JP6589327B2 - Recombinant hydrogen-oxidizing bacteria and protein production method using the same - Google Patents

Recombinant hydrogen-oxidizing bacteria and protein production method using the same Download PDF

Info

Publication number
JP6589327B2
JP6589327B2 JP2015066420A JP2015066420A JP6589327B2 JP 6589327 B2 JP6589327 B2 JP 6589327B2 JP 2015066420 A JP2015066420 A JP 2015066420A JP 2015066420 A JP2015066420 A JP 2015066420A JP 6589327 B2 JP6589327 B2 JP 6589327B2
Authority
JP
Japan
Prior art keywords
gene
protein
hydrogen
seq
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015066420A
Other languages
Japanese (ja)
Other versions
JP2016185088A (en
Inventor
丸山 高廣
高廣 丸山
半澤 敏
敏 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015066420A priority Critical patent/JP6589327B2/en
Publication of JP2016185088A publication Critical patent/JP2016185088A/en
Application granted granted Critical
Publication of JP6589327B2 publication Critical patent/JP6589327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、目的タンパク質遺伝子を導入することで前記タンパク質を培養液中に分泌発現可能な水素酸化細菌、およびそれを用いた前記タンパク質の製造方法に関する。   The present invention relates to a hydrogen-oxidizing bacterium capable of secreting and expressing the protein in a culture solution by introducing a target protein gene, and a method for producing the protein using the same.

近年、微生物や細胞を用いたタンパク質の生産研究が盛んである。特に、分子量が大きく、かつ複雑な構造を有したタンパク質を含むバイオ医薬品は、低分子医薬品と比べ標的分子に対する高い特異性と親和性を有することから、従来の医薬品では対応できなかった疾患に対応しうる医薬として将来需要が増大することが予測される。   In recent years, protein production research using microorganisms and cells has been actively conducted. In particular, biopharmaceuticals that include proteins with large molecular weights and complex structures have higher specificity and affinity for target molecules than low-molecular-weight drugs, so they can handle diseases that cannot be handled by conventional drugs. It is predicted that future demand will increase as a possible medicine.

バイオ医薬品に用いられるタンパク質を工業的に生産する場合、主に遺伝子組み換え技術や細胞培養技術を用いて生産され、その多くは大腸菌を宿主とした生産系を利用している。しかしながら大腸菌を宿主とした従来の生産系では、培養の際、培養液中に酵母エキス、ペプトン、アミノ酸、ビタミンなどの高価な原料を用いる必要がある上、目的タンパク質の生産量が低いため、製造コストが高くなるという問題点がある。また前記生産系の多くは目的タンパク質を大腸菌内に発現させており、大腸菌体内から目的タンパク質を抽出する操作が必要である。さらに生産した目的タンパク質が大腸菌体内由来のタンパク質分解酵素で分解され純度が低下する問題や、形成した封入体のリフォールディングによる精製コストの上昇の問題もある。   When proteins used for biopharmaceuticals are industrially produced, they are mainly produced using genetic recombination techniques and cell culture techniques, and most of them use production systems using E. coli as a host. However, in the conventional production system using E. coli as the host, it is necessary to use expensive raw materials such as yeast extract, peptone, amino acids, vitamins, etc. in the culture medium, and the production of the target protein is low. There is a problem that the cost becomes high. Many of the production systems express the target protein in E. coli, and an operation for extracting the target protein from the E. coli body is required. In addition, there is a problem that the produced target protein is degraded by a proteolytic enzyme derived from the body of Escherichia coli and the purity is lowered, and the purification cost is increased due to refolding of the formed inclusion bodies.

酵母や枯草菌を宿主として用いた生産系は、目的タンパク質を培養液中に分泌発現させることが可能である。しかしながら大腸菌を宿主とした系と同様、酵母エキスなどの高価な原料を用いる必要がある。また宿主由来のタンパク質分解酵素による目的タンパク質の分解や、培養液中に含まれる窒素源由来の副生産物による精製コストの上昇の問題もあった。   A production system using yeast or Bacillus subtilis as a host can secrete and express the target protein in the culture medium. However, it is necessary to use expensive raw materials such as yeast extract as in the system using E. coli as a host. There are also problems of degradation of the target protein by a host-derived proteolytic enzyme and an increase in purification cost due to a by-product derived from a nitrogen source contained in the culture solution.

大腸菌、酵母、枯草菌以外に物質生産において有効と考えられる宿主のひとつとして、水素酸化細菌Ralstonia eutrophaが知られている。Ralstonia eutrophaは窒素、リン、酸素などが供給制限となるような条件下で大量のPHB(ポリヒドロキシ酪酸)を蓄積することが報告されており、従属栄養条件下の高密度培養ではPHBを含む菌体収量は281g/Lにまで達することが確認されている(非特許文献1)。また、Ralstonia eutrophaは水素酸化によるエネルギーで炭素固定を行なう独立栄養条件でも増殖できるほか、無機塩と糖のみを原料とした培養でも高密度培養が可能であることが知られている。これまで、Ralstonia eutrophaを宿主とした物質生産は、前述したPHBのほかにも、2−メチルクエン酸(非特許文献2)、2−HIBA(ヒドロキシイソブチル酸)(非特許文献3)、R−3−ヒドロキシ酪酸(非特許文献4)、シアノフィシン(非特許文献5)などの例が報告されている。また無機塩とグルコースのみの原料からタンパク質である有機リン分解酵素を大量生産した例も報告されている(非特許文献6および7)。   In addition to Escherichia coli, yeast, and Bacillus subtilis, a hydrogen-oxidizing bacterium Ralstonia eutropha is known as one of the hosts considered to be effective in substance production. Ralstonia eutropha has been reported to accumulate a large amount of PHB (polyhydroxybutyric acid) under conditions where supply of nitrogen, phosphorus, oxygen, etc. is restricted, and bacteria containing PHB in high-density culture under heterotrophic conditions It has been confirmed that the body yield reaches 281 g / L (Non-patent Document 1). In addition, it is known that Ralstonia eutropha can grow under autotrophic conditions in which carbon fixation is performed by energy generated by hydrogen oxidation, and high-density culture is possible even in culture using only inorganic salts and sugars. Up to now, substance production using Ralstonia eutropha as a host is not limited to PHB described above, but also 2-methylcitric acid (Non-patent Document 2), 2-HIBA (hydroxyisobutyric acid) (Non-patent Document 3), R- Examples such as 3-hydroxybutyric acid (Non-Patent Document 4) and cyanophycin (Non-Patent Document 5) have been reported. In addition, examples of mass production of protein-derived organophosphorus degrading enzymes from raw materials consisting only of inorganic salts and glucose have been reported (Non-patent Documents 6 and 7).

また、Ralstonia eutrophaは膜タンパク質・分泌タンパク質の種類・数が豊富であることが知られており、これらの中から目的タンパク質の分泌発現に有効な輸送タンパク質をスクリーニングして目的タンパク質と共発現することで、目的タンパク質を培養液中に分泌生産した例が知られている(特許文献1)。   Ralstonia eutropha is known to have a wide variety of types and numbers of membrane proteins and secreted proteins. From these, a transport protein effective for secretory expression of the target protein is screened and coexpressed with the target protein. Thus, an example in which a target protein is secreted and produced in a culture solution is known (Patent Document 1).

特願2014−048577Japanese Patent Application No. 2014-048577

Ryu,HW.et al.,Biotechnol.Bioeng.,(1997)55,28−32Ryu, HW. et al. Biotechnol. Bioeng. , (1997) 55, 28-32. Ewering,C.et al.,Metab.Eng.,(2006)8,587−602Ewering, C.I. et al. , Metab. Eng. , (2006) 8, 587-602. Hoefel,T.et al.,Appl.Microbiol.Biotechnol.,(2010)88,477−484Hoefel, T .; et al. , Appl. Microbiol. Biotechnol. , (2010) 88, 477-484 Shiraki,M.et al.,J.Biosci.Bioeng.,(2006)102,529−534Shiraki, M .; et al. , J .; Biosci. Bioeng. , (2006) 102, 529-534. Diniz,SC.et al.,Biotechnol.Bioeng.,(2006)93,698−717Diniz, SC. et al. Biotechnol. Bioeng. , (2006) 93, 698-717. Srinivasan, S.et al.,Biotechnol.Bioeng.,(2003)55,114−120Srinivasan, S .; et al. Biotechnol. Bioeng. , (2003) 55, 114-120 Barnard,GC.et al.,Protein.Expr.Purif.,(2004)38,264−271Barnard, GC. et al. , Protein. Expr. Purif. , (2004) 38, 264-271

水素酸化細菌Ralstonia eutrophaに代表されるRalstonia属の細菌はもともと温泉や土壌など様々な環境に生息している微生物であり、独立栄養条件で増殖できるなど、その環境適応性から物質の取り込みに関わる機能が発達していることが示唆されてきた。実際、芳香族化合物の取り込みや分解を行うRalstonia eutropha JMP134、重金属アンチポーターによる重金属排出能を持つRalstonia metallidurans CH34、多数の細胞外毒素を放出する機構を持つRalstonia solanacearum、細胞外PHBデポリメラーゼを持つRalstonia pickettiiなどの様々な種が存在し、細胞膜上の物質輸送に関するタンパク質が多様性に富んでいることが明らかとなっている。また、ゲノム情報解析の結果では、ゲノム中のタンパク質遺伝子のうち12%が物質の輸送に関わるものであり、大腸菌の9%と比べ多く、Ralstonia eutropha属の細菌における膜輸送タンパク質の多様性を裏付ける結果となっている。   Bacteria belonging to the genus Ralstonia, represented by the hydrogen-oxidizing bacterium Ralstonia eutropha, are microorganisms that originally inhabit various environments such as hot springs and soils, and can grow under autotrophic conditions, such as functions related to the uptake of substances due to their environmental adaptability. Has been suggested to have developed. In fact, Ralstonia eutropha JMP134, which takes up and degrades aromatic compounds, Ralstonia metallidurans CH34, which has the ability to discharge heavy metals by heavy metal antiporters, Ralstonia solanacerum, which has a mechanism to release a large number of extracellular toxins, Ralstonia, which has an extracellular PHB depolymerase There are various species such as pickettii, and it is clear that proteins related to mass transport on the cell membrane are rich in diversity. In addition, as a result of genome information analysis, 12% of protein genes in the genome are involved in the transport of substances, which is more than 9% of E. coli and supports the diversity of membrane transport proteins in bacteria belonging to the genus Ralstonia eutropha It is the result.

