JP6598550B2 - 画像処理装置、撮像装置、画像処理方法およびプログラム - Google Patents

画像処理装置、撮像装置、画像処理方法およびプログラム Download PDF

Info

Publication number
JP6598550B2
JP6598550B2 JP2015148278A JP2015148278A JP6598550B2 JP 6598550 B2 JP6598550 B2 JP 6598550B2 JP 2015148278 A JP2015148278 A JP 2015148278A JP 2015148278 A JP2015148278 A JP 2015148278A JP 6598550 B2 JP6598550 B2 JP 6598550B2
Authority
JP
Japan
Prior art keywords
distance information
distance
image processing
amount
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015148278A
Other languages
English (en)
Other versions
JP2017028641A (ja
Inventor
文貴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015148278A priority Critical patent/JP6598550B2/ja
Publication of JP2017028641A publication Critical patent/JP2017028641A/ja
Application granted granted Critical
Publication of JP6598550B2 publication Critical patent/JP6598550B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、デフォーカス量(受光面とレンズの結像面との差)や被写体距離(撮像装置から被写体までの距離)などの、距離分布に関連するデータを生成する画像処理技術に関する。
撮像した複数枚の画像から被写体の距離情報を生成する処理では、画像間の対応する領域での視差や暈けの相関量を算出し、相関量から距離情報を取得することが行われている。暈けの異なる複数の画像を取得し、あるいは瞳分割型位相差検出方式を用いてデフォーカス量を検出する撮像装置がある。
特許文献1に開示の装置では、Depth From Defocus(DFD)方式でデフォーカス量を算出する。撮像光学系の撮影パラメータを制御することで取得した、暈けの異なる複数の画像にて測定対象画素およびその周辺画素を用いて互いの暈けの相関量が算出される。特許文献2に開示の装置では、画像の像ずれ量(視差量)から視差方式でデフォーカス量を算出する。画像を微小ブロックに分割した一対の画素データに対して、データを相対的にずらしながら相関値を演算し、最も相関が高くなるずらし量が視差量となる。さらに、算出したずらし量に対して、撮像素子の画素ピッチとレンズに応じて決定される変換係数を用いて被写体像面の予定結像面に対するデフォーカス量が算出される。
また、特許文献3では、DFD方式を用いて広い測距範囲を算出する方法が開示されている。DFD方式では、撮像装置から遠い距離にある被写体、または最短至近撮影距離近傍にある被写体に対する暈けの変化を判別しにくくなるので測距範囲には限界がある。そのため、通常では合焦位置が異なる2画像でDFDを行うところ、さらにもう1枚の合焦位置が異なる画像を取得して、3枚の画像の暈けの変化量からデフォーカス量を算出することで広い測距範囲を算出可能である。
特開2013−253964号公報 特開2008−15754号公報 特開2014−130131号公報
特許文献3に開示の方式でデフォーカス量および被写体距離(両者を併せて距離情報と呼ぶ)を算出する場合、デフォーカス量に対する距離分解能が異なるという課題が生じる。距離分解能とはデフォーカス量に対する相関量の変化量のことである。撮像装置から1mの距離にある第1の被写体(合焦被写体)と、2mの距離にある第2の被写体を例にして具体的に説明すると、合焦被写体近傍は暈けの変化を判別しやすいため距離分解能が高い。これに対し、合焦位置から遠い距離にある第2の被写体は暈けの変化を判別しにくくなるため、距離分解能が低い。撮像装置から1mの距離にある第1の被写体と2mの距離にある第2被写体では、それらの距離の区別がついたとしても、10mの距離にある第3の被写体と11mの距離にある第4の被写体では、距離差が同じ1mであっても区別がつかない可能性がある。また、視差方式においても同様の事が言えるため、特許文献3に開示された方式を視差方式に適用したとしてもデフォーカス量に対する距離分解能が異なるという課題が生じる。
本発明の目的は、被写体の距離分布に関連するデータを統合して、距離に対して距離分解能が同程度となる距離情報を生成することである。
