JP6599759B2 - Chip resistor - Google Patents
Chip resistor Download PDFInfo
- Publication number
- JP6599759B2 JP6599759B2 JP2015252290A JP2015252290A JP6599759B2 JP 6599759 B2 JP6599759 B2 JP 6599759B2 JP 2015252290 A JP2015252290 A JP 2015252290A JP 2015252290 A JP2015252290 A JP 2015252290A JP 6599759 B2 JP6599759 B2 JP 6599759B2
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- chip resistor
- pair
- substrate
- insulating substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims description 154
- 230000001681 protective effect Effects 0.000 claims description 50
- 239000000919 ceramic Substances 0.000 claims description 10
- 229910000679 solder Inorganic materials 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000009966 trimming Methods 0.000 description 10
- 229910018487 Ni—Cr Inorganic materials 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 5
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 230000008602 contraction Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Details Of Resistors (AREA)
- Non-Adjustable Resistors (AREA)
Description
本発明は、回路基板上に半田付けによって面実装されるチップ抵抗器に関するものである。 The present invention relates to a chip resistor that is surface-mounted on a circuit board by soldering.
一般的にチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板と、絶縁基板の上面に所定間隔を存して対向配置された一対の表電極と、これら一対の表電極に跨るように絶縁基板の上面に設けられた抵抗体と、抵抗体を覆うように設けられた絶縁性の保護膜と、絶縁基板の下面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を導通するように絶縁基板の両端面に設けられた一対の端面電極と、これら端面電極の外表面にめっき処理を施して形成された一対の外部電極とを備えている。 In general, a chip resistor is a rectangular parallelepiped insulating substrate made of ceramics, a pair of front electrodes opposed to each other at a predetermined interval on the upper surface of the insulating substrate, and an insulating substrate straddling the pair of front electrodes A resistor provided on the upper surface of the substrate, an insulating protective film provided so as to cover the resistor, a pair of back electrodes disposed opposite to each other at a predetermined interval on the lower surface of the insulating substrate, and a front electrode, A pair of end face electrodes provided on both end faces of the insulating substrate so as to conduct the back electrode and a pair of external electrodes formed by plating the outer surfaces of these end face electrodes are provided.
このように構成されたチップ抵抗器は、回路基板に設けられたランド上に半田ペーストを印刷した後、裏電極を下向きにした姿勢で外部電極をランド上に搭載し、この状態で半田ペーストを溶融・固化することによって回路基板上に面実装されるようになっている。 In the chip resistor configured in this way, after printing the solder paste on the land provided on the circuit board, the external electrode is mounted on the land with the back electrode facing downward, and the solder paste is applied in this state. It is surface-mounted on a circuit board by melting and solidifying.
近年、電子機器の小型・高機能化に伴って回路基板の実装密度が飛躍的に上昇しており、それに伴ってチップ抵抗器の実装面積を小さくしたり、隣接するチップ抵抗器の間隔を狭くする狭隣接実装が要望されている。このような狭隣接実装に対応するために、特許文献1に記載されているように、絶縁基板の両端面を除く4面(上下面と両側面)に同一幅の外部電極を形成したチップ抵抗器が提案されている。 In recent years, the mounting density of circuit boards has increased dramatically with the downsizing and higher functionality of electronic devices. Accordingly, the mounting area of chip resistors has been reduced, and the spacing between adjacent chip resistors has been reduced. Narrow adjacent mounting is desired. In order to cope with such narrow adjacent mounting, as described in Patent Document 1, chip resistors in which external electrodes having the same width are formed on four surfaces (upper and lower surfaces and both side surfaces) excluding both end surfaces of the insulating substrate. A vessel has been proposed.
直方体形状の絶縁基板を構成する6つの面のうち、最も面積の広い2つの対向面を第1面、第1面の短辺に隣接する2つの対向面を第2面、第1面の長辺に隣接する2つの対向面を第3面としたとき、特許文献1に記載されたチップ抵抗器のように、いずれか一方の第1面に表電極と抵抗体および保護膜が形成されていると共に、第2面を除いた4つの面(両第1面と両第3面)に表電極と導通する外部電極が形成されていれば、第1面に比べて面積の狭い第3面を実装面にすることができるため、隣接するチップ間隔を狭めた狭隣接実装が可能となる。 Of the six surfaces constituting the rectangular parallelepiped insulating substrate, the two opposing surfaces having the largest area are the first surface, the two opposing surfaces adjacent to the short side of the first surface are the second surface, and the length of the first surface When the two opposing surfaces adjacent to the side are the third surface, a surface electrode, a resistor, and a protective film are formed on one of the first surfaces as in the chip resistor described in Patent Document 1. In addition, if external electrodes that are electrically connected to the surface electrode are formed on the four surfaces (both the first surface and both third surfaces) excluding the second surface, the third surface has a smaller area than the first surface. Can be used as a mounting surface, so that it is possible to perform narrow adjacent mounting in which the interval between adjacent chips is narrowed.
この場合、実装面である第3面の短辺寸法よりも高さ寸法が大きくなるタワー型の搭載となり、第1面を側方に向けた姿勢で外部電極とランドが半田接合されるため、特許文献1に記載されたチップ抵抗器のように、第3面に形成された外部電極よりも面積の広い外部電極が第1面に形成されていると、半田ペーストが溶融・固化する際の半田収縮によって第1面側に引っ張られやすくなり、その結果、チップ抵抗器が傾いたり倒れた状態で搭載されてしまうという問題が発生する。 In this case, it becomes a tower type mounting in which the height dimension is larger than the short side dimension of the third surface which is the mounting surface, and the external electrode and the land are soldered in a posture with the first surface facing sideways, When the external electrode having a larger area than the external electrode formed on the third surface is formed on the first surface like the chip resistor described in Patent Document 1, the solder paste is melted and solidified. Due to the solder contraction, the first surface side is easily pulled, and as a result, there arises a problem that the chip resistor is mounted in a tilted or tilted state.
本発明は、上記した従来技術の実情に鑑みてなされたものであり、その目的は、安定した搭載姿勢を確保した状態で狭隣接実装することができるチップ抵抗器を提供することにある。 The present invention has been made in view of the above-described prior art, and an object of the present invention is to provide a chip resistor that can be mounted adjacent to each other while ensuring a stable mounting posture.
上記目的を達成するための一形態として、本発明のチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板を構成する6つの面のうち、最も面積の広い2つの対向面を第1面、この第1面の短辺に隣接する2つの対向面を第2面、前記第1面の長辺に隣接する2つの対向面を第3面とするチップ抵抗器において、前記一対の第1面のいずれか一方に、所定間隔を存して対向する一対の内部電極と、これら内部電極間に跨る抵抗体と、この抵抗体を覆う絶縁性の保護膜とが設けられていると共に、前記一対の第1面と前記一対の第3面の長手方向両端部にそれぞれ前記内部電極と導通する外部電極が設けられており、前記第1面に設けられた前記外部電極の長手方向に沿う寸法が前記第3面に設けられた前記外部電極の長手方向に沿う寸法よりも小さく設定されているという構成にした。 As one form for achieving the above object, the chip resistor according to the present invention includes, as the first surface, two opposing surfaces having the largest area among the six surfaces constituting the rectangular parallelepiped insulating substrate made of ceramics. In the chip resistor in which the two opposing surfaces adjacent to the short side of the first surface are the second surface and the two opposing surfaces adjacent to the long side of the first surface are the third surface, Either one is provided with a pair of internal electrodes facing each other with a predetermined interval, a resistor straddling between the internal electrodes, and an insulating protective film covering the resistor, and the pair of internal electrodes External electrodes that are electrically connected to the internal electrodes are provided at both longitudinal ends of the first surface and the pair of third surfaces, respectively, and the dimensions along the longitudinal direction of the external electrodes provided on the first surface are Dimensions along the longitudinal direction of the external electrode provided on the third surface And the configuration that is set to be smaller than.
このように構成されたチップ抵抗器では、直方体形状の絶縁基板の6つの面のうち、最も面積が広い2つの第1面のいずれか一方に抵抗体と内部電極が形成されているため、抵抗体の形成された第1面を側方に向けた姿勢で、この第1面の長辺に隣接する第3面を回路基板への実装面とすることにより、チップ間隔を狭くしたタワー型の狭隣接実装に対応することができる。しかも、このチップ抵抗器では、側方を向く第1面に形成された外部電極の長手方向に沿う寸法が、実装面となる第3面に形成された外部電極の長手方向に沿う寸法よりも小さく設定されているため、半田の収縮によって第1面側に引っ張られることがなく、狭隣接実装に対応したタワー型であるのにも関わらず倒れにくく安定した姿勢での搭載が可能となる。 In the chip resistor configured in this way, the resistor and the internal electrode are formed on one of the two first surfaces having the largest area among the six surfaces of the rectangular parallelepiped insulating substrate. A tower-type tower with a narrower chip interval by setting the third surface adjacent to the long side of the first surface as a mounting surface on the circuit board in a posture in which the first surface on which the body is formed is directed sideways. Narrow adjacent mounting can be supported. Moreover, in this chip resistor, the dimension along the longitudinal direction of the external electrode formed on the first surface facing sideways is larger than the dimension along the longitudinal direction of the external electrode formed on the third surface serving as the mounting surface. Since it is set to be small, it is not pulled to the first surface side due to the shrinkage of the solder, and it is possible to mount in a stable posture that is difficult to fall down despite being a tower type that supports narrow adjacent mounting.