このように大腸菌など既存の組換え微生物よりも膜輸送タンパク質が豊富であることから、膜輸送タンパク質をキャリアとして利用し、目的タンパク質の分泌発現を行う為の宿主として、Ralstonia属の水素酸化細菌は有望であると考えられる。これまで、Ralstonia属の水素酸化細菌のゲノムからスクリーニングされた、目的タンパク質の分泌発現に有効な輸送タンパク質遺伝子としては、Ralstonia eutropha H16株由来のH16_A2820遺伝子が挙げられる。この事例では、H16_A2820遺伝子とFc結合性タンパク質遺伝子の融合遺伝子を水素酸化細菌へと導入し、輸送タンパク質と目的タンパク質を共発現することで、Fc結合性タンパク質を培養液中に分泌生産することが可能である。しかしながらこれまでの報告では、菌体が生産する目的タンパク総量のうち約4割弱は菌体内に残ってしまい、培養液中へ分泌される目的タンパク量は高々6割強に過ぎなかった(培養液中への分泌比率7割未満)。そのため、培養液のみからの抽出・精製プロセス構築において、菌体内に残存する目的タンパク質がロス分となってしまうという問題点があった。   As described above, since membrane transport proteins are more abundant than existing recombinant microorganisms such as Escherichia coli, hydrogen oxidizing bacteria belonging to the genus Ralstonia are used as hosts for secretory expression of target proteins using membrane transport proteins as carriers. Promising. So far, as a transport protein gene effective for secretory expression of a target protein screened from the genome of a hydrogen oxidizing bacterium of the genus Ralstonia, the H16_A2820 gene derived from the Ralstonia eutropha H16 strain can be mentioned. In this case, the F16-binding protein can be secreted and produced in the culture medium by introducing a fusion gene of H16_A2820 gene and Fc-binding protein gene into hydrogen-oxidizing bacteria and co-expressing the transport protein and the target protein. Is possible. However, in previous reports, about 40% of the total amount of the target protein produced by the cells remains in the cells, and the amount of the target protein secreted into the culture solution is only over 60% (culture). Secretion rate into the liquid is less than 70%). For this reason, in the construction of an extraction / purification process only from the culture solution, there has been a problem that the target protein remaining in the cells becomes a loss.

そこで本発明の目的は、目的タンパク質遺伝子を導入した水素酸化細菌において、菌体が生産する前記目的タンパク質の7割以上を菌体外へ分泌発現可能(培養液中への分泌比率7割以上)な水素酸化細菌、および前記水素酸化細菌を用いた目的タンパク質の製造方法を提供することにある。本発明では、より目的タンパク質の分泌比率に優れた、高性能な輸送タンパク質を選別し用いることで、分泌比率7割以上の、培養液への生産効率が向上しなおかつ高純度な目的タンパク質の微生物発現が可能となる。   Therefore, an object of the present invention is to allow 70% or more of the target protein produced by the bacterial cells to be secreted and expressed outside the bacterial cells in a hydrogen-oxidizing bacterium into which the target protein gene has been introduced (secretion ratio into the culture solution of 70% or higher). Another object of the present invention is to provide a novel hydrogen-oxidizing bacterium and a method for producing a target protein using the hydrogen-oxidizing bacterium. In the present invention, by selecting and using a high-performance transport protein with a higher secretion ratio of the target protein, the microorganism with the secretion ratio of 70% or more, the production efficiency in the culture solution is improved, and the purity of the target protein is high. Expression is possible.

本発明者は、上記課題を解決するため鋭意検討を重ねた結果、目的タンパク質遺伝子を導入した水素酸化細菌において、Ralstonia eutropha H16株由来のH16_B0271遺伝子を輸送タンパク質遺伝子として導入し、前記水素酸化細菌により前記目的タンパク質と前記輸送タンパク質とを共発現させることで、菌体が生産する目的タンパク質総量のうち7割以上を培養液中(水素酸化細菌外)に効率よく分泌発現できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor introduced the H16_B0271 gene derived from Ralstonia eutropha H16 strain as a transport protein gene in the hydrogen-oxidizing bacterium into which the target protein gene was introduced. By co-expressing the target protein and the transport protein, it was found that 70% or more of the total amount of the target protein produced by the cells can be efficiently secreted and expressed in the culture solution (outside of hydrogen-oxidizing bacteria). It came to complete.

すなわち本発明は以下の態様を包含する。
(1)目的タンパク質遺伝子および輸送タンパク質遺伝子を水素酸化細菌に導入して得られる、前記輸送タンパク質が配列番号10に記載の配列からなるポリペプチドであるタンパク質を発現可能な水素酸化細菌。
(2)輸送タンパク質遺伝子が配列番号8に記載の配列からなるポリヌクレオチドである、(1)に記載の水素酸化細菌。
(3)水素酸化細菌がRalstonia属細菌である、(1)または(2)に記載の水素酸化細菌。
(4)目的タンパク質がFc結合性タンパク質である、(1)から(3)のいずれかに記載の水素酸化細菌。
(5)(1)から(4)のいずれかに記載の水素酸化細菌を培養し、目的タンパク質および輸送タンパク質を共発現させることで、前記水素酸化細菌外へ目的タンパク質を分泌発現させる方法。
(6)配列番号10に記載の配列からなるポリペプチドをコードするポヌクレオチドを含む、水素酸化細菌外へ目的タンパク質を分泌発現させるためのプラスミド。
That is, this invention includes the following aspects.
(1) A hydrogen-oxidizing bacterium capable of expressing a protein obtained by introducing a target protein gene and a transport protein gene into a hydrogen-oxidizing bacterium, wherein the transport protein is a polypeptide comprising the sequence of SEQ ID NO: 10.
(2) The hydrogen-oxidizing bacterium according to (1), wherein the transport protein gene is a polynucleotide comprising the sequence set forth in SEQ ID NO: 8.
(3) The hydrogen-oxidizing bacterium according to (1) or (2), wherein the hydrogen-oxidizing bacterium is a genus Ralstonia.
(4) The hydrogen-oxidizing bacterium according to any one of (1) to (3), wherein the target protein is an Fc-binding protein.
(5) A method for secreting and expressing a target protein outside the hydrogen-oxidizing bacterium by culturing the hydrogen-oxidizing bacterium according to any one of (1) to (4) and co-expressing the target protein and a transport protein.
(6) A plasmid for secreting and expressing a protein of interest outside a hydrogen-oxidizing bacterium, comprising a polynucleotide encoding a polypeptide consisting of the sequence of SEQ ID NO: 10.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、宿主として用いる水素酸化細菌は特に限定はないものの、独立栄養条件下で増殖でき、かつ物質の取り込みに関わる機能が発達しているRalstonia属細菌が好ましく、その中でもRalstonia eutrophaは多様な環境適応性を持ち、かつ物質輸送に関わるタンパク質の機能や数が豊富である点で、特に好ましい水素酸化細菌といえる。   In the present invention, the hydrogen-oxidizing bacterium used as a host is not particularly limited, but Ralstonia genus bacteria that can grow under autotrophic conditions and have developed functions related to substance uptake are preferable. Among them, Ralstonia eutropha is various. It can be said to be a particularly preferred hydrogen-oxidizing bacterium because it has environmental adaptability and has abundant functions and numbers of proteins involved in mass transport.

本発明は、水素酸化細菌を宿主として目的タンパク質を発現させる際に、目的タンパク質遺伝子に加えて輸送タンパク質遺伝子も水素酸化細菌に導入することを特徴としている。輸送タンパク質は、水素酸化細菌が有する分泌性タンパク質または膜タンパク質の中から、目的タンパク質との共発現により当該目的タンパク質を培養液中に放出する機能を持つタンパク質を適宜選択すればよいが、親水性の高いタンパク質や分子量40kDa以下のタンパク質を選択すると好ましい。なお輸送タンパク質の全長が40kDa以上の場合は、親水性の高い領域のみを利用し40kDa以下の輸送タンパク質として発現させればよい。   The present invention is characterized in that when a target protein is expressed using a hydrogen-oxidizing bacterium as a host, a transport protein gene is also introduced into the hydrogen-oxidizing bacterium in addition to the target protein gene. As the transport protein, a protein having a function of releasing the target protein into the culture medium by co-expression with the target protein may be appropriately selected from secretory proteins or membrane proteins possessed by hydrogen-oxidizing bacteria. It is preferable to select a protein having a high molecular weight or a protein having a molecular weight of 40 kDa or less. In addition, when the full length of transport protein is 40 kDa or more, what is necessary is just to express as a transport protein of 40 kDa or less using only a highly hydrophilic area | region.

輸送タンパク質の一例としては、染色体2由来のH16_B0271のN末端領域(配列番号8)があげられる。本発明においては、分泌比率が最大で6割強を示す性能を有する輸送タンパク質遺伝子であるRalstonia eutropha H16株由来のH16_A2820遺伝子に変え、より目的タンパク質を高効率で分泌可能な輸送タンパク質、すなわちH16_B0271遺伝子を見出し利用することで、既存法を超える7割以上の分泌比率を有する目的タンパク質の培養液中への分泌発現系を完成するに至った。ここで、分泌比率とは、菌体が菌体内および菌体外に生産する目的タンパク質総量のうち、菌体外(培養液中)に分泌する目的タンパク質の割合を指す。   An example of the transport protein is the N-terminal region (SEQ ID NO: 8) of H16_B0271 derived from chromosome 2. In the present invention, the H16_A2820 gene derived from the Ralstonia eutropha H16 strain, which is a transport protein gene having a performance with a maximum secretion ratio of more than 60%, is replaced with a transport protein that can secrete the target protein more efficiently, ie, the H16_B0271 gene. As a result, a secretory expression system for a target protein having a secretion ratio of 70% or more exceeding the existing method in a culture solution has been completed. Here, the secretion ratio refers to the ratio of the target protein secreted outside the cell (in the culture solution) out of the total amount of the target protein produced by the cell inside and outside the cell.