本発明の一実施形態に係る画像処理装置は、撮影条件の異なる複数の画像を取得する取得手段と、前記取得手段により取得された前記複数の画像間の相関量を算出して被写体の距離分布に関連する複数の距離情報を生成する生成手段と、前記生成手段によって生成された前記距離情報ごとに決定される合成比率を用いて前記複数の距離情報を合成することにより、距離分解能を揃えた統合距離情報に統合する統合手段を有する。前記統合手段は、デフォーカス量の軸上の第1の領域で相対的に高く、前記軸上の第2の領域では前記第1の領域から離れるにつれて低くなる前記合成比率を決定して前記距離情報の合成を行う。
本発明の画像処理装置よれば、被写体の距離分布に関連するデータを統合して、距離に対して距離分解能が同程度となる距離情報を生成することができる。
本発明の第1実施形態のシステム構成を例示するブロック図である。 第1実施形態における被写体位置、合焦位置、演算対象画像の関係(フォーカスブラケット量が−1Fδの場合)を説明する図である。 第1実施形態における被写体位置、合焦位置、演算対象画像の関係(フォーカスブラケット量が−2Fδの場合)を説明する図である。 第1実施形態における距離情報のオフセット補正を説明する図である。 第1実施形態における合成比率を説明する図である。 第1実施形態におけるDFDのパラメータに対する合成比率の関係を説明する図である。 本発明の第2実施形態のシステム構成を例示するブロック図である。 DFD測距方式の説明図である。 視差測距方式の説明図である。 デフォーカス量から物体距離への変換を説明する図である。 瞳分割型撮像素子の構成例を説明する図である。 距離情報のオフセット補正を説明する図である。
以下、本発明の好適な実施形態について、添付図面を参照して説明する。各実施形態では、DFD測距方式、像面位相差方式または視差測距方式により、被写体の距離分布に関連するデータである、デフォーカスマップデータや距離マップデータを生成し、当該データを合成して統合する処理について説明する。なお、被写体の距離分布に関連するデータが示す情報(距離情報)は画像の奥行き方向に関する情報であり、画像内における被写体の距離値を直接的に表し、または距離値に対応する情報を間接的に表すものとする。
[第1実施形態]
本発明の第1実施形態について、図1から図6を参照して説明する。本実施形態では、異なる合焦位置で撮像した画像に対してDFD測距方式を用いて複数の距離情報を算出し、測距分解能が同程度となる距離情報を算出する例を説明する。図1は本実施形態に係る画像処理装置を適用した撮像装置100の構成例を示すブロック図である。撮像装置100の制御部はCPU(中央演算処理装置)を備え、メモリから読み出したプログラムを実行することにより、以下に説明する各種の処理を実現する。
撮像部101は撮像動作により、合焦位置の異なる複数枚の画像を取得する。画像選択部102は撮像部101が撮像した画像の中から後段の処理に用いる2枚の画像を選択する。2枚の画像は焦点位置の異なる画像である。DFD処理部103は、焦点位置の異なる2枚の画像を用いてDFD測距方式に基づいて距離情報を算出する。撮像部101、画像選択部102、DFD処理部103について図2、図8を参照して説明する。
図2は、撮像位置、被写体位置、合焦位置、演算対象画像の関係を説明する図である。撮像装置201に対して、撮影被写体202から205がそれぞれ異なる距離にあるものとする。撮像装置201に最も近い被写体を撮影被写体202とし、最も遠い被写体を撮影被写体205とする。撮影被写体202から205は、−3Fδから+3Fδに対応する距離範囲に存在している。Fは撮影時の絞り値を表し、δは撮像素子の許容錯乱円径(単位:mm)を表しており、1Fδを単位とする合焦のずれ量によって被写体までの距離を表現している。撮影時の合焦被写体を撮影被写体203とし、その距離情報を0Fδとする。また、撮像動作にて−3Fδから+3Fδの範囲に亘って、1Fδの単位で焦点位置を変化させることにより、合計7枚の画像が取得される。焦点位置の変化を、各々の焦点位置211から217で示す。また演算対象画像としてDFD処理に用いる2画像を、第1の画像(221+2・j)と第2の画像(222+2・j)でそれぞれ表しており、j=0〜5とする。白色の四角形で示した第1の画像(221+2・j)と、灰色の四角形で示した第2の画像(222+2・j)を使用してDFD処理が実行される。撮影被写体203に合焦した状態での第1の画像227と、当該状態から焦点位置を変更した状態での第2の画像228を用いてDFD処理で算出された距離情報を基準距離情報とする。
DFD測距方式について、図8を参照して具体的に説明する。以下では撮像光学系を第1の焦点位置に合わせて被写体を撮影したときに取得される画像を「第1の焦点画像」と呼び、続いて第2の焦点置に変更して同じ被写体を撮影したときに取得される画像を「第2の焦点画像」と呼ぶ。第1および第2の焦点画像は、暈けが異なる2枚の画像である。第1の焦点位置と第2の焦点位置との差であるフォーカス移動量を、フォーカスブラケット量と呼ぶ。なお、本明細書において、フォーカスブラケット量は像面の移動量、すなわち第1の焦点位置の像面と第2の焦点位置の像面との間の距離をさす。
図8(A−1)は第1および第2の焦点画像に関する、撮像光学系のPSF(Point Spread Function)特性801を例示する。横軸はデフォーカス量を表し、縦軸はPSF値を表す。実線のグラフ曲線802は第1の焦点画像の場合を例示し、第1の合焦位置をピークとしてなだらかに減少していく形状である。破線のグラフ曲線803は第2の焦点画像の場合を例示し、第2の合焦位置をピークとしてなだらかに減少していく形状である。
図8(B−1)は第1および第2の焦点画像に関する相関量を表す、PSFピーク値の比(以下、DFDスコアともいう)811を例示する。横軸はデフォーカス量を表し、縦軸はPSFピーク値の比を表す。比較のため、図8(A−1)のグラフ曲線802をグラフ曲線812として示し、グラフ曲線803をグラフ曲線813として示す。太線のグラフ曲線814はDFDスコアを表している。DFDスコアとデフォーカス量との対応関係から距離を算出可能である。なお、PSFピーク値の比を算出する際には、被写体の空間周波数等の影響を低減するために、バンドパスフィルタを使用する。画像における所定の帯域成分を通過させるバンドパスフィルタをかけた画像のスペクトル強度が用いられる。
DFDスコアは、2つのPSF値のうちでピーク値の大きい方を分母とすることで正規化して算出される。このためDFDスコアは、2つの焦点位置(第1および第2の合焦位置)の中間位置にピークを持ち、その値は1となる。またDFDスコアのグラフ曲線814は、2つの焦点位置の中間位置から離れるに従って値が低下していく対称な曲線となる。図8(C−1)はデフォーカス量に対する距離分解能を例示する。グラフ曲線821に示すように、距離分解能は2つの焦点位置の中間位置において高く、この位置から離れるに従って低くなる特性を持つ。
また、フォーカスブラケット量を変化させることによって、距離分解能と測距範囲が変化する。図8(A−2)、(B−2)、(C−2)は、フォーカスブラケット量を大きくした場合の特性を例示する。図8(A−2)は図8(A−1)と同様にPSF特性841を例示し、横軸はデフォーカス量を表し、縦軸はPSF値を表す。実線のグラフ曲線842は第1の焦点画像の場合を例示し、第1の合焦位置をピークとしてなだらかに減少していく形状である。破線のグラフ曲線843は第2の焦点画像の場合を例示し、第2の合焦位置をピークとしてなだらかに減少していく形状である。図8(B−2)は、図8(B−1)と同様にPSFピーク値の比を例示する。比較のため、図8(A−2)のグラフ曲線842をグラフ曲線852として示し、グラフ曲線843をグラフ曲線853として示す。フォーカスブラケット量を大きくすると、暈けの変化が大きくなるため、太線のグラフ曲線854に示すDFDスコア特性となる。グラフ曲線854は、図8(B−1)のグラフ曲線814に比べて、DFDスコアの傾きが急峻となる。その一方で、2画像間のPSFピークが離れてしまい、デフォーカス特性の落ち込んだ領域で相関演算した結果について正しく測距できないため、測距範囲が狭くなってしまう。他方、フォーカスブラケット量を小さくした場合には逆の特性となり、DFDスコアの傾きが緩やかになる一方で、測距範囲が広くなる。なお、どちらのデフォーカス特性で正規化したかにより、基準のフォーカス位置より手前側(カメラ側)か奥側かの区別も可能である。またレンズの公式を用いて、デフォーカス量を被写体までの物体距離に換算可能である。
図1のオフセット補正部104は、DFD処理部103の出力を取得してオフセット補正を行う。この補正は、DFD処理部103により算出された複数の距離情報の中から基準となる距離情報に合わせるためのオフセット量を用いて加算処理を行う補正である。オフセット補正処理について、図12を参照して説明する。図12は図2を簡略化して示しており、合焦位置とDFDスコアの特性を詳細に説明した図である。
図12(A)に示す撮像装置1201に対して、3つの撮影被写体1202から1204が異なる距離でそれぞれ位置している。撮影被写体1202を合焦被写体とし、撮影被写体1203、1204を非合焦被写体とする。合焦被写体とは撮像光学系の焦点が被写体に合っている場合の当該被写体であり、図12(A)の撮影被写体1202のデフォーカス量は0Fδである。非合焦被写体とは撮像光学系の焦点が被写体に合っていない場合の当該被写体である。図12(A)の撮影被写体1203のデフォーカス量を−1Fδとし、撮影被写体1204のデフォーカス量を−2Fδとして、各被写体に合焦させた画像を撮像するものとする。この場合のフォーカスブラケット量は−1Fδである。
焦点位置1211を第1の焦点位置とする撮影により取得される画像1221を第1の焦点画像とし、焦点位置1212を第2の焦点位置とする撮影により取得される画像1222を第2の焦点画像としてDFD演算が行われたとする。この場合、図12(B)に示すDFDスコア特性1231が得られる。横軸はデフォーカス量を表し、縦軸はDFDスコアを表しており、グラフ曲線1232がDFDスコアの変化を例示する。
次に、焦点位置1212を第1の焦点位置とする撮影により取得される画像1241を第1の焦点画像とし、焦点位置1213を第2の焦点位置とする撮影により取得される画像1242を第2の焦点画像としてDFD演算が行われたとする。この場合、図12(C)に示すDFDスコア特性1251が得られる。横軸はデフォーカス量を表し、縦軸はDFDスコアを表しており、点線のグラフ曲線1252がDFDスコアの変化を例示する。この場合、焦点位置1212を基準としてDFD演算を行っているため、撮影被写体1203のデフォーカス量が0Fδとなる。しかしながら、撮影被写体1202を合焦被写体として、グラフ曲線1232と1252のデータを合成する場合には、撮影被写体1203のデフォーカス量は0Fδではなく−1Fδとなる。このため、−1Fδ分のDFDスコアを補正する必要がある。実際にグラフ曲線1252のオフセット補正、すなわち−1Fδ分だけ補正したグラフ曲線1253を実線で示す。DFD演算時に0Fδとして測距された被写体は、−1Fδの位置にあるものとして補正されることになる。この処理を図2に示す被写体に対して行うと、図4に例示する特性となる。
図4(A)は、図2の画像227を第1の焦点画像とし、図2の画像228を第2の焦点画像として算出した場合のDFD特性401を例示する。横軸はデフォーカス量を表し、縦軸はDFDスコアを表しており、グラフ曲線402がDFDスコアの変化を例示する。図4(B)は、図2の画像221を第1の焦点画像とし、図2の画像222を第2の焦点画像として算出した場合のDFD特性411を例示する。横軸はデフォーカス量を表し、縦軸はDFDスコアを表しており、点線のグラフ曲線412がDFDスコアの変化を例示する。図4(C)は、図2の画像231を第1の焦点画像とし、図2の画像232を第2の焦点画像として算出した場合のDFD特性421を例示する。横軸はデフォーカス量を表し、縦軸はDFDスコアを表しており、点線のグラフ曲線422がDFDスコアの変化を例示する。
図4(A)から(C)に示すDFD特性はそれぞれの第1の焦点画像を基準としたDFD特性となる。このため、オフセット補正部104は、これらのDFDスコアに対して合焦被写体203に対応する合焦位置で0Fδとなるようにオフセット補正を行う。具体的には、図4(B)にて点線のグラフ曲線412は、第1の焦点画像221と第2の焦点画像222を用いて算出されたDFDスコアを表す。図2に示すように第1の焦点画像221は+3Fδに、第2の焦点画像222は+2Fδに焦点位置がそれぞれ移動したときの画像である。よって合焦被写体203に対応する合焦位置で0Fδとするために、+3Fδのオフセット補正が行われる。その結果、実線のグラフ線413で示すDFD特性へと補正される。同様に、図4(C)では、点線のグラフ曲線422に対して、−3Fδのオフセット補正が行われ、実線のグラフ曲線423で示すDFD特性へと補正される。
図1の合成比率決定部105は、オフセット補正部104の出力を取得し、複数の距離情報を用いて1つの距離情報を生成する際の合成比率を決定する。合成比率決定部105は、距離情報合成部106とともに距離情報の統合処理を行い、距離に対する画像間の相関量の精度差を小さくして距離分解能を揃えるための処理を実行する。図8で示したように、DFD特性はデフォーカス特性の中心座標における値をピークとしてなだらかに減少する特性となる。このため、1つの距離情報だけでは、焦点位置の中間では分解能の高い距離情報が得られるが、デフォーカスにつれて暈け量が大きくなるほど、その距離分解能が低下していく。つまり被写体距離に対して距離分解能が変化してしまうことになる。そこで合成比率決定部105は、算出された複数の距離情報に対して、隣り合う2つの焦点位置の間の中間位置での合成比率が相対的に高く、デフォーカスにつれて合成比率が相対的に低くなるような合成比率を設定する。これにより、どの被写体距離に対しても距離分解能が高い距離情報を取得することができる。この処理について図5を用いて説明する。図5(A)から(E)は合成比率の特性を例示し、横軸はデフォーカス量を表し、縦軸は合成比率を表す。
図5(A)に示す特性501は、図2の第1の焦点画像227と第2の焦点画像228を用いて算出された距離情報に対する合成比率を、グラフ線502で例示する。図5(B)に示す特性511は、図2の第1の焦点画像221と第2の焦点画像222を用いて算出された距離情報に対する合成比率を、グラフ線512で例示する。図5(C)に示す特性521は、図2の第1の焦点画像231と第2の焦点画像232を用いて算出された距離情報に対する合成比率を、グラフ線522で例示する。台形状のグラフ線502,512,522に示す各合成比率はオフセット補正部104がオフセット補正を行った距離情報に対する合成比率であり、値域は0から1の範囲である。
図5(D)は、各距離情報に対する合成比率をまとめた特性531を示す。グラフ線532が図5(C)のグラフ線522に、グラフ線534が図5(A)のグラフ線502に、グラフ線537が図5(B)のグラフ線512にそれぞれ相当する。合成比率の合計値が1を超えないようにするため、合成比率決定部105は下記式(1)に示す正規化を行った合成比率を用いる。
Figure 0006598550
式(1)にて、r(n,def)は各距離情報に対する合成比率であり、R(n,def)が正規化後の各距離情報に対する合成比率である。nはデフォーカス量に対する合成比率が距離情報の数だけ存在することを意味し、Σは1からnまでの和を求める演算記号である。図2に示す例では、7つの距離情報を算出しているため、nは7である。
図5(D)の特性531では、各距離情報に対する合成比率について同様の特性となっている場合を示している。これに限らず、図5(E)に示す特性541のように、各距離情報に対して合成比率の特性をそれぞれ変化させてもよい。グラフ線542に例示する特性は、グラフ線543に例示する特性に比べて横軸方向の幅(半値幅)が相対的に狭い。グラフ線543に例示する特性は、グラフ線544に例示する特性に比べて横軸方向の幅が相対的に狭い。グラフ線544に例示する特性と、グラフ線545に例示する特性とは横軸方向の幅が同程度である。グラフ線546に例示する特性は、グラフ線545に例示する特性に比べて横軸方向の幅が相対的に狭い。グラフ線547に例示する特性は、グラフ線546に例示する特性に比べて横軸方向の幅が相対的に狭い。一般的に、遠くの被写体に合焦した場合、被写体の暈けの変化量を判別しにくくなる。このため、合焦被写体から遠くなるにつれて、合成比率を高くする範囲を狭くするように設定が行われる。
図2では、フォーカスブラケット量を−1Fδとした設定例を説明したが、フォーカスブラケット量については任意に設定可能である。例えば図3に示すように、フォーカスブラケット量を−2Fδに設定してもよい。図3に示す撮像装置301、撮影被写体302から305の位置関係は図2と同じであり、各々の焦点位置311から317を示す。演算対象画像としてDFD処理に用いる2画像を、第1の画像(321+2・j)と第2の画像(322+2・j)でそれぞれ表しており、j=0〜4とする。
図6を参照して、フォーカスブラケット量の違いによるDFDスコア特性および合成比率の関係を説明する。図6(A)はフォーカスブラケット量が−1Fδに設定された場合の、DFDスコア特性601および合成比率特性621を例示する。図6(B)はフォーカスブラケット量が−2Fδに設定された場合の、DFDスコア特性631および合成比率特性641を例示する。図6(A)および(B)にて、上側のグラフ線602,632は、デフォーカス量に対するDFDスコアの変化をそれぞれ示し、下側のグラフ線622,642は、デフォーカス量に対する合成比率をそれぞれ示す。図8に示したように、DFD特性としてフォーカスブラケット量の大きさ(絶対値)を大きくすると、暈けの変化が大きくなるため、距離分解能が向上する。そのため、フォーカスブラケット量の大きさが大きい場合、フォーカスブラケット量の大きさが小さい場合よりも距離分解能が高いデフォーカス範囲が広がるので、グラフ線642のように合成比率を高くする範囲が広く設定される。ただし、フォーカスブラケット量の大きさを必要以上に大きくし過ぎると、距離分解能が向上する一方で、2画像間のPSFピーク値が離れてしまい測距範囲が狭くなってしまう。その際には、撮像画像の焦点位置の間隔を狭くして撮像すればよい。具体的には、図3の焦点位置311から317のそれぞれの間隔を、1Fδよりも小さい値に設定すればよい。
また、各合成比率についてはデフォーカス量に対してではなく、物体距離に対して設定してもよい。図10は撮像面距離から物面距離への変換を説明するための模式図である。図10の右方向を正方向とし、左側から合焦物体面1001、レンズ1002、撮像面1003を示す。撮像面位置1004は、矢印1005で示すデフォーカス量defに対応するデフォーカス状態での撮像面位置である。合焦物体距離1006をOBJ(0)とし、合焦像距離(合焦像物体に対する撮像面距離)1007をS(0)とし、測距対象の物体距離1008をOBJ(def)と表記する。OBJ(0)、OBJ(def)に対してレンズの公式から、下記式(2)、(3)が各々成立する。
Figure 0006598550
fはレンズ1002の焦点距離である。式(2)および(3)を変形してOBJ(def)を導出すると、下記式(4)が得られる。
Figure 0006598550
式(4)を用いて、デフォーカス量から被写体距離への変換処理が行われる。合成比率決定部105は被写体距離に対して合成比率を設定する。
図1の距離情報合成部106は、合成比率決定部105が算出した合成比率と、各距離情報を取得し、下記式を用いて合成処理を行う。
Figure 0006598550
ここで、score_out(def)は合成後の距離情報を表し、R(n,def)は合成比率決定部105が式(1)により算出した正規化後の合成比率を表す。score_in(n,def)は各距離情報を表す。
図1の出力部107は距離情報合成部106が合成した距離情報を、SDカード等の外部メモリに出力し、または通信IF(インタフェース)部を介して外部装置へ出力する。
本実施形態によれば、異なる合焦位置で撮像した画像に対してDFD測距方式を用いて算出した複数の距離情報を合成により統合し、どの距離にある被写体に対しても距離分解能が同程度となる距離情報を算出することができる。すなわち、距離に対する画像間の相関量の精度差を小さくすることにより距離分解能を揃えることができる。
なお、本実施形態ではDFD処理部103の入力画像として、焦点位置の異なる2画像を用いる例を説明したが、これに限ったものではない。例えば、絞り値の異なる2画像で暈けの変化をつけるアパーチャブラケット方式でDFD処理した距離情報を用いて同様の処理を行ってもよい。
[第2実施形態]
次に本発明の第2実施形態を説明する。本実施形態では視差測距方式への適用例を示す。つまり第2実施形態と第1実施形態との差異は、視差画像を用いた視差測距方式にある。異なる合焦位置で撮像された視差画像に対して視差測距方式を用いて複数の距離情報を算出する処理が実行され、複数の距離情報を合成することで測距分解能が揃った距離情報が算出される。図7は本実施形態に係る画像処理装置を適用した撮像装置700のシステム構成を例示するブロック図である。なお、撮影条件は第1実施形態にて説明した図2と同一である。
図7の撮像部701は合焦位置の異なる複数枚の画像のデータを出力する。複数枚の画像は視差画像であり、図11に例示した撮像部701により取得される。図11を参照して像面位相差方式による撮像素子の構成を説明する。
図11(A)は撮像素子の画素配列を示す正面図であり、画素部1100にて光電変換部を水平(左右)方向に2分割した形態を示す。画素部1100は、円形のマイクロレンズ1101と、一対の光電変換部1102,1103とから構成される。光電変換部1102、1103は、撮像光学系にて異なる瞳領域をそれぞれ通過する被写体からの光を受光してそれぞれ光電変換を行って電気信号を出力する。複数の画素部1100は二次元アレイ状に規則的に配列されている。また図11(B)は、画素部1110にて光電変換部を上下左右に4分割した形態を例示する正面図である。画素部1110は、円形のマイクロレンズ1115と、4つの光電変換部1111,1112,1113,1114から構成され、複数の画素部1110が二次元アレイ状に規則的に配列されている。
図7の画像選択部702は撮像部701が撮像した複数枚の画像の中から、後段の処理に用いる2枚の画像を選択し、画像データを視差測距処理部703に出力する。視差測距処理部703は、視差の発生した2枚の画像のデータを用いて距離情報を算出する。例えば、図11(A)の構成を有する撮像素子の場合、視差測距処理部703は一対の画像の相関関数を計算し、相関値からデフォーカス量を算出する。一対の画像とは、第1の光電変換部1102の出力信号から得られる第1の画像(A像)と、第2の光電変換部1103の出力信号から得られる第2の画像(B像)である。視差測距処理部703は以下の相関関数に基づいてデフォーカス量を計算する。その具体的処理について、図9を参照して説明する。図9(A)から(C)にて横軸は像ずれ量Lを表し、縦軸は画像間の相関量C(L)を表す。図9(A)は相関度が高い場合を例示し、図9(B)および(C)は相関度が低い場合を例示している。
撮像された画像の分割領域(微小ブロック)における一対の画素データを、E(1)〜E(m)と、F(1)〜F(m)として一般化して表現する。mはデータ数を表す自然数の変数である。第1のデータ系列E(1)〜E(m)は、例えばA像の画素データに対応し、第2のデータ系列F(1)〜F(m)はB像の画素データに対応する。第1のデータ系列E(1)〜E(m)に対し、第2のデータ系列F(1)〜F(m)を相対的にずらしながら、下記式(5)により相関量C(k)の演算が実行される。kは、2つのデータ列間の相対的シフト量、つまり像ずれ量を表し、その値は整数である。
C(k) = Σ | E(n) − F(n+k) | ・・・(5)
式(5)において、Σ演算はnについて和を求める演算である。Σ演算においてnおよびn+kのとり得る範囲は、1〜mの範囲に限定される。式(5)の演算の結果、一対のデータ系列の相関が高いシフト量(kjと記す)において相関量C(kj)が最小になる。相関量C(k)が小さいほど相関度が高い。図9(A)および(B)では、kj=2である。k値は整数であるので、相関量C(k)は離散的な量である。そこで、下記式(6)〜(9)を用いた3点内挿処理によって、連続的な相関量C(x)に対する最小値を与えるシフト量xが算出される。
x = kj+ D / SLOP ・・・(6)
C(x)= C(kj)−|D| ・・・(7)
D ={C(kj −1)− C(kj+1)} / 2 ・・・(8)
SLOP=MAX{C(kj+1)−C(kj),C(kj−1)−C(kj)} ・・・(9)
シフト量xは実数値をとる。式(6)で求めたシフト量xより、被写体像面の予定結像面に対するデフォーカス量(DEFと記す)を、下記式(10)で求めることができる。
DEF= KX ・PY ・x ・・・(10)
式(10)において、KXは一対の測距瞳を通過する光束の重心の開き角の大きさによって決まる変換係数である。一対の測距瞳とは、被写体からの光が撮像光学系にて異なる瞳領域をそれぞれ通過する際の、対をなす瞳部分領域である。PYは撮像素子の画素ピッチ(撮像素子を構成する画素の画素間距離)である。
図7の視差測距処理部703は、各焦点位置での距離情報に対応するデフォーカス量DEFを算出してオフセット補正部704に出力する。オフセット補正部704から出力部707は、第1実施形態にて説明した図1のオフセット補正部104から出力部107と同様の処理を行うため、それらの詳細な説明を割愛する。
本実施形態によれば、視差測距方式を用いて算出される複数の距離情報を合成することで、距離に対する画像間の相関量の精度差(距離情報に対する視差量の変化量)を小さくし、距離分解能の揃った距離情報を得ることができる。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100,700 画像処理装置
101,701 撮像部
102,702 画像選択部
103 DFD処理部
104,704 オフセット補正部
105,705 合成比率決定部
106,706 距離情報合成部
703 視差測距処理部

Claims (17)

  1. 撮影条件の異なる複数の画像を取得する取得手段と、
    前記取得手段により取得された前記複数の画像間の相関量を算出して被写体の距離分布に関連する複数の距離情報を生成する生成手段と、
    前記生成手段によって生成された前記距離情報ごとに決定される合成比率を用いて前記複数の距離情報を合成することにより、距離分解能を揃えた統合距離情報に統合する統合手段を有し、
    前記統合手段は、デフォーカス量の軸上の第1の領域で相対的に高く、前記軸上の第2の領域では前記第1の領域から離れるにつれて低くなる前記合成比率を決定して前記距離情報の合成を行う
    ことを特徴とする画像処理装置。
  2. 前記生成手段は、焦点位置または絞り値が異なる前記複数の画像間での暈けの相関量から前記距離情報を生成することを特徴とする請求項1に記載の画像処理装置。
  3. 前記相関量の精度は、前記距離情報に対する暈けの相関量の変化量であることを特徴とする請求項2に記載の画像処理装置。
  4. 前記統合手段は、
    前記合成比率を決定する決定手段と、
    前記決定手段により決定された前記合成比率を用いて前記複数の距離情報の合成を行う合成手段を有することを特徴とする請求項1から3のいずれか1項に記載の画像処理装置。
  5. 前記決定手段は、前記生成手段によって生成された複数の前記距離情報を取得して前記距離情報ごとに前記合成比率を決定することを特徴とする請求項4に記載の画像処理装置。
  6. 前記生成手段は、異なる焦点位置でそれぞれ撮像された画像から前記距離情報を算出し、
    前記決定手段は、複数の前記距離情報から基準となる基準距離情報を選択し、前記基準距離情報および前記基準距離情報とは異なる距離情報に対する合成比率をそれぞれ決定することを特徴とする請求項5に記載の画像処理装置。
  7. 前記合成比率の特性は、複数の焦点位置のうちで隣り合う第1の焦点位置と第2の焦点位置との間の中間位置での合成比率が相対的に高く、前記中間位置から離れるにつれて合成比率が相対的に低くなる特性であることを特徴とする請求項6に記載の画像処理装置。
  8. 前記基準距離情報に対する合成比率の特性は、前記基準距離情報とは異なる距離情報に対する合成比率の特性に比べて合成比率を高くする範囲が広いことを特徴とする請求項7に記載の画像処理装置。
  9. 前記決定手段は、前記第1の焦点位置の像面と前記第2の焦点位置の像面との間の距離に相当するフォーカスブラケット量に応じて前記合成比率の特性を変更することを特徴とする請求項7に記載の画像処理装置。
  10. 1のフォーカスブラケット量における前記合成比率の特性、前記第1のフォーカスブラケット量より大きい第2のフォーカスブラケット量における前記合成比率の特性に比べて、前記合成比率を高くする範囲が前記決定手段により狭く設定されることを特徴とする請求項9に記載の画像処理装置。
  11. 前記統合手段は、前記基準距離情報とは異なる距離情報に対して、前記基準距離情報との差に対応するオフセット量をそれぞれ加算する補正手段を備えることを特徴とする請求項6から10のいずれか1項に記載の画像処理装置。
  12. 前記生成手段は視差測距方式により、前記複数の画像間の視差量から前記距離情報を生成することを特徴とする請求項1に記載の画像処理装置。
  13. 前記相関量の精度は、前記距離情報に対する前記視差量の変化量であることを特徴とする請求項12に記載の画像処理装置。
  14. 請求項1から13のいずれか1項に記載の画像処理装置と、
    撮像光学系を通して被写体を撮像する撮像素子を備え、
    前記撮像素子の画素部は、前記撮像光学系にて異なる瞳領域をそれぞれ通過した光を受光して光電変換する複数の光電変換部を有することを特徴とする撮像装置。
  15. 前記距離情報は、デフォーカス量または当該デフォーカス量を物体距離に変換した情報であることを特徴とする請求項14に記載の撮像装置。
  16. 撮影条件の異なる複数の画像を処理する画像処理装置にて実行される画像処理方法であって、
    前記複数の画像を取得する取得ステップと、
    取得された前記複数の画像間の相関量を算出して被写体の距離分布に関連する複数の距離情報を生成する生成ステップと、
    前記生成ステップで生成された前記距離情報ごとに決定される合成比率を用いて前記複数の距離情報を合成することにより、距離分解能を揃えた統合距離情報に統合する統合ステップを有し、
    前記統合ステップでは、デフォーカス量の軸上の第1の領域で相対的に高く、前記軸上の第2の領域では前記第1の領域から離れるにつれて低くなる前記合成比率が決定されて前記距離情報の合成が行われる
    ことを特徴とする画像処理方法。
  17. 請求項16に記載の各ステップを画像処理装置のコンピュータに実行させるためのプログラム。
JP2015148278A 2015-07-28 2015-07-28 画像処理装置、撮像装置、画像処理方法およびプログラム Expired - Fee Related JP6598550B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148278A JP6598550B2 (ja) 2015-07-28 2015-07-28 画像処理装置、撮像装置、画像処理方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148278A JP6598550B2 (ja) 2015-07-28 2015-07-28 画像処理装置、撮像装置、画像処理方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2017028641A JP2017028641A (ja) 2017-02-02
JP6598550B2 true JP6598550B2 (ja) 2019-10-30

Family

ID=57946177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148278A Expired - Fee Related JP6598550B2 (ja) 2015-07-28 2015-07-28 画像処理装置、撮像装置、画像処理方法およびプログラム

Country Status (1)

Country Link
JP (1) JP6598550B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301414B2 (ja) * 2009-10-28 2013-09-25 京セラ株式会社 撮像装置
JP6288952B2 (ja) * 2013-05-28 2018-03-07 キヤノン株式会社 撮像装置およびその制御方法
JP6292790B2 (ja) * 2013-08-08 2018-03-14 キヤノン株式会社 距離検出装置、撮像装置および距離検出方法

Also Published As

Publication number Publication date
JP2017028641A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
US9208396B2 (en) Image processing method and device, and program
JP6608148B2 (ja) 距離情報生成装置、撮像装置、距離情報生成方法および距離情報生成プログラム
JP5173665B2 (ja) 画像撮影装置およびその距離演算方法と合焦画像取得方法
JP5832424B2 (ja) 撮像装置及び距離計測方法
CN109255810B (zh) 图像处理装置及图像处理方法
JP6489932B2 (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
JP7234057B2 (ja) 画像処理方法、画像処理装置、撮像装置、レンズ装置、プログラム、記憶媒体、および、画像処理システム
JP6071257B2 (ja) 画像処理装置及びその制御方法、並びにプログラム
JP7451120B2 (ja) 画像処理装置および画像処理方法、撮像装置、プログラム
US11347133B2 (en) Image capturing apparatus, image processing apparatus, control method, and storage medium
US9756304B2 (en) Image-acquisition apparatus for performing distance measurement using parallax
JP2020008415A (ja) 測距カメラ
JP2019168479A (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2016066995A (ja) 像ズレ量算出装置、撮像装置、および像ズレ量算出方法
JP6728020B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP6598550B2 (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
JP6415359B2 (ja) 焦点検出装置、撮像装置、焦点検出方法および焦点検出プログラム
JP7373297B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6625184B2 (ja) 焦点検出装置、撮像装置、焦点検出方法および焦点検出プログラム
JP6652294B2 (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体
JP2018022984A (ja) 画像処理装置及びその制御方法、プログラム並びに撮像装置
JP6608238B2 (ja) 画像処理装置、撮像装置、画像処理方法、プログラム
JP2023069386A (ja) 画像計測装置、方法およびプログラム
JP2017083401A (ja) 距離検出装置、撮像装置、および距離検出方法
JP2023145262A (ja) 画像処理装置、画像処理方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R151 Written notification of patent or utility model registration

Ref document number: 6598550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees