JP6593055B2 - 表面微細凹凸体とその照度曲線を求める方法 - Google Patents

表面微細凹凸体とその照度曲線を求める方法 Download PDF

Info

Publication number
JP6593055B2
JP6593055B2 JP2015182978A JP2015182978A JP6593055B2 JP 6593055 B2 JP6593055 B2 JP 6593055B2 JP 2015182978 A JP2015182978 A JP 2015182978A JP 2015182978 A JP2015182978 A JP 2015182978A JP 6593055 B2 JP6593055 B2 JP 6593055B2
Authority
JP
Japan
Prior art keywords
light
resin
fine unevenness
sheet
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015182978A
Other languages
English (en)
Other versions
JP2016066075A (ja
Inventor
麻子 安食
俊樹 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Publication of JP2016066075A publication Critical patent/JP2016066075A/ja
Application granted granted Critical
Publication of JP6593055B2 publication Critical patent/JP6593055B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光拡散シートに好適に使用される表面微細凹凸体と、その製造方法に関する。
微細な波状の凹凸からなる凹凸パターンが表面に形成されたシート状の表面微細凹凸体は、その光学的特性から、光拡散シートとして使用されることが知られている。
表面微細凹凸体の製造方法として、例えば特許文献1には、加熱収縮性フィルムからなる樹脂製の基材上に、樹脂製の硬質層を設けた積層シートを加熱し、加熱収縮性フィルムを収縮させることにより、硬質層を折り畳むように変形させて凹凸状にして、硬質層の表面に凹凸パターンを形成する方法が開示されている。
また、特許文献1には、加熱収縮性フィルムを収縮させた後、延伸を行うことにより、配向のばらつきが小さな凹凸パターンを形成できることが記載されている。このようなシートが光拡散シートとして好適に使用される。
特開2011−213051号公報
テレビ、コンピューター、携帯電話、スマートフォン、車載用表示装置等に使用されるプロジェクターやディスプレイ、コピー機やスキャナーにおいて、光拡散シートが使用されることがある。
特に、コピー機やスキャナーのLEDスキャナー光源ではLED等の光源からの光が、光拡散シートを備える、光学系の受光面に鉛直方向から入射しない場合もある。
本発明はそのような、鉛直方向に光が入射しないような光学系に使用されても十分な光学性能を発揮できるような光拡散シートに使用可能な表面微細凹凸体を提供することを目的とする。
本発明は以下の態様を有する。
[1]表面の少なくとも一部に微細凹凸が形成され、該微細凹凸に因る異方性を有する表面微細凹凸体であって、
低拡散方向において、該表面微細凹凸体に傾斜角50°で入射した光が出射光として拡散角度が20°以上を有する表面微細凹凸体。
[2]低拡散方向において、傾斜角50°入射時の全光線透過率が、傾斜角0°入射時の全光線透過率の70%以上である[1]に記載の表面微細凹凸体。
[3] 前記微細凹凸は、互いに非平行に蛇行する複数の凸条部と、前記複数の凸条部間の凹条部を有する波状の凹凸パターンを有し、さらに前記波状の凹凸パターン上に形成された複数の凹部または凸部を有する[1]または[2]に記載の表面微細凹凸体。
[4][1]から[3]のいずれかに記載の前記表面微細凹凸体が光拡散体用である表面微細凹凸体。
[5]傾斜角θ°(θ≠0)入射時の、互いに非平行に蛇行する複数の凸条部と、前記複数の凸条部間の凹条部を有する波状の凹凸パターンのみを有する表面微細凹凸体の照度曲線を得、傾斜角θ°(θ≠0)入射時の、複数の凹部または凸部のみを有する表面微細凹凸体の照度曲線を得、得られた二つの照度曲線を重畳して、前記波状の凹凸パターンおよび前記複数の凹部または凸部を有する表面微細凹凸体の照度曲線を近似的に求める方法。
本発明の表面微細凹凸体によれば、光拡散シートとして用いた場合に、コピー機やスキャナーのLEDスキャナー光源の光学系の中でシート面に対して鉛直方向に光が入射しないような状態で使用されても十分な光学性能を発揮できる効果を奏する。
本発明の実施形態の一例である表面微細凹凸体の微細凹凸を観察した光学顕微鏡写真である。 本発明の実施形態の一例である表面微細凹凸体の微細凹凸を観察したレーザー顕微鏡写真である。 図1の光学顕微鏡写真中のI−I’線に沿って切断した部分を模式的に示す拡大縦断面図である。 図1の表面微細凹凸体の光学顕微鏡写真からグレースケール画像を得て、前記画像をフーリエ変換したフーリエ変換画像である。 図4のフーリエ変換画像を模式的に示す模式図である。 図4の中心からA1の中で最大頻度となる点を通るように線L1−1を引き、線L1−1の頻度分布をプロットしたグラフである。 図4の中心からL1−1と直交する方向に線L1−2を引き、線L1−2の頻度分布をプロットしたグラフである。 図1の表面微細凹凸体の微細凹凸形成面を原子間力顕微鏡により観察し、その観察結果から得た、表面微細凹凸体の要部の縦断面図である。 凸部の平均高さを求める方法の説明図である。 凸部の平均高さを求める方法の説明図である。 従来の異方性が高い光拡散シートを用いた場合の出射光の投影像の形状を示すイメージ図である。 本発明による表面微細凹凸体を用いた場合の出射光の投影像の形状を示すイメージ図である。 図1の表面微細凹凸体を製造するための原版(表面微細凹凸体)の縦断面図である。 図13の原版(表面微細凹凸体)の製造方法を説明する断面図である。 傾斜角θi入射時の照度曲線の測定方法を示す断面図である。 傾斜角θi入射時の照度曲線を示す図である。 実施例の拡散シートにおける傾斜角θi(θi=0°、30°、及び50°)入射時のX方向の照度曲線を示す図である。 比較例1の拡散シートにおける傾斜角θi(θi=0°、30°、及び50°)入射時のX方向の照度曲線を示す図である。 比較例2の拡散シートにおける傾斜角θi(θi=0°及び50°)入射時のX方向(=Y方向)の照度曲線を示す図である。 比較例3の拡散シートにおける傾斜角θi(θi=0°及び50°)入射時のX方向の照度曲線を示す図である。 波状の凹凸パターンからなる微細凹凸体のX方向の縦断面図である。 比較例3の拡散シートにおける傾斜角θi(θi=0°及び50°)入射時のY方向の照度曲線を示す図である。 波状の凹凸パターンからなる微細凹凸体のY方向の縦断面図である。 実施例の拡散シートにおける傾斜角50°入射時のX方向の照度曲線の拡大図である。
以下、本発明を詳細に説明する。
<表面微細凹凸体>
図1は、本発明の表面微細凹凸体の一実施形態例である光拡散シート(光拡散体)の片面の光学顕微鏡写真(平面視;縦0.4mm×横0.5mmの視野部分を示す)であり、図2は、実施例1の光拡散シートの微細凹凸をレーザー顕微鏡(キーエンス社製「VK−8510」)で観察したレーザー顕微鏡写真である。図2中の線αは、前記光拡散シートを線βに沿って図中横方向に切断した切断面における高さプロファイルを示している。なお、図1と図2とでは、倍率が異なる。
図3は、図1の光学顕微鏡写真中のI−I’線(後述する凸条部と凹条部とが繰り返される方向に沿う線)に沿って切断した部分を模式的に示す拡大縦断面図である。なお、図3は、光拡散シートの縦断面形状の理解しやすさの観点から、単純化して示している。
本明細書において、「表面微細凹凸体」とは、表面に微細な凹凸構造を有する物品のことを意味する。
この例の光拡散シート10(表面微細凹凸体)は、図3に示すように、ポリエチレンテレフタレート(PET)からなる透明な基材11と、前記基材11の一方の面上に設けられた電離放射線硬化性樹脂の硬化物からなる透明な表面層12との2層構造であり、表面層12の露出している側の面に、波状の凹凸パターン13と、前記凹凸パターン13の上に形成された多数の凸部14とから構成された微細凹凸が形成されている。凸部14は、この例では、概略半球状に形成されている。また、この例では、基材11の露出している面(表面層12が設けられた方とは反対側の面)は、平滑面となっている。
微細凹凸における波状の凹凸パターン13は、図1中では縦方向に延び、図3中では紙面に対して垂直な方向に延びる複数の筋状の凸条部13aと、前記複数の凸条部13a間の凹条部13bとが、一方向(図1および2中横方向)に交互に繰り返されたものである。
各凸条部13aの縦断面形状は、図3に示すように、それぞれが基端側から先端側に向かって細くなる先細り形状である。
複数の凸条部13aは、図1に示すとおり、それぞれが蛇行しており、かつ、互いに非平行であり、不規則に形成されている。すなわち、各凸条部13aにおいて、稜線が蛇行し、各凹条部13bにおいて、谷線が蛇行している。また、隣接する凸条部13aの稜線の間隔が一定しておらず、隣接する凹条部13bの谷線の間隔が一定していない。
本明細書において、不規則であるとは、光拡散シート10を基材に対して法線方向から見た際に、凸条部13aが蛇行し、かつ互いに非平行であること、各凸条部13aの稜線が蛇行し、各凹条部13bの谷線が蛇行していること、また隣接する凸条部13aの稜線の間隔が一定せず、隣接する凹条部13bの谷線の間隔が一定していないことを意味する。
また、各凸条部13aにおいて稜線の高さが一定しておらず、各凹条部13bにおいて谷線の高さが一定していない。そのため、図3に示すように、各凸条部13aの縦断面形状は、それぞれ異なっており一律ではなく、不規則である。
微細凹凸は、このような波状の凹凸パターン13と、ランダムに分布した多数の凸部14とで、構成されている。
ここで、「凸条部13a」の稜線とは、凸条部13aの頂部をつないで続く線のことを意味する。
凸条部13aの稜線の途中に、凸部14が存在する場合は、凸部14の頂部を通るように引かれた線のことを指す。
図3に記載の基材11としては、機械的強度、寸法安定性に優れたPETの他、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンアクリレート、ポリスチレンなどの樹脂およびガラスなど、透明性を有する材料を使用できる。基材11の厚みは、例えば30〜500μmである。
表面層12としては、電離放射線硬化性樹脂の硬化物の他、熱硬化性樹脂の硬化物、熱可塑性樹脂等が挙げられる。電離放射線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂が挙げられる。表面層12の厚みは、波状の凹凸パターン13を形成するのに充分な厚みであればよく、最も厚い部分の厚みとして、10〜25μm程度であることが好ましい。また、表面層12の厚みは、表面層12を変形させる前の厚みのことを意味し、光学式非接触膜厚測定器を用いて測定することができる。
また、この例では、光拡散シート10の微細凹凸は、波状の凹凸パターン13と、多数の凸部14とから構成されているが、本発明の表面微細凹凸体の微細凹凸は、波状の凹凸パターンと、多数の凹部とから構成されていてもよい。
なお、光拡散シート10において、波状の凹凸パターン13の繰り返し方向(図1中横方向)を方向Y、前記方向Yと直交する方向(図1中縦方向)を方向Xという場合がある。
また本明細書では、このXY直交座標系において、第1の方向はY軸方向として、第2の方向はX軸方向という場合がある。また、XY軸に直交する方向を、第3の方向、または表面微細凹凸体の基材の法線方向と言うこともある。
図示例の光拡散シート10は、配光制御性能を発揮する観点から、波状の凹凸パターン13の最頻ピッチが3〜20μmとされている。波状の凹凸パターン13の最頻ピッチは、好ましくは7〜15μm、より好ましくは11〜13μmである。ピッチとは、隣り合う凸条部の頂部間の距離である。
最頻ピッチが上記範囲内であると、前記光拡散シート10に対して、微細凹凸が形成された面(以下、微細凹凸形成面という場合がある)または前記面と反対側の平滑面側から光を入射させた場合、入射面とは反対面からの出射光は、方向Y(広配光分布方向)に良好に配光する。
そして、図示例の光拡散シート10の微細凹凸は、上述のように広配光分布方向への配光を主に担う波状の凹凸パターン13に加えて、ランダムに形成された多数の凸部14を有している。光拡散シート10はこの波状の凹凸パターンに因る異方性を本質的に持っている。ところが、多数の凸部14により波状の凹凸パターン13の異方性が、適度に弱められる。その結果、前記光拡散シート10に対して、いずれか一方の面から光を入射させた場合、反対面からの出射光は、方向X(広配光分布方向に直交する方向)にも配光し、方向Yよりも小さい。
凸部14の見かけの最頻径は、1〜10μmが好ましく、より好ましくは3〜6μm、さらに好ましくは4〜5μmである。
凸部14の見かけの最頻径が上記範囲内であると、波状の凹凸パターン13の異方性を適度に弱めることができ、方向Yおよび方向Xの両方のFWHMを上記範囲に制御しやすく、たとえば、方向Yは好ましくは25〜30°、方向Xは好ましくは10〜15°に制御しやすい。
本明細書におけるFWHM(Full Width at Half Maximum)は、配光特性測定装置(例えば、GENESIA GonioFar Field Profiler(ジェネシア社製))を用いて以下の方法により測定できる。
まず、光拡散シート10に対して微細凹凸形成面と反対側の平滑面側から光を照射、入射させる。その際に、入射面とは反対面側から垂直に出光する出射光(出光角度=0°)の照度を基準値とし、方向Yに沿う出光角度−90°〜+90°の範囲内の出射光の照度を、上記基準値に対する相対値として、例えば1°おきに測定する。そして、各方向Yの出光角度に対する照度の値をプロットして照度曲線を得る。
前記照度曲線における半値幅(全半値幅)を広配光分布方向(方向Y)のFWHMという。また、方向Xに沿う出光角度−90°〜+90°の範囲内の出射光の照度を上記基準値に対する相対値として、例えば1°おきに測定する。そして、各方向Xの出光角度に対する照度の値をプロットして照度曲線を得る。前記照度曲線における半値幅(全半値幅)を広配光分布方向に直交する方向(方向X)のFWHMとする。
本明細書において、波状の凹凸パターン13の最頻ピッチ、凸部14の見かけの最頻径は、以下のように測定、定義される。
まず、表面微細凹凸体について、図1のような光学顕微鏡写真を得る。その際の観察視野は、縦0.4〜1.6mm、横0.5〜2mmとする。この画像がjpeg等の圧縮画像である場合は、これをグレースケールのTif画像に変換する。そして、フーリエ変換を行い、図4のようなフーリエ変換画像を得る。
また、図4のフーリエ変換画像の模式図を図5として示す。
ここで、図4において符号A1およびA2の白色部は、その形状に方向性があることから、波状の凹凸パターンのピッチの情報を含む。白色の輝度は頻度を示す(ただし中心点は除く)。一方、図4の白色円環Bは、その形状に方向性がないことから、多数の凸部の径の情報を含む。
そこで、図4の中心からA1の中で最大頻度となる点を通るように線L1−1を引き、線L1−1の頻度分布をプロットすると、図6のグラフが得られる。
また、図4の中心からL1−1と直交する方向に線L1−2を引き、線L1−2の頻度分布をプロットすると、図7のグラフが得られる。
図6において、頻度が高い1/XAが、光拡散シート10における、波状の凹凸パターンの最頻ピッチとなる。
また、図6および図7において、頻度が高い1/XB、1/YBが、光拡散シート10における、多数の凸部のそれぞれL1−1方向、L1−2方向の最頻径となる。すなわち、1/XAは波状の凹凸パターンの最頻ピッチ、(1/XB+1/YB)/2は多数の凸部の見かけの最頻径である。
なお、図4のフーリエ変換画像において、中心からの方位は、図1に存在する周期構造(凹凸パターン13)の方向を意味し、中心からの距離は、図1に存在する周期構造の周期の逆数を意味する。この例では、図1に示すように、波状の凹凸パターン13が図中横方向に繰り返されているため、フーリエ変換画像において中心からの図中横方向に延びる線L1−1において、最頻ピッチの逆数に相当する部分の輝度(頻度)が高くなっている。
また、図5中、XBは、線L1−1(図5では図示略)の円環を通る部分において、頻度が最大となる位置であり、また、図5中、YBは、線L1−2(図5では図示略)の円環を通る部分において、頻度が最大となる位置である。
図示例のような光学顕微鏡写真を少なくとも5枚撮影し、それぞれの写真について上記のように求めた最頻ピッチの平均値を波状の凹凸パターン13の「最頻ピッチ」と定義する。すなわち、「最頻ピッチ」とは、隣り合う凸条部の頂部間距離のうち、最も出現頻度が高い頂部間距離のことを指す。また、それぞれの写真について上記のように求めた見かけの最頻径の平均値を凸部14の「見かけの最頻径」と定義する。すなわち、「見かけの最頻径」とは、凹凸パターンの上に形成された凸部の直径のうち、最も出現頻度の高い直径のことを指す。
なお、表面微細凹凸体の微細凹凸は、凸部の代わりに、凹部を有していてもよく、凹部の「見かけの最頻径」も凸部の「見かけの最頻径」と同じ方法で求められる。
波状の凹凸パターン13を構成する凸条部13aの平均高さは、4〜7μmが好ましく、より好ましくは5〜6μmである。凸条部13aの平均高さが上記範囲であると、配光制御性能が充分に得られる。
本明細書において、波状の凹凸パターン13の凸条部13aの平均高さは、以下のように測定、定義される。
まず、光拡散シート10の微細凹凸形成面を原子間力顕微鏡により観察し、その観察結果から、方向Yに沿って波状の凹凸パターン13を切断した面について、図8のような縦断面図を得る。そして、凸部14が存在していない部分の凸条部13aの断面図から、前記凸条部13の高さHを求める。具体的には、凸条部13aの高さHは、前記凸条部13aの頂部Tと前記凸条部13aの一方側に位置する凹条部13bの底部B1との垂直距離をH1とし、前記凸条部13aの頂部Tと前記凸条部13aの他方側に位置する凹条部13bの底部B2との垂直距離をH2とした場合に、H=(H1+H2)/2で求められる。
このような計測を凸部14が存在していない凸条部13aの50箇所に対して行い、50のデータの平均値を「凸条部の平均高さ」と定義する。
一方、凸部14の平均高さは、0.5〜3μmが好ましく、より好ましくは1〜2μm、さらに好ましくは1.1〜1.5μmである。凸部14の平均高さが上記範囲であると、波状の凹凸パターン13の異方性を適度に弱めることができ、方向Yおよび方向Xの両方のFWHMを上記範囲に制御しやすい。
本明細書において、凸部14の平均高さは、以下のように測定、定義される。
まず、上述のようにして図8の断面図を得る。そして、図9に示すように、波状の凹凸パターン13に由来する形状と、凸部14に由来する形状とに波形分離する。なお、波形分離は、波状の凹凸パターン13に由来する形状をサインカーブとして行う。ついで、図9の断面図から、波状の凹凸パターン13に由来する形状を差し引き、図10に示すように、凸部14に由来する形状のみの断面図を得る。そして、図10の断面図において、凸部14の高さH’を、H’=(H1’+H2’)/2として求める。H1’は、図10の断面図において、凸部14の頂部T’と前記凸部14の一方側のベースラインLαとの垂直距離であり、H2’は、凸部14の頂部T’と前記凸部14の他方側のベースラインLβとの垂直距離である。