水素酸化細菌に導入する輸送タンパク質遺伝子は、前記輸送タンパク質のcDNA等からPCR法などのDNA増幅法を用いて調製後適当な方法で連結して得てもよいし、前記輸送タンパク質のアミノ酸配列からヌクレオチド配列に変換後人工的に合成して得てもよい。アミノ酸配列からヌクレオチド配列に変換する際は、形質転換させる宿主におけるコドンの使用頻度を考慮して変換するのが好ましい。コドンの使用頻度の解析は公的データベース(例えば、かずさDNA研究所のホームページにあるCodon Usage Databaseなど)を利用することによっても可能である。輸送タンパク質遺伝子の一例としては、配列番号8に記載のアミノ酸配列からなる輸送タンパク質(H16_B0271のN末端側領域)をコードするポリヌクレオチドである配列番号10に記載の配列からなるポリヌクレオチドがあげられる。   The transport protein gene to be introduced into the hydrogen-oxidizing bacterium may be obtained by preparing the transport protein cDNA or the like using a DNA amplification method such as a PCR method after ligation by an appropriate method, or from the amino acid sequence of the transport protein. It may be obtained by artificial synthesis after conversion to a nucleotide sequence. When converting from an amino acid sequence to a nucleotide sequence, it is preferable to convert in consideration of the codon usage in the host to be transformed. Analysis of codon usage frequency can also be performed by using a public database (for example, Codon Usage Database on the website of Kazusa DNA Research Institute). An example of a transport protein gene is a polynucleotide comprising a sequence described in SEQ ID NO: 10, which is a polynucleotide encoding a transport protein composed of the amino acid sequence described in SEQ ID NO: 8 (N-terminal region of H16_B0271).

本発明において目的タンパク質遺伝子および輸送タンパク質遺伝子を導入する際、ペリプラズム中または外膜中に存在する宿主由来のプロテアーゼにより自動的に切断される適当な切断リンカーを介して連結し、目的タンパク質と輸送タンパク質との融合タンパク質として共発現させると好ましい。このようにすることで、発現した目的タンパク質と輸送タンパク質の融合タンパク質がペリプラズムに輸送された後プロテアーゼにより切断されることで、他の特別な処理を行なうことなく自動的に培養液中に分泌されるからである。ここで用いる切断リンカーは、宿主由来のプロテアーゼで切断されるものであれば特に限定はなく、例えば大腸菌のpelBやPaucimonas lemoigneiの細胞外PHB分解酵素のシグナル配列であるprePhaZ1が例示できる。また本発明において目的タンパク質遺伝子および輸送タンパク質遺伝子を導入する際、(目的タンパク質遺伝子−(好ましくは切断リンカー)−輸送タンパク質遺伝子)の融合タンパク遺伝子の上流にファジンプロモーターを導入するとさらに好ましい。ファジンプロモーターはPHB(ポリヒドロキシ酪酸)顆粒の表面を覆うタンパク質であるファジン生産のプロモーターであり、Ralstonia eutrophaの中で強力なプロモーターとして知られている。またファジンプロモーターは、培養液中の窒素源やリン源の枯渇により活性化するため、大腸菌発現系などで用いられるIPTG(イソプロピル−β−チオガラクトピラノシド)などの高価な誘導剤の添加なしにタンパク質の高発現が可能となる。   When introducing the target protein gene and transport protein gene in the present invention, the target protein and transport protein are linked via an appropriate cleavage linker that is automatically cleaved by a host-derived protease present in the periplasm or outer membrane. Co-expressed as a fusion protein with In this way, the expressed fusion protein of the target protein and transport protein is transported to the periplasm and then cleaved by protease, so that it is automatically secreted into the culture medium without any other special treatment. This is because that. The cleavage linker used here is not particularly limited as long as it is cleaved by a host-derived protease, and examples thereof include prePhaZ1, which is a signal sequence of extracellular PHB-degrading enzyme of pelB of E. coli or Paucimonas lemignei. In addition, when introducing the target protein gene and the transport protein gene in the present invention, it is more preferable to introduce a phasin promoter upstream of the fusion protein gene of (target protein gene- (preferably cleavage linker) -transport protein gene). The phasin promoter is a promoter for producing phasin, which is a protein that covers the surface of PHB (polyhydroxybutyric acid) granules, and is known as a strong promoter in Ralstonia eutropha. In addition, since the fadin promoter is activated by depletion of nitrogen and phosphorus sources in the culture solution, no expensive inducer such as IPTG (isopropyl-β-thiogalactopyranoside) used in E. coli expression systems is added. In addition, high protein expression is possible.

本発明の水素酸化細菌を作製する際、目的タンパク質遺伝子および輸送タンパク質遺伝子の水素酸化細菌への導入方法としては、主に広域宿主ベクターを用いた発現方法と自殺ベクターを用いたゲノム組換え法がある。水素酸化細菌としてRalstonia eutrophaを用いた場合、広域宿主ベクターとしてはpBBR1MCS2、pKT230、pBHR1が、自殺ベクターとしてはpJQ200mp18、pNHG1、pLO1が、それぞれ例示できる。なお広域宿主ベクターと自殺ベクターを併用して遺伝子導入を行なってもよい。   When producing the hydrogen-oxidizing bacterium of the present invention, the target protein gene and the transport protein gene are introduced into the hydrogen-oxidizing bacterium mainly by an expression method using a broad host vector and a genome recombination method using a suicide vector. is there. When Ralstonia eutropha is used as a hydrogen-oxidizing bacterium, pBBR1MCS2, pKT230, and pBHR1 can be exemplified as wide-area host vectors, and pJQ200mp18, pNHG1, and pLO1 can be exemplified as suicide vectors. In addition, gene transfer may be performed using a broad-area host vector and a suicide vector in combination.

本発明の水素酸化細菌は、大腸菌の発現系などと比べ、無機塩などの安価な原料からタンパク質の生産が可能である。例えば、大腸菌の培養で通常用いられる酵母エキスやペプトンなどの有機窒素原料を、アンモニア、アンモニウム塩、硝酸塩、亜硝酸塩などの無機窒素原料で置き換えることが可能である。また炭素源としては、グルコン酸やフルクトースの代わりに二酸化炭素や炭酸塩などの無機窒炭素原料で置き換えることが可能である。このような夾雑タンパク質のない無機塩原料の使用および目的タンパク質の培養液中への分泌発現により、培養工程のみで培養上清中に高純度なタンパク質を得ることが出来、一般のタンパク質精製における煩雑な工程を簡素化できる。   The hydrogen-oxidizing bacterium of the present invention can produce proteins from inexpensive raw materials such as inorganic salts as compared to the expression system of Escherichia coli. For example, organic nitrogen materials such as yeast extract and peptone that are commonly used in E. coli culture can be replaced with inorganic nitrogen materials such as ammonia, ammonium salts, nitrates, and nitrites. Moreover, as a carbon source, it can replace with inorganic nitrogen carbon raw materials, such as a carbon dioxide and carbonate, instead of gluconic acid or fructose. By using such inorganic salt raw material without contaminating proteins and expressing the target protein into the culture medium, a high-purity protein can be obtained in the culture supernatant only by the culturing process. Simple process can be simplified.

本発明の水素酸化細菌を用いて分泌発現可能な目的タンパク質に特に限定はなく、一例として、インシュリン、インターフェロン、インターロイキン、抗体、エリスロポエチン、成長ホルモンなどのヒト由来タンパク質、およびそれらの受容体タンパク質があげられる。なお本発明の水素酸化細菌を用いて分泌発現させる目的タンパク質は、完全体であってもよいし、目的タンパク質の機能に重要な部分のみから構成されるポリペプチドであってもよいし、さらに目的タンパク質を構成するアミノ酸の一つ以上が欠失および/または挿入および/または置換されていてもよい。以降、本発明の水素酸化細菌を用いて分泌発現可能な目的タンパク質のうち、Fc結合性タンパク質について詳細に説明する。   The target protein that can be secreted and expressed using the hydrogen-oxidizing bacterium of the present invention is not particularly limited, and examples include human-derived proteins such as insulin, interferon, interleukin, antibody, erythropoietin, growth hormone, and their receptor proteins. can give. The target protein to be secreted and expressed using the hydrogen-oxidizing bacterium of the present invention may be a complete protein, a polypeptide composed only of a part important for the function of the target protein, or a further object. One or more amino acids constituting the protein may be deleted and / or inserted and / or substituted. Hereinafter, among the target proteins that can be secreted and expressed using the hydrogen-oxidizing bacteria of the present invention, Fc-binding proteins will be described in detail.

本明細書においてFc結合性タンパク質は、ヒトFcγRIの細胞外領域(具体的には天然型ヒトFcγRIの場合、配列番号11に記載のアミノ酸配列のうち16番目のグルタミンから292番目のヒスチジンまでの領域)、またはヒトFcγRIIIaの細胞外領域(具体的には天然型ヒトFcγRIIIaの場合、配列番号12に記載のアミノ酸配列のうち17番目のグリシンから208番目のグルタミンまでの領域)を構成するタンパク質のことをいう。ただし必ずしもヒトFcγRI細胞外領域またはヒトFcγRIIIa細胞外領域の全領域でなくてもよく、ヒトFcγRI細胞外領域またはヒトFcγRIIIa細胞外領域を構成するタンパク質(ポリペプチド)のうち、少なくとも抗体(免疫グロブリン)のFc領域に結合する本来の機能を発現し得る領域のポリペプチドを含んでいればよい。当該Fc結合性タンパク質の一例として、
(I)配列番号11に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含むタンパク質や、
(II)配列番号11に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質や、
(III)配列番号12に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質や、
(IV)配列番号12に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質、
があげられる。
In the present specification, the Fc binding protein is an extracellular region of human FcγRI (specifically, in the case of natural human FcγRI, a region from the 16th glutamine to the 292nd histidine in the amino acid sequence shown in SEQ ID NO: 11). ) Or a protein constituting the extracellular region of human FcγRIIIa (specifically, in the case of natural human FcγRIIIa, the region from the 17th glycine to the 208th glutamine in the amino acid sequence shown in SEQ ID NO: 12) Say. However, it does not necessarily have to be the entire region of human FcγRI extracellular region or human FcγRIIIa extracellular region, and at least an antibody (immunoglobulin) among proteins (polypeptides) constituting human FcγRI extracellular region or human FcγRIIIa extracellular region The polypeptide of the area | region which can express the original function couple | bonded with Fc area | region of this should just be included. As an example of the Fc binding protein,
(I) a protein comprising an amino acid residue from at least the 16th glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 11,
(II) contains at least amino acid residues from the 16th glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 11, and one or more of the amino acid residues are substituted with other amino acid residues Inserted or deleted proteins,
(III) a protein comprising an amino acid residue from the 17th glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 12,
(IV) comprising at least the 17th glycine to the 192nd glutamine amino acid residue in the amino acid sequence of SEQ ID NO: 12, and at least one of the amino acid residues is substituted with another amino acid residue Inserted or deleted protein,
Is given.

前記(II)の具体例としては、特開2011−206046号公報や特開2014−027916号公報に開示のFc結合性タンパク質があげられる。前記(IV)の具体例としては、配列番号12に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(1)から(40)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質(特願2013−202245号)があげられる。
(1)配列番号12の18番目のメチオニンがアルギニンに置換
(2)配列番号12の27番目のバリンがグルタミン酸に置換
(3)配列番号12の29番目のフェニルアラニンがロイシンまたはセリンに置換
(4)配列番号12の30番目のロイシンがグルタミンに置換
(5)配列番号12の35番目のチロシンがアスパラギン酸、グリシン、リジン、ロイシン、アスパラギン、プロリン、セリン、スレオニン、ヒスチジンのいずれかに置換
(6)配列番号12の46番目のリジンがイソロイシンまたはスレオニンに置換
(7)配列番号12の48番目のグルタミンがヒスチジンまたはロイシンに置換
(8)配列番号12の50番目のアラニンがヒスチジンに置換
(9)配列番号12の51番目のチロシンがアスパラギン酸またはヒスチジンに置換
(10)配列番号12の54番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(11)配列番号12の56番目のアスパラギンがスレオニンに置換
(12)配列番号12の59番目のグルタミンがアルギニンに置換
(13)配列番号12の61番目のフェニルアラニンがチロシンに置換
(14)配列番号12の64番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号12の65番目のセリンがアルギニンに置換
(16)配列番号12の71番目のアラニンがアスパラギン酸に置換
(17)配列番号12の75番目のフェニルアラニンがロイシン、セリン、チロシンのいずれかに置換
(18)配列番号12の77番目のアスパラギン酸がアスパラギンに置換
(19)配列番号12の78番目のアラニンがセリンに置換
(20)配列番号12の82番目のアスパラギン酸がグルタミン酸またはバリンに置換
(21)配列番号12の90番目のグルタミンがアルギニンに置換
(22)配列番号12の92番目のアスパラギンがセリンに置換
(23)配列番号12の93番目のロイシンがアルギニンまたはメチオニンに置換
(24)配列番号12の95番目のスレオニンがアラニンまたはセリンに置換
(25)配列番号12の110番目のロイシンがグルタミンに置換
(26)配列番号12の115番目のアルギニンがグルタミンに置換
(27)配列番号12の116番目のトリプトファンがロイシンに置換
(28)配列番号12の118番目のフェニルアラニンがチロシンに置換
(29)配列番号12の119番目のリジンがグルタミン酸に置換
(30)配列番号12の120番目のグルタミン酸がバリンに置換
(31)配列番号12の121番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(32)配列番号12の151番目のフェニルアラニンがセリンまたはチロシンに置換
(33)配列番号12の155番目のセリンがスレオニンに置換
(34)配列番号12の163番目のスレオニンがセリンに置換
(35)配列番号12の167番目のセリンがグリシンに置換
(36)配列番号12の169番目のセリンがグリシンに置換
(37)配列番号12の171番目のフェニルアラニンがチロシンに置換
(38)配列番号12の180番目のアスパラギンがリジン、セリン、イソロイシンのいずれかに置換
(39)配列番号12の185番目のスレオニンがセリンに置換
(40)配列番号12の192番目のグルタミンがリジンに置換
Specific examples of the (II) include Fc-binding proteins disclosed in JP2011-206046A and JP2014-027916A. Specific examples of the above (IV) include the amino acid residues from the 17th to the 192nd in the amino acid sequence shown in SEQ ID NO: 12, and the following (1 ) To (40), and Fc-binding protein (Japanese Patent Application No. 2013-202245) in which at least one amino acid substitution has occurred.
(1) 18th methionine of SEQ ID NO: 12 is replaced with arginine (2) 27th valine of SEQ ID NO: 12 is replaced with glutamic acid (3) 29th phenylalanine of SEQ ID NO: 12 is replaced with leucine or serine (4) 30th leucine of SEQ ID NO: 12 is replaced with glutamine (5) 35th tyrosine of SEQ ID NO: 12 is replaced with any of aspartic acid, glycine, lysine, leucine, asparagine, proline, serine, threonine, histidine (6) The 46th lysine of SEQ ID NO: 12 is replaced with isoleucine or threonine (7) The 48th glutamine of SEQ ID NO: 12 is replaced with histidine or leucine (8) The 50th alanine of SEQ ID NO: 12 is replaced with histidine (9) The tyrosine at number 12 is aspartic acid or histidine (10) The 54th glutamic acid of SEQ ID NO: 12 is replaced with aspartic acid or glycine (11) The 56th asparagine of SEQ ID NO: 12 is replaced with threonine (12) The 59th glutamine of SEQ ID NO: 12 is replaced with arginine (13) 61st phenylalanine of SEQ ID NO: 12 is replaced with tyrosine (14) 64th glutamic acid of SEQ ID NO: 12 is replaced with aspartic acid (15) 65th serine of SEQ ID NO: 12 is replaced with arginine (16) The 71st alanine of No. 12 is substituted with aspartic acid (17) The 75th phenylalanine of SEQ ID No. 12 is substituted with leucine, serine or tyrosine (18) The 77th aspartic acid of SEQ ID No. 12 is substituted with asparagine (19) The 78th alanine of SEQ ID NO: 12 becomes serine (20) The 82nd aspartic acid of SEQ ID NO: 12 was replaced with glutamic acid or valine (21) The 90th glutamine of SEQ ID NO: 12 was replaced with arginine (22) The 92nd asparagine of SEQ ID NO: 12 was replaced with serine ( 23) 93th leucine of SEQ ID NO: 12 is replaced with arginine or methionine (24) 95th threonine of SEQ ID NO: 12 is replaced with alanine or serine (25) 110th leucine of SEQ ID NO: 12 is replaced with glutamine (26 ) The 115th arginine of SEQ ID NO: 12 was replaced with glutamine (27) The 116th tryptophan of SEQ ID NO: 12 was replaced with leucine (28) The 118th phenylalanine of SEQ ID NO: 12 was replaced with tyrosine (29) 119th lysine substituted with glutamic acid (30) sequence 120th glutamic acid of No. 12 is substituted with valine (31) 121st glutamic acid of SEQ ID No. 12 is substituted with aspartic acid or glycine (32) 151st phenylalanine of SEQ ID No. 12 is substituted with serine or tyrosine (33) The 155th serine of No. 12 is replaced with threonine (34) The 163rd threonine of SEQ ID NO: 12 is replaced with serine (35) The 167th serine of SEQ ID NO: 12 is replaced with glycine (36) The 169th position of SEQ ID NO: 12 (37) 171th phenylalanine of SEQ ID NO: 12 is replaced with tyrosine (38) 180th asparagine of SEQ ID NO: 12 is replaced with lysine, serine or isoleucine (39) of SEQ ID NO: 12 185th threonine is replaced by serine (40) 12 192 th glutamine substituted lysine

本発明は、以下の効果を奏することができる。
(1)本発明の水素酸化細菌は、目的タンパク質遺伝子および輸送効率に優れた新規な輸送タンパク質遺伝子であるH16_B0271遺伝子を導入し、前記目的タンパク質と前記輸送タンパク質とを共発現させることで、これまで困難であった、菌体が生産する目的タンパク質総量の7割以上の培養液中への分泌発現を可能とする。
(2)本発明の水素酸化細菌を用いた目的タンパク質の製造方法は、従来の分泌発現方法よりもタンパク質製造のコストを抑えることができる。これまでの水素酸化細菌を宿主とした目的タンパク質の培養液中への分泌発現方法では、菌体が生産する目的タンパク質総量の4割弱が培養液中に放出されず菌体内に残存してしまい、培養液中の目的タンパク質生産量低下や精製時の回収率低下の要因になっていた。一方本発明では、より輸送効率に優れた新規な輸送タンパク質遺伝子であるH16_B0271遺伝子を利用することで、培養液中への生産性および精製時の回収効率が高い微生物生産プロセスを可能とする。
The present invention can achieve the following effects.
(1) The hydrogen-oxidizing bacterium of the present invention introduces the target protein gene and the H16_B0271 gene, which is a novel transport protein gene excellent in transport efficiency, and co-expresses the target protein and the transport protein so far. It is difficult to secrete and express in a culture solution of 70% or more of the total amount of the target protein produced by the cells.
(2) The method for producing a target protein using the hydrogen-oxidizing bacterium of the present invention can reduce the cost for producing the protein as compared with the conventional secretory expression method. In conventional methods for secreting and expressing a target protein into a culture solution using hydrogen-oxidizing bacteria as a host, less than 40% of the total amount of the target protein produced by the cell remains in the cell without being released into the culture. This has been a factor in reducing the production amount of the target protein in the culture solution and the recovery rate during purification. On the other hand, in the present invention, by using the H16_B0271 gene, which is a novel transport protein gene with more excellent transport efficiency, a microorganism production process with high productivity in the culture solution and high recovery efficiency during purification is enabled.

Fc結合性タンパク質遺伝子と輸送タンパク質遺伝子とを導入した水素酸化細菌による、試験管培養におけるFc結合性タンパク質の生産性および培養液中への分泌性を評価・比較した結果を示す図である。黒は培養液中へ分泌発現した量、白は菌体内に発現した量である。It is a figure which shows the result of having evaluated and compared the productivity of the Fc binding protein in a test tube culture, and the secretion to a culture solution by the hydrogen oxidation bacterium which introduce | transduced the Fc binding protein gene and the transport protein gene. Black is the amount expressed in the culture medium, and white is the amount expressed in the cells.

