サイクルを通して測定された(例えば煤センサの全再生に渡って煤の蓄積を感知する)。矢印Aによって示されるように、センサの抵抗値は煤の蓄積とともに低下を始める。矢印Bに示されるように、所定の閾抵抗値に到達すると、センサは煤感知モードから再生モードへ切り替わる。煤が煤センサから除去されると、抵抗値は増加しはじめる。矢印Cで示されるように、再生モードが終了した。
図35は、図34のプロットと対応する時間に対する煤の蓄積のプロットである。一般に、図35は図34の時間に対する抵抗値の測定の線形近似である。図示されるように、煤は抵抗値が低下し始めるのとほぼ同時に蓄積し始める(図34に示されている)。同様に、煤が蓄積し、矢印Bで示されるように所定の閾値に到達した瞬間に、再生モードが始まり、煤の蓄積レベルが低下し始める(図34の抵抗の増加に一致する)。時間に対する抵抗値の時間に対する煤の蓄積のプロットへの線形近似は、センサVout=9206/√Rの公式を用いて決定されたものであり、センサVoutはセンサの出力電圧であり、Rは抵抗値である。これは例示的な公式であり、図34のプロットの線形近似に関して他の数式が用いられてもよいことに注意すべきである。
図36は、本開示に合致する例示的な煤センサに関連する時間に対するセンサ応答のプロットである。煤センサは、約27.5m/sの流量率及び約275℃の温度を有する排気ガスにさらされたものである。
本開示に合致する煤センサは、多くの利点を提供する。図13の煤センサ1300の第1及び第2のセンサ/加熱素子1308、1318の単一層設計は、例えば、数多くの特有かつ有利な特徴を提供する。例えば、煤センサの再生効率は素子が煤の蓄積の感知及び基板表面の再生(すなわち浄化)のための加熱の両方が可能でありうるという事実によって改善される。そのようにして、素子は両方の役割を果たすものであってよく、基板の第2の対向する表面(例えば背面)のような離れた表面を加熱する必要はない。さらに、高流量条件での再生が改善される。基板の第2の表面(例えば背面)は、システムに価値及び多用途性をさらに追加し、コストを低減しうる他のセンサ(例えば、高精度排気ガス温度センサなど)のような追加的な構成要素を利用可能としうるものである。
単一層設計はまた、白金を含むがそれに限定されない材料を、いくつかの現在既知の抵抗性PMセンサと比較して、より少ない量で使用する。貴金属の価格は比較的高く、限られた供給のために上昇しつづけうる。
本開示に合致する煤センサ回路はまたキー上で及び再生モードで動作しない冷却時始動の間に、即時のセンサ診断自己チェックを提供する。回路は比較的単純かつ信頼性があり、診断チェックは低電流ループを用いて実施されうる。
本開示の1つの実施形態に合致して、煤センサが提供される。煤センサは、第1の表面及び第1の表面に対向する第2の表面を画定する基板を含む。煤センサはさらに基板の第1の表面上に配置された導電性材料の少なくとも1つの連続的なループを有する第1の素子をさらに含む。少なくとも1つの素子は基板の少なくとも第1の表面上の煤の蓄積を感知する第1のモードで動作し、基板の少なくとも第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成される。
本開示の他の実施形態に合致して、煤センサシステムが提供される。煤センサシステムは煤センサを含む。煤センサは第1の表面及び第1の表面に対向する第2の表面を画定する基板を含む。煤センサは、基板の第1の表面上に配置された導電性材料の少なくとも1つのループを有する第1の素子をさらに含む。少なくとも1つの素子は基板の少なくとも第1の表面上の煤の蓄積を感知する第1のモードで動作し、基板の少なくとも第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成される。
煤センサシステムは、第1の素子に電気的に結合された回路をさらに含む。回路は第1の素子への電流を提供し、基板の第1の表面及び第1の素子上に蓄積された煤の量を決定し、基板の第1の表面及び第1の素子上に蓄積された煤に応じて第1の素子の加熱を制御するように構成される。
本開示のさらに他の実施形態に合致して、煤センサ上に蓄積された煤の量を測定する方法が提供される。この方法は煤センサの提供を含む。煤センサは、第1の表面及び第1の表面に対向する第2の表面を画定する基板を含む。煤センサは、基板の第1の表面上に配置された導電性材料の少なくとも1つの連続的なループを有する第1の素子をさらに含む。少なくとも1つの素子は基板の少なくとも第1の表面上の煤の蓄積を感知する第1のモードで動作し、基板の少なくとも第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成される。
この方法はさらに第1の素子を通る感知電流のモニタリングを含み、電流は第1の素子に蓄積された煤の量を表す。この方法はさらに、煤電流が所定の閾値に到達した場合にモニタリングステップに応じて第1の素子を通る加熱電流を提供することを含み、それによって第1の素子上に蓄積された煤の少なくとも一部を除去する。
本発明のいくつかの実施形態が本明細書において説明され、例示されたが、当業者であれば本明細書に説明された機能を実施する及び/または結果及び/または1つ以上の利点を得るための様々なその他の手段及び/または構造を容易に考えるであろう。そのような変形及び/または改良のそれぞれは本発明の範囲にあるものと考えられる。より一般的には、当業者であれば、本明細書に説明された全てのパラメータ、大きさ、材料および構成が例示的なものであり、実際のパラメータ、大きさ、材料及び/または構成が本発明の教示が用いられる特定の1つまたは複数の用途に依存することを容易に理解するであろう。当業者であれば、単にルーチンの実験を用いて、本明細書に説明された発明の特定の実施形態の多くの等価物を理解し、または解明することができるであろう。従って、前述の実施形態は単に例によって提示されたものであり、添付された特許請求の範囲及びその等価物の範囲内で、発明は具体的に説明され主張された以外に実行されてもよいことは理解されるであろう。本発明は本明細書に説明された個別の特徴、システム、記載、材料、キット及び/または方法のそれぞれに指向される。さらに、2つ以上のそのような特徴、システム、記載、材料、キット及び/または方法のどのような組み合わせも、そのような特徴、システム、記載、材料、キット及び/または方法が相互に矛盾していない限り、本発明の範囲に含まれる。