このような計測を50個の凸部14に対して行い、50のデータの平均値を「凸部の平均高さ」と定義する。
光拡散シート10の微細凹凸における凸部14の占有面積割合は、30〜70%が好ましく、より好ましくは40〜60%、さらに好ましくは45〜55%である。凸部14の占有面積割合が上記範囲であると、波状の凹凸パターン13の異方性を適度に弱めることができ、方向Yおよび方向Xの両方のFWHMを上記範囲に制御しやすい。
本明細書において、光拡散シート10における凸部14の占有面積割合γ(%)は、以下のように測定、定義される。
まず、図1(a)のような光学顕微鏡写真を得て、視野全体の面積S2(例えば縦0.4〜1.6mm、横0.5〜2mm)中に認められる凸部14の個数nを数え、視野全体において、n個の凸部14によって占有されている面積S1=nrπを求める。占有面積割合γ(%)は以下の式により求められる。
γ(%)=S1×100/S2(ただし、式中のrは、凸部の見かけの最頻径の1/2(すなわち半径)である。)
このように図示例の光拡散シート10は、その片面に、方向Yへの配光を主に担う特定の波状の凹凸パターン13と、前記波状の凹凸パターン13上に形成され、前記波状の凹凸パターン13の異方性を適度に弱め、方向Xの配光を増加させる多数の凸部14とから主に構成される微細凹凸を有している。
また、図示例の光拡散シート10の波状の凹凸パターン13を構成している凸条部13aは、互いに非平行で、かつ、それぞれが蛇行していて、規則性がない。そのため、凹凸パターン13の異方性が適度に弱められていて、凸部14が形成されていることによる効果とあいまって、方向XのFWHMを増加させる効果がより顕著に発現するものと考えられる。
方向XのFWHMを広げる方法としては、高屈折率粒子等を添加する方法も考えられる。
しかしながら、高屈折率粒子等の添加は、光拡散シートの光透過率を下げる傾向にある。これに対して、本発明のように微細凹凸を特定に制御することで方向XのFWHMを増加させる方法では、高屈折率粒子等を添加する必要がなく、また、添加する場合でも、その添加量を少量とできる。そのため、光透過率を高く維持できる。
このような図示例の光拡散シート10は、例えば、プロジェクター用の配光制御部材、テレビ、モニター、ノート型パーソナルコンピュータ、タブレット型パーソナルコンピュータ、スマートフォン、携帯電話等のバックライト用の配光制御部材等としても好適に使用される。
また、前記光拡散シート10は、コピー機等に使用される、LED光源を線状に配列したスキャナー光源において、導光部材の出射面を構成する配光制御部材等としても好適に使用される。
本発明の1つの態様は、前述の表面微細凹凸体の光拡散シート、または配光制御部材としての使用、もしくはその使用方法である。また、本発明の表面微細凹凸体を光拡散シート、または配光制御部材として用いる場合、その応用先としては、前述の通り、プロジェクター用や、パソコンや携帯電話等のバックライト用、または導光部材の出射面等の配光制御部材等が挙げられる。
<表面微細凹凸体の製造方法>
図示例の光拡散シート10(表面微細凹凸体)は、微細凹凸を表面に有する光拡散シート形成用原版(配光制御体形成用原版)を型として用い、前記光拡散シート形成用原版(以下、「原版」ともいう)の微細凹凸を転写する転写工程を有する方法により製造できる。
本発明の1つの態様は、前記表面微細凹凸体の光拡散シートや、配光制御部材を製造するための原版としての使用である。
図示例の光拡散シート10は、原版の微細凹凸を転写して1次転写品を得て、ついで、前記1次転写品の微細凹凸をさらに転写して得た2次転写品である。1次転写品の有する微細凹凸は、原版の微細凹凸の反転パターンであるが、2次転写品の微細凹凸は、原版の微細凹凸と同じパターンである。よって、この例では原版として、図示例の光拡散シート10と同じ微細凹凸を有する表面微細凹凸体を製造し、これを転写の型として2次転写を行い、図示例の光拡散シート10を製造している。
また、n次転写品において、nが偶数である場合には、前記転写品の有する微細凹凸は原版の微細凹凸と同じパターンであるが、nが奇数である場合には、前記転写品の有する微細凹凸は原版の微細凹凸の反転パターンとなる。そして、nが奇数であるn次転写品であって、かつ、転写に用いた原版の微細凹凸が凸部を有するものである場合、そのn次転写品(nが奇数)の微細凹凸は、凸部が反転した凹部を有するものとなる。すでに述べたとおり、本発明の表面微細凹凸体の具備する微細凹凸は、凸部の代わりに凹部を有する形態であってもよい。よって、本発明の表面微細凹凸体には、上述の原版と、原版のn次転写品(nが偶数)だけでなく、原版のn次転写品(nが奇数)も含まれる。
以下、2次転写品である図示例の光拡散シート10の製造方法について説明する。
[原版]
図示例の光拡散シート10を製造するにあたっては、まず、図13に示す表面微細凹凸体20を製造し、これを原版として用いる。前記原版は、樹脂からなる基材21と、前記基材21の片面全体に設けられた硬質層22とを有し、硬質層22の露出した側の表面が、図示例の光拡散シート10と同様の微細凹凸に形成されたものである。
硬質層22は、この例では、マトリクス樹脂22aと前記マトリクス樹脂22a中に分散した粒子22bとからなり、折り畳まれたように変形しているとともに、硬質層22の厚みt(粒子が存在しない部分の厚み)は粒子の粒径dよりも小さく設定されている。そのため、前記硬質層22は、折り畳まれたように変形したことにより形成された波状の凹凸パターン13’(凸条部13a’および凹条部13b’)と、硬質層22に分散した各粒子22bが硬質層22の表面側に突出することにより形成された凸部14’とからなる微細凹凸を有する。基材21における硬質層22との接触面は、折り畳まれたように変形した硬質層22の形状に追従した凹凸状となっている。
なお、硬質層22の厚みtとは、表面微細凹凸体20をその面方向に対して垂直に切った断面(縦断面)の顕微鏡写真から、硬質層22のうち粒子22bの存在しない部分を10カ所以上無作為に抽出して各部分の厚さを法線方向に測定した際の、得られた各数値の平均値である。
また、粒子22bの粒径dとは、均一に単分散している粒子について、レーザー回折・散乱式粒度分布分析装置で測定したモード径(最頻径)である。
このような図13の表面微細凹凸体20は、詳しくは後述するように、樹脂からなる基材フィルムの片面に、マトリクス樹脂中に粒子が分散した硬質層を設けて積層シートを形成する積層工程と、積層シートの少なくとも硬質層を折り畳むように変形させる変形工程とを有する方法により製造できる。この方法によれば、それぞれが蛇行し、互いに非平行で、不規則な凸条部13a’を形成できる。また、各凸条部13a’の縦断面は、基端側から先端側に向かって先細り形状になる。
図13の表面微細凹凸体20においては、基材21を構成する樹脂のガラス転移温度Tg1よりも、マトリクス樹脂22aのガラス転移温度Tg2が、10℃以上高いことが必要である。また、粒子22bは、基材21を構成する樹脂のガラス転移温度より10℃高い温度未満の温度では、熱により粒子形状が変化しない材料からなることが必要である。
ここで「粒子形状が変化しない」とは、加熱前後で粒子の形、及び粒子径が変化しないことを意味する。
すなわち、基材21を構成する樹脂と、マトリクス樹脂22aとにおいては、これらのガラス転移温度の差(Tg2−Tg1)が10℃以上となるように選択されることが必要であり、前記差は20℃以上が好ましく、30℃以上がより好ましい。(Tg2−Tg1)が10℃以上であると、Tg2とTg1の間の温度で、容易に、後述の変形工程において加熱収縮などの加工が行える。また、Tg2とTg1の間の温度を加工温度とすると、基材のヤング率がマトリクス樹脂22aのヤング率より高くなる条件で加工でき、その結果、後述の変形工程において、硬質層22に波状の凹凸パターン13’を容易に形成できる。加工温度とは、変形工程で少なくとも硬質層22を折り畳むように変形させる際の温度(例えば熱収縮時の加熱温度。)のことである。
また、Tg2が400℃を超えるような樹脂を使用する必要性は経済面から乏しく、Tg1が−150℃より低い樹脂は存在しないことから、(Tg2−Tg1)は550℃以下であることが好ましく、200℃以下であることがより好ましい。すなわち、本発明の1つの態様において、(Tg2−Tg1)は、10〜550℃が好ましく、30〜200℃がより好ましい。なお、後述の変形工程の加工温度における基材21とマトリクス樹脂22aとのヤング率の差は、波状の凹凸パターン13’を容易に形成できることから、0.01〜300GPaであることが好ましく、0.1〜10GPaであることがより好ましい。
ヤング率は、JIS K 7113−1995に準拠して測定した値である。
Tg1は−150〜300℃であることが好ましく、−120〜200℃であることがより好ましい。Tg1が−150℃より低い樹脂は存在せず、Tg1が300℃以下であれば、上述の加工温度まで、容易に昇温、加熱できる。
上述の加工温度における、基材21を構成する樹脂のヤング率は0.01〜100MPaであることが好ましく、0.1〜10MPaであることがより好ましい。基材21を構成する樹脂のヤング率が0.01MPa以上であれば、基材として使用可能な硬さであり、100MPa以下であれば、硬質層22が変形する際に同時に追従して変形することが可能な軟らかさである。
粒子22bを構成する材料には、基材21を構成する樹脂のガラス転移温度より10℃高い温度未満では、熱により粒子形状が変化しない材料の1種以上を用いることができる。