以下、タンパク質としてFc結合性タンパク質を、水素酸化細菌としてRalstonia属の菌を、それぞれ用いたときの実施例を用いて、本発明をさらに詳細に説明するが、本発明は前記例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples using Fc-binding proteins as proteins and Ralstonia bacteria as hydrogen-oxidizing bacteria. However, the present invention is limited to the above examples. It is not a thing.

実施例1 発現ベクターの作製
下記(a)から(c)に示すプラスミド(発現ベクター)を作製した。
(a)ファジンプロモーター、(H16_A2935遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子、およびターミネーター遺伝子を導入したプラスミド
(a−1)ファジンプロモーター、(H16_A2935遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子、ターミネーター遺伝子の順番に連結した遺伝子(配列番号1)をプラスミドpUC57に挿入したものを、人工遺伝子合成により作製した(Gen Script社 人工遺伝子合成受託サービス、pUC57はGen Script社提供の人工遺伝子挿入用標準ベクター)。なお配列番号1中、7番目から444番目の領域がファジンプロモーター(配列番号2)に、451番目から684番目の領域がH16_A2935遺伝子(配列番号3)に、691番目から798番目までの領域が切断リンカー遺伝子(配列番号4)に、805番目から1641番目までがFc結合性タンパク質遺伝子(配列番号5)に、1648番目から1758番目までの領域がターミネーター遺伝子(配列番号6)に、それぞれ相当する。またファジンプロモーターはRalstonia eutropha H16株由来のプロモーターを、切断リンカーはPaucimonas lemoigneiの細胞外PHB分解酵素のシグナル配列であるPrephaZ1を、それぞれ用い、H16_A2935遺伝子、切断リンカー遺伝子およびFc結合性タンパク質遺伝子はRalstonia eutropha H16株におけるコドンに最適化したヌクレオチド配列となっている。以下、当該プラスミドをA2935−FcR/pUC57と記載する。
Example 1 Preparation of Expression Vector Plasmids (expression vectors) shown in the following (a) to (c) were prepared.
(A) Phasin promoter, (H16_A2935 gene-cleaved linker gene-Fc binding protein gene) fusion gene, and plasmid introduced terminator gene (a-1) Phadine promoter, (H16_A2935 gene-cleaved linker gene-Fc binding property A gene in which a gene (sequence number 1) linked in the order of a fusion gene of a protein gene and a terminator gene was inserted into a plasmid pUC57 was prepared by artificial gene synthesis (Gen Script, artificial gene synthesis contract service, pUC57 is Gen Script) Provided artificial gene insertion standard vector). In SEQ ID NO: 1, the 7th to 444th regions are cleaved by the phasin promoter (SEQ ID NO: 2), the 451th to 684th regions are the H16_A2935 gene (SEQ ID NO: 3), and the 691st to 798th regions are cleaved. In the linker gene (SEQ ID NO: 4), the region from 805 to 1641 corresponds to the Fc binding protein gene (SEQ ID NO: 5), and the region from 1648 to 1758 corresponds to the terminator gene (SEQ ID NO: 6). In addition, a promoter derived from Ralstonia eutropha H16 strain was used as the fasin promoter, PrephaZ1 which is a signal sequence of the extracellular PHB-degrading enzyme of Pacimonas lemignei was used as the cleavage linker, and the H16_A2935 gene, the cleavage linker gene and the Fc-binding protein gene were used as Ralstonia eutropha, respectively. The nucleotide sequence is optimized for codons in the H16 strain. Hereinafter, this plasmid is referred to as A2935-FcR / pUC57.

(a−2)作製したA2935−FcR/pUC57で大腸菌JM109株を形質転換した。得られた形質転換体を培養し、プラスミドA2935−FcR/pUC57を抽出した。
(a−3)市販の広域宿主ベクターであるpBBR1MCS2で大腸菌JM109株を形質転換し、得られた形質転換体の培養物からプラスミド精製キットでpBBR1MCS2を調製した。
(a−4)得られたpBBR1MCS2をApaIとXbaIで消化し、アガロース電気泳動後、約5.1kbpのDNA産物をゲル抽出キットにより精製した。
(a−5)(a−2)で調製したA2935−FcR/pUC57をApaIとXbaIで制限酵素消化し、アガロース電気泳動後、得られた約1.8kbpのDNA断片をゲル抽出キットにより精製した。
(a−6)(a−4)で得られたDNA断片と(a−5)で得られたDNA断片とを、16℃でライゲーション反応(Ligation High、東洋紡社製)を行ない、得られたプラスミドで大腸菌JM109株(タカラバイオ社製)を形質転換した。
(a−7)形質転換後の溶液を、カナマイシン20μg/mLとグルコース1%(w/v)とを含むLB平板培養液(バクトトリプトン10g/L、酵母エキス5g/L、塩化ナトリウム10g/L、バクトアガロース15g/L)に撒き、目的クローンを選定した。
(a−8)選定した複数のコロニーを培養してプラスミド抽出を行ない、様々な制限酵素による切断パターンを確認した。
(A-2) Escherichia coli JM109 strain was transformed with the prepared A2935-FcR / pUC57. The obtained transformant was cultured, and plasmid A2935-FcR / pUC57 was extracted.
(A-3) Escherichia coli JM109 strain was transformed with pBBR1MCS2, which is a commercially available broad-area host vector, and pBBR1MCS2 was prepared from the resulting transformant culture with a plasmid purification kit.
(A-4) The obtained pBBR1MCS2 was digested with ApaI and XbaI, and after agarose electrophoresis, a DNA product of about 5.1 kbp was purified by a gel extraction kit.
(A-5) A2935-FcR / pUC57 prepared in (a-2) was digested with restriction enzymes with ApaI and XbaI, and after agarose electrophoresis, the obtained DNA fragment of about 1.8 kbp was purified with a gel extraction kit. .
(A-6) The DNA fragment obtained in (a-4) and the DNA fragment obtained in (a-5) were subjected to a ligation reaction (Ligation High, manufactured by Toyobo Co., Ltd.) at 16 ° C. to obtain Escherichia coli JM109 strain (Takara Bio Inc.) was transformed with the plasmid.
(A-7) An LB plate culture solution (bactotryptone 10 g / L, yeast extract 5 g / L, sodium chloride 10 g / L) containing 20 μg / mL kanamycin and 1% glucose (w / v) was added to the solution after transformation. L, bactoagarose 15 g / L), and the target clone was selected.
(A-8) A plurality of selected colonies were cultured, and plasmid extraction was performed to confirm cleavage patterns by various restriction enzymes.

以上の方法で、プラスミドA2935−FcR/pUC57のApaI/XbaI断片をpBBR1MCS2のApaI/XbaI部位に挿入したプラスミドである、A2935−FcR/pBBR1MCS2を得た。なおA2935−FcR/pBBR1MCS2は、ファジンプロモーター、(H16_A2935遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子およびターミネーター遺伝子が、pBBR1MCS2のLacZに対し、正方向に挿入されたプラスミドである。またA2935−FcR/pBBR1MCS2で大腸菌JM109に形質転換して得られた形質転換体を、以下、A2935−FcR/JM109とする。   By the above method, A2935-FcR / pBBR1MCS2, which is a plasmid in which the ApaI / XbaI fragment of plasmid A2935-FcR / pUC57 was inserted into the ApaI / XbaI site of pBBR1MCS2, was obtained. A2935-FcR / pBBR1MCS2 is a plasmid in which a fazine promoter, a fusion gene of (H16_A2935 gene-cleavable linker gene-Fc binding protein gene) and a terminator gene are inserted in the positive direction with respect to LacZ of pBBR1MCS2. The transformant obtained by transforming E. coli JM109 with A2935-FcR / pBBR1MCS2 is hereinafter referred to as A2935-FcR / JM109.

(b)ファジンプロモーター、(H16_A2820遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子およびターミネーター遺伝子を導入したプラスミド
(b−1)Ralstonia eutropha H16株由来のH16_A2820をRalstonia eutropha H16株に適したコドンで変換して得られたヌクレオチド配列(配列番号9の7番目から330番目の領域)を含むポリヌクレオチド(配列番号9)をプラスミドpUC57に挿入したプラスミドA2820/pUC57を人工遺伝子合成により作製した(Gen Script社 人工遺伝子合成受託サービス)。
(b−2)作製したA2820/pUC57で大腸菌JM109株を形質転換し、得られた形質転換体の培養物からプラスミドA2820/pUC57を抽出した。
(b−3)(a)で作製したA2935−FcR/pBBR1MCS2をHindIIIとSpeIで制限酵素消化し、アガロース電気泳動後、得られた約6.6kbpのDNA断片をゲル抽出キットにより精製した。
(b−4)(b−2)で調製したA2820/pUC57をHindIIIとSpeIで制限酵素消化し、アガロース電気泳動後、得られた約0.3kbpのDNA断片をゲル抽出キットにより精製した。
(b−5)(b−3)で得られたDNA断片と(b−4)で得られたDNA断片とを、16℃でライゲーション反応(Ligation High、東洋紡社製)を行ない、得られたプラスミドで大腸菌JM109株を形質転換した。
(b−6)形質転換後の溶液を、カナマイシン20μg/mLとグルコース1%(w/v)とを含むLB平板培養液に撒き、目的クローンを選定した。
(b−7)選定した複数のコロニーを培養してプラスミド抽出を行ない、様々な制限酵素による切断パターンを確認した。
(B) Phasin promoter, (H16_A2820 gene-cleavable linker gene-Fc binding protein gene) plasmid and terminator gene-introduced plasmid (b-1) Ralstonia eutropha Plasmid A2820 / pUC57 in which a polynucleotide (SEQ ID NO: 9) containing a nucleotide sequence obtained by codon conversion (region 7 to 330 of SEQ ID NO: 9) was inserted into plasmid pUC57 was prepared by artificial gene synthesis ( Gen Script artificial gene synthesis contract service).
(B-2) Escherichia coli JM109 strain was transformed with the prepared A2820 / pUC57, and plasmid A2820 / pUC57 was extracted from the culture of the obtained transformant.
(B-3) A2935-FcR / pBBR1MCS2 prepared in (a) was digested with restriction enzymes HindIII and SpeI, and after agarose electrophoresis, the obtained DNA fragment of about 6.6 kbp was purified by a gel extraction kit.
(B-4) A2820 / pUC57 prepared in (b-2) was digested with restriction enzymes HindIII and SpeI, and after agarose electrophoresis, the obtained DNA fragment of about 0.3 kbp was purified by a gel extraction kit.
(B-5) The DNA fragment obtained in (b-3) and the DNA fragment obtained in (b-4) were subjected to a ligation reaction (Ligation High, manufactured by Toyobo Co., Ltd.) at 16 ° C. to obtain Escherichia coli JM109 strain was transformed with the plasmid.
(B-6) The transformed solution was spread on an LB plate culture solution containing 20 μg / mL of kanamycin and 1% (w / v) of glucose, and a target clone was selected.
(B-7) A plurality of selected colonies were cultured and plasmid extraction was performed, and cleavage patterns with various restriction enzymes were confirmed.

以上の方法で、プラスミドA2935−FcR/pBBR1MCS2中のH16_A2935遺伝子をH16_A2820遺伝子に置き換えたプラスミドである、A2820−FcR/pBBR1MCS2を得た。なおA2820−FcR/pBBR1MCS2は、ファジンプロモーター、(H16_A2820遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子およびターミネーター遺伝子が、pBBR1MCS2のLacZに対し、正方向に挿入されたプラスミドである。   By the above method, A2820-FcR / pBBR1MCS2, which is a plasmid in which the H16_A2935 gene in the plasmid A2935-FcR / pBBR1MCS2 is replaced with the H16_A2820 gene, was obtained. A2820-FcR / pBBR1MCS2 is a plasmid in which a fazine promoter, a fusion gene of (H16_A2820 gene-cleavable linker gene-Fc binding protein gene) and a terminator gene are inserted in the positive direction with respect to LacZ of pBBR1MCS2.

(c)ファジンプロモーター、(H16_B0271N末端領域遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子、およびターミネーター遺伝子を導入したプラスミド
(c−1)Ralstonia eutropha H16株由来のH16_B0271N末端領域タンパク質遺伝子をRalstonia eutropha H16株に適したコドンで変換して得られたヌクレオチド配列(配列番号10の7番目から519番目の領域)を含むポリヌクレオチド(配列番号10)をプラスミドpUC57に挿入したプラスミドB0271N/pUC57を人工遺伝子合成により作製した(Gen Script社 人工遺伝子合成受託サービス)。
(c−2)作製したB0271N/pUC57で大腸菌JM109株を形質転換し、得られた形質転換体の培養物からプラスミドB0271N/pUC57を抽出した。
(c−3)(a)で作製したA2935−FcR/pBBR1MCS2をHindIIIとSpeIで制限酵素消化し、アガロース電気泳動後、得られた約6.6kbpのDNA断片をゲル抽出キットにより精製した。
(c−4)(c−2)で調製したB0271N/pUC57をHindIIIとSpeIで制限酵素消化し、アガロース電気泳動後、得られた約0.5kbpのDNA断片をゲル抽出キットにより精製した。
(c−5)(c−3)で得られたDNA断片と(c−4)で得られたDNA断片とを、16℃でライゲーション反応(Ligation High、東洋紡社製)を行ない、得られたプラスミドで大腸菌JM109株を形質転換した。
(c−6)形質転換後の溶液を、カナマイシン20μg/mLとグルコース1%(w/v)とを含むLB平板培養液に撒き、目的クローンを選定した。
(c−7)選定した複数のコロニーを培養してプラスミド抽出を行ない、様々な制限酵素による切断パターンを確認した。
(C) plasmid (c-1) H16_B0271 N-terminal region protein gene derived from Ralstonia eutropha H16 strain into which a fazine promoter, a fusion gene of (H16_B0271 N-terminal region gene-cleavable linker gene-Fc binding protein gene), and a terminator gene were introduced Plasmid B0271N / pUC57 obtained by inserting a polynucleotide (SEQ ID NO: 10) containing a nucleotide sequence (region 7 to 519 of SEQ ID NO: 10) obtained by conversion with a codon suitable for Ralstonia eutropha H16 strain into plasmid pUC57 Manufactured by artificial gene synthesis (Gen Script artificial gene synthesis contract service).
(C-2) Escherichia coli JM109 strain was transformed with the prepared B0271N / pUC57, and plasmid B0271N / pUC57 was extracted from the culture of the obtained transformant.
(C-3) A2935-FcR / pBBR1MCS2 prepared in (a) was digested with restriction enzymes HindIII and SpeI, and after agarose electrophoresis, the obtained DNA fragment of about 6.6 kbp was purified by a gel extraction kit.
(C-4) B0271N / pUC57 prepared in (c-2) was digested with restriction enzymes with HindIII and SpeI, and after agarose electrophoresis, the obtained DNA fragment of about 0.5 kbp was purified with a gel extraction kit.
(C-5) The DNA fragment obtained in (c-3) and the DNA fragment obtained in (c-4) were subjected to a ligation reaction (Ligation High, manufactured by Toyobo Co., Ltd.) at 16 ° C. to obtain Escherichia coli JM109 strain was transformed with the plasmid.
(C-6) The transformed solution was spread on an LB plate culture solution containing 20 μg / mL of kanamycin and 1% (w / v) of glucose, and the target clone was selected.
(C-7) A plurality of selected colonies were cultured and plasmid extraction was performed, and cleavage patterns with various restriction enzymes were confirmed.

以上の方法で、プラスミドA2935−FcR/pBBR1MCS2中のH16_A2935遺伝子をH16_B0271N末端領域遺伝子に置き換えたプラスミドである、B0271N−FcR/pBBR1MCS2を得た。なおB0271N−FcR/pBBR1MCS2は、ファジンプロモーター、(H16_B0271N末端領域遺伝子−切断リンカー遺伝子−Fc結合性タンパク質遺伝子)の融合遺伝子およびターミネーター遺伝子が、pBBR1MCS2のLacZに対し、正方向に挿入されたプラスミドである。   By the above method, B0271N-FcR / pBBR1MCS2, which is a plasmid in which the H16_A2935 gene in the plasmid A2935-FcR / pBBR1MCS2 was replaced with the H16_B0271N terminal region gene, was obtained. B0271N-FcR / pBBR1MCS2 is a plasmid in which a fazine promoter, a fusion gene of (H16_B0271N terminal region gene-cleaved linker gene-Fc binding protein gene) and a terminator gene are inserted in the positive direction with respect to LacZ of pBBR1MCS2. .

実施例2 Ralstonia eutropha形質転換体の作製
以下の方法により、実施例1(b)で作製したA2820−FcR/pBBR1MCS2、実施例1(c)で作製したB0271N−FcR/pBBR1MCS2、およびFc結合性タンパク質遺伝子を含まないネガティブコントロールとして、市販のpBBR1MCS2プラスミドで、それぞれRalstonia eutrophaを形質転換した。
(1)A2820−FcR/pBBR1MCS2、B0271N−FcR/pBBR1MCS2またはpBBR1MCS2で、接合性大腸菌S17−1を形質転換した。
(2)形質転換後の溶液を、カナマイシン50μg/mLを含むLB平板培養液に撒き、目的クローンを選定した。
(3)選定した大腸菌S17−1株形質転換体を、カナマイシン50μg/mLを含むLB(バクトトリプトン10g/L、酵母エキス5g/L、塩化ナトリウム10g/L)培養液中、37℃で一晩培養を行なった。
(4)市販のRalstonia eutropha H16株(ATCC 17699)またはalstonia eutropha PHB_4株(DSM 541)をそれぞれ抗生物質を含まないNutrient Broth培養液(Difco社製 Nutrient Broth、8g/L)中で30℃で一晩培養した。
(5)(4)で培養した菌体を遠心して濃縮し、600nmでの菌の濁度を測定後、(3)で培養した各大腸菌S17−1株の形質転換体と菌体濁度1:1の比で混合し、抗生物質を含まないNutrient brothプレート(Nutrient Broth8g/L、バクトアガロース15g/L)に撒き30℃で一晩培養した。なおコントロールとして、各大腸菌S17−1株の形質転換体、Ralstonia eutropha H16株またはRalstonia eutropha PHB_4株のみを、抗生物質を含まないNutrient brothプレートで30℃で一晩培養した。
(6)プレート表面の菌体をNutrient Broth培養液に懸濁させ、Nutrient Broth培養液で1/1000に希釈した後、カナマイシン600μg/mLを含むNutrient brothプレートに塗布し、30℃で2日から3日培養した。コントロールである、各大腸菌S17−1株の形質転換体、Ralstonia eutropha H16株またはRalstonia eutropha PHB_4株のみを培養したプレートからはコロニーは0から数個しか出現しなかった。一方、大腸菌S17−1株の形質転換体とRalstonia属の株とを接合し得られた混合菌体を塗布したプレートからは、それぞれ数十〜数百個のコロニーが得られた。
(7)得られた接合菌体の各クローンを培養してプラスミド抽出を行ない、様々な制限酵素による切断パターンの分析により、目的のプラスミドが伝達されたことを確認した。
Example 2 Production of Ralstonia eutropha transformant A2820-FcR / pBBR1MCS2 produced in Example 1 (b), B0271N-FcR / pBBR1MCS2 produced in Example 1 (c), and Fc binding protein by the following method As a negative control not containing a gene, Ralstonia eutropha was transformed with a commercially available pBBR1MCS2 plasmid, respectively.
(1) Conjugative E. coli S17-1 was transformed with A2820-FcR / pBBR1MCS2, B0271N-FcR / pBBR1MCS2, or pBBR1MCS2.
(2) The transformed solution was spread on an LB plate culture solution containing 50 μg / mL of kanamycin, and a target clone was selected.
(3) The selected Escherichia coli S17-1 strain transformant was cultured at 37 ° C. in an LB (bactotryptone 10 g / L, yeast extract 5 g / L, sodium chloride 10 g / L) culture solution containing kanamycin 50 μg / mL. An overnight culture was performed.
(4) Commercially available Ralstonia eutropha H16 strain (ATCC 17699) or alstonia eutropha PHB_4 strain (DSM 541) in Nutrient Broth culture solution (Difco's Nutrient Broth, 8 g / L at 30 ° C.) Cultured overnight.
(5) The cells cultured in (4) are centrifuged and concentrated. After measuring the turbidity of the cells at 600 nm, the transformants of each E. coli S17-1 strain cultured in (3) and the cell turbidity 1 The mixture was mixed at a ratio of 1: 1 and plated on a nutrient broth plate (Nutrient Broth 8 g / L, bactogarose 15 g / L) containing no antibiotics, and cultured at 30 ° C overnight. As a control, transformants of each E. coli S17-1 strain, Ralstonia eutropha H16 strain or Ralstonia eutropha PHB_4 strain alone were cultured overnight at 30 ° C. on a nutrient broth plate containing no antibiotics.
(6) The bacterial cells on the surface of the plate are suspended in a nutrient broth culture solution, diluted to 1/1000 with a nutrient broth culture solution, and then applied to a nutrient broth plate containing 600 μg / mL kanamycin, starting at 30 ° C. for 2 days. Cultured for 3 days. Only 0 to several colonies appeared from a plate in which only the transformant of each Escherichia coli S17-1 strain, Ralstonia eutropha H16 strain or Ralstonia eutropha PHB — 4 strain, was cultured as a control. On the other hand, several tens to several hundreds of colonies were obtained from the plates coated with the mixed cells obtained by joining the transformant of Escherichia coli S17-1 and the strain of the genus Ralstonia.
(7) Each clone of the obtained conjugated cells was cultured and plasmid extraction was performed, and it was confirmed that the target plasmid was transferred by analysis of cleavage patterns with various restriction enzymes.

以上の方法で、
A2820−FcR/pBBR1MCS2(実施例1(b)で作製したプラスミド)をRalstonia eutropha H16株に接合伝達した株であるA2820−FcR/H16株、
A2820−FcR/pBBR1MCS2(実施例1(b)で作製したプラスミド)をPHB_4株に接合伝達した株であるA2820−FcR/PHB_4株、
B0271N−FcR/pBBR1MCS2(実施例1(c)で作製したプラスミド)をH16株に接合伝達した株であるB0271N−FcR/H16株、
B0271N−FcR/pBBR1MCS2(実施例1(c)で作製したプラスミド)をRalstonia eutropha PHB_4株に接合伝達した株であるB0271N−FcR/PHB_4株、
pBBR1MCS2(市販プラスミド)をRalstonia eutropha H16株に接合伝達した株であるBBR1MCS2/H16株、および
pBBR1MCS2(市販プラスミド)をPHB_4株に接合伝達した株であるBBR1MCS2/PHB_4株、
を得ることができた(以下、菌株を上記の名称で記載する)。
With the above method,
A2820-FcR / pBBR1MCS2 (plasmid prepared in Example 1 (b)) A2820-FcR / H16 strain, which is a strain obtained by conjugation to Ralstonia eutropha H16 strain,
A2820-FcR / PHB_4 strain, which is a strain obtained by conjugating A2820-FcR / pBBR1MCS2 (the plasmid prepared in Example 1 (b)) to the PHB_4 strain,
B0271N-FcR / H16 strain, which is a strain obtained by conjugating and transferring B0271N-FcR / pBBR1MCS2 (plasmid prepared in Example 1 (c)) to the H16 strain,
B0271N-FcR / PHB_4 strain, which is a strain obtained by conjugating B0271N-FcR / pBBR1MCS2 (plasmid prepared in Example 1 (c)) to Ralstonia eutropha PHB_4,
BBR1MCS2 / H16 strain, which is a strain obtained by conjugating pBBR1MCS2 (commercial plasmid) to Ralstonia eutropha H16 strain, and BBR1MCS2 / PHB_4 strain, which is a strain obtained by conjugating pBBR1MCS2 (commercial plasmid) to PHB_4 strain,
(Hereinafter, the strain is described with the above name).

実施例3 試験管培養におけるFc結合性タンパク質の生産性評価
実施例2で作製した水素酸化細菌を用いて、Fc結合性タンパク質の分泌発現性を評価した。
(1)実施例2で作製した、A2820−FcR/H16株、A2820−FcR/PHB_4株、B0271N−FcR/H16株、B0271N−FcR/PHB_4株、BBR1MCS2/H16株、BBR1MCS2/PHB_4株を、それぞれカナマイシン300μg/mLを含む3mlの2×YT(バクトトリプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)培養液を用いて試験管で前培養した(30℃、180rpm、一晩)。
(2)(1)の前培養液を、それぞれグルコン酸ナトリウム4%(w/v)およびカナマイシン300μg/mLを含む3mlの2×YT培養液へ150μL植菌し、30℃、180rpmで3日間培養を行なった。
(3)菌体を1mLずつマイクロチューブに採取し、15000rpmで10分間遠心分離することで上清と菌体ペレットを分離した。上清は別のマイクロチューブにそれぞれ500μL分取し、60%(v/v)グリセロール水溶液を500μL加えて保存した。一方上清を除いた菌体ペレットは、タンパク抽出試薬1mL(リゾチーム0.2mg/mL、エチレンジアミン四酢酸1mM、フッ化フェニルメチルスルホニル1mM、Benzonase 125U/mLを含むBugBuster(Novagen社製)タンパク質抽出試薬)を加えることで菌体内のタンパク質を抽出した。
(4)上清中と菌体中のFc結合性タンパク質量を以下に示すELISA法で測定した。
(4−1)96穴のELISAプレート(Nunc社製)にガンマグロブリン製剤10μg/mL(化学及血清療法研究所製)を各ウェルに100μLずつ添加し、4℃で18時間静置することにより固定した。
(4−2)TBS緩衝液(0.2%(w/v)Tween 20、150mM NaClを含む20mM Tris−HCl緩衝液(pH7.5))で洗浄後、1%BSAを含むTween 20を除いたTBS緩衝液(150mM NaClを含む20mM Tris−HCl緩衝液(pH7.5))を200μLずつ添加し、4℃で18時間以上静置することでブロッキング操作を施した。
(4−3)TBS緩衝液で洗浄後、保存した培養上清または菌体抽出物の希釈系列を各ウェルに100μL添加し、固定化したガンマグロブリンと反応させた(30℃、1時間)。
(4−4)反応終了後、TBS緩衝液で洗浄し、1次抗体anti−hFcγR1/CD64抗体(R&D社製 MAB12571)0.1μL/mLを各ウェルに100μL添加して反応させた(30℃、1時間)。
(4−5)反応終了後、TBS緩衝液で洗浄し、2次抗体Goat anti−Mouse IgG−h+I HRP抗体(BETHYL社製 A90−216P)を各ウェルに100μLずつ添加し反応させた(30℃、1時間)。
(4−6)反応終了後、TBS緩衝液で洗浄し、TMB Peroxidase Substrate(KPL社製)を各ウェルに50μLずつ添加し発色反応させた。
(4−7)発色後、1Mリン酸水溶液を添加して反応を停止させ、450nmの吸光度を測定した。
Example 3 Evaluation of productivity of Fc binding protein in test tube culture Using the hydrogen-oxidizing bacteria prepared in Example 2, the secretion expression of Fc binding protein was evaluated.
(1) A2820-FcR / H16 strain, A2820-FcR / PHB_4 strain, B0271N-FcR / H16 strain, B0271N-FcR / PHB_4 strain, BBR1MCS2 / H16 strain, BBR1MCS2 / PHB_4 strain prepared in Example 2, respectively Pre-cultured in a test tube using 3 ml of 2 × YT (bactotryptone 16 g / L, yeast extract 10 g / L, sodium chloride 5 g / L) containing 300 μg / mL kanamycin (30 ° C., 180 rpm, overnight) ).
(2) 150 μL of the preculture solution of (1) is inoculated into 3 ml of 2 × YT culture solution each containing 4% (w / v) sodium gluconate and 300 μg / mL of kanamycin, and 3 days at 30 ° C. and 180 rpm Culture was performed.
(3) 1 mL of the bacterial cells were collected in a microtube and centrifuged at 15000 rpm for 10 minutes to separate the supernatant and the bacterial cell pellet. The supernatant was aliquoted in 500 μL in separate microtubes, and 500 μL of 60% (v / v) glycerol aqueous solution was added and stored. On the other hand, the bacterial cell pellet from which the supernatant was removed was a protein extraction reagent containing 1 mL of protein extraction reagent (lysozyme 0.2 mg / mL, ethylenediaminetetraacetic acid 1 mM, phenylmethylsulfonyl fluoride 1 mM, Benzonase 125 U / mL). ) Was added to extract the protein in the cells.
(4) The amount of Fc binding protein in the supernatant and bacterial cells was measured by the ELISA method shown below.
(4-1) To a 96-well ELISA plate (manufactured by Nunc), add 10 μg / mL of gamma globulin preparation (manufactured by Chemo-Serum Therapy Laboratories) to each well and leave at 4 ° C. for 18 hours. Fixed.
(4-2) After washing with TBS buffer (0.2% (w / v) Tween 20, 20 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl), Tween 20 containing 1% BSA was removed. 200 μL each of TBS buffer (20 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl) was added, and the mixture was allowed to stand at 4 ° C. for 18 hours or longer to perform a blocking operation.
(4-3) After washing with TBS buffer, 100 μL of the stored culture supernatant or dilution series of bacterial cell extract was added to each well and allowed to react with immobilized gamma globulin (30 ° C., 1 hour).
(4-4) After completion of the reaction, the well was washed with TBS buffer, and 100 μL of the primary antibody anti-hFcγR1 / CD64 antibody (MAB12571 manufactured by R & D) 0.1 μL / mL was added to each well for reaction (30 ° C. 1 hour).
(4-5) After completion of the reaction, the plate was washed with TBS buffer, and 100 μL of the secondary antibody Goat anti-Mouse IgG-h + I HRP antibody (ATH-216P manufactured by BETHYL) was added to each well for reaction (30 ° C. 1 hour).
(4-6) After completion of the reaction, the plate was washed with TBS buffer, and 50 μL of TMB Peroxidase Substrate (manufactured by KPL) was added to each well to cause a color reaction.
(4-7) After color development, 1M phosphoric acid aqueous solution was added to stop the reaction, and the absorbance at 450 nm was measured.

結果を図1に示す。ネガティブコントロール(Fc結合性タンパク質遺伝子を導入しない組換え微生物)である、BBR1MCS2/H16株およびBBR1MCS2/PHB_4株はいずれもFc結合性タンパク質を生産しなかった。一方Fc結合性タンパク質遺伝子および輸送タンパク質遺伝子を水素酸化細菌に導入した菌株である、A2820−FcR/H16株、A2820−FcR/PHB_4株、B0271N−FcR/H16株、B0271N−FcR/PHB_4株は、Fc結合性タンパク質をそれぞれ14mg/L、9mg/L、18mg/L、7mg/L生産し、そのうち培養液中への分泌比率はそれぞれ64%、6%、77%、27%であった。このように、輸送タンパク質遺伝子をH16_A2820からH16_B0271に変えることで、宿主としてRalstonia eutropha H16株、PHB_4株のいずれを用いた場合でも分泌比率の向上が認められた。特に、B0271N−FcR/H16株の培養では、これまでの報告で一番良好な生産性・分泌比率を示した株であるA2820−FcR/H16株を生産性・分泌比率共に上回る結果を得ることができた。   The results are shown in FIG. None of the BBR1MCS2 / H16 and BBR1MCS2 / PHB_4 strains, which are negative controls (recombinant microorganisms into which no Fc-binding protein gene was introduced), produced Fc-binding protein. On the other hand, A2820-FcR / H16 strain, A2820-FcR / PHB_4 strain, B0271N-FcR / H16 strain, B0271N-FcR / PHB_4 strain, which are strains obtained by introducing an Fc binding protein gene and a transport protein gene into hydrogen-oxidizing bacteria, Fc-binding proteins were produced at 14 mg / L, 9 mg / L, 18 mg / L, and 7 mg / L, respectively, and the secretion ratios into the culture medium were 64%, 6%, 77%, and 27%, respectively. Thus, by changing the transport protein gene from H16_A2820 to H16_B0271, an improvement in the secretion ratio was observed when either the Ralstonia eutropha H16 strain or the PHB_4 strain was used as the host. In particular, in the culture of the B0271N-FcR / H16 strain, a result that exceeds both the productivity and secretion ratio of the A2820-FcR / H16 strain, which is the strain that showed the best productivity / secretion ratio in the previous reports, can be obtained. I was able to.

このことから、より高性能な輸送タンパク質遺伝子であるH16_B0271を目的タンパク質遺伝子と共に水素酸化細菌に導入し、前記目的タンパク質および前記輸送タンパク質を共発現することで、目的タンパク質の生産性を向上し、なおかつ培養液中への分泌比率も向上することがわかる。   Therefore, by introducing H16_B0271, which is a higher-performance transport protein gene, into the hydrogen-oxidizing bacterium together with the target protein gene, and co-expressing the target protein and the transport protein, the productivity of the target protein is improved, and It can be seen that the ratio of secretion into the culture medium is also improved.

Claims (5)

送タンパク質遺伝子、切断リンカー遺伝子および目的タンパク質遺伝子、この順に同一のプラスミド上に含むプラスミドを水素酸化細菌に導入して得られる、前記輸送タンパク質が配列番号に記載の配列からなるポリペプチドであるタンパク質を発現可能な水素酸化細菌Ralstonia eutropha H16 Transportation protein gene, the cleavage linker gene and a target protein gene, in this order a plasmid containing on the same plasmid is obtained by introducing the hydrogen-oxidizing bacteria, polypeptides wherein transporter protein consisting of the sequences set forth in SEQ ID NO: 8 A hydrogen-oxidizing bacterium Ralstonia eutropha H16 capable of expressing a protein. 輸送タンパク質遺伝子が配列番号10に記載の配列からなるポリヌクレオチドである、請求項1に記載の水素酸化細菌Ralstonia eutropha H16The hydrogen-oxidizing bacterium Ralstonia eutropha H16 according to claim 1, wherein the transport protein gene is a polynucleotide comprising the sequence set forth in SEQ ID NO: 10 . 目的タンパク質がFc結合性タンパク質である、請求項1または2に記載の水素酸化細菌Ralstonia eutropha H16The hydrogen-oxidizing bacterium Ralstonia eutropha H16 according to claim 1 or 2 , wherein the target protein is an Fc-binding protein. 請求項1からのいずれかに記載の水素酸化細菌Ralstonia eutropha H16を培養し、輸送タンパク質遺伝子、切断リンカー遺伝子および目的タンパク質遺伝子をこの順に含む遺伝子を発現させ、輸送タンパク質、切断リンカータンパク質および目的タンパク質を共発現させることで、前記水素酸化細菌Ralstonia eutropha H16外へ目的タンパク質を分泌発現させる方法。 A hydrogen-oxidizing bacterium Ralstonia eutropha H16 according to any one of claims 1 to 3 is cultured, and a gene containing a transport protein gene, a cleaved linker gene and a target protein gene in this order is expressed, and the transport protein , cleaved linker protein and target protein are expressed. To secrete and express the target protein outside the hydrogen-oxidizing bacterium Ralstonia eutropha H16 . 配列番号10に記載の配列からなるポリヌクレオチド、切断リンカー遺伝子および目的タンパク質遺伝子をこの順に同一プラスミド上に含む、水素酸化細菌Ralstonia eutropha H16外へ目的タンパク質を分泌発現させるためのプラスミド。 Na Ru polynucleotide a sequence described in SEQ ID NO: 10, cutting linker gene and a target protein gene in this order comprises on the same plasmid, the hydrogen oxidizing bacteria Ralstonia eutropha H16 plasmid for secretory expression of the desired protein to the outside.
JP2015066420A 2015-03-27 2015-03-27 Recombinant hydrogen-oxidizing bacteria and protein production method using the same Active JP6589327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015066420A JP6589327B2 (en) 2015-03-27 2015-03-27 Recombinant hydrogen-oxidizing bacteria and protein production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066420A JP6589327B2 (en) 2015-03-27 2015-03-27 Recombinant hydrogen-oxidizing bacteria and protein production method using the same

Publications (2)

Publication Number Publication Date
JP2016185088A JP2016185088A (en) 2016-10-27
JP6589327B2 true JP6589327B2 (en) 2019-10-16

Family

ID=57202303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066420A Active JP6589327B2 (en) 2015-03-27 2015-03-27 Recombinant hydrogen-oxidizing bacteria and protein production method using the same

Country Status (1)

Country Link
JP (1) JP6589327B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229762A (en) * 2019-03-04 2019-09-13 西北大学 One plant has the hydrogen-oxidizing bacterium of Plant growth promotion and its is separately cultured and applies
CN110079471A (en) * 2019-03-05 2019-08-02 西北大学 One plant of hydrogen-oxidizing bacterium A06 and its separation method and application with growth-promoting functions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163363A (en) * 1993-12-13 1995-06-27 Kobe Steel Ltd Transformant, its production and production of bioactive protein
MX2008014603A (en) * 2006-05-19 2009-02-06 Ls9 Inc Production of fatty acids and derivatives thereof.
JP2009225662A (en) * 2008-02-29 2009-10-08 Kaneka Corp Method for providing c. necator with glucose assimilating property and method for producing pha using the same
KR101293886B1 (en) * 2009-02-05 2013-08-07 주식회사 엘지화학 Recombinant Ralstonia eutropha Having an Producing Ability of Polylactate or Its Copolymers and Method for Preparing Polylactate or Its Copolymers Using the Same
JP2011097898A (en) * 2009-11-09 2011-05-19 Sagami Chemical Research Institute RECOMBINANT Fc RECEPTOR AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP2016185088A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
US20210155920A1 (en) Recombinant vector constructed from an encoding gene of a nitrilase mutant, a recombinant genetic engineered strain and application thereof
KR100357532B1 (en) Method for Secretory Production of Human Growth Hormone
JP2010517532A5 (en)
KR20070021732A (en) Recombinant microorganisms transformed with a gene encoding fumarate hydratase C and a method of preparing succinic acid using the same
US10000544B2 (en) Process for production of insulin and insulin analogues
CN113603756A (en) Corynebacterium glutamicum membrane protein Ncgl2775, surface display system and construction method thereof
JP6379537B2 (en) Recombinant hydrogen-oxidizing bacteria and protein production method using the same
US10683509B2 (en) Surface display of functional proteins in a broad range of gram negative bacteria
JP6589327B2 (en) Recombinant hydrogen-oxidizing bacteria and protein production method using the same
EP4100534A1 (en) Synthetically evolved dna constructs for regulating signal peptide performance as well as vectors, host cells and recombinant proteins thereof
US9845475B2 (en) Expression vector
CN111295446B (en) Mutant microorganism for producing succinic acid by introducing highly active malate dehydrogenase and method for producing succinic acid using the same
CN109988802B (en) Expression cassette for efficiently secreting and expressing human FGF21 protein and application thereof
CN109913515B (en) Method for increasing yield of poly gamma-glutamic acid by improving glycerol metabolism of bacillus
US11807883B2 (en) Polypeptide tag, highly soluble recombinant nitrilase and application thereof in synthesis of pharmaceutical chemicals
CN111172143B (en) D-xylonic acid dehydratase and application thereof
JP2014223064A (en) Signal peptide and method for producing proteins using the same
CN114806913A (en) High-yield succinic acid yeast engineering strain with mitochondrion positioning reduction TCA (trichloroacetic acid) approach as well as construction method and application thereof
CN111801420B (en) Method for producing 4-amino cinnamic acid, and vector and host cell therefor
CN113603755A (en) Corynebacterium glutamicum protein Ncgl1307 and surface display system and construction method thereof
JP2017212959A (en) Methods of protein expression using recombinant hydrogen oxidizing bacteria
KR101747701B1 (en) manufacturing method of panose using recombination dextransucrase
JP6421456B2 (en) Signal peptide and protein production method using the same
CN110747190B (en) Maleic acid hydratase mutant and application thereof
WO2009005973A2 (en) Synthetic gene for enhanced expression in e.coli

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R151 Written notification of patent or utility model registration

Ref document number: 6589327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151