本明細書で定義され用いられるように、全ての記述は辞書通りの記述、参照によって組み込まれた文献における記述及び/または記述される用語の通常の意味で理解されるべきである。
本明細書及び特許請求の範囲に用いられるような限定されない記載である「1つの」は反対に明確に示されていない限り、「少なくとも1つの」を意味するとして理解されるべきである。
本明細書及び特許請求の範囲に用いられるような用語「及び/または」は、要素の「いずれかまたは両方」を意味する、すなわち、結合された、いくつかの場合では結合されて表されその他の場合では結合していないとして表された要素であるとして理解されるべきである。その他の要素は反対に明確に示されていない限り、具体的に特定された要素に関連するまたは関連しないかに関わらず、「及び/または」の節によって具体的に特定される要素以外に任意に存在するものであってよい。
100 センサ
102 基板
104 第1の表面
106 第2の表面
108 感知エレメント
110 第1電極
112 第2の電極
114 指の第1の組
116 指の第2の組
118 加熱素子
400 煤センサ
402 基板
404 第1の表面
406 第2の表面
408 センサ素子
410 ループ
411 折り返し部
412 起伏部
413 センサの側部
414 第1の電気的コンタクト
415 折り返し部
416 第2の電気的コンタクト
417 センサの側部
418 加熱素子
420 ループ
422 起伏部
424 第1の電気的コンタクト
426 第2の電気的コンタクト
428 煤粒子
532 保護層
534 チャネル
636 端部
700 煤センサ
702 基板
704 第1の表面
708 センサ素子
710 ループ
712 起伏部の第1の組
714 第1の電気的コンタクト
716 第2の電気的コンタクト
718 加熱素子
720 ループ
722 起伏部の第2の組
724 第1の電気的コンタクト
726 第2の電気的コンタクト
810 ループ
812 起伏部の第1の組
820 ループ
822 起伏部の第2の組
828 起伏部の第1のサブセット
830 起伏部の第2のサブセット
832 間隙
834 起伏部の第1のサブセット
836 起伏部の第2のサブセット
840 間隙
842 間隙
900 ティップ
902 実態部
904 外部表面
908 近位端
910 遠位端
1004 内部表面
1006 内部表面
1014 煤センサ
1016 経路
1018 第1の表面
1100 煤センサシステム
1102 回路
1104 測定回路
1106 コントローラ
1244 パッド部
1246 パシベーション層
1300 煤センサ
1302 基板
1304 第1の表面
1308 第1のセンサ/加熱素子
1310 ループ
1312 起伏部の第1の組
1314 第1の電気的コンタクト
1316 第2の電気的コンタクト
1318 第2のセンサ/加熱素子
1320 ループ
1322 起伏部の第2の組
1328 起伏部の第1のサブセット
1330 起伏部の第2のサブセット
1332 間隙
1800 煤センサアセンブリ
1802 ハウジング
1804 第1の端部
1806 第2の端部
1808 リング
1810 スラグインサート
1812 センサティップ
1814 ボディ
1816 近位端
1819A 外部表面
1819B 内部表面
1820 フランジ部
1822 フランジ部
1924 ボディ
1926 周縁部
1928 内部表面
1930 ボディ
1932 近位端
1934 遠位端
1940 第2の表面
1944 リード
1946 相互接続ワイヤ
1948 チャネル
1950 経路
2000 煤センサアセンブリ
2002 絶縁部
2004 内部ハウジング部
2006 第1の端部
2008 第2の端部
2010 通過経路
2012 フランジ部
2014 第1のスペーサ部
2016 第2のスペーサ部
2018 端子
2020 応力緩和ナゲット
2022 溝
2024 グロメット
2026 外部ハウジング部
2028 第1の端部
2030 第2の端部
2032 通過経路
2034 フランジ部
2136 ワイヤーハーネスアセンブリ
2138 波形部
2240 リードワイヤ
2244 固定材料
2304 内部ハウジング部
2306 第1の端部
2308 第2の端部
2310 通過経路
2312 フランジ部
2314 拡張部
2316 凹部
2318 内部表面
2404 内部ハウジング部
2406 第1の端部
2408 第2の端部
2410 通過経路
2412 フランジ部
2414 凹部
2416 尾根部
2418 内部表面
2500 回路
2600 信号処理システム
2602 増幅器
2604 ベースライン再生回路
2606 ピーク検出器
2608 バッファ
2610 ローパスフィルタ

Claims (22)

  1. 第1の表面及び前記第1の表面に対向する第2の表面を画定する基板と、
    前記基板の前記第1の表面上に配置された導電性材料の少なくとも1つの連続的なループをそれぞれ有する第1の素子及び第2の素子であって、前記第1及び第2の素子がそれぞれ、前記基板の少なくとも前記第1の表面上の煤の蓄積を感知する第1のモードで動作し、前記基板の少なくとも第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成される第1の素子及び第2の素子と、
    前記第1の素子と前記第2の素子とを直列または並列に選択的に接続するように構成されたスイッチと、を含む煤センサであって、
    前記スイッチが前記第1及び第2の素子を直列に接続する場合、感知電流が前記第1及び第2の素子に印加されると前記煤センサが前記第1のモードで動作するように構成され、加熱電流が前記第1及び第2の素子に印加されると前記煤センサが前記第2のモードで動作するように構成され、
    前記スイッチが前記第1及び第2の素子を並列に接続する場合、前記感知電流が前記第1または第2の素子の少なくとも1つに印加されると前記煤センサが前記第1のモードで動作するように構成され、加熱電流が前記第1または第2の素子の少なくとも1つに印加されると前記煤センサが前記第2のモードで動作するように構成された、煤センサ。
  2. 前記第1の素子が、複数の起伏部の第1のセット及び前記複数の起伏部のそれぞれの間に画定される複数の間隙を含む蛇行構成で提供される、請求項1に記載の煤センサ。
  3. 前記基板の前記第1の表面上に形成され、前記第1の素子の少なくとも一部を覆う保護層をさらに含み、前記保護層が、排気ガス流から前記第1の素子の少なくとも一部を絶縁するように構成された、請求項1に記載の煤センサ。
  4. 前記保護層が、前記第1の素子の前記複数の間隙に対応し、前記複数の間隙に位置合わせされた複数のチャネルを画定し、前記第1の素子の前記導電性材料の一部が排気ガス流及び排気ガス流からの煤粒子にさらされる、請求項3に記載の煤センサ。
  5. 前記第2の素子が、前記第1の素子の前記複数の起伏部の前記第1のセットと編み込まれた複数の起伏部の第2のセットを含む蛇行構成に提供され、前記第2の素子が、その両端に第1及び第2の電気的コンタクトを含み、
    前記第2の素子の前記複数の起伏部に対向する前記第1の素子の前記複数の起伏部の側部が、起伏部の第1のサブセットを含み、
    前記第1の素子の前記複数の起伏部に対向する前記第2の素子の前記複数の起伏部の側部が、起伏部の前記第1のサブセットに編み込まれるように配置された起伏部の第2のサブセットを含む、請求項2に記載の煤センサ。
  6. 前記基板を少なくとも部分的に閉じ込めるように構成されたティップをさらに含み、前記ティップが外部表面及び内部表面を有するボディを含み、前記ボディが、前記ボディの前記外部表面から前記ボディの前記内部表面までの経路を画定する、角度をつけて配置された少なくとも1つのチャネルを画定し、前記経路が排気ガス流を前記基板に導くように構成された、請求項1に記載の煤センサ。
  7. 第1の表面及び前記第1の表面に対向する第2の表面を画定する基板と、
    前記基板の前記第1の表面上に配置された導電性材料の少なくとも1つの連続的なループを有する第1の素子であって、前記少なくとも1つの素子が、前記基板の少なくとも前記第1の表面上の煤の蓄積を感知する第1のモードで動作し、前記基板の少なくとも前記第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成された第1の素子と、
    前記基板の前記第1の表面上に配置された導電性材料の少なくとも1つの連続的なループを有する第2の素子であって、前記第2の素子が、前記基板の少なくとも前記第1の表面上の煤の蓄積を感知する第1のモードで動作し、前記基板の少なくとも前記第1の表面上に蓄積された煤を除去する第2のモードで動作するように構成された第2の素子と、
    を含む煤センサと、
    前記第1及び第2の素子に電気的に結合された回路であって、
    前記回路が、前記第1の素子及び前記第2の素子を直列または並列のいずれかに接続することを選択するように構成され、
    前記第1の素子及び前記第2の素子が並列に接続される場合、
    前記回路がさらに、感知電流を前記第1または第2の素子の少なくとも1つに印加して、前記基板の前記第1の表面上に蓄積した煤を検出するように構成され、
    前記回路がさらに、加熱電流を前記第1または第2の素子の少なくとも1つに印加して、前記基板の前記第1の表面上に蓄積された前記煤に応じて前記第1の素子の加熱を制御するように構成され、
    前記第1の素子及び前記第2の素子が直列に接続される場合、
    前記回路がさらに、前記感知電流を前記第1及び第2の素子に印加して、前記基板の前記第1の表面に蓄積された煤を検出するように構成され、
    前記回路がさらに、前記加熱電流を前記第1及び第2の素子に印加して、前記基板の前記第1の表面に蓄積された前記煤に応じて前記第1の素子の加熱を制御するように構成された回路と、を含む煤センサシステム。
  8. 前記第1の素子が、複数の起伏部の第1のセット及び前記複数の起伏部のそれぞれの間に画定された複数の間隙を含む蛇行構成に提供される、請求項7に記載のシステム。
  9. 前記基板の前記第1の表面上に形成され、前記第1の素子の少なくとも一部を覆う保護層をさらに備え、前記保護層が、排気ガス流から前記第1の素子の少なくとも一部を絶縁するように構成された、請求項7に記載のシステム。
  10. 前記第2の素子が、前記第1の素子の前記複数の起伏部の前記第1のセットと編み込まれた複数の起伏部の第2のセットを含む蛇行構成に提供され、前記第2の素子がその両端に第1及び第2の電気的コンタクトを含み、
    前記第2の素子の前記複数の起伏部に対向する前記第1の素子の前記複数の起伏部の側部が起伏部の第1のサブセットを含み、
    前記第1の素子の前記複数の起伏部に対向する前記第2の素子の前記複数の起伏部の側部が前記起伏部の第1のサブセットに編み込まれるように配置された起伏部の第2のサブセットを含む、請求項8に記載のシステム。
  11. 前記煤センサを少なくとも部分的に閉じ込めるように構成されたティップをさらに含み、前記ティップが、外部表面及び内部表面を有するボディを含み、前記ボディが前記ボディの前記外部表面から前記ボディの前記内部表面への経路を画定する、角度をつけて配置された少なくとも1つのチャネルを画定し、前記経路が排気ガス流を前記煤センサに導くように構成された、請求項7に記載のシステム。
  12. 前記回路が、前記第1の素子上に蓄積された前記煤が所定の閾レベルに到達したときに前記第2のモードで動作するように前記第1の素子を活性化するように構成され、前記第1の素子が、前記第1の素子及び前記基板の前記第1の表面上に蓄積された前記煤の少なくとも一部を除去する温度まで加熱するように構成された、請求項7に記載のシステム。
  13. 煤センサを作動させる方法であって、前記煤センサが、
    第1の表面及び前記第1の表面に対向する第2の表面を画定する基板と、
    前記基板の前記第1の表面上に配置された導電性材料の少なくとも1つの連続的なループを有する第1の素子と、
    前記基板の前記第1の表面上に配置された導電性材料の少なくとも1つの連続的なループを有する第2の素子と、を含み、
    前記方法が、前記第1の素子及び前記第2の素子を並列に接続する段階を含み、
    前記並列に接続する段階において、前記第1の素子及び前記第2の素子が並列に接続される場合、前記方法がさらに、
    感知電流を前記第1または第2の素子の少なくとも1つに印加する段階であって、前記感知電流が前記基板の前記第1の表面上に蓄積された煤の量を表す、感知電流を印加する段階と、
    所定の閾値に到達した前記感知電流に応じて前記第1または第2の素子の少なくとも1つに加熱電流を印加し、それによって前記煤センサ上に蓄積された前記煤の少なくとも一部を除去する段階と、を含み、
    前記方法が、前記第1の素子及び前記第2の素子を直列に接続する段階を含み、
    前記直列に接続する段階において、前記第1の素子及び前記第2の素子が直列に接続される場合、前記方法がさらに、
    前記感知電流を前記第1または第2の素子に印加する段階と、
    前記所定の閾値に到達した前記感知電流に応じて前記第1または第2の素子に加熱電流を印加する段階と、を含む、煤センサを作動させる方法。
  14. 前記第1の素子の導電性材料の前記少なくとも1つの連続的なループ及び前記第2の素子の導電性材料の前記少なくとも1つの連続的なループがそれぞれ、その両端に配置された第1及び第2のコンタクトを含み、前記第1及び第2の素子の前記第1のコンタクトが、互いにすぐ隣に隣接して配置され、前記第1及び第2の素子の前記第2のコンタクトが、互いにすぐ隣に隣接して配置された、請求項1に記載の煤センサ。
  15. 前記基板が前記基板の縁の少なくとも一部にそって配置されたパッド部を含み、前記第2の素子の前記第1のコンタクトが、前記第1の素子の前記第1のコンタクト及び前記第2の素子の前記第2のコンタクトのすぐ隣に隣接して配置され、前記第2の素子の前記第2のコンタクトが、前記第2の素子の前記第1のコンタクト及び前記第1の素子の前記第2のコンタクトのすぐ隣に隣接して配置された、請求項14に記載の煤センサ。
  16. 前記パッド部並びに前記第1及び第2の素子の前記第1及び第2のコンタクトの上のみに配置されたパシベーション層をさらに含む、請求項15に記載の煤センサ。
  17. 前記第1の素子の導電性材料の前記少なくとも1つの連続的なループ及び前記第2の素子の導電性材料の前記少なくとも1つの連続的なループがそれぞれ、その両端に配置された第1及び第2のコンタクトを含み、前記第1及び第2の素子の前記第1のコンタクトが、互いにすぐ隣に隣接して配置され、前記第1及び第2の素子の前記第2のコンタクトが、互いにすぐ隣に隣接して配置された、請求項7に記載のシステム。
  18. 前記基板が前記基板の縁の少なくとも一部にそって配置されたパッド部を含み、前記第2の素子の前記第1のコンタクトが、前記第1の素子の前記第1のコンタクト及び前記第2の素子の前記第2のコンタクトのすぐ隣に隣接して配置され、前記第2の素子の前記第2のコンタクトが前記第2の素子の前記第1のコンタクト及び前記第1の素子の前記第2のコンタクトのすぐ隣に隣接して配置された、請求項17に記載のシステム。
  19. 前記パッド部並びに前記第1及び第2の素子の前記第1及び第2のコンタクトの上のみに配置されたパシベーション層をさらに含む、請求項18に記載のシステム。
  20. 前記回路がさらに、前記第1または第2の素子の少なくとも1つに印加された診断感知電流に基づいて、前記第1または第2の素子の少なくとも1つの開回路を検出するように構成された、請求項7に記載のシステム。
  21. 前記第1または第2の素子に印加された診断感知電流に基づいて、前記第1または第2の素子の少なくとも1つの開回路を検出する段階をさらに含む、請求項13に記載の方法。
  22. 前記第1の素子の導電性材料の前記少なくとも1つの連続的なループ及び前記第2の素子の導電性材料の前記少なくとも1つの連続的なループがそれぞれ、その両端に配置された第1及び第2のコンタクトを含み、前記第1及び第2の素子の前記第1のコンタクトが互いにすぐ隣に隣接して配置され、前記第1及び第2の素子の前記第2のコンタクトが互いにすぐ隣に隣接して配置された、請求項13に記載の方法。
JP2018017170A 2011-05-26 2018-02-02 煤センサシステム Active JP6600704B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161490310P 2011-05-26 2011-05-26
US61/490,310 2011-05-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014512177A Division JP6346560B2 (ja) 2011-05-26 2012-05-25 煤センサシステム

Publications (2)

Publication Number Publication Date
JP2018081113A JP2018081113A (ja) 2018-05-24
JP6600704B2 true JP6600704B2 (ja) 2019-10-30

Family

ID=47217804

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014512177A Active JP6346560B2 (ja) 2011-05-26 2012-05-25 煤センサシステム
JP2018017170A Active JP6600704B2 (ja) 2011-05-26 2018-02-02 煤センサシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014512177A Active JP6346560B2 (ja) 2011-05-26 2012-05-25 煤センサシステム

Country Status (8)

Country Link
US (3) US9389163B2 (ja)
EP (1) EP2715371B1 (ja)
JP (2) JP6346560B2 (ja)
KR (1) KR101992408B1 (ja)
CN (1) CN103733076B (ja)
BR (1) BR112013030334A2 (ja)
CA (1) CA2836326C (ja)
WO (1) WO2012162685A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542007B2 (ja) * 2010-08-26 2014-07-09 日本碍子株式会社 粒子状物質検出装置
DE102010055478A1 (de) * 2010-12-22 2012-06-28 Continental Automotive Gmbh Verfahren zum Betreiben eines Rußsensors
JP6346560B2 (ja) * 2011-05-26 2018-06-20 ストーンリッジ・インコーポレッド 煤センサシステム
US8671736B2 (en) * 2011-05-26 2014-03-18 Emisense Technologies, Llc Agglomeration and charge loss sensor for measuring particulate matter
DE102013110291A1 (de) * 2013-03-06 2014-09-11 Heraeus Sensor Technology Gmbh Verfahren zur Herstellung eines Rußsensors mit einem Laserstrahl
FR3010185B1 (fr) * 2013-08-29 2015-08-21 Peugeot Citroen Automobiles Sa Capteur de suie en forme de peignes decentres
US9234805B2 (en) 2013-10-31 2016-01-12 Cummins Ip, Inc. Temperature compensation for particulate matter sensor regeneration
WO2015073596A1 (en) 2013-11-13 2015-05-21 Stoneridge, Inc. Soot sensor system
DE102014104219B4 (de) * 2014-03-26 2019-09-12 Heraeus Nexensos Gmbh Keramikträger sowie Sensorelement, Heizelement und Sensormodul jeweils mit einem Keramikträger und Verfahren zur Herstellung eines Keramikträgers
DE102014212858A1 (de) * 2014-07-02 2016-01-07 Robert Bosch Gmbh Sensor zur Detektion von Teilchen
EP3187863B1 (en) * 2014-08-29 2019-08-07 Kyocera Corporation Sensor substrate, sensor substrate with lead, and sensor device
DE102014220791A1 (de) * 2014-10-14 2016-04-14 Robert Bosch Gmbh Sensor zur Bestimmung einer Konzentration von Partikeln in einem Gasstrom
JP6514336B2 (ja) * 2014-12-23 2019-05-15 ヘレウス センサー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 導電性及び/又は分極性粒子を検出するセンサ、センサシステム、センサを作動させる方法、このタイプのセンサを製造する方法及びこのタイプのセンサの使用
US9804074B2 (en) * 2015-05-01 2017-10-31 Ford Global Technologies, Llc Method and system for resistive-type particulate matter sensors
DE102015209262A1 (de) 2015-05-21 2016-11-24 Bayerische Motoren Werke Aktiengesellschaft Abgasanlage mit einem Gassensor, insbesondere mit einem Partikelsensor
KR101755469B1 (ko) * 2015-12-08 2017-07-07 현대자동차 주식회사 미세 물질 측정 센서
KR101724499B1 (ko) * 2015-12-11 2017-04-07 현대자동차 주식회사 입자상 물질 센서 및 이를 이용한 측정방법
DE102016107213A1 (de) * 2016-03-03 2017-09-07 Eberspächer Exhaust Technology GmbH & Co. KG Abgasanlage, insbesondere für eine Brennkraftmaschine eines Fahrzeugs
KR101776734B1 (ko) * 2016-04-18 2017-09-08 현대자동차 주식회사 입자상 물질 센서 유닛
KR20180065318A (ko) * 2016-12-07 2018-06-18 현대자동차주식회사 칩형 입자상 물질 센서
KR101936475B1 (ko) * 2016-12-07 2019-01-08 현대자동차주식회사 바이어스 전압을 인가할 수 있는 입자상 물질 센서
DE102016225420A1 (de) 2016-12-19 2018-06-21 Robert Bosch Gmbh Sensor zur Erfassung mindestens einer Eigenschaft eines Messgases
DE102017210625A1 (de) * 2017-06-23 2018-12-27 Robert Bosch Gmbh Resistiver Partikelsensor
CN107179266B (zh) * 2017-07-03 2023-10-13 中国人民解放军军事交通学院 一种基于obd的柴油发动机颗粒物排放快速诊断装置与方法
DE102018207789A1 (de) * 2017-12-19 2019-06-19 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Partikeln eines Messgases in einem Messgasraum und Verfahren zur Erfassung von Partikeln eines Messgases in einem Messgasraum
DE102018207784A1 (de) * 2017-12-19 2019-06-19 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Partikeln eines Messgases in einem Messgasraum und Verfahren zur Erfassung von Partikeln eines Messgases in einem Messgasraum
US11940297B2 (en) 2018-12-18 2024-03-26 Aclara Technologies Llc Very low power contaminant detection circuit
CN110514565A (zh) * 2019-08-26 2019-11-29 深圳顺络电子股份有限公司 一种片式颗粒物传感器陶瓷芯片及其制造方法
CN110514564A (zh) * 2019-08-26 2019-11-29 深圳顺络电子股份有限公司 一种车用颗粒物传感器陶瓷芯片及其制造方法
US11480542B2 (en) 2019-11-26 2022-10-25 Delphi Technologies Ip Limited Particulate matter sensor and electrode pattern thereof

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836002C2 (de) 1978-08-17 1986-09-11 Robert Bosch Gmbh, 7000 Stuttgart Sensor zur Überwachung der Rußfreiheit von Abgasen
DE2913866A1 (de) 1979-04-06 1980-10-23 Bosch Gmbh Robert Messfuehler fuer die bestimmung von bestandteilen in stroemenden gasen
JPS5691716A (en) 1979-12-24 1981-07-24 Matsushita Electric Ind Co Ltd Automatic electronic range
CH662231A5 (de) 1982-09-13 1987-09-15 Eilentropp Hew Kabel Flexibles elektrisches ablaengbares heiz- oder temperaturmesselement.
JPS59196453A (ja) * 1983-04-21 1984-11-07 Nippon Denso Co Ltd パテイキユレ−ト検出素子
US4656832A (en) 1982-09-30 1987-04-14 Nippondenso Co., Ltd. Detector for particulate density and filter with detector for particulate density
DE3304846A1 (de) 1983-02-12 1984-08-16 Bosch Gmbh Robert Verfahren und vorrichtung zur detektion und/oder messung des partikelgehalts in gasen
JPS59197847A (ja) * 1983-04-25 1984-11-09 Ngk Spark Plug Co Ltd スモーク濃度センサ
JPS60123761A (ja) * 1983-12-07 1985-07-02 Ngk Spark Plug Co Ltd 排ガス中粒子状物質検出装置
JPS6118848A (ja) * 1984-07-05 1986-01-27 Mitsubishi Electric Corp 煙・ガス検出器
JPS61186846A (ja) 1985-02-14 1986-08-20 Nec Corp 導電性塵埃センサ
EP0193015A3 (de) * 1985-02-26 1990-05-09 Novasina AG Sensor zur Messung der elektrischen Leitfähigkeit
JPS6218655A (ja) 1985-07-17 1987-01-27 Victor Co Of Japan Ltd コントロ−ルパルス記録回路
JPS6218655U (ja) * 1985-07-18 1987-02-04
US6015533A (en) * 1997-11-14 2000-01-18 Motorola Inc. Sensor housing for a calorimetric gas sensor
US6794981B2 (en) 1998-12-07 2004-09-21 Honeywell International Inc. Integratable-fluid flow and property microsensor assembly
US6377052B1 (en) 1999-11-03 2002-04-23 Eaton Corporation Monitoring fluid condition through an aperture
DE10013882A1 (de) * 2000-03-21 2001-10-04 Bosch Gmbh Robert Sensorelement mit Vorkatalyse
US6769280B2 (en) * 2001-05-07 2004-08-03 Northwestern University Real-time draw-in sensors and methods of fabrication
US6634210B1 (en) 2002-04-17 2003-10-21 Delphi Technologies, Inc. Particulate sensor system
DE10319664A1 (de) 2003-05-02 2004-11-18 Robert Bosch Gmbh Sensor zur Detektion von Teilchen
DE10353860B4 (de) 2003-11-18 2023-03-30 Robert Bosch Gmbh Sensor zum Erfassen von Partikeln in einem Gasstrom, sowie Verfahren zu seiner Herstellung
US7791440B2 (en) * 2004-06-09 2010-09-07 Agency For Science, Technology And Research Microfabricated system for magnetic field generation and focusing
DE102004028997A1 (de) 2004-06-16 2006-01-05 Robert Bosch Gmbh Verfahren zur Beeinflussung der Russanlagerung auf Sensoren
US7770432B2 (en) * 2005-01-21 2010-08-10 Robert Bosch Gmbh Sensor element for particle sensors and method for operating same
CN101163962A (zh) * 2005-04-20 2008-04-16 贺利氏传感技术有限公司 煤烟传感器
EP1872115A1 (de) * 2005-04-20 2008-01-02 Heraeus Sensor Technology Gmbh Russsensor
DE102005053120A1 (de) * 2005-11-08 2007-05-10 Robert Bosch Gmbh Sensorelement für Gassensoren und Verfahren zum Betrieb desselben
US8226769B2 (en) * 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
DE102006046837B4 (de) 2006-10-02 2024-01-11 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensors zur Detektion von Teilchen in einem Gasstrom
DE102007014761B4 (de) 2007-03-28 2022-05-12 Robert Bosch Gmbh Verfahren zum Betreiben eines sammelnden Partikelsensors und Vorrichtung zur Durchführung des Verfahrens
JP4467603B2 (ja) * 2007-05-29 2010-05-26 日立オートモティブシステムズ株式会社 ガス流量計及び内燃機関制御システム
DE102007047078A1 (de) 2007-10-01 2009-04-02 Robert Bosch Gmbh Sensorelement zur Detektion von Partikeln in einem Gas und Verfahren zu dessen Herstellung
US7609068B2 (en) 2007-10-04 2009-10-27 Delphi Technologies, Inc. System and method for particulate sensor diagnostic
US7954230B2 (en) 2007-11-29 2011-06-07 Delphi Technologies, Inc. Method for making soot sensor
JP5139940B2 (ja) 2008-09-25 2013-02-06 日本碍子株式会社 粒子状物質検出装置
US20100095657A1 (en) 2008-10-21 2010-04-22 Gm Global Technology Operations, Inc. Electrically heated diesel particulate filter (dpf)
US8225640B2 (en) * 2008-12-11 2012-07-24 Delphi Technologies, Inc. Soot sensor and method for sensing soot
DE102009000286B4 (de) 2009-01-19 2023-02-02 Robert Bosch Gmbh Überwachung eines Partikelgrenzwerts im Abgas einer Brennkraftmaschine
FR2956435B1 (fr) * 2010-02-16 2012-03-02 Electricfil Automotive Procede et dispositif pour determiner l'etat de fonctionnement d'une sonde de mesure de la quantite de suie dans les gaz d'echappement d'un vehicule
EP2539561A4 (en) * 2010-02-25 2017-11-22 Stoneridge, Inc. Soot sensor system
JP6346560B2 (ja) * 2011-05-26 2018-06-20 ストーンリッジ・インコーポレッド 煤センサシステム
WO2015073596A1 (en) * 2013-11-13 2015-05-21 Stoneridge, Inc. Soot sensor system

Also Published As

Publication number Publication date
JP6346560B2 (ja) 2018-06-20
CA2836326A1 (en) 2012-11-29
CA2836326C (en) 2019-10-01
JP2014515486A (ja) 2014-06-30
KR20140045951A (ko) 2014-04-17
US20120324981A1 (en) 2012-12-27
KR101992408B1 (ko) 2019-06-24
JP2018081113A (ja) 2018-05-24
US9389163B2 (en) 2016-07-12
US10416062B2 (en) 2019-09-17
US20170023461A1 (en) 2017-01-26
CN103733076B (zh) 2017-04-12
BR112013030334A2 (pt) 2017-09-19
CN103733076A (zh) 2014-04-16
EP2715371A1 (en) 2014-04-09
WO2012162685A1 (en) 2012-11-29
US20200018680A1 (en) 2020-01-16
EP2715371A4 (en) 2014-12-24
EP2715371B1 (en) 2019-03-27
US11137333B2 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
JP6600704B2 (ja) 煤センサシステム
US11467079B2 (en) Soot sensor system
US10364717B2 (en) Methods and systems for increasing particulate matter deposition in an exhaust particulate matter sensor
KR101862417B1 (ko) 수트 센서 시스템
JP5327152B2 (ja) 粒子状物質検出センサ素子及び粒子状物質検出センサ
JP4574411B2 (ja) 煤検出センサ、及び煤検出方法
KR102443748B1 (ko) 측정 가스 챔버 내의 측정 가스의 입자를 검출하기 위한 센서 요소를 작동시키는 방법
KR20190045726A (ko) 입자상 물질 센서유닛
KR20190071719A (ko) 측정 가스 챔버 내 측정 가스의 미립자 검출용 센서 요소

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6600704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113