例えば、粒子22bを構成する材料が、ガラス転移温度を有する樹脂およびガラス転移温度を有する無機材料からなる群から選ばれる1種以上である場合、そのガラス転移温度Tg3が、マトリクス樹脂のガラス転移温度Tg2と同様の条件を満たすこと、すなわち、(Tg3−Tg1)が10℃以上となるように選択されることが必要であり、(Tg3−Tg1)は20℃以上がより好ましく、30℃以上が更に好ましい。(Tg3−Tg1)が10℃以上であると、上述の加工温度において、粒子22bが変形した溶融したりせず、確実に凸部14’を形成する。
粒子22bを構成する材料が、ガラス転移温度を有さない材料、例えば内部架橋型樹脂などである場合には、そのビカット軟化温度(JIS K7206に規定)が、上述の条件を満たすこと、すなわち、基材21を構成する樹脂のガラス転移温度より10℃以上高いことが好ましく、20℃以上高いことが好ましく、30℃以上高いことがより好ましい。
なお、本明細書において、ガラス転移温度Tg3についての好ましい温度範囲などの記載は、粒子22bがガラス転移温度を有さず、ビカット軟化温度を有する材料からなる場合、そのビカット軟化温度にも該当するものとする。
さらに、粒子22bを構成する材料としては、ガラス転移温度、ビカット軟化温度が測定できないものであっても、基材21を構成する樹脂のガラス転移温度Tg1より10℃高い温度未満において、熱により粒子形状が変化しない材料であれば、本発明において使用可能である。
Tg2およびTg3は、40〜400℃であることが好ましく、80〜250℃であることがより好ましい。Tg2およびTg3が40℃以上であれば、上述の加工温度を室温またはそれ以上にすることができて有用であり、Tg2が400℃を超えるようなマトリクス樹脂22aやTg3が400℃を超えるような粒子22bを使用することは、経済性の面から必要性に乏しい。
上述の加工温度におけるマトリクス樹脂22aのヤング率は0.01〜300GPaであることが好ましく、0.1〜10GPaであることがより好ましい。マトリクス樹脂22aのヤング率が0.01GPa以上であれば、基材21を構成する樹脂の加工温度におけるヤング率より充分な硬さが得られ、波状の凹凸パターン13’が形成された後、前記凹凸パターン13’を維持するのに充分な硬さである。ヤング率が300GPaを超えるような樹脂をマトリクス樹脂22aとして使用することは、経済性の面から必要性に乏しい。
基材21を構成する樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、スチレン−ブタジエンブロック共重合体等のポリスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリジメチルシロキサン等のシリコーン樹脂、フッ素樹脂、ABS樹脂、ポリアミド、アクリル樹脂、ポリカーボネート、ポリシクロオレフィンなどの樹脂が挙げられる。
このうち、収縮後に所望の凹凸形状が得られやすいというから、ポリエステル、ポリカーボネートが好ましい。
また、前記樹脂としては、質量平均分子量が、1000〜100万のものがより好ましい。1万〜10万のものがより好ましい。前記質量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、測定した値のことを指す。具体的な測定条件として、溶離液としては、テトラヒドロフラン、クロロホルム、ヘキサフルオロイソプロパノール等から適宜選択したものを用いることできる。また、分子量の標準物質としては、既知の分子量のポリスチレン、ポリメチルメタクリレート等から適宜選択したものを用いることができる。また、測定温度としては、35〜50℃の範囲で適宜選択できる。
マトリクス樹脂22aとしては、そのガラス転移温度Tg2が上述の条件を満たすように、基材21の種類等に応じて選択され、例えば、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン−アクリル共重合体、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、フッ素樹脂などを使用することができる。
これらの中でも透明性の点では、アクリル樹脂が好ましい。
また、前記マトリクス樹脂としては、質量平均分子量が1000〜1000万のものが好ましく、1万〜200万のものがより好ましい。前記質量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、測定した値のことを指す。具体的な測定条件として、溶離液としては、テトラヒドロフラン、クロロホルム、ヘキサフルオロイソプロパノール等から適宜選択したものを用いることができる。また、分子量の標準物質としては、既知の分子量のポリスチレン、ポリメチルメタクリレート等から適宜選択したものを用いることができる。また、測定温度としては、35〜50℃の範囲で適宜選択できる。
マトリクス樹脂22aは単独で使用してもよいが、波状の凹凸パターンの最頻ピッチ、平均高さおよび配向度を調整するなどの目的に応じて適宜併用してもよい。例えば、同種ではあるがガラス転移温度の異なる樹脂を併用したり、異なる種類の樹脂を併用したりできる。
粒子22bを構成する樹脂としては、そのガラス転移温度Tg3(またはビカット軟化点)が上述の条件を満たすように、基材21の種類等に応じて選択され、例えば、アクリル系熱可塑性樹脂粒子、ポリスチレン系熱可塑性樹脂粒子、アクリル系架橋型樹脂粒子、ポリスチレン系架橋型樹脂粒子などが挙げられる。また、無機材料としては、ガラスビーズなどが挙げられる。
基材21の厚みは30〜500μmであることが好ましい。基材の厚みが30μm以上であれば、製造された原版が破れにくくなり、500μm以下であれば、原版を容易に薄型化できる。なお、基材21の厚みとは、図13の表面微細凹凸体(原版)20をシート面に対して垂直に切った断面(縦断面)の顕微鏡写真から、10カ所以上無作為に抽出して基材21の厚さを測定した際の、得られた各数値の平均値である。
また、基材21を支持するために、厚さ5〜500μmの樹脂製の支持体を別途設けてもよい。
硬質層22の厚みtは、0.05μmを超え5μm以下であることが好ましく、0.1〜2μmであることがより好ましい。硬質層22の厚みtが0.05μmを超え5μm以下であれば、配光制御体として好適な波状の凹凸パターン13’を形成できる。また、基材21と硬質層22との間には、密着性の向上やより微細な構造を形成することを目的として、プライマー層を形成してもよい。
粒子22bの粒径dは、硬質層22の厚みtより大きいことが必要であり、硬質層22の厚みtに応じて設定される。また、図13の表面微細凹凸体20を原版として用いて製造された図示例の光拡散シート10の凸部14の見かけの最頻径が、上述の好適な範囲となるように、適宜設定される。好ましい粒径dは、例えば、5〜10μmで、より好ましくは5〜8μmである。
なお、図13の表面微細凹凸体20は、原版ではなく配光制御体として使用することもできる。その場合には、前記表面微細凹凸体20が配光制御体としての機能を充分に奏するように、基材21、マトリクス樹脂22a、粒子22bに用いる材料に透明材料を用いる。
[原版の製造方法]
図13の表面微細凹凸体20は、図14のような積層シート30、すなわち、樹脂からなる基材フィルム31の片面(平坦な面)に、マトリクス樹脂、及び前記マトリクス樹脂中に分散した粒子22bからなり、0.05μmを超え5.0μm以下の厚みを有する硬質層32を設けた積層シート30を形成する積層工程と、積層シート30の少なくとも硬質層32を折り畳むように変形させる変形工程とを有する方法により製造できる。ここで基材フィルム31は、図13の表面微細凹凸体20の基材21に相当する。また、ここで平坦とは、JIS B0601に記載の中心線平均粗さ0.1μm以下の面である。
(積層工程)
積層工程では、まず、マトリクス樹脂22aと粒子22bと溶媒とを含む塗工液(分散液または溶液)を調製し、前記塗工液を基材フィルム31の片面にスピンコーターやバーコーター等により塗工して乾燥させ、図14のように、厚みt’が0.05μmを超え、5.0μm以下である硬質層32を形成する。この時点での硬質層32は、折り畳むように変形していない。
硬質層32は、このように塗工液を基材フィルム31に直接塗工して設ける代わりに、あらかじめ作製した硬質層(マトリクス樹脂中に粒子が分散してなるフィルム)を基材フィルムに積層する方法で設けてもよい。
基材フィルム31は、樹脂からなる一軸方向加熱収縮性フィルムであることが好ましい。前記一軸方向加熱収縮性フィルムを用いると、次の変形工程において積層シート30を加熱することにより、容易に、硬質層32を折り畳むように変形し、波状の凹凸パターン13’を形成できる。また、この方法によれば、それぞれが蛇行し、互いに非平行となる
不規則な凸条部13a’を形成できる。
一軸方向加熱収縮性フィルムを構成する樹脂としては、基材21を構成する樹脂としてすでに例示したとおりである。具体的には、ポリエチレンテレフタレート系シュリンクフィルム、ポリスチレン系シュリンクフィルム、ポリオレフィン系シュリンクフィルム、ポリ塩化ビニル系シュリンクフィルムなどのシュリンクフィルムが好ましく使用できる。
これらのシュリンクフィルムの中でも、一軸方向において、50〜70%収縮するものが好ましい。50〜70%収縮するシュリンクフィルムを用いれば、変形率を50%以上にでき、その結果、好適な最頻ピッチ、凸条部13a’の高さの波状の凹凸パターン13’を形成できる。
ここで、変形率とは、(変形前の長さ−変形後の長さ)×100/(変形前の長さ)(%)のことである。あるいは、(変形した長さ)×100/(変形前の長さ)(%)のことである。
また、このように基材フィルム31として一軸方向加熱収縮性フィルムを用い、次の変形工程でこれを熱収縮させる場合には、より容易に凹凸パターン13’を形成できることから、マトリクス樹脂22aのヤング率を0.01〜300GPaにすることが好ましく、0.1〜10GPaにすることがより好ましい。
塗工液に用いるマトリクス樹脂22aおよび粒子22bを構成する樹脂としては、それぞれすでに例示したものを使用できるが、マトリクス樹脂22aのガラス転移温度Tg2と、粒子22bのガラス転移温度Tg3とが、基材フィルム31のガラス転移温度Tg1よりも10℃以上高くなるように各材質を選択し、組み合わせることが重要である。このようにそれぞれの材質を選択したうえで、厚みt’が0.05μmを超え5.0μm以下である硬質層32を一軸方向加熱収縮性フィルム(基材フィルム31)の片面に設けた積層シート30を用いると、次の変形工程を経ることにより、最頻ピッチが3〜20μmであり、凸条部13a’の平均高さが4〜7μmである波状の凹凸パターン13’が形成さ
れやすい。
塗工液に用いる溶媒としては、マトリクス樹脂22aの種類にもよるが、マトリクス樹脂22aが例えばアクリル系樹脂の場合、メチルエチルケトンおよびメチルイソブチルケトンなどのうちの1種以上を使用できる。
塗工液中のマトリクス樹脂22aの濃度は、正味量(固形分量)として、5〜10質量%であることが塗工性の点で好ましい。また、粒子22bの量は、マトリクス樹脂22aの正味量100質量部に対して、10〜50質量部であることが好ましく、20〜30質量部であることがより好ましい。このような範囲であると、形成される微細凹凸における凸部14a’または凹部の占有面積割合を上述の好適な範囲内に制御することができる。
ここで正味量(固形分量)とは、塗工液の質量(100質量%)に対して、前記塗工液中の溶媒が揮発した後に残る固形分の質量の比率のことをいう。
なお、積層工程で形成される硬質層32の厚みt’は、0.05μmを超え5.0μm以下の範囲内であれば、連続的に変化していても構わない。その場合、変形工程により形成される凹凸パターンのピッチおよび深さが連続的に変化するようになる。硬質層32の厚みt’は、次の変形工程を経てもほとんど変化せず、t’=tと考えることができる。
(変形工程)
上述のようにして得られた積層シート30を加熱して、積層シート30の基材フィルム31を熱収縮させることにより、図13の表面微細凹凸体20が得られる。なお、変形工程としては、例えば、日本国特許第4683011号公報等に開示の公知の方法を採用できる。
加熱方法としては、熱風、蒸気、熱水または遠赤外線中に通す方法等が挙げられ、中でも、均一に収縮させることができることから、熱風または遠赤外線に通す方法が好ましい。
基材フィルム31を熱収縮させる際の加熱温度(加工温度)は、Tg2とTg1の間の温度とすることが好ましく、具体的には、使用する基材フィルム31の種類および目的とする凹凸パターン13’のピッチ、凸条部13a’の高さ等に応じて適宜選択することが好ましい。
この製造方法では、硬質層22の厚さが薄いほど、また、硬質層22のヤング率が低いほど、凹凸パターン13’の最頻ピッチが小さくなり、また、基材フィルム31の変形率が高いほど、凸条部13a’の高さが大きくなる。したがって、凹凸パターン13’の最頻ピッチおよび凸条部13a’の高さを所望の値にするためには、前記条件を適宜選択する必要がある。
なお、図13のような構成の表面微細凹凸体20は、下記(1)〜(4)の方法で製造することもできる。
(1)平坦な基材フィルムの片面の全部に、未変形の硬質層を設けて積層シートを形成し、積層シート全体を表面に沿った一方向に圧縮する方法。
基材フィルムのガラス転移温度が室温未満の場合、積層シートの圧縮は室温で行い、基材フィルムのガラス転移温度が室温以上の場合、積層シートの圧縮は、基材のガラス転移温度以上、硬質層のガラス転移温度未満で行う。
(2)平坦な基材フィルムの片面の全部に、未変形の硬質層を設けて積層シートを形成し、積層シートを一方向に延伸し、延伸方向に対する直交方向を収縮させて、硬質層を表面に沿った一方向に圧縮する方法。
基材フィルムのガラス転移温度が室温未満の場合、積層シートの延伸は室温で行い、基材フィルムのガラス転移温度が室温以上の場合、積層シートの延伸は、基材フィルムのガラス転移温度以上、硬質層のガラス転移温度未満で行う。
(3)未硬化の電離放射線硬化性樹脂により形成された平坦な基材フィルムに、未変形の硬質層を積層して積層シートを形成し、電離放射線を照射して基材フィルムを硬化させることにより収縮させて、基材フィルムに積層された硬質層を表面に沿った少なくとも一方向に圧縮する方法。
(4)溶媒を膨潤させて膨張させた平坦な基材フィルムに、未変形の硬質層を積層して積層シートを形成し、基材フィルム中の溶媒を乾燥し、除去することにより収縮させて、基材フィルムに積層された硬質層を表面に沿った少なくとも一方向に圧縮する方法。
(1)の方法において、積層シートを形成する方法としては、例えば、平坦な基材フィルムの片面に、粒子を含む樹脂の溶液または分散液をスピンコーターやバーコーター等により塗工し、溶媒を乾燥させる方法、平坦な基材フィルムの片面に、あらかじめ作製した硬質層を積層する方法などが挙げられる。積層シート全体を表面に沿った一方向に圧縮する方法としては、例えば、積層シートの一端部とその反対側の端部とを、万力等により挟んで圧縮する方法などが挙げられる。
(2)の方法において、積層シートを一方向に延伸する方法としては、例えば、積層シートの一端部とその反対側の端部とを、引っ張って延伸する方法などが挙げられる。
(3)の方法において、電離放射線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが挙げられる。
(4)の方法において、溶媒は基材フィルムを構成する樹脂の種類に応じて適宜選択される。溶媒の乾燥温度は溶媒の種類に応じて適宜選択される。
(1)〜(4)の方法における硬質層においても、すでに例示した([0110]段)ものと同様の成分を用いることができ、同様の厚さとすることができる。また、積層シートの形成方法は、すでに記載の方法([0103]、[0104]段)と同様に、基材フィルムの片面に塗工液を塗工し、溶媒を乾燥させる方法、基材フィルムの片面に、あらかじめ作製した硬質層を積層する方法を適用できる。
[原版を用いた転写による表面微細凹凸体の製法]
図13の表面微細凹凸体20を原版として用いて、図示例の光拡散シート10を製造する場合には、前記表面微細凹凸体(原版)20の微細凹凸を他の材料に転写する転写工程を行う。この例では、前記表面微細凹凸体(原版)20の硬質層22の表面に形成された微細凹凸を他の材料に転写し、原版の微細凹凸の反転パターンを表面に有する1次転写品を得て、次いで、前記1次転写品の反転パターンを他の材料に転写し、2次転写品である図示例の光拡散シート10を得る。転写工程としては、例えば、日本国特許第4683011号公報等に開示の公知の方法を採用できる。
本発明の1つの態様は、前述の表面微細凹凸体を原版として用いた、表面微細凹凸体の製造方法である。
具体的には、原版である図13の表面微細凹凸体20の微細凹凸に対して、離型剤を含む未硬化の電離放射線硬化性樹脂を例えば3〜30μmの厚さに収まるように、Tダイコーター、ロールコーター、バーコーターなどのコーターで塗布し、電離放射線を照射して硬化させた後、原版を剥離して、1次転写品を得る。1次転写品は、原版の微細凹凸の反転パターンを有する。一方、PETからなる透明な基材11を用意し、その片面に、未硬化の電離放射線硬化性樹脂を微細凹凸を充分に覆う厚さで塗布する。そして、塗布された未硬化の電離放射線硬化性樹脂の層に対して、先に得られた1次転写品の反転パターンを有する面を押し当て、電離放射線を照射して硬化させた後、1次転写品を剥離する。電離放射線の照射は、1次転写品側、透明なPET基材側のうち、電離放射線透過性を有するいずれか一方側から行えばよい。これにより、PETからなる透明な基材11と、その片面上に形成された電離放射線硬化性樹脂硬化物の表面層12とからなり、表面層12の表面に微細凹凸が形成された図1および図3の光拡散シート(2次転写品)10が得られる。
電離放射線硬化性樹脂としては、紫外線硬化性樹脂、電子線硬化性樹脂などが挙げられる。照射する電離放射線の種類は、樹脂の種類に応じて適宜選択する。電離放射線としては、一般には紫外線および電子線を意味することが多いが、本明細書においては、可視光線、X線、イオン線等も含む。
未硬化の電離放射線硬化性樹脂としては、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニル/アクリレート、ポリエン/アクリレート、シリコンアクリレート、ポリブタジエン、ポリスチリルメチルメタクリレート等のプレポリマー、脂肪族アクリレート、脂環式アクリレート、芳香族アクリレート、水酸基含有アクリレート、アリル基含有アクリレート、グリシジル基含有アクリレート、カルボキシ基含有アクリレート、ハロゲン含有アクリレート等のモノマーの中から選ばれる1種類以上の成分を含有するものが挙げられる。未硬化の電離放射線硬化性樹脂は溶媒等で希釈することが好ましい。未硬化の電離放射線硬化性樹脂には、フッ素樹脂、シリコーン樹脂等を添加してもよい。また、未硬化の電離放射線硬化性樹脂が紫外線硬化性である場合には、未硬化の電離放射線硬化性樹脂にアセトフェノン類、ベンゾフェノン類等の光重合開始剤を添加することが好ましい。
また、電離放射線硬化性樹脂の代わりに、例えば、未硬化のメラミン樹脂、ウレタン樹脂、エポキシ樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリオレフィン、ポリエステル等の熱可塑性樹脂を用いて転写を行ってもよく、微細凹凸が転写できる限り、その具体的方法、転写する材料に制限はない。
熱硬化性樹脂を用いる場合には、例えば液状の未硬化の熱硬化性樹脂を微細凹凸に塗布し、加熱により硬化させる方法が挙げられ、熱可塑性樹脂を用いる場合には、熱可塑性樹脂のシートを用い、微細凹凸に押し当てながら加熱して軟化させた後、冷却する方法が挙げられる。
また、上述のように、2次転写品を製造する場合には、例えば日本国特許第4683011号公報などに記載されている、めっきロールを用いる方法も挙げられる。具体的には、まず、原版として長尺なシート状物を製造し、前記原版を丸めて円筒の内側に貼り付け、前記円筒の内側にロールを挿入した状態でめっきを行い、円筒からロールを取り出してめっきロール(1次転写品)を得る。ついで、前記めっきロールの微細凹凸を転写することにより、光拡散シート(2次転写品)を得る。
原版としては、枚葉タイプのものもウェブタイプのものも用いることができる。ウェブタイプの原版を用いると、ウェブタイプの1次転写品および2次転写品を得ることができる。枚葉タイプにおいては、前記枚葉タイプの原版を平板状の型として使用するスタンプ法、枚葉タイプの原版をロールに巻きつけて円筒状の型として使用するロールインプリント法等を適用できる。また、射出成形機の型の内側に枚葉タイプの原版を配置させてもよい。ただし、これら枚葉タイプの原版を用いる方法において、図示例のような光拡性散シートを大量生産するためには、転写を多数回繰り返す必要がある。転写性(離型性)が低い場合には、転写すべき微細凹凸に目詰まりが生じ、微細凹凸の転写が不完全になる場合がある。これに対して、原版をウェブタイプとすると、大面積で連続的に微細凹凸を転写でき、転写を多数繰り返さなくても、必要な量の光拡散シートを短時間に製造できる。
[原版の製造方法および原版を用いた転写による表面微細凹凸体の製法の変形例]
上述の[原版の製造方法]の積層工程においては、マトリクス樹脂22aと粒子22bと溶媒とを含む塗工液を用いた。しかしながら、粒子を含まず、マトリクス樹脂と溶媒とを含む塗工液を用いて硬質層を形成し、変形工程により波状の凹凸パターンとし、その後に、前記凹凸パターン上に、多数の凹部または凸部を形成してもよい。硬質層の形成方法は、粒子を用いない以外は、上述の方法と同様に行える。変形工程も、上述の方法と同様に行える。ついで行われる、形成された凹凸パターン上に、多数の凹部または凸部を形成する方法としては、後述の(5)〜(8)の方法が挙げられる。
(5)回転式精密切削加工機により切削加工する方法。
(6)凹部または凸部と同様な大きさ、径を有する突起物を前記波状の凹凸パターン上に押し付けて凹みを形成する方法。
(7)樹脂又は無機物の溶融物を微粒子化したものを前記波状の凹凸パターン上に付着させた後、冷却固化して前記樹脂又は無機物によって形成された凸部を形成する方法。
(8)樹脂又は無機物を分散媒に分散した液を前記波状の凹凸パターン上に付着させた後、分散媒を蒸発させて前記樹脂又は無機物によって形成された凸部を形成する方法。
なお、上記(7)又は(8)の方法においてインクジェット印刷方式を応用することにより、高精度で波状の凹凸パターン上に多数の凹部または凸部を形成することができる。
また、粒子を含まず、マトリクス樹脂と溶媒とを含む塗工液を用いて硬質層を形成し、変形工程により波状の凹凸パターンとしたもの(多数の凹部または凸部は未だ形成されていないもの)を原版として転写品を得て、前記転写品に対して、上記(5)〜(8)の方法により、凹凸パターン上に多数の凹部または凸部を形成してもよい。そして、これを原版として転写することにより、表面微細凹凸体を製造することもできる。
<その他の形態について>
以上の説明においては、積層工程と変形工程により製造された表面微細凹凸体を原版とし、前記表面微細凹凸体の微細凹凸を転写した1次転写品を得て、ついで、前記1次転写品の微細凹凸(原版の反転パターン)を転写した2次転写品を光拡散シート10とした。
しかしながら、本発明は、以上の形態に限定されない。
すなわち、上述の積層工程と変形工程により製造された図13のような表面微細凹凸体20そのものを光拡散シートとして使用することもできる。また、積層工程と変形工程により製造された表面微細凹凸体20を原版として得られた1次転写品や、n次転写品(nは3以上の整数。)を光拡散シートとして使用することもでき、転写品であれば、2次転写品に限定されない。
また、原版を用いて、曲面を有する成形体の前記曲面に、微細凹凸を転写してもよい。
また、積層工程と変形工程により製造された表面微細凹凸体やそのn次転写品を原版として用いて、アクリル樹脂、ポリカーボネート樹脂等の透明な熱可塑性樹脂を射出成形し、微細凹凸が表面の少なくとも一部に形成された射出成形品を製造してもよい。
なお、先に具体的に示した積層工程と変形工程により製造された表面微細凹凸体20を原版として得られたn次転写品において、nが奇数の場合には、微細凹凸として、特定の波状の凹凸パターン上に、凸部ではなく、凹部が形成されている。これは、nが奇数であるn次転写品においては、粒子に基づいて形成される凸部の反転パターン、すなわち、凹部が形成されるためである。このように微細凹凸として、特定の波状の凹凸パターンとともに凹部を有する表面微細凹凸体であっても、波状の凹凸パターンによる異方性が凹部により弱められているため、方向Yに充分なFWHMを有し、かつ、方向Xにもある程度のFWHMを示す。よって、nが奇数であるn次転写品であっても、nが偶数であるn次転写品と同等の配光制御性能を示す。
また、硬質層の形成に用いる粒子としては、樹脂粒子、無機粒子が使用でき、変形工程や、微細凹凸を転写する工程において、溶融したり変形したりしない限り、どのような材料からなるものであってもよい。ただし、上述のとおり、図13のように粒子そのものを備えた表面微細凹凸体20を光拡散シートとして使用する場合には、粒子として、透明粒子、好適にはアクリル系架橋型樹脂粒子、ガラスビーズ、ポリスチレン系架橋型樹脂粒子などを用いる必要がある。
また、以上の例では、表面微細凹凸体、光拡散シートとして、シート状物を例示したが、シート状物に限定されず、立体成形体であってもよい。
また、微細凹凸は、表面微細凹凸体の表面の少なくとも一部であれば、目的に応じて、いかなる部分に形成されていてもよい。例えば、表面微細凹凸体がシート状物である場合、一方の面のみに形成されていても、両面に形成されていても、各面において一部のみに形成されていてもよいし、シート状物の周面(端面)の少なくとも一部に形成されていてもよい。
さらに、表面微細凹凸体が立体成形体である場合にも、全表面の全面に形成されていても、一部のみに形成されていてもよい。なお、表面微細凹凸体が立体成形体である場合、前記立体成形体は、光拡散シートについて例示した用途と同様の用途に使用できる。すなわち、プロジェクター用の配光制御部材;テレビ、モニター、ノート型パーソナルコンピュータ、タブレット型パーソナルコンピュータ、スマートフォン、携帯電話等のバックライト用の配光制御部材;コピー機等に使用される、LED光源を線状に配列したスキャナ光源において、導光部材の少なくとも出射面を構成する配光制御部材;等として好適に使用できる。
(拡散角度の定義)
本明細書における傾斜角θi入射時の拡散角度(一般に、θi=0の際に「FWHM」と呼称される。)は、以下の方法により測定できる。
図15に傾斜角θi入射時の照度曲線の測定方法を示した。まず、光拡散シート10に対していずれか一方の面、すなわち微細凹凸形成面または反対側の平滑面側から、平滑面の法線Nに対して傾斜角θiで光を入射させる。その際に、入射面とは反対面側から出射角θOMAXで出射する最大照度を基準値とし、入射光と同一面に沿う出射角ψ(−90°〜+90°の範囲内)の出射光の照度を、上記基準値に対する相対値として、たとえば1°おきに測定する。そして、出射角に対する照度の値をプロットして、図16に示すような照度曲線を得る。図16は傾斜角θi入射時の照度曲線を示す図である。この照度曲線における半値幅(全半値幅)を傾斜角θiでの入射時の拡散角度とする。
(実施例)
下記塗工液(1)をポリエチレンテレフタレート一軸方向加熱収縮性フィルム(東洋紡株式会社製「SC807」、厚さ:30μm、ガラス転移温度Tg1=80℃)の片面に塗工乾燥後の硬質層の塗工量が4g/mになるようにバーコーター(メイヤーバー♯24)により塗工し、積層シートを得た。
(塗工液(1))
アクリル樹脂A(ガラス転移温度Tg2=128℃)と、粒径d1が5μmであるアクリル系架橋型樹脂粒子(積水化成品工業株式会社製「SSX105」、ビカット軟化温度200℃以上)とを、固形分質量比70:30で混合し、トルエンに加え、固形分濃度7.7質量%の塗工液(1)を得た。
なお、上記アクリル樹脂Aは固形分濃度20質量%であるが、本例での質量比および濃度は、正味量(固形分量)で計算した値である。以下の例についても、正味量で計算している。
次いで、該積層シートを熱風式オーブンを用いて160℃で1分間加熱することにより、ポリエチレンテレフタレート一軸方向加熱収縮性フィルムを一軸方向において、加熱前の長さの50%に熱収縮させ(変形率として50%)、硬質層を折り畳むように変形させた。次に、170℃で1分間加熱することにより、一軸方向において収縮方向と反対方向に加熱前の長さの65%まで延伸した(変形率として35%)。これにより、波状の凹凸パターンと、その上に形成された多数の凸部とを有する微細凹凸が硬質層の表面に形成された表面微細凹凸シート(原版)を得た。また、形成された凸条部は、それぞれが蛇行して、互いに非平行で、不規則に形成されていた。
得られた表面微細凹凸シート(原版)の微細凹凸形成面に、離型剤を含む未硬化の紫外線硬化性樹脂A(綜研化学社製)を厚さ20μmとなるように塗布し、紫外線を照射して硬化させ、硬化後、剥離して、表面微細凹凸シートの微細凹凸の反転パターンを有する1次転写品を得た。
ついで、透明PET基材(東洋紡株式会社製「A4300」、厚さ:188μm)の片面に未硬化の紫外線硬化性樹脂B(ソニーケミカル社製)を厚さ20μmとなるように塗布し、塗布された紫外線硬化性樹脂Bに対して、1次転写品の上記反転パターンを有する面を押し当て、紫外線を照射して硬化させ、硬化後、1次転写品を剥離して、透明PET基材上に、紫外線硬化性樹脂の硬化物からなる表面層が形成され、該表面層の表面に、上記の表面微細凹凸シート(原版)と同じ微細凹凸が形成された光拡散性シート(2次転写品)を得た。
(比較例1)
レンズ拡散板LSD(Light Shaping Diffusers)60×10(米国、ルミニット・リミテッド・ライアビリティ・カンパニー社製)を比較例光拡散性シートとし、実施例1と同様の測定、評価を行った。
(比較例2)
下記塗工液(2)を、透明PET基材(東洋紡株式会社製「A4300」、厚さ:100μm)の片面に、乾燥後の塗工層の塗工量が8g/mとなるようにバーコーターにより塗工して、積層シートを得た。得られた積層シートを光拡散性シートとして使用し、評価を行った。
(塗工液(2))
アクリル樹脂A(ガラス転移温度Tg3=105℃)と、平均粒径d2が6.4μmである架橋ポリスチレン粒子(積水化成品工業株式会社製「SBX−6」、ガラス転移温度なし)、平均粒径d3が11.7μmである架橋ポリスチレン粒子(積水化成品工業株式会社製「SBX−12」、ガラス転移温度なし)、平均粒径が16.1μmである架橋ポリスチレン粒子(積水化成品工業株式会社製「SBX−17」、ガラス転移温度なし)とを、固形分質量比25:41:30:4で混合し、トルエンに加え、固形分濃度32質量%の塗工液(2)を得た。
本発明者らは以上に説明した方法で作製した表面微細凹凸体の光拡散シート(2次転写品)サンプルと比較例について以下のような測定を行った。
(比較例3)
実施例において、塗工液(1)に変えて、下記塗工液(3)を用いたことと、50%の熱収縮及び65%までの延伸工程に変えて、53%の熱収縮を行った以外は、実施例と同様にして、光拡散性シートを得た。
(塗工液(3))
アクリル樹脂A(ガラス転移温度Tg2=128℃)をトルエンに加え、固形分濃度7.7質量%の塗工液(3)を得た。
(測定)
(1)GENESIA GonioFar Field Profiler(ジェネシア社製)を用いて、上記の各例で得られた光拡散性シートの平滑面側から、シートの法線に対するX方向への傾斜角θi(実際にはθi=0°、30°、及び50°)の光を入射させ、X方向の拡散角度を測定した。(図15,16参照)また同様に、シートの法線方向から光を入射させ、Y方向の拡散角度を測定した。結果を表1に示す。また、実施例と比較例について、得られた照度曲線を図17および図18、19、20にそれぞれ示す。X方向,Y方向は図1におけるそれと同じである。図17は、実施例の拡散シートにおける傾斜角θi入射時の照度曲線を示す図であり、図18〜20は、比較例の拡散シートにおける傾斜角θi入射時の照度曲線を示す図である。
なお、各照度曲線は傾斜角0°入射時の最大照度を1として規格化してあり、表1に記載した拡散角度は、傾斜角θi入射時における出射光の最大照度に対する半値幅の値である。
(2)上記の各例で得られた光拡散性シートの平滑面側から、シートの法線に対するX方向への傾斜角θi(θi=0°、30°、及び50°)の光を入射させ、JIS K 7105「プラスチックの光学的特性試験方法」に準拠し、全光線透過率(%)を測定した。結果を表1に示す。
(結果)
表1の結果から、実施例で得られた光拡散性シートによって拡散された出射光は異方性を有し、低拡散方向(X方向)にも適度な拡散性を示していることがわかる。
実施例の光拡散性シートは、傾斜角50°入射時の低拡散方向の拡散角度が20°以上であり、比較例1よりも広い拡散角度を有している。
実施例の光拡散性シートは比較例1に対して高い全光線透過率を有しており、入射光の傾斜角の増加に伴う全光線透過率の低下も小さかった。また、この効果は、入射角が大きい方がより顕著であった。
スキャナ用途では、原稿読み取り部に対応する任意の箇所において、十分高い照度の出射光であることが好ましい。
この原稿読み取り部における照度は、微細凹凸体からあらゆる角度で出射した光束の和である。したがって、微細凹凸体から出射する光の照度は、入射光の傾斜角依存性が小さく、広い範囲の傾斜角入射時においても高いほうが好ましい。
また、原稿読み取り部に入射する光は、微細凹凸体からあらゆる角度で出射した光束の和であるから、出射光の最大照度のみならず、拡散される全範囲における照度が高いほうが好ましい。
拡散光の全範囲における照度は、すなわち全光線透過率に近いと考え、本明細書においては、傾斜角θi入射時の全光線透過率で、スキャナ用途等における照度を評価した。
したがって、実施例の光拡散性シートは、傾斜角が0°でない入射光に対して広い拡散角度、言い換えれば高い拡散性と照度の両立を要求されるスキャナ光源の導光体用拡散体等として好適に使用できることがわかった。
(考察)
図17は図18に比べ、傾斜角50°入射時の出射光の拡散角度が大きいことから、傾斜角50°入射時の出射光の拡散角度は20°以上が好ましいことが分る。出射光の拡散角度が20°以上であると、原稿読み取り部の面積を広くすることが可能になる。この拡散角度の上限は特にないが、拡散角度が高すぎると全光線透過率が低下する可能性が高くなるため、拡散角度と全光線透過率の両立を考えて設計すればよい。
傾斜角50°入射時の全光線透過率は、傾斜角0°入射時の全光線透過率の70%以上であることが好ましい。この値が70%以上であると、発明者等の知見では全光線透過率の傾斜角の変化に対する変動が許容できる範囲と考えている。全光線透過率の傾斜角の変化に対する変動が小さいと、原稿読み取り部において十分な照度の光が得られる。
図19に示す様に、比較例2のような粒子による凸部で表面凹凸が構成された拡散シートの場合、傾斜角50°入射時の出射光の照度が最大となる角度θOPMAXは30°付近である。
粒子による凸部により表面凹凸が構成された拡散シートは、表面凹凸に異方性がなく、拡散性にも異方性がないため、任意の一方向をX方向として評価を行った。
また、図20に示す様に、比較例3のような波状の凹凸パターンのみで構成された拡散シートの場合、傾斜角50°入射時のX方向の出射光の照度が最大となる角度θOWXMAXは50°付近である。
図17に示す傾斜角50°入射時に本発明の微細凹凸体により拡散される出射光の拡散角度を見ると、図19に示す傾斜角50°入射時に粒子の凸部により拡散される出射光の拡散角度と比べて、図20に示す傾斜角50°入射時に波状の凹凸パターンにより拡散される出射光の拡散角度分程度広くなっていることが分る。
すなわち、図24に示す様に、実施例(図17)の傾斜角50°入射時の照度曲線は、図20に示す波状の凹凸パターンによる傾斜角50°入射時の出射光の照度曲線Cwxと、図19に示す、θOP1MAXが40°付近となるように配合を調整した粒子の凸部からなる微細凹凸体による傾斜角50°入射時の出射光の照度曲線Cpを重畳した照度曲線によって近似できる。
上記の両者の照度曲線を重畳した照度曲線から算出される拡散角度は、凸部により拡散された光における拡散角度及び波状の凹凸パターンにより拡散された光における拡散角度を足し合わせたものに相当すると考えられる。
このことは逆に考えると、(1)傾斜角θ°(θ≠0)入射時の、互いに非平行に蛇行する複数の凸条部と、前記複数の凸条部間の凹条部を有する波状の凹凸パターンのみを有する表面微細凹凸体の照度曲線を得、次に(2)傾斜角θ°(θ≠0)入射時の、複数の凹部または凸部のみを有する表面微細凹凸体の照度曲線を得、更に(3)得られた二つの照度曲線を重畳して一つの合成した照度曲線を得る、このように得られる照度曲線は前記波状の凹凸パターンおよび前記複数の凹部または凸部を有する表面微細凹凸体の照度曲線を近似的にあらわしているということである。すなわち、前記波状の凹凸パターンおよび前記複数の凹部または凸部を有する表面微細凹凸体の照度曲線を近似的に求めることができるということである。
なお、上記のように、θOPMAX(図19)が低く、θOWXMAX(図20)が高いほど、すなわちθOPMAXとθOWXMAXの値に差があるほど、それぞれθOPMAXとθOWXMAXで照度の最大値をとる二つの照度曲線を重畳して近似される照度曲線の角度方向の幅は広くなり、拡散角度は大きくなる。なお、θOWXMAXを高くするには、シートに水平な面に対する傾きφWXが小さい構造を多く持つ表面微細凹凸体とすれば良い。また、θOPMAXを小さくするには、粒子による凸部の中でも急峻な部分の割合を増やせばよい。例えば、硬質層の塗工量を減らして粒子の配合量を増やすことで粒子の頭が少なくとも略半分以上出るように作製した原版を使用すればよい。さらに、原版をそのまま光拡散シートとして利用する場合は、屈折率の大きい粒子を使用することで、θOPMAXを小さくすることも可能である。
φWXについての考察
(1)シートに水平な面に対する傾きφWXが小さい構造は、傾斜角θi入射の光を殆ど立ち上げない(図21参照)。つまりθOWXMAX<θiとはならず、すなわち、θOWXMAX≒θiとなる。このように、波状の凹凸パターンのうち、シートに水平な面に対する傾きが小さい構造が多いことにより、本発明においては傾斜角θi入射時に出射する光の拡散角度を広くする効果をもたらしていると推定している。
結局、本発明の光拡散性シートの傾斜角θi入射時の出射光の拡散角度を広げるためには、波状の凹凸パターンの傾きが小さい構造と、より急峻な凸部を含む構造を組み合わせることが最も好ましい。
φWYについての考察
(2)一方、図22に示す様に、波状の凹凸パターンのY方向については、傾斜角50°入射時の出射光の照度が最大となる角度θOWYMAXは27°付近である。
これは、図23に示す様に、シートに水平な面に対する傾きφWYが大きい構造が、Y方向に多いことに由来する。
シートに水平な面に対する傾きφWYが大きい構造は、傾斜角θi入射の光を立ち上げる(図23参照)。すなわち、θOWYMAX<<θiとなる。
また、図22に示すように、傾斜角θi入射時に波状の凹凸パターンにより拡散される出射光のθOWYMAXが、図19に示すように、傾斜角θi入射時に粒子により拡散される出射光のθOPMAXと近い場合、両者の照度曲線は相似形となっていることが分る。
このように拡散される原因が波状の凹凸パターンであろうが粒子であろうが、相似形を示す両者の照度曲線から算出される拡散角度は大きくは変わらない。
なお、各照度曲線は、拡散シートの構造と出射角の関係性を示すものであり、照度の絶対値については各照度曲線間で比較しても意味はない。

Claims (3)

  1. 表面の少なくとも一部に微細凹凸が形成され、該微細凹凸に因る異方性を有する表面微細凹凸体であって、
    低拡散方向において、該表面微細凹凸体に傾斜角50°で入射した光が出射光として拡散角度が20°以上を有し、
    前記微細凹凸は、互いに非平行に蛇行する複数の凸条部と、前記複数の凸条部間の凹条部を有する波状の凹凸パターンを有し、さらに前記波状の凹凸パターン上に形成された複数の凹部または凸部を有する表面微細凹凸体。
  2. 低拡散方向において、該表面微細凹凸体に傾斜角50°で入射した光の全光線透過率が、傾斜角0°で入射した光の全光線透過率の70%以上である請求項1に記載の表面微細凹凸体。
  3. 請求項1又は2に記載の前記表面微細凹凸体が光拡散体用である表面微細凹凸体。
JP2015182978A 2014-09-17 2015-09-16 表面微細凹凸体とその照度曲線を求める方法 Active JP6593055B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014189490 2014-09-17
JP2014189490 2014-09-17

Publications (2)

Publication Number Publication Date
JP2016066075A JP2016066075A (ja) 2016-04-28
JP6593055B2 true JP6593055B2 (ja) 2019-10-23

Family

ID=55804075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182978A Active JP6593055B2 (ja) 2014-09-17 2015-09-16 表面微細凹凸体とその照度曲線を求める方法

Country Status (1)

Country Link
JP (1) JP6593055B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267812A (ja) * 2001-03-13 2002-09-18 Daicel Chem Ind Ltd 光散乱フィルム及びそれを用いた液晶表示装置
JP2004061767A (ja) * 2002-07-26 2004-02-26 Alps Electric Co Ltd 反射体及びその製造方法と反射型液晶表示装置
JP2014025954A (ja) * 2012-06-15 2014-02-06 Oji Holdings Corp 異方性面発光ユニットおよび液晶表示装置
JP5682841B2 (ja) * 2013-08-21 2015-03-11 王子ホールディングス株式会社 光拡散体製造用工程シート原版および光拡散体の製造方法

Also Published As

Publication number Publication date
JP2016066075A (ja) 2016-04-28

Similar Documents

Publication Publication Date Title
JP5660235B2 (ja) 表面微細凹凸体および表面微細凹凸体の製造方法
TWI518376B (zh) 凹凸圖案形成片及其製造方法
JP2008302591A (ja) 凹凸パターン形成シートおよびその製造方法、光拡散体、光拡散体製造用工程シート原版ならびに光拡散体の製造方法
JP2018136574A (ja) 表面微細凹凸シート、表示装置用照明ユニットおよび表示装置
JP5637074B2 (ja) 凹凸パターン形成シートの製造方法、転写成形用スタンパの製造方法ならびに光拡散体の製造方法
JP6274102B2 (ja) 光拡散性シート
JP6536312B2 (ja) 表面微細凹凸体
JP2019003221A (ja) 表面微細凹凸体および表面微細凹凸体の製造方法
JP2018014307A (ja) 表示装置用照明ユニットおよび表示装置
JP6593055B2 (ja) 表面微細凹凸体とその照度曲線を求める方法
JP2012022292A (ja) 凹凸パターン形成シート、光拡散体製造用工程シート原版及び光拡散体の製造方法
JP2016167063A (ja) 表面微細凹凸体
JP2016136254A (ja) 表面微細凹凸体
JP6515759B2 (ja) 表面微細凹凸体および表面微細凹凸体の製造方法
JP2016066050A (ja) 表面微細凹凸体および表面微細凹凸体の製造方法
JP5636907B2 (ja) 凹凸パターン形成シートおよびその製造方法、凹凸パターン形成シート複製用工程シート原版、光学素子、2次工程用成形物、複製シート
JP5168256B2 (ja) 凹凸パターン形成シート、光拡散体および光拡散体製造用工程シート原版およびそれらの製造方法
JP6255676B2 (ja) 光拡散シートの製造方法および光拡散体の製造方法
JP5858113B2 (ja) 凹凸パターン形成シート、光拡散体、光拡散体製造用スタンパの原版、光拡散体製造用スタンパ
JP2014025954A (ja) 異方性面発光ユニットおよび液晶表示装置
JP6079603B2 (ja) 異方性光拡散シートおよび光拡散方法
JP6515781B2 (ja) 表面微細凹凸シートおよび多層体
TWM333584U (en) Optical film having particle-free microstructure
JP2014002411A (ja) 凹凸パターン形成シートおよびその製造方法、光拡散体製造用工程シート原版ならびに光拡散体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250