また、上記目的を達成するための他の形態として、本発明のチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板を構成する6つの面のうち、最も面積の広い2つの対向面を第1面、この第1面の短辺に隣接する2つの対向面を第2面、前記第1面の長辺に隣接する2つの対向面を第3面とするチップ抵抗器において、前記一対の第1面のいずれか一方に、所定間隔を存して対向する一対の内部電極と、これら内部電極間に跨る抵抗体と、この抵抗体を覆う絶縁性の保護膜とが設けられていると共に、前記一対の第3面の長手方向両端部に前記内部電極と導通する外部電極が設けられており、この外部電極が前記一対の第1面に設けられていないという構成にした。 As another form for achieving the above object, the chip resistor of the present invention has two opposing faces having the largest area among the six faces constituting the rectangular parallelepiped insulating substrate made of ceramic. In the chip resistor, the second opposing surface adjacent to the short side of the first surface is the second surface, and the two opposing surfaces adjacent to the long side of the first surface are the third surface. A pair of internal electrodes facing each other with a predetermined interval, a resistor straddling between the internal electrodes, and an insulating protective film covering the resistor are provided on either one of the surfaces, An external electrode that is electrically connected to the internal electrode is provided at both ends in the longitudinal direction of the pair of third surfaces, and the external electrode is not provided on the pair of first surfaces.
このように構成されたチップ抵抗器でも、直方体形状の絶縁基板の6つの面のうち、最も面積が広い2つの第1面のいずれか一方に抵抗体と内部電極が形成されているため、抵抗体の形成された第1面を側方に向けた姿勢で、この第1面の長辺に隣接する第3面を回路基板への実装面とすることにより、チップ間隔を狭くしたタワー型の狭隣接実装に対応することができる。しかも、このチップ抵抗器では、実装面となる第3面に内部電極と導通する外部電極が形成されているものの、側方を向く第1面に外部電極は形成されていないため、半田の収縮によって第1面側に引っ張られることがなく、狭隣接実装に対応したタワー型であるのにも関わらず倒れにくく安定した姿勢での搭載が可能になると共に、狭隣接したチップ間での短絡事故を防止することができる。 Even in the chip resistor configured as described above, the resistor and the internal electrode are formed on one of the two first surfaces having the largest area among the six surfaces of the rectangular parallelepiped insulating substrate. A tower-type tower with a narrower chip interval by setting the third surface adjacent to the long side of the first surface as a mounting surface on the circuit board in a posture in which the first surface on which the body is formed is directed sideways. Narrow adjacent mounting can be supported. Moreover, in this chip resistor, although the external electrode that is electrically connected to the internal electrode is formed on the third surface that is the mounting surface, the external electrode is not formed on the first surface that faces the side, so that the shrinkage of the solder It is not pulled by the first surface side, and it can be mounted in a stable posture that is difficult to fall despite being a tower type that supports narrow adjacent mounting, and a short circuit accident between narrow adjacent chips Can be prevented.
上記の構成において、一対の第2面に外部電極は形成されていなくても良いが、これら第2面にも内部電極と導通する外部電極が形成されていると、ランドと第2面間に半田フィレットが形成されるため、より安定したチップ抵抗器の実装が可能となる。 In the above configuration, the external electrodes may not be formed on the pair of second surfaces. However, if an external electrode that is electrically connected to the internal electrode is also formed on these second surfaces, the external electrode is formed between the land and the second surface. Since the solder fillet is formed, a more stable chip resistor can be mounted.
また、上記の構成において、保護膜は少なくとも抵抗体を覆っていれば良いが、保護膜が内部電極と抵抗体を含めて第1面の面全体を覆っていると、実装時に側方を向く第1面の表面がフラットになるため、チップ抵抗器を狭隣接実装する上で好ましい。 In the above configuration, the protective film only needs to cover at least the resistor. However, when the protective film covers the entire surface of the first surface including the internal electrode and the resistor, the protective film faces sideways during mounting. Since the surface of the first surface is flat, it is preferable for mounting the chip resistors narrowly adjacent to each other.
また、上記の構成において、抵抗体の形成された第1面と反対側の第1面の面全体に絶縁性の補助保護膜が設けられていると、絶縁基板の2つの第1面が保護膜と補助保護膜によって覆われるため、2つの第3面のいずれを実装面とした場合でも外観が同じようになり、バルク実装に好適にチップ抵抗器を実現することができる。 In the above configuration, when the auxiliary auxiliary protective film is provided on the entire surface of the first surface opposite to the first surface on which the resistor is formed, the two first surfaces of the insulating substrate are protected. Since it is covered by the film and the auxiliary protective film, the appearance is the same regardless of which of the two third surfaces is the mounting surface, and a chip resistor can be realized suitably for bulk mounting.
本発明のチップ抵抗器によれば、安定した搭載姿勢を確保した状態で狭隣接実装することができる。 According to the chip resistor of the present invention, it is possible to mount narrowly adjacently while ensuring a stable mounting posture.
以下、発明の実施の形態について図面を参照しながら説明する。図1に示すように、本発明の第1実施形態例に係るチップ抵抗器は、直方体形状の絶縁基板1と、絶縁基板1の一側面に所定間隔を存して設けられた一対の内部電極2と、これら内部電極2に接続するように設けられた長方形状の抵抗体3と、両内部電極2と抵抗体3を覆うように設けられた樹脂からなる保護膜4と、絶縁基板1の両側面おける長手方向両端部に設けられた外部電極5と、絶縁基板1の上下面おける長手方向両端部に設けられた外部電極6とによって主に構成されている。 Hereinafter, embodiments of the invention will be described with reference to the drawings. As shown in FIG. 1, a chip resistor according to a first embodiment of the present invention includes a rectangular parallelepiped insulating substrate 1 and a pair of internal electrodes provided on one side surface of the insulating substrate 1 with a predetermined interval. 2, a rectangular resistor 3 provided so as to be connected to these internal electrodes 2, a protective film 4 made of a resin provided so as to cover both the internal electrodes 2 and the resistors 3, and an insulating substrate 1 It is mainly configured by external electrodes 5 provided at both ends in the longitudinal direction on both side surfaces and external electrodes 6 provided at both ends in the longitudinal direction on the upper and lower surfaces of the insulating substrate 1.
絶縁基板1はセラミックスからなり、この絶縁基板1を構成する6つの面のうち、最も面積の広い2つの対向面を第1面、第1面の短辺に隣接する2つの対向面を第2面、第1面の長辺に隣接する2つの対向面を第3面とすると、図中手前側と背面側に位置する第2面には何も形成されていないが、図中右側方を向く第1面には一対の内部電極2と抵抗体3と保護膜4および一対の外部電極5が形成されており、図示されていないが、図中左側方を向く反対側の第1面には一対の外部電極が形成されている。また、図中上面側に位置する第3面には一対の外部電極6が形成されており、図示されていないが、図中下面側に位置する第3面にも一対の外部電極が形成されている。 The insulating substrate 1 is made of ceramics. Of the six surfaces constituting the insulating substrate 1, the two opposing surfaces having the largest area are the first surface and the two opposing surfaces adjacent to the short side of the first surface are the second surfaces. If the two opposing surfaces adjacent to the long side of the surface and the first surface are the third surface, nothing is formed on the second surface located on the front side and the back side in the figure, but on the right side in the figure A pair of internal electrodes 2, a resistor 3, a protective film 4, and a pair of external electrodes 5 are formed on the first surface facing and are not shown, but on the first surface on the opposite side facing the left side in the figure. Is formed with a pair of external electrodes. Further, a pair of external electrodes 6 are formed on the third surface located on the upper surface side in the figure, and although not shown, a pair of external electrodes are also formed on the third surface located on the lower surface side in the figure. ing.
ここで、図1に示すように、絶縁基板1の第1面の短辺寸法(第2面の長辺寸法)をH、第1面と第3面の長辺寸法をL、第2面と第3面の短辺寸法をWとすると、本実施形態例に係るチップ抵抗器では、例えばH=0.1mm、L=0.2mm、W=0.05mmとなっている。なお、この絶縁基板1は後述する大判基板を縦横に延びる1次分割ラインと2次分割ラインに沿ってダイシングすることにより多数個取りされたものである。 Here, as shown in FIG. 1, the short side dimension (long side dimension of the second surface) of the first surface of the insulating substrate 1 is H, the long side dimension of the first surface and the third surface is L, and the second surface. Assuming that the short side dimension of the third surface is W, in the chip resistor according to this embodiment, for example, H = 0.1 mm, L = 0.2 mm, and W = 0.05 mm. The insulating substrate 1 is obtained by dicing a large substrate described later by dicing along a primary dividing line and a secondary dividing line extending vertically and horizontally.
一対の内部電極2は絶縁基板1の一方の第1面にAg系ペーストをスクリーン印刷して乾燥・焼成させたものであり、これら内部電極2は第1面の両短辺から幾分内方に離れた位置に矩形状に形成されている。 The pair of internal electrodes 2 are obtained by screen-printing Ag-based paste on one first surface of the insulating substrate 1 and then drying and firing. The internal electrodes 2 are somewhat inward from both short sides of the first surface. It is formed in a rectangular shape at a position apart from each other.
抵抗体3は絶縁基板1の一方の第1面に酸化ルテニウム等の抵抗ペーストをスクリーン印刷して乾燥・焼成させたものであり、この抵抗体3の長手方向の両端部はそれぞれ内部電極2に重なっている。なお、図示省略されているが、抵抗体3には抵抗値を調整するためのトリミング溝が形成されている。 The resistor 3 is formed by screen-printing a resistor paste such as ruthenium oxide on one first surface of the insulating substrate 1 and then drying and firing the resistor 3. Both ends in the longitudinal direction of the resistor 3 are connected to the internal electrode 2. overlapping. Although not shown, the resistor 3 is formed with a trimming groove for adjusting the resistance value.
保護膜4は絶縁基板1の一方の第1面にエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させたオーバーコート層であり、図示省略されているが、保護膜4の下面側には抵抗体3を覆うアンダーコート層が形成されている。なお、このアンダーコート層はガラスペーストをスクリーン印刷して乾燥・焼成させたものである。保護膜4は第1面の長手方向両端部を除いて内部電極2と抵抗体3を覆うように形成されているため、図中で手前側に位置する内部電極2の左側辺と上下両辺が絶縁基板1と保護膜4間から露出し、図中で奥側に位置する内部電極2の右側片と上下両辺が絶縁基板1と保護膜4間から露出している。 The protective film 4 is an overcoat layer in which an epoxy resin paste is screen-printed on one first surface of the insulating substrate 1 and is heat-cured. Although not shown, a resistor is provided on the lower surface side of the protective film 4. An undercoat layer covering 3 is formed. The undercoat layer is obtained by screen-printing glass paste, drying and firing. Since the protective film 4 is formed so as to cover the internal electrode 2 and the resistor 3 except for both ends in the longitudinal direction of the first surface, the left side and the upper and lower sides of the internal electrode 2 positioned on the near side in the figure are The right side piece and the upper and lower sides of the internal electrode 2 located on the far side in the drawing are exposed from between the insulating substrate 1 and the protective film 4.
外部電極5はNi−Cr等をスパッタしたものからなり、この外部電極5は絶縁基板1の第1面の長手方向両端部に帯状に形成されて保護膜4の側端部から露出する内部電極2と導通している。外部電極6もNi−Cr等をスパッタしたものからなり、この外部電極6は絶縁基板1の第3面の長手方向両端部に形成されて保護膜4の上下端部から露出する内部電極2と導通している。これら外部電極5,6は後述するマスキングスパッタ法によって同時に形成されたものであるが、第1面に形成された外部電極5の幅寸法(第1面の長手方向に沿う寸法)は第3面に形成された外部電極6の長手方向に沿う寸法よりも十分に小さく(例えば1/5程度)設定されている。図示省略されているが、半田付け性を良好にするために、これら外部電極5,6の表面にはNi,Sn等の電解メッキが施されている。 The external electrode 5 is formed by sputtering Ni—Cr or the like. The external electrode 5 is formed in a strip shape at both ends in the longitudinal direction of the first surface of the insulating substrate 1 and is exposed from the side end portion of the protective film 4. 2 is conducting. The external electrode 6 is also formed by sputtering Ni—Cr or the like. The external electrode 6 is formed at both ends in the longitudinal direction of the third surface of the insulating substrate 1 and is exposed from the upper and lower ends of the protective film 4. Conducted. These external electrodes 5 and 6 are simultaneously formed by a masking sputtering method to be described later, but the width dimension (dimension along the longitudinal direction of the first surface) of the external electrode 5 formed on the first surface is the third surface. The dimension is set to be sufficiently smaller (for example, about 1/5) than the dimension along the longitudinal direction of the external electrode 6 formed in (1). Although not shown, in order to improve solderability, the surfaces of the external electrodes 5 and 6 are subjected to electrolytic plating such as Ni and Sn.
このように構成されたチップ抵抗器は、図2に示すように、回路基板20に設けられたランド21上に絶縁基板1の第3面を下向きにした状態で搭載され、第3面に形成された外部電極6とランド21を半田22で接合することによって回路基板20に面実装される。すなわち、直方体形状の絶縁基板1が有する6つの面のうち、最も面積の広い2つの第1面が側方を向いた姿勢になると共に、実装面となる第3面の短辺寸法(図1の寸法W)よりも第2面の高さ寸法(図1の寸法H)が大きくなるタワー型の搭載となり、隣接するチップ間隔を狭くした狭隣接実装に対応することができる。 As shown in FIG. 2, the chip resistor configured as described above is mounted on the land 21 provided on the circuit board 20 with the third surface of the insulating substrate 1 facing downward, and formed on the third surface. The external electrodes 6 and lands 21 thus formed are surface-mounted on the circuit board 20 by joining them with solder 22. That is, among the six surfaces of the rectangular parallelepiped insulating substrate 1, the two first surfaces having the largest area are in a posture facing sideways, and the short side dimension of the third surface serving as the mounting surface (FIG. 1). The height W of the second surface (dimension H in FIG. 1) is larger than the dimension W), and it is possible to cope with narrow adjacent mounting in which the interval between adjacent chips is narrowed.
しかも、このチップ抵抗器は、実装時に側方を向く第1面に形成された外部電極5の長手方向に沿う寸法が、実装面となる第3面に形成された外部電極6の長手方向に沿う寸法よりも小さく設定されており、第1面の外部電極5の面積が第3面の外部電極6の面積よりも小さいため、半田22の収縮によって絶縁基板1が第1面側に引っ張られることがなく、狭隣接実装に対応したタワー型であるのにも関わらず倒れにくく安定した姿勢での搭載が可能となる。 In addition, in this chip resistor, the dimension along the longitudinal direction of the external electrode 5 formed on the first surface facing sideways during mounting is in the longitudinal direction of the external electrode 6 formed on the third surface serving as the mounting surface. Since the area of the external electrode 5 on the first surface is smaller than the area of the external electrode 6 on the third surface, the insulating substrate 1 is pulled toward the first surface due to the shrinkage of the solder 22. In spite of the fact that it is a tower type that supports narrow adjacent mounting, it can be mounted in a stable posture that is hard to fall down.
次に、上記の如く構成されたチップ抵抗器の製造方法について、図3〜図5を参照しながら説明する。 Next, a manufacturing method of the chip resistor configured as described above will be described with reference to FIGS.
まず、図3(a)と図4(a)に示すように、絶縁基板1が多数個取りされるセラミックスからなる大判基板30を準備する。この大判基板30に1次分割溝や2次分割溝は形成されていないが、後工程で大判基板30は格子状に延びる1次分割ラインL1と2次分割ラインL2(図中1点鎖線で示す)に沿ってダイシングされ、これら両分割ラインL1,L2によって区切られたマス目の1つ1つが1個分のチップ形成領域となる。なお、図3は大判基板30を平面的に見た状態を示し、図4は図3中の1個分のチップ形成領域を断面した状態を示している。 First, as shown in FIG. 3A and FIG. 4A, a large-sized substrate 30 made of ceramic from which a large number of insulating substrates 1 are taken is prepared. Although the large-sized substrate 30 is not formed with a primary dividing groove or a secondary dividing groove, the large-sized substrate 30 is formed into a lattice-like primary dividing line L1 and a secondary dividing line L2 (indicated by a one-dot chain line in the figure) in a later process. Each of the squares that are diced along the two lines L1 and L2 is a chip formation region for one piece. FIG. 3 shows a state in which the large-sized substrate 30 is viewed in plan, and FIG. 4 shows a state in which one chip forming region in FIG.
そして、このような大判基板30の表面(絶縁基板1の一方の第1面に相当)に2次分割ラインL2に重なるようにAg系ペーストを帯状に印刷し、これを乾燥・焼成することにより、図3(b)と図4(b)に示すように、大判基板30の表面にチップ形成領域を挟んで対向する複数対の内部電極2を形成する。 Then, an Ag-based paste is printed on the surface of such a large-sized substrate 30 (corresponding to one first surface of the insulating substrate 1) so as to overlap the secondary dividing line L2, and this is dried and fired. As shown in FIGS. 3B and 4B, a plurality of pairs of internal electrodes 2 are formed on the surface of the large substrate 30 so as to face each other with the chip formation region interposed therebetween.
次に、大判基板30の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図3(c)と図4(c)に示すように、対をなす内部電極2間に跨る複数の抵抗体3を形成する。なお、内部電極2と抵抗体3の形成順序は上記と逆であっても良い。 Next, a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-sized substrate 30 and then dried and fired to form a pair of internal electrodes 2 as shown in FIGS. 3 (c) and 4 (c). A plurality of resistors 3 are formed between them. Note that the order of forming the internal electrode 2 and the resistor 3 may be reversed.
次に、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、大判基板30の表面にガラスペーストをスクリーン印刷して乾燥・焼成することにより、内部電極2の大部分と抵抗体3の全体を覆う図示せぬアンダーコート層を形成した後、このアンダーコート層の上から抵抗体3にトリミング溝を形成して抵抗値を調整する。しかる後、アンダーコート層の上からエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化することにより、図3(d)と図4(d)に示すように、2次分割ラインL2に沿った幅狭部分を除いてチップ形成領域のほぼ全体を覆う保護膜4を形成する。 Next, as a means for reducing damage to the resistor 3 when the trimming grooves are formed, a glass paste is screen-printed on the surface of the large-sized substrate 30 and dried and fired, so that most of the internal electrodes 2 and the resistor 3 are formed. After forming an undercoat layer (not shown) that covers the entire surface, a trimming groove is formed on the resistor 3 from above the undercoat layer to adjust the resistance value. Thereafter, an epoxy resin paste is screen-printed from above the undercoat layer and heat-cured, thereby reducing the width along the secondary dividing line L2, as shown in FIGS. 3 (d) and 4 (d). A protective film 4 is formed to cover almost the entire chip formation region except for the portion.
次に、大判基板30を1次分割ラインL1に沿ってダイシングブレードで切断することにより、図3(e)に示すように、複数の抵抗体3が一列に並んだ短冊状基板30Aを得る。かかる1次分割ラインL1に沿うダイシングによって帯状の内部電極2と保護膜4が幅方向に切断され、短冊状基板30Aの幅方向両端面に内部電極2の切断面が露出する。なお、この時のダイシングによる切断面、すなわち、短冊状基板30Aの幅方向両端面が絶縁基板1の第3面に相当する。 Next, the large substrate 30 is cut with a dicing blade along the primary dividing line L1, thereby obtaining a strip-shaped substrate 30A in which a plurality of resistors 3 are arranged in a line as shown in FIG. Dicing along the primary dividing line L1 cuts the strip-shaped internal electrode 2 and the protective film 4 in the width direction, and the cut surfaces of the internal electrode 2 are exposed at both end surfaces in the width direction of the strip-shaped substrate 30A. In addition, the cut surfaces by dicing at this time, that is, both end surfaces in the width direction of the strip-shaped substrate 30 </ b> A correspond to the third surfaces of the insulating substrate 1.
次に、図5(a)に示すように、内部電極2や抵抗体3が形成された面を上向きにした状態で複数の短冊状基板30Aを積み重ねた後、図5(b)に示すように、短冊状基板30Aの非電極部分をマスクMによって被覆する。そして、図5(c)に示すように、この状態でNi−Cr等を短冊状基板30Aの幅方向端面におけるマスクMで覆われていない部分にスパッタした後、図5(d)に示すように、マスクMを除去することにより、図3(f)に示すように、短冊状基板30Aの端面に内部電極2の切断面と接続する外部電極6を形成する。その際、マスキングスパッタにより形成されたNi−Cr等の金属膜は、短冊状基板30Aの端面のみならず表面と裏面に回り込むため、短冊状基板30Aの表面に第1分割ラインL1に沿って帯状に延びる外部電極5が形成されると共に、短冊状基板30Aの裏面にも同様に外部電極5が形成される。なお、マスキングスパッタにより形成された金属膜が短冊状基板30Aの表面に対して十分に回り込まなかった場合、外部電極5は短冊状基板30Aの幅方向中央部に形成されないことになるが、その場合は、短冊状基板30Aの表面に外部電極5と内部電極2の両方が露出することになる。 Next, as shown in FIG. 5A, after stacking the plurality of strip-shaped substrates 30A with the surface on which the internal electrode 2 and the resistor 3 are formed facing upward, as shown in FIG. 5B. In addition, the non-electrode portion of the strip-shaped substrate 30A is covered with the mask M. Then, as shown in FIG. 5C, after Ni—Cr or the like is sputtered on the portion of the strip-shaped substrate 30A that is not covered with the mask M in this state, as shown in FIG. 5D. Then, by removing the mask M, the external electrode 6 connected to the cut surface of the internal electrode 2 is formed on the end surface of the strip-shaped substrate 30A as shown in FIG. At that time, since the metal film such as Ni—Cr formed by masking sputtering wraps around not only the end face of the strip-shaped substrate 30A but also the front and back surfaces, the strip-shaped substrate 30A has a strip shape along the first dividing line L1. And the external electrode 5 is formed on the back surface of the strip-shaped substrate 30A. If the metal film formed by masking sputtering does not sufficiently wrap around the surface of the strip-shaped substrate 30A, the external electrode 5 is not formed at the center in the width direction of the strip-shaped substrate 30A. Therefore, both the external electrode 5 and the internal electrode 2 are exposed on the surface of the strip-shaped substrate 30A.
しかる後、短冊状基板30Aを2次分割ラインL2に沿ってダイシングブレードで切断することにより、短冊状基板30Aの表裏両面に形成された外部電極5と両端面に形成された外部電極6をそれぞれ2分し、チップ抵抗器と外形をほぼ同じくする個々のチップ素子を得る。なお、この時のダイシングによる切断面が絶縁基板1の第2面に相当する。 Thereafter, the strip-shaped substrate 30A is cut with a dicing blade along the secondary dividing line L2, so that the external electrodes 5 formed on both the front and back surfaces of the strip-shaped substrate 30A and the external electrodes 6 formed on both end surfaces are respectively provided. Dividing into two, individual chip elements having the same outer shape as the chip resistor are obtained. Note that the cut surface by dicing at this time corresponds to the second surface of the insulating substrate 1.
最後に、個々のチップ素子の外部電極5,6に対してNi,Sn等の電解メッキを施すことにより、図1に示すようなチップ抵抗器が完成する。 Finally, by applying electrolytic plating such as Ni and Sn to the external electrodes 5 and 6 of the individual chip elements, a chip resistor as shown in FIG. 1 is completed.
図6は本発明の第2実施形態例に係るチップ抵抗器の斜視図であり、図1に対応する部分には同一符号を付してある。 FIG. 6 is a perspective view of a chip resistor according to the second embodiment of the present invention, and parts corresponding to those in FIG.
図6に示すチップ抵抗器が前述した第1実施形態例と相違する点は、絶縁基板1の一対の第3面に外部電極6は形成されているが、絶縁基板1の一対の第1面に外部電極が形成されていないことであり、それ以外の構成は基本的に同じである。 The chip resistor shown in FIG. 6 is different from the first embodiment described above in that the external electrode 6 is formed on the pair of third surfaces of the insulating substrate 1, but the pair of first surfaces of the insulating substrate 1. The external electrode is not formed on the substrate, and the other configuration is basically the same.
すなわち、第2実施形態例に係るチップ抵抗器では、保護膜4が一対の内部電極2と抵抗体3を含めて絶縁基板1の第1面全体を覆うように形成されており、この第1面と反対側の第1面にも外部電極は形成されていない。そして、絶縁基板1の2つの第3面の長手方向両端部に外部電極6が形成されており、これら外部電極6は絶縁基板1の上下両辺と保護膜4間から露出する内部電極2と接続されている。 That is, in the chip resistor according to the second embodiment, the protective film 4 is formed so as to cover the entire first surface of the insulating substrate 1 including the pair of internal electrodes 2 and the resistor 3. No external electrode is formed on the first surface opposite to the surface. External electrodes 6 are formed at both longitudinal ends of the two third surfaces of the insulating substrate 1, and these external electrodes 6 are connected to the internal electrodes 2 exposed from the upper and lower sides of the insulating substrate 1 and the protective film 4. Has been.
このように構成された第2実施形態例に係るチップ抵抗器においても、内部電極2や抵抗体3が形成された最も面積の広い第1面を側方に向け、第1面の長辺に隣接する第3面を回路基板への実装面とすることにより、チップ間隔を狭くしたタワー型の狭隣接実装に対応することができる。しかも、このチップ抵抗器では、実装面となる第3面に内部電極2と導通する外部電極6が形成されているものの、側方を向く第1面に外部電極は存在しないため、実装時の半田収縮によって絶縁基板1が第1面側に引っ張られることが全くなくなり、より一層安定した姿勢で狭隣接実装することができる。さらに、第1面全体が保護膜4によって覆われており、側方を向く第1面に外部電極が存在しないため、狭隣接実装に伴うチップ間での短絡事故を防止することができる。 Also in the chip resistor according to the second embodiment configured as described above, the first surface having the largest area on which the internal electrode 2 and the resistor 3 are formed is directed to the side, and the long side of the first surface is formed. By making the adjacent third surface a mounting surface on the circuit board, it is possible to cope with a tower-type narrow adjacent mounting in which the chip interval is narrowed. Moreover, in this chip resistor, although the external electrode 6 that is electrically connected to the internal electrode 2 is formed on the third surface serving as the mounting surface, the external electrode does not exist on the first surface facing sideways, The insulating substrate 1 is never pulled to the first surface side due to the solder contraction, so that it is possible to mount narrowly adjacent with a more stable posture. Furthermore, since the entire first surface is covered with the protective film 4 and no external electrode exists on the first surface facing sideways, it is possible to prevent a short circuit accident between chips due to narrow adjacent mounting.
なお、第2実施形態例に係るチップ抵抗器は、保護膜4を第1面の全面に形成するという点を除くと、第1実施形態例とほぼ同様の工程によって製造することができる。すなわち、第1実施形態例における図3(d)に示す工程で、2次分割ラインL2で挟まれた領域に帯状の保護膜4を複数形成する代わりに、内部電極2と抵抗体3を含めて大判基板30のチップ形成領域全体を覆うように保護膜4を形成すれば良い。 The chip resistor according to the second embodiment can be manufactured by substantially the same process as that of the first embodiment except that the protective film 4 is formed on the entire first surface. That is, in the step shown in FIG. 3D in the first embodiment, the internal electrode 2 and the resistor 3 are included instead of forming a plurality of band-shaped protective films 4 in the region sandwiched between the secondary dividing lines L2. The protective film 4 may be formed so as to cover the entire chip formation region of the large-sized substrate 30.
図7は本発明の第3実施形態例に係るチップ抵抗器の斜視図、図8は該チップ抵抗器を反対側から見た斜視図、図9と図10は該チップ抵抗器の製造方法を示す説明図であり、図1〜図4に対応する部分には同一符号を付してある。 FIG. 7 is a perspective view of a chip resistor according to a third embodiment of the present invention, FIG. 8 is a perspective view of the chip resistor viewed from the opposite side, and FIGS. 9 and 10 show a method of manufacturing the chip resistor. It is explanatory drawing shown, and the same code | symbol is attached | subjected to the part corresponding to FIGS.
図7と図8に示すように、第3実施形態例に係るチップ抵抗器は、直方体形状の絶縁基板1と、絶縁基板1の一方の第1面の長手方向両端部に形成された一対の内部電極2と、これら内部電極2に接続するように形成された抵抗体3と、両内部電極2と抵抗体3を含めて一方の第1面全体を覆うように形成された保護膜4と、絶縁基板1の他方の第1面の長手方向両端部に形成された一対の内部電極7と、これら内部電極7を含めて他方の第1面全体を覆うように形成された補助保護膜8と、絶縁基板1の一対の第3面における四隅に形成された外部電極9,10とによって主に構成されている。 As shown in FIGS. 7 and 8, the chip resistor according to the third embodiment includes a rectangular parallelepiped insulating substrate 1 and a pair of longitudinally formed ends of one first surface of the insulating substrate 1. An internal electrode 2, a resistor 3 formed so as to be connected to the internal electrode 2, and a protective film 4 formed so as to cover the entire first surface including the internal electrode 2 and the resistor 3. A pair of internal electrodes 7 formed at both ends in the longitudinal direction of the other first surface of the insulating substrate 1, and an auxiliary protective film 8 formed so as to cover the other first surface including these internal electrodes 7 And external electrodes 9 and 10 formed at the four corners of the pair of third surfaces of the insulating substrate 1.
保護膜4寄りに形成された外部電極9は抵抗体3に接続された内部電極2と導通しており、これら外部電極9は第2実施形態例における外部電極6の幅寸法を狭くしたものと機能的には同じである。補助保護膜8は保護膜4と同じ樹脂材料からなり、この補助保護膜8寄りに形成された外部電極10は内部電極7に接続されている。ただし、補助保護膜8によって覆われた内部電極7は抵抗体3と電気的に接続されておらず、内部電極7に接続する補助保護膜8寄りの外部電極10は電気的には関与しないダミー電極であるため、内部電極7を省略して補助保護膜8だけを他方の第3面に形成しても良い。 The external electrode 9 formed near the protective film 4 is electrically connected to the internal electrode 2 connected to the resistor 3, and these external electrodes 9 are obtained by reducing the width of the external electrode 6 in the second embodiment. Functionally the same. The auxiliary protective film 8 is made of the same resin material as that of the protective film 4, and the external electrode 10 formed near the auxiliary protective film 8 is connected to the internal electrode 7. However, the internal electrode 7 covered with the auxiliary protective film 8 is not electrically connected to the resistor 3, and the external electrode 10 near the auxiliary protective film 8 connected to the internal electrode 7 is not electrically involved. Since it is an electrode, the internal electrode 7 may be omitted and only the auxiliary protective film 8 may be formed on the other third surface.
このように構成された第3実施形態例に係るチップ抵抗器の製造方法について図9,10を参照して説明すると、まず、図9(a)と図10(a)に示すように、絶縁基板1が多数個取りされるセラミックスからなる大判基板40を準備する。この大判基板40の表裏両面には、図3に示す1次分割ラインL1に対応する位置に予め有底形状の分割溝41が設けられているが、図中の1点鎖線で示す分割ラインLは後工程でダイシングされる予想線であり、これら分割ラインLは大判基板40に設けられていない。 A manufacturing method of the chip resistor according to the third embodiment configured as described above will be described with reference to FIGS. 9 and 10. First, as shown in FIGS. A large-sized substrate 40 made of ceramic from which a large number of substrates 1 are taken is prepared. On both the front and back surfaces of the large substrate 40, a bottomed dividing groove 41 is provided in advance at a position corresponding to the primary dividing line L1 shown in FIG. 3, but the dividing line L indicated by a one-dot chain line in the figure. Is an expected line to be diced in a later process, and these dividing lines L are not provided on the large-sized substrate 40.
そして、このような大判基板40の表面(絶縁基板1の一方の第1面に相当)に分割ラインLと重なるようにAg系ペーストを印刷し、これを乾燥・焼成することにより、図9(b)と図10(b)に示すように、大判基板40の表面にチップ形成領域を挟んで対向する複数対の内部電極2を形成する。また、これに前後して大判基板40の裏面(絶縁基板1の他方の第1面に相当)に分割ラインLと重なるようにAg系ペーストを印刷し、これを乾燥・焼成することにより、図10(b)に示すように、大判基板40の裏面にチップ形成領域を挟んで対向する複数対の内部電極7を形成する。その際、内部電極2と内部電極7の材料であるAg系ペーストが分割溝41を横切るように印刷されるため、大判基板40の表裏両面の分割溝41の内部にAg系ペーストが流れ込む。 Then, an Ag-based paste is printed on the surface of such a large-sized substrate 40 (corresponding to one first surface of the insulating substrate 1) so as to overlap the dividing line L, and this is dried and baked, whereby FIG. As shown in FIG. 10B and FIG. 10B, a plurality of pairs of internal electrodes 2 are formed on the surface of the large substrate 40 so as to face each other with the chip formation region interposed therebetween. Further, before and after this, an Ag-based paste is printed on the back surface of the large-sized substrate 40 (corresponding to the other first surface of the insulating substrate 1) so as to overlap with the dividing line L, and this is dried and fired. As shown in FIG. 10B, a plurality of pairs of internal electrodes 7 are formed on the back surface of the large substrate 40 so as to face each other with the chip formation region interposed therebetween. At that time, since the Ag-based paste which is the material of the internal electrode 2 and the internal electrode 7 is printed so as to cross the dividing grooves 41, the Ag-based paste flows into the dividing grooves 41 on both the front and back surfaces of the large substrate 40.
次に、大判基板40の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図9(c)と図10(c)に示すように、対をなす内部電極2間に跨る複数の抵抗体3を形成する。 Next, a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-sized substrate 40, dried and fired, thereby forming a pair of internal electrodes 2 as shown in FIGS. 9 (c) and 10 (c). A plurality of resistors 3 are formed between them.
次に、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、大判基板40の表面にガラスペーストをスクリーン印刷して乾燥・焼成することにより、各チップ形成領域を覆う図示せぬアンダーコート層を形成した後、このアンダーコート層の上から抵抗体3にトリミング溝を形成して抵抗値を調整する。しかる後、アンダーコート層の上からエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図9(d)と図10(d)に示すように、内部電極2と抵抗体3を含めて各チップ形成領域を覆う保護膜4を形成する。また、これに前後して大判基板40の裏面にエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図10(d)に示すように、内部電極7を含めて各チップ形成領域を覆う補助保護膜8を形成する。 Next, as a means for reducing damage to the resistor 3 when the trimming groove is formed, a glass paste is screen-printed on the surface of the large substrate 40, dried and baked, and an unillustrated undercoat covering each chip formation region. After forming the coat layer, trimming grooves are formed in the resistor 3 from above the undercoat layer to adjust the resistance value. Thereafter, the epoxy resin paste is screen printed from above the undercoat layer and cured by heating, thereby including the internal electrode 2 and the resistor 3 as shown in FIG. 9 (d) and FIG. 10 (d). A protective film 4 covering each chip formation region is formed. Also, before and after this, an epoxy resin paste is screen-printed on the back surface of the large-sized substrate 40 and heat-cured to cover each chip formation region including the internal electrodes 7 as shown in FIG. An auxiliary protective film 8 is formed.
次に、大判基板40を分割溝41と直交する方向の分割ラインLに沿ってダイシングブレードで切断することにより、図9(e)に示すように、帯状の内部電極2が長手方向に沿って分断されて短冊状基板40Aが得られる。なお、このダイシングによる切断面、すなわち、短冊状基板40Aの幅方向両端面が絶縁基板1の第2面に相当する。 Next, the large-sized substrate 40 is cut with a dicing blade along a dividing line L in a direction orthogonal to the dividing grooves 41, so that the strip-like internal electrode 2 extends along the longitudinal direction as shown in FIG. The strip substrate 40A is obtained by being divided. Note that the cut surfaces by this dicing, that is, both end surfaces in the width direction of the strip-shaped substrate 40 </ b> A correspond to the second surface of the insulating substrate 1.
しかる後、短冊状基板40Aを分割溝41に沿ってブレイクすることにより、チップ抵抗器と外形をほぼ同じくする個々のチップ素子を得る。このブレイク時の分割面は絶縁基板1の第3面に相当するが、前述したように、内部電極2,7の材料であるAg系ペーストが分割溝41の内部に流れ込んでいるため、チップ素子の分割面の四隅に内部電極2に導通する外部電極9と内部電極7に導通する外部電極10がそれぞれ露出する。最後に、個々のチップ素子の外部電極9,10に対してNi,Sn等の電解メッキを施すことにより、図7,8に示すようなチップ抵抗器が完成する。 After that, by breaking the strip-shaped substrate 40A along the dividing groove 41, individual chip elements having substantially the same outer shape as the chip resistor are obtained. The dividing surface at the time of the break corresponds to the third surface of the insulating substrate 1. However, as described above, the Ag-based paste which is the material of the internal electrodes 2 and 7 flows into the dividing groove 41. The external electrode 9 conducting to the internal electrode 2 and the external electrode 10 conducting to the internal electrode 7 are exposed at the four corners of the divided surface. Finally, by applying electrolytic plating such as Ni or Sn to the external electrodes 9 and 10 of the individual chip elements, a chip resistor as shown in FIGS. 7 and 8 is completed.
このように構成された第3実施形態例に係るチップ抵抗器においても、内部電極2や抵抗体3が形成された最も面積の広い第1面を側方に向け、第1面の長辺に隣接する第3面を回路基板への実装面とすることにより、チップ間隔を狭くしたタワー型の狭隣接実装に対応することができる。しかも、このチップ抵抗器では、実装面となる第3面の四隅に半田付け可能な外部電極9,10が形成されており、側方を向く第1面に外部電極が形成されていないため、実装時の半田収縮によって絶縁基板1が第1面側に引っ張られることはなく、安定した姿勢での狭隣接実装を行うことができる。さらに、絶縁基板1の2つの第1面全体が保護膜4と補助保護膜8によって覆われており、絶縁基板1の2つの第3面のいずれを実装面とした場合でも外観が同じようになるため、バルク実装に好適にチップ抵抗器を実現することができる。 Also in the chip resistor according to the third embodiment configured as described above, the first surface having the largest area on which the internal electrode 2 and the resistor 3 are formed is directed to the side, and the long side of the first surface is formed. By making the adjacent third surface a mounting surface on the circuit board, it is possible to cope with a tower-type narrow adjacent mounting in which the chip interval is narrowed. Moreover, in this chip resistor, the external electrodes 9 and 10 that can be soldered are formed at the four corners of the third surface that is the mounting surface, and the external electrode is not formed on the first surface facing sideways. The insulating substrate 1 is not pulled toward the first surface due to solder contraction during mounting, and narrow adjacent mounting in a stable posture can be performed. Furthermore, the entire two first surfaces of the insulating substrate 1 are covered with the protective film 4 and the auxiliary protective film 8, and the appearance is the same regardless of which of the two third surfaces of the insulating substrate 1 is the mounting surface. Therefore, a chip resistor can be realized suitably for bulk mounting.
図11は本発明の第4実施形態例に係るチップ抵抗器の斜視図、図12と図13は該チップ抵抗器の製造方法を示す説明図であり、図1〜図4に対応する部分には同一符号を付してある。 FIG. 11 is a perspective view of a chip resistor according to a fourth embodiment of the present invention, and FIGS. 12 and 13 are explanatory views showing a method for manufacturing the chip resistor, in portions corresponding to FIGS. Are given the same reference numerals.
図11に示すチップ抵抗器が前述した第2実施形態例(図6参照)と相違する点は、絶縁基板1の一対の第2面にキャップ形状の外部電極11が形成され、これら外部電極11が第3面に形成された外部電極6と第2面の保護膜4から露出する内部電極2の端面に接続されていることであり、それ以外の構成は基本的に同じである。 The chip resistor shown in FIG. 11 is different from the second embodiment described above (see FIG. 6) in that cap-shaped external electrodes 11 are formed on a pair of second surfaces of the insulating substrate 1, and these external electrodes 11 are formed. Is connected to the external electrode 6 formed on the third surface and the end surface of the internal electrode 2 exposed from the protective film 4 on the second surface, and the other configuration is basically the same.
すなわち、第4実施形態例に係るチップ抵抗器では、絶縁基板1の第2面全体を覆うキャップ形状の外部電極11が第3面に形成された外部電極6の端部と重なる位置まで延びており、この外部電極11が第3面と同一幅で第1面まで延びて保護膜4の端部に重なっている。したがって、絶縁基板1の第2面に形成された外部電極11の長手方向に沿う寸法は、実装面となる第3面に形成された外部電極6の長手方向に沿う寸法よりも小さく設定されている。 That is, in the chip resistor according to the fourth embodiment, the cap-shaped external electrode 11 covering the entire second surface of the insulating substrate 1 extends to a position where it overlaps the end of the external electrode 6 formed on the third surface. The external electrode 11 has the same width as the third surface and extends to the first surface and overlaps the end of the protective film 4. Therefore, the dimension along the longitudinal direction of the external electrode 11 formed on the second surface of the insulating substrate 1 is set smaller than the dimension along the longitudinal direction of the external electrode 6 formed on the third surface serving as the mounting surface. Yes.
このように構成された第4実施形態例に係るチップ抵抗器においても、内部電極2や抵抗体3が形成された最も面積の広い第1面を側方に向け、第1面の長辺に隣接する第3面を回路基板への実装面とすることにより、チップ間隔を狭くしたタワー型の狭隣接実装に対応することができる。しかも、このチップ抵抗器では、実装時に側方を向く絶縁基板1の第1面に形成された外部電極11の長手方向に沿う寸法が、実装面となる第3面に形成された外部電極6の長手方向に沿う寸法よりも小さく設定されているため、実装時の半田収縮によって絶縁基板1が第1面側に引っ張られることはなく、狭隣接実装に対応したタワー型であるのにも関わらず倒れにくく安定した姿勢での搭載が可能となる。さらに、絶縁基板1の第2面にも外部電極11が形成されており、回路基板のランドと絶縁基板1の第2面間に半田フィレットを形成できるため、半田接合強度の高い狭隣接実装を行うことができる。 Also in the chip resistor according to the fourth embodiment configured as described above, the first surface having the largest area on which the internal electrode 2 and the resistor 3 are formed is directed to the side, and the long side of the first surface is formed. By making the adjacent third surface a mounting surface on the circuit board, it is possible to cope with a tower-type narrow adjacent mounting in which the chip interval is narrowed. In addition, in this chip resistor, the external electrode 6 formed on the third surface serving as the mounting surface has a dimension along the longitudinal direction of the external electrode 11 formed on the first surface of the insulating substrate 1 facing sideways during mounting. Therefore, the insulating substrate 1 is not pulled to the first surface side due to solder contraction during mounting, and is a tower type corresponding to narrow adjacent mounting. It can be mounted in a stable posture that will not fall over easily. Further, the external electrode 11 is also formed on the second surface of the insulating substrate 1, and a solder fillet can be formed between the land of the circuit board and the second surface of the insulating substrate 1. It can be carried out.
このように構成された第4実施形態例に係るチップ抵抗器の製造方法について図12,13を参照して説明すると、まず、絶縁基板1が多数個取りされるセラミックスからなる大判基板50を準備する。この大判基板50に1次分割溝や2次分割溝は形成されていないが、後工程で大判基板50は格子状に延びる1次分割ラインL1と2次分割ラインL2に沿ってダイシングされる。 A manufacturing method of the chip resistor according to the fourth embodiment configured as described above will be described with reference to FIGS. 12 and 13. First, a large-sized substrate 50 made of ceramic from which a large number of insulating substrates 1 are taken is prepared. To do. Although the primary divided grooves and the secondary divided grooves are not formed in the large format substrate 50, the large format substrate 50 is diced along a primary divided line L1 and a secondary divided line L2 extending in a lattice shape in a subsequent process.
そして、このような大判基板50の表面(絶縁基板1の一方の第1面に相当)に2次分割ラインL2と重なるようにAg系ペーストを印刷し、これを乾燥・焼成することにより、図12(b)と図13(b)に示すように、大判基板50の表面にチップ形成領域を挟んで対向する複数対の内部電極2を形成する。 Then, an Ag-based paste is printed on the surface of such a large-sized substrate 50 (corresponding to one first surface of the insulating substrate 1) so as to overlap with the secondary dividing line L2, and this is dried and baked, whereby FIG. As shown in FIG. 12B and FIG. 13B, a plurality of pairs of internal electrodes 2 are formed on the surface of the large substrate 50 so as to face each other with the chip formation region interposed therebetween.
次に、大判基板50の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図12(c)と図13(c)に示すように、対をなす内部電極2間に跨る複数の抵抗体3を形成する。 Next, a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-sized substrate 50, dried and fired, thereby forming a pair of internal electrodes 2 as shown in FIGS. 12 (c) and 13 (c). A plurality of resistors 3 are formed between them.
次に、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、大判基板50の表面にガラスペーストをスクリーン印刷して乾燥・焼成することにより、各チップ形成領域を覆う図示せぬアンダーコート層を形成した後、このアンダーコート層の上から抵抗体3にトリミング溝を形成して抵抗値を調整する。しかる後、アンダーコート層の上からエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図12(d)と図13(d)に示すように、内部電極2と抵抗体3を含めて各チップ形成領域を覆う保護膜4を形成する。 Next, a glass paste is screen-printed on the surface of the large substrate 50 to reduce damage to the resistor 3 when the trimming groove is formed and to reduce damage to the resistor 3 when the trimming groove is formed. After forming an undercoat layer (not shown) covering each chip formation region by drying and firing, a trimming groove is formed in the resistor 3 from above the undercoat layer to adjust the resistance value. Thereafter, the epoxy resin paste is screen printed from above the undercoat layer and cured by heating to include the internal electrode 2 and the resistor 3 as shown in FIGS. 12 (d) and 13 (d). A protective film 4 covering each chip formation region is formed.
次に、大判基板50を1次分割ラインL1に沿ってダイシングブレードで切断することにより、図12(e)に示すように、複数の抵抗体3が横一列に並んだ短冊状基板50Aを得る。なお、このダイシングによる切断面、すなわち、短冊状基板50Aの幅方向両端面が絶縁基板1の第2面に相当する。 Next, the large substrate 50 is cut with a dicing blade along the primary division line L1, thereby obtaining a strip-shaped substrate 50A in which a plurality of resistors 3 are arranged in a horizontal row as shown in FIG. . In addition, the cut surfaces by this dicing, that is, both end surfaces in the width direction of the strip-shaped substrate 50 </ b> A correspond to the second surface of the insulating substrate 1.
次に、短冊状基板50Aの非電極部分を図示せぬマスクによって被覆し、この状態でNi−Cr等を短冊状基板50Aの幅方向端面におけるマスクで覆われていない部分にスパッタした後、マスクを除去することにより、図12(f)に示すように、短冊状基板50Aの端面に内部電極2の切断面と接続する外部電極6を形成する。 Next, the non-electrode portion of the strip-shaped substrate 50A is covered with a mask (not shown), and in this state, Ni—Cr or the like is sputtered onto the portion of the strip-shaped substrate 50A that is not covered with the mask in the width direction end face. As shown in FIG. 12F, the external electrode 6 connected to the cut surface of the internal electrode 2 is formed on the end surface of the strip-shaped substrate 50A.
しかる後、短冊状基板50Aを2次分割ラインL2に沿ってダイシングブレードで切断することにより、チップ抵抗器と外形をほぼ同じくする個々のチップ素子を得る。なお、この時のダイシングによる切断面が絶縁基板1の第2面に相当する。 Thereafter, the strip-shaped substrate 50A is cut with a dicing blade along the secondary dividing line L2, thereby obtaining individual chip elements having substantially the same outer shape as the chip resistor. Note that the cut surface by dicing at this time corresponds to the second surface of the insulating substrate 1.
次に、チップ素子の端面にAgペーストをディップ塗布して加熱硬化させることにより、チップ素子の長手方向両端部に保護膜4と外部電極6の端部を覆うキャップ形状の端面電極11を形成する。最後に、個々のチップ素子の外部電極9,10に対してNi,Sn等の電解メッキを施すことにより、図11に示すようなチップ抵抗器が完成する。 Next, a cap-shaped end face electrode 11 that covers the end portions of the protective film 4 and the external electrode 6 is formed at both ends in the longitudinal direction of the chip element by dip-coating Ag paste on the end face of the chip element and curing by heating. . Finally, by applying electrolytic plating such as Ni or Sn to the external electrodes 9 and 10 of the individual chip elements, a chip resistor as shown in FIG. 11 is completed.
図14は本発明の第5実施形態例に係るチップ抵抗器の斜視図であり、図1に対応する部分には同一符号を付してある。 FIG. 14 is a perspective view of a chip resistor according to a fifth embodiment of the present invention, and parts corresponding to those in FIG.
図14に示すチップ抵抗器が前述した第1実施形態例と相違する点は、絶縁基板1の一対の第2面に幅狭な外部電極12を形成したことにあり、それ以外の構成は基本的に同じである。このような外部電極12を形成する場合は、前述した第3実施形態例のような有底形状の分割溝を大判基板の2次分割ラインに対応する位置に設けておき、大判基板の表面に印刷したAg系ペースト等を分割溝の内部に流し込んだ後、大判基板を分割溝に沿ってブレイクすれば良い。したがって、大判基板の表裏両面に分割溝を設けておけば、絶縁基板1の第2面における短手方向の両側部に外部電極12を形成することができる。 The chip resistor shown in FIG. 14 is different from the first embodiment described above in that a narrow external electrode 12 is formed on a pair of second surfaces of the insulating substrate 1, and the other configuration is the basic configuration. Are the same. In the case of forming such an external electrode 12, a bottomed dividing groove as in the third embodiment described above is provided at a position corresponding to the secondary dividing line of the large substrate, and the surface of the large substrate is formed. After the printed Ag-based paste or the like is poured into the divided grooves, the large-sized substrate may be broken along the divided grooves. Therefore, if the dividing grooves are provided on both the front and back surfaces of the large substrate, the external electrodes 12 can be formed on both sides of the second surface of the insulating substrate 1 in the short direction.
図15は本発明の第6実施形態例に係るチップ抵抗器の斜視図、図16は該チップ抵抗器の製造方法を示す説明図であり、図1〜図4に対応する部分には同一符号を付してある。 FIG. 15 is a perspective view of a chip resistor according to a sixth embodiment of the present invention, and FIG. 16 is an explanatory view showing a method of manufacturing the chip resistor, and parts corresponding to those in FIGS. Is attached.
図15に示すチップ抵抗器が前述した第4実施形態例(図11参照)と相違する点は、絶縁基板1の一対の第2面に形成された外部電極11が第1面と第3面まで回り込んでいないことであり、それ以外の構成は基本的に同じである。 The chip resistor shown in FIG. 15 is different from the above-described fourth embodiment (see FIG. 11) in that the external electrodes 11 formed on the pair of second surfaces of the insulating substrate 1 are the first surface and the third surface. The other configurations are basically the same.
すなわち、第6実施形態例に係るチップ抵抗器では、保護膜4が一対の内部電極2と抵抗体3を含めて絶縁基板1の第1面全体を覆うように形成されると共に、絶縁基板1の2つの第3面の長手方向両端部に外部電極6が形成され、なおかつ絶縁基板1の2つの第2面全体に外部電極11が形成されている。したがって、絶縁基板1の第1面に外部電極は存在せず、実装時の半田収縮によって絶縁基板1が第1面側に引っ張られることがないため、狭隣接実装に対応したタワー型であるのにも関わらず倒れにくく安定した姿勢での搭載が可能となる。しかも、絶縁基板1の第2面にも外部電極11が形成されているため、第4実施形態例と同様に半田接合強度の高い狭隣接実装を行うことができる。 That is, in the chip resistor according to the sixth embodiment, the protective film 4 is formed so as to cover the entire first surface of the insulating substrate 1 including the pair of internal electrodes 2 and the resistor 3, and the insulating substrate 1. The external electrodes 6 are formed on both ends of the two third surfaces in the longitudinal direction, and the external electrodes 11 are formed on the entire two second surfaces of the insulating substrate 1. Therefore, there is no external electrode on the first surface of the insulating substrate 1, and the insulating substrate 1 is not pulled to the first surface side due to solder shrinkage during mounting, so that it is a tower type corresponding to narrow adjacent mounting. Nevertheless, it can be mounted in a stable posture that is hard to fall over. In addition, since the external electrode 11 is also formed on the second surface of the insulating substrate 1, it is possible to perform narrow adjacent mounting with high solder joint strength as in the fourth embodiment.
このように構成された第6実施形態例に係るチップ抵抗器の製造方法について図16を参照して説明すると、まず、図16(a)に示すように、絶縁基板1が多数個取りされるセラミックスからなる大判基板60を準備する。この大判基板60に1次分割溝や2次分割溝は形成されていないが、後工程でダイシングされる1次分割ラインL1と2次分割ラインL2の交点位置に貫通孔61が設けられている。 A manufacturing method of the chip resistor according to the sixth embodiment configured as described above will be explained with reference to FIG. 16. First, as shown in FIG. 16A, a large number of insulating substrates 1 are taken. A large substrate 60 made of ceramic is prepared. Although the large-sized substrate 60 is not formed with a primary division groove or a secondary division groove, a through-hole 61 is provided at the intersection of the primary division line L1 and the secondary division line L2 to be diced in a subsequent process. .
そして、このような大判基板60の表面(絶縁基板1の一方の第1面に相当)に貫通孔61よりも幅広で1次分割ラインL1に重なるようにAg系ペーストを印刷し、これを乾燥・焼成することにより、図16(b)に示すように、大判基板60の表面にチップ形成領域を挟んで対向する複数対の内部電極2を形成する。その際、Ag系ペーストが貫通孔61を横切るように印刷されるため、貫通孔61の内壁面にAg系ペーストが流れ込む。 Then, an Ag-based paste is printed on the surface of the large substrate 60 (corresponding to one first surface of the insulating substrate 1) so as to be wider than the through hole 61 and overlap the primary dividing line L1, and then dried. By baking, as shown in FIG. 16B, a plurality of pairs of internal electrodes 2 are formed on the surface of the large substrate 60 so as to face each other with the chip formation region interposed therebetween. At this time, since the Ag-based paste is printed so as to cross the through-hole 61, the Ag-based paste flows into the inner wall surface of the through-hole 61.
次に、大判基板60の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図16(c)に示すように、対をなす内部電極2間に跨る複数の抵抗体3を形成する。 Next, a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-sized substrate 60, dried, and fired, so that a plurality of resistances straddling the pair of internal electrodes 2 as shown in FIG. Form body 3.
次に、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、大判基板60の表面にガラスペーストをスクリーン印刷して乾燥・焼成することにより、各チップ形成領域を覆う図示せぬアンダーコート層を形成した後、このアンダーコート層の上から抵抗体3にトリミング溝を形成して抵抗値を調整する。しかる後、アンダーコート層の上からエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図16(d)に示すように、内部電極2と抵抗体3を含めて各チップ形成領域を覆う保護膜4を形成する。 Next, as a means for reducing damage to the resistor 3 when the trimming groove is formed, a glass paste is screen-printed on the surface of the large-sized substrate 60, dried and fired, and an unillustrated undercoat covering each chip formation region. After forming the coat layer, trimming grooves are formed in the resistor 3 from above the undercoat layer to adjust the resistance value. Thereafter, an epoxy resin paste is screen-printed from above the undercoat layer and heat-cured to cover each chip formation region including the internal electrode 2 and the resistor 3 as shown in FIG. A protective film 4 is formed.
次に、大判基板60を1次分割ラインL1に沿ってダイシングブレードで切断することにより、図16(e)に示すように、帯状の内部電極2が長手方向に沿って分断されて短冊状基板60Aが得られる。なお、このダイシングによる切断面、すなわち、短冊状基板60Aの幅方向両端面が絶縁基板1の第2面に相当する。 Next, by cutting the large substrate 60 with a dicing blade along the primary dividing line L1, as shown in FIG. 16 (e), the strip-like internal electrode 2 is divided along the longitudinal direction to form a strip-like substrate. 60A is obtained. Note that the cut surfaces by this dicing, that is, both end surfaces in the width direction of the strip-shaped substrate 60 </ b> A correspond to the second surfaces of the insulating substrate 1.
次に、短冊状基板60Aの幅方向両端面にNi−Cr等をスパッタすることにより、図16(f)に示すように、短冊状基板60Aの端面に外部電極11を形成した後、短冊状基板60Aを2次分割ラインL2に沿ってダイシングブレードで切断することにより、チップ抵抗器と外形をほぼ同じくする個々のチップ素子を得る。このダイシング時の切断面は絶縁基板1の第3面に相当するが、前述したように、内部電極2の材料であるAg系ペーストが貫通孔61の内部に流れ込んでいるため、チップ素子の切断面の長手方向両端部に内部電極2に導通する外部電極6が露出する。最後に、個々のチップ素子の外部電極6,11に対してNi,Sn等の電解メッキを施すことにより、図15に示すようなチップ抵抗器が完成する。 Next, by sputtering Ni—Cr or the like on both end surfaces in the width direction of the strip-shaped substrate 60A, as shown in FIG. 16 (f), the external electrode 11 is formed on the end surface of the strip-shaped substrate 60A. By cutting the substrate 60A with a dicing blade along the secondary dividing line L2, individual chip elements having substantially the same outer shape as the chip resistor are obtained. The cutting surface at the time of dicing corresponds to the third surface of the insulating substrate 1, but as described above, the Ag-based paste that is the material of the internal electrode 2 flows into the through hole 61. The external electrodes 6 that are electrically connected to the internal electrode 2 are exposed at both longitudinal ends of the surface. Finally, by applying electrolytic plating such as Ni and Sn to the external electrodes 6 and 11 of the individual chip elements, a chip resistor as shown in FIG. 15 is completed.
なお、第6実施形態例では、内部電極2の材料を貫通孔61の内部に流し込むことで外部電極6を形成したが、内部電極2の材料を貫通孔61の内部に流し込ませずに、短冊状基板60Aの幅方向両端面にNi−Cr等をスパッタすることによる回り込みによって外部電極6を形成するようにしても良い。 In the sixth embodiment, the external electrode 6 is formed by pouring the material of the internal electrode 2 into the through hole 61. However, the material of the internal electrode 2 is not poured into the through hole 61, The external electrode 6 may be formed by wrapping around by sputtering Ni—Cr or the like on both end faces in the width direction of the substrate 60A.
また、本発明は、上記した各実施形態例に限定されず、それ以外にも種々の変形例が可能である。例えば、図6に示す第3実施形態例において、絶縁基板1の第2面全体を覆うように外部電極を形成したり、第3面に形成された外部電極9,10と同一幅の外部電極を第2面にも形成するようにしても良い。 Further, the present invention is not limited to the above-described embodiments, and various modifications can be made other than that. For example, in the third embodiment shown in FIG. 6, an external electrode is formed so as to cover the entire second surface of the insulating substrate 1, or an external electrode having the same width as the external electrodes 9 and 10 formed on the third surface. May also be formed on the second surface.
1 絶縁基板
2 内部電極
3 抵抗体
4 保護膜
5,6,9,10,11,12 外部電極
7 内部電極
8 補助保護膜
20 回路基板
21 ランド
22 半田
30,40,50,60 大判基板
30A,40A,50A,60A 短冊状基板
41 分割溝
61 貫通孔
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2 Internal electrode 3 Resistor 4 Protective film 5, 6, 9, 10, 11, 12 External electrode 7 Internal electrode 8 Auxiliary protective film 20 Circuit board 21 Land 22 Solder 30, 40, 50, 60 Large format board 30A, 40A, 50A, 60A Strip substrate 41 Dividing groove 61 Through hole
Claims (5)
前記一対の第1面のいずれか一方に、所定間隔を存して対向する一対の内部電極と、これら内部電極間に跨る抵抗体と、この抵抗体を覆う絶縁性の保護膜とが設けられていると共に、前記一対の第1面と前記一対の第3面の長手方向両端部にそれぞれ前記内部電極と導通する外部電極が設けられており、前記第1面に設けられた前記外部電極の長手方向に沿う寸法が前記第3面に設けられた前記外部電極の長手方向に沿う寸法よりも小さく設定されていることを特徴とするチップ抵抗器。 Among the six surfaces constituting the rectangular parallelepiped insulating substrate made of ceramics, the two opposing surfaces having the largest area are the first surface, the two opposing surfaces adjacent to the short side of the first surface are the second surface, In the chip resistor having the two opposing surfaces adjacent to the long side of the first surface as the third surface,
One of the pair of first surfaces is provided with a pair of internal electrodes facing each other with a predetermined interval, a resistor straddling the internal electrodes, and an insulating protective film covering the resistor. In addition, external electrodes that are electrically connected to the internal electrodes are provided at both longitudinal ends of the pair of first surfaces and the pair of third surfaces, respectively, and the external electrodes provided on the first surface A chip resistor characterized in that a dimension along a longitudinal direction is set smaller than a dimension along a longitudinal direction of the external electrode provided on the third surface.
前記一対の第1面のいずれか一方に、所定間隔を存して対向する一対の内部電極と、これら内部電極間に跨る抵抗体と、この抵抗体を覆う絶縁性の保護膜とが設けられていると共に、前記一対の第3面の長手方向両端部に前記内部電極と導通する外部電極が設けられており、この外部電極が前記一対の第1面に設けられていないことを特徴とするチップ抵抗器。 Among the six surfaces constituting the rectangular parallelepiped insulating substrate made of ceramics, the two opposing surfaces having the largest area are the first surface, the two opposing surfaces adjacent to the short side of the first surface are the second surface, In the chip resistor having the two opposing surfaces adjacent to the long side of the first surface as the third surface,
One of the pair of first surfaces is provided with a pair of internal electrodes facing each other with a predetermined interval, a resistor straddling the internal electrodes, and an insulating protective film covering the resistor. In addition, external electrodes that are electrically connected to the internal electrodes are provided at both longitudinal ends of the pair of third surfaces, and the external electrodes are not provided on the pair of first surfaces. Chip resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015252290A JP6599759B2 (en) | 2015-12-24 | 2015-12-24 | Chip resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015252290A JP6599759B2 (en) | 2015-12-24 | 2015-12-24 | Chip resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017117952A JP2017117952A (en) | 2017-06-29 |
JP6599759B2 true JP6599759B2 (en) | 2019-10-30 |
Family
ID=59232019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015252290A Active JP6599759B2 (en) | 2015-12-24 | 2015-12-24 | Chip resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6599759B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3370685B2 (en) * | 1991-07-05 | 2003-01-27 | 松下電器産業株式会社 | Manufacturing method of square chip resistor |
JPH05144602A (en) * | 1991-11-19 | 1993-06-11 | Matsushita Electric Ind Co Ltd | Square-shaped chip resistor |
JPH0653003A (en) * | 1992-07-30 | 1994-02-25 | Rohm Co Ltd | Chip resistor |
JP2002208502A (en) * | 2001-01-12 | 2002-07-26 | Koa Corp | Chip resistor unit and method of manufacturing the same |
JP6357740B2 (en) * | 2013-08-27 | 2018-07-18 | Tdk株式会社 | Ceramic electronic components |
-
2015
- 2015-12-24 JP JP2015252290A patent/JP6599759B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017117952A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4358664B2 (en) | Chip resistor and manufacturing method thereof | |
JP6933453B2 (en) | Chip parts, mounting structure of chip parts, manufacturing method of chip resistors | |
JP5503034B2 (en) | Chip resistor | |
JP6499007B2 (en) | Chip resistor | |
JP5115968B2 (en) | Chip resistor manufacturing method and chip resistor | |
JP2011165752A (en) | Chip resistor | |
WO2016158240A1 (en) | Chip resistor | |
JP2007073693A (en) | Chip resistor and method of manufacturing same | |
JP2006339589A (en) | Chip resistor and method for manufacturing same | |
JP5706186B2 (en) | Chip resistor and manufacturing method thereof | |
JP6688025B2 (en) | Chip resistor and method of manufacturing chip resistor | |
JP6599759B2 (en) | Chip resistor | |
WO2017057248A1 (en) | Chip resistor | |
JP2009130147A (en) | Electronic chip component, and mounting method for electronic chip component | |
JP2006319260A (en) | Chip resistor | |
JP6170726B2 (en) | Manufacturing method of chip resistor | |
JP2017228701A (en) | Chip resistor and mounting structure of the same | |
WO2016121203A1 (en) | Chip resistor | |
JP6715002B2 (en) | Chip resistor mounting structure | |
JP2017059597A (en) | Chip resistor | |
JP6695415B2 (en) | Chip resistor | |
JP6159286B2 (en) | Chip resistor and manufacturing method of chip resistor | |
JP2015061034A (en) | Chip resistor | |
JP2003272901A (en) | Thick film resistor and its manufacturing method | |
JP6688035B2 (en) | Chip resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6599759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |