JP2014223064A - Signal peptide and method for producing proteins using the same - Google Patents

Signal peptide and method for producing proteins using the same Download PDF

Info

Publication number
JP2014223064A
JP2014223064A JP2014084344A JP2014084344A JP2014223064A JP 2014223064 A JP2014223064 A JP 2014223064A JP 2014084344 A JP2014084344 A JP 2014084344A JP 2014084344 A JP2014084344 A JP 2014084344A JP 2014223064 A JP2014223064 A JP 2014223064A
Authority
JP
Japan
Prior art keywords
seq
protein
amino acid
replaced
signal peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014084344A
Other languages
Japanese (ja)
Other versions
JP6413313B2 (en
Inventor
陽介 寺尾
Yosuke Terao
陽介 寺尾
半澤 敏
Satoshi Hanzawa
敏 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014084344A priority Critical patent/JP6413313B2/en
Publication of JP2014223064A publication Critical patent/JP2014223064A/en
Application granted granted Critical
Publication of JP6413313B2 publication Critical patent/JP6413313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a signal peptide which can efficiently transfer recombinant protein expressed in a host cell to a periplasmic region, and to provide a method for producing the protein using the peptide concerned.SOLUTION: The subject is solved by a signal peptide, among natural PelB signal peptides, inserted a basic amino acid in any of the N terminal region and by producing the protein using the peptide as a signal peptide for protein secretion of a periplasm.

Description

本発明は、新規なシグナルペプチドおよびそれを用いたタンパク質の製造方法に関する。   The present invention relates to a novel signal peptide and a protein production method using the same.

タンパク質は細胞内で合成された後、そのまま細胞内に留まるもの、細胞外へと分泌タンパク質として放出されるものが知られている。また大腸菌などを宿主として用いた組換えタンパク質生産では、細胞内膜と外膜の間のペリプラズム領域に前記タンパク質を分泌発現させる方法が知られている(特許文献1)。細胞内からペリプラズム領域へ組換えタンパク質が移送される際には、シグナルペプチドと呼ばれるオリゴペプチドの働きが重要である(特許文献1)。シグナルペプチドを構成するアミノ酸配列の特徴として、以下の3つがあげられる(特許文献1)。
(i)N末端領域には、アルギニンやリジンといった塩基性アミノ酸が少なくとも1つ含まれており、当該塩基性アミノ酸の側鎖の正電荷と細胞膜表面の負電荷とのイオン結合によりシグナルペプチドが細胞膜内へと移行する。
(ii)中心領域では、アラニン、ロイシン、イソロイシン、バリンといった疎水性アミノ酸が多く含まれ、細胞膜内への貫通に関与する。
(iii)C末端領域では、細胞膜貫通後にシグナルペプチダーゼにより切断される特定のアミノ酸が認識部位として存在しており、当該認識部位で切断されることで成熟体タンパク質がペリプラズム領域や細胞外へと放出される。
Proteins that are synthesized in the cell and remain in the cell as they are, or those that are released as secreted proteins to the outside of the cell are known. In recombinant protein production using Escherichia coli or the like as a host, a method of secreting and expressing the protein in the periplasmic region between the inner membrane and outer membrane is known (Patent Document 1). When a recombinant protein is transferred from the cell to the periplasm region, the function of an oligopeptide called a signal peptide is important (Patent Document 1). The characteristics of the amino acid sequence constituting the signal peptide include the following three (Patent Document 1).
(I) The N-terminal region contains at least one basic amino acid such as arginine or lysine, and the signal peptide is bound to the cell membrane by ionic bond between the positive charge on the side chain of the basic amino acid and the negative charge on the cell membrane surface. Move in.
(Ii) The central region contains many hydrophobic amino acids such as alanine, leucine, isoleucine, and valine, and is involved in penetration into the cell membrane.
(Iii) In the C-terminal region, a specific amino acid cleaved by a signal peptidase after passing through the cell membrane exists as a recognition site, and the mature protein is released to the periplasmic region or outside the cell by being cleaved at the recognition site. Is done.

組換えタンパク質を宿主のペリプラズムに分泌発現させるには、前記タンパク質のN末端側に、ペリプラズムへの分泌発現を促進させるシグナルペプチドが付加された状態で発現させる必要がある。しかしながら、前記方法を用いた場合、活性型タンパク質としての生産性が低いという問題があった。またシグナルペプチドの改変により生産性を向上させた例も報告(特許文献1から3)されているが、工業的な生産には十分とはいえなかった。   In order to cause a recombinant protein to be secreted and expressed in the host periplasm, it is necessary to express the recombinant protein in a state in which a signal peptide that promotes secretory expression to the periplasm is added to the N-terminal side of the protein. However, when the above method is used, there is a problem that productivity as an active protein is low. In addition, examples of improving the productivity by modifying the signal peptide have been reported (Patent Documents 1 to 3), but it was not sufficient for industrial production.

特開2000−175686号公報JP 2000-175686 A 特開2008−073044号公報JP 2008-073044 A WO2008/032659号WO2008 / 032659

本発明の目的は、宿主細胞内で発現した組換えタンパク質を効率的にペリプラズム領域へ移行可能なシグナルペプチド、および当該ペプチドを用いた前記タンパク質の製造方法を提供することにある。   An object of the present invention is to provide a signal peptide capable of efficiently transferring a recombinant protein expressed in a host cell to the periplasmic region, and a method for producing the protein using the peptide.

本発明者らは、上記課題を解決するため、鋭意検討した結果、既知のシグナルペプチドの特定位置に塩基性アミノ酸を挿入したオリゴペプチドをシグナルペプチドとして用いることで、組換えタンパク質の生産量が向上できることを見出し、本発明の完成に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have improved the amount of recombinant protein produced by using an oligopeptide having a basic amino acid inserted at a specific position of a known signal peptide as a signal peptide. As a result, the present invention has been completed.

すなわち本発明は、以下の発明を包含する:
(A)配列番号2に記載のアミノ酸配列からなるオリゴペプチドのうち、N末端領域のいずれかに塩基性アミノ酸を挿入した、ペリプラズムにタンパク質を分泌させるためのシグナルペプチド。
That is, the present invention includes the following inventions:
(A) A signal peptide for secreting a protein into the periplasm, wherein a basic amino acid is inserted into any of the N-terminal regions of the oligopeptide having the amino acid sequence set forth in SEQ ID NO: 2.

(B)配列番号2に記載のアミノ酸配列からなるオリゴペプチドのうち、2番目のリジンと3番目のチロシンとの間に塩基性アミノ酸を1残基挿入した、ペリプラズムにタンパク質を分泌させるためのシグナルペプチド。   (B) A signal for secreting a protein into the periplasm, wherein one residue of a basic amino acid is inserted between the second lysine and the third tyrosine of the oligopeptide having the amino acid sequence set forth in SEQ ID NO: 2. peptide.

(C)塩基性アミノ酸がリジンである、(A)または(B)に記載のシグナルペプチド。   (C) The signal peptide according to (A) or (B), wherein the basic amino acid is lysine.

(D)(A)から(C)のいずれかに記載のシグナルペプチドをコードするポリヌクレオチドとタンパク質をコードするポリヌクレオチドとを含む、前記タンパク質を発現させるためのプラスミド。   (D) A plasmid for expressing the protein, comprising a polynucleotide encoding the signal peptide according to any one of (A) to (C) and a polynucleotide encoding the protein.

(E)タンパク質がヒトFc結合性タンパク質である、(D)に記載のプラスミド。   (E) The plasmid according to (D), wherein the protein is a human Fc-binding protein.

(F)(D)または(E)に記載のプラスミドを用いて宿主を形質転換して得られる、形質転換体。   (F) A transformant obtained by transforming a host with the plasmid according to (D) or (E).

(G)宿主が大腸菌である、(F)に記載の形質転換体。   (G) The transformant according to (F), wherein the host is Escherichia coli.

(H)(F)または(G)に記載の形質転換体を培養することで前記形質転換体からタンパク質を発現させる工程と、前記形質転換体から当該タンパク質を単離する工程とを含む、前記タンパク質の製造方法。   (H) a step of expressing a protein from the transformant by culturing the transformant according to (F) or (G), and a step of isolating the protein from the transformant, A method for producing a protein.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

本発明のシグナルペプチドは、配列番号2に記載のアミノ酸配列からなる天然型PelBシグナルペプチド(UniProt No.P0C1C1の1番目から22番目までの領域)のうち、N末端領域のいずれかに塩基性アミノ酸が挿入されていることを特徴としている。ここでN末端領域とは、天然型PelBシグナルペプチド(配列番号2)のうちN末端側4アミノ酸残基(1番目のメチオニンから4番目のロイシンまでの領域)のことをいう。具体的には、1番目のメチオニンと2番目のリジンとの間、2番目のリジンと3番目のチロシンとの間、3番目のチロシンと4番目のロイシンとの間、のいずれかに塩基性アミノ酸を挿入することで、本発明のシグナルペプチドを得ることができる。塩基性アミノ酸の挿入数は、本発明のシグナルペプチドでペリプラズムに分泌させるタンパク質の性質を考慮の上、1から数アミノ酸残基の範囲で適宜決定すればよい。天然型PelBシグナルペプチド(配列番号2)のうち、2番目のリジンと3番目のチロシンとの間に塩基性アミノ酸を1残基挿入した本発明のシグナルペプチドの具体例として、前記天然型PelBシグナルペプチドのうち2番目のリジンと3番目のチロシンとの間にリジンが挿入されたオリゴペプチド(配列番号4)や、前記天然型PelBシグナルペプチドのうち2番目のリジンと3番目のチロシンとの間にアルギニンが挿入されたオリゴペプチドや、前記天然型PelBシグナルペプチドのうち2番目のリジンと3番目のチロシンとの間にヒスチジンが挿入されたオリゴペプチドがあげられる。   The signal peptide of the present invention is a basic amino acid in any of the N-terminal regions of the natural PelB signal peptide (uniprot No. P0C1C1 region 1 to 22) consisting of the amino acid sequence shown in SEQ ID NO: 2. Is inserted. Here, the N-terminal region refers to the 4 amino acid residues on the N-terminal side (region from the first methionine to the fourth leucine) of the natural PelB signal peptide (SEQ ID NO: 2). Specifically, it is basic either between the first methionine and the second lysine, between the second lysine and the third tyrosine, between the third tyrosine and the fourth leucine. The signal peptide of the present invention can be obtained by inserting an amino acid. The number of basic amino acid insertions may be appropriately determined in the range of 1 to several amino acid residues in consideration of the properties of the protein secreted into the periplasm by the signal peptide of the present invention. As a specific example of the signal peptide of the present invention in which one basic amino acid residue is inserted between the second lysine and the third tyrosine of the natural PelB signal peptide (SEQ ID NO: 2), the natural PelB signal is described above. Oligopeptide (SEQ ID NO: 4) in which lysine is inserted between the second lysine and the third tyrosine of the peptide, or between the second lysine and the third tyrosine of the natural PelB signal peptide And oligopeptides in which histidine is inserted between the second lysine and the third tyrosine among the natural PelB signal peptides.

本発明のプラスミドは、宿主で発現させるタンパク質をコードするポリヌクレオチド(ポリヌクレオチドA)の5’末端側に本発明のシグナルペプチドをコードするポリヌクレオチド(ポリヌクレオチドB)を付加したポリヌクレオチド(ポリヌクレオチドC)を、プラスミドの適切な位置に挿入することで得られる。なお、前記ポリヌクレオチドAに前記ポリヌクレオチドBを付加させる際、前記ポリヌクレオチドAと前記ポリヌクレオチドBとの間にリンカーとして1から数アミノ酸残基からなる任意のオリゴペプチドをコードするポリヌクレオチドを挿入してもよい。またポリヌクレオチドCを挿入するプラスミドとしては、形質転換する宿主内で安定に存在し複製できるものであれば特に制限はなく、宿主が大腸菌の場合は、pETプラスミド、pUCプラスミド、pTrcプラスミド、pCDFプラスミド、pBBRプラスミドを例示することができる。また前記適切な位置とは、発現ベクターの複製機能、所望の抗生物質マーカー、伝達性に関わる領域を破壊しない位置を意味する。本発明のプラスミドを用いて宿主を形質転換させるには、当業者が通常用いる方法で行なえばよい。   The plasmid of the present invention comprises a polynucleotide (polynucleotide) in which a polynucleotide (polynucleotide B) encoding a signal peptide of the present invention is added to the 5 ′ end side of a polynucleotide (polynucleotide A) encoding a protein to be expressed in a host. C) is obtained by inserting into the appropriate position of the plasmid. In addition, when adding the polynucleotide B to the polynucleotide A, a polynucleotide encoding an arbitrary oligopeptide consisting of 1 to several amino acid residues is inserted between the polynucleotide A and the polynucleotide B as a linker. May be. The plasmid for inserting polynucleotide C is not particularly limited as long as it is stably present and replicable in the host to be transformed. When the host is E. coli, pET plasmid, pUC plasmid, pTrc plasmid, pCDF plasmid The pBBR plasmid can be exemplified. The appropriate position means a position where the replication function of the expression vector, a desired antibiotic marker, and a region related to transmissibility are not destroyed. In order to transform a host using the plasmid of the present invention, those skilled in the art may carry out the method usually used.

本発明のプラスミドを用いて宿主を形質転換体して得られる形質転換体(以下、単に本発明の形質転換体とする)を用いて製造するタンパク質に特に限定はなく、一例として、インシュリン、インターフェロン、インターロイキン、抗体、エリスロポエチン、成長ホルモンなどのヒト由来タンパク質、およびそれらの受容体タンパク質があげられる。なお、本発明の形質転換体を用いて製造するタンパク質は、完全体であってもよいし、当該タンパク質の機能に重要な部分のみから構成されるタンパク質であってもよいし、さらに当該タンパク質を構成するアミノ酸の一つ以上が欠失および/または挿入および/または置換されていてもよい。以降、本発明の形質転換体を用いて製造可能なタンパク質のうち、Fc結合性タンパク質について詳細に説明する。   There is no particular limitation on the protein produced using a transformant obtained by transforming a host using the plasmid of the present invention (hereinafter, simply referred to as the transformant of the present invention). Examples of such proteins include insulin and interferon. , Interleukins, antibodies, erythropoietin, human-derived proteins such as growth hormone, and their receptor proteins. The protein produced using the transformant of the present invention may be a complete protein, a protein composed only of a part important for the function of the protein, or the protein. One or more of the constituent amino acids may be deleted and / or inserted and / or substituted. Hereinafter, among the proteins that can be produced using the transformant of the present invention, the Fc-binding protein will be described in detail.

本明細書においてヒトFc結合性タンパク質は、ヒトFcγRIの細胞外領域(具体的には天然型ヒトFcγRIの場合、配列番号1に記載のアミノ酸配列のうち16番目のグルタミンから292番目のヒスチジンまでの領域)(図1参照)を構成するタンパク質、またはヒトFcγRIIIaの細胞外領域(具体的には天然型ヒトFcγRIIIaの場合、配列番号22に記載のアミノ酸配列のうち17番目のグリシンから208番目のグルタミンまでの領域)(図4参照)を構成するタンパク質のことをいう。ただし必ずしもヒトFcγRI細胞外領域またはヒトFcγRIIIa細胞外領域の全領域でなくてもよく、ヒトFcγRI細胞外領域またはヒトFcγRIIIa細胞外領域を構成するタンパク質(ポリペプチド)のうち、少なくとも抗体(免疫グロブリン)のFc領域に結合する本来の機能を発現し得る領域のポリペプチドを含んでいればよい。当該ヒトFc結合性タンパク質の一例として、
(i)配列番号1に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含むタンパク質や、
(ii)配列番号1に記載のアミノ酸配列のうち少なくとも16番目のグルタミンから289番目のバリンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質や、
(iii)配列番号22に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質や、
(iv)配列番号22に記載のアミノ酸配列のうち少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ前記アミノ酸残基のうちの一つ以上が他のアミノ酸残基に置換、挿入または欠失したタンパク質、
があげられる。
In this specification, human Fc-binding protein refers to the extracellular region of human FcγRI (specifically, in the case of natural human FcγRI, from the 16th glutamine to the 292nd histidine in the amino acid sequence described in SEQ ID NO: 1). Region) (see FIG. 1), or the extracellular region of human FcγRIIIa (specifically, in the case of natural human FcγRIIIa, the 17th glycine to 208th glutamine in the amino acid sequence shown in SEQ ID NO: 22) (Refer to FIG. 4). However, it does not necessarily have to be the entire region of human FcγRI extracellular region or human FcγRIIIa extracellular region, and at least an antibody (immunoglobulin) among proteins (polypeptides) constituting human FcγRI extracellular region or human FcγRIIIa extracellular region The polypeptide of the area | region which can express the original function couple | bonded with Fc area | region of this should just be included. As an example of the human Fc binding protein,
(I) a protein comprising an amino acid residue from at least the 16th glutamine to the 289th valine in the amino acid sequence set forth in SEQ ID NO: 1,
(Ii) including at least the amino acid residue from the 16th glutamine to the 289th valine in the amino acid sequence of SEQ ID NO: 1, and replacing one or more of the amino acid residues with another amino acid residue Inserted or deleted proteins,
(Iii) a protein comprising an amino acid residue from at least the 17th glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 22,
(Iv) including at least the 17th glycine to the 192nd glutamine amino acid residue in the amino acid sequence shown in SEQ ID NO: 22, and at least one of the amino acid residues is substituted with another amino acid residue Inserted or deleted protein,
Can be given.

前記(ii)の具体例としては、特開2011−206046号公報に開示のFc結合性タンパク質や、配列番号21に記載のアミノ酸配列のうち34番目から307番目までのアミノ酸残基において以下の(1)から(42)のうち少なくともいずれか1つの置換が生じている、Fc結合性タンパク質(特開2014−027916号)があげられる。
(1)配列番号21の37番目のスレオニンがイソロイシンに置換
(2)配列番号21の38番目のプロリンがセリンに置換
(3)配列番号21の53番目のロイシンがグルタミンに置換
(4)配列番号21の62番目のグルタミン酸がバリンに置換
(5)配列番号21の63番目のバリンがアラニンまたはグルタミン酸に置換
(6)配列番号21の66番目のロイシンがグルタミンまたはプロリンに置換
(7)配列番号21の67番目のセリンがプロリンに置換
(8)配列番号21の69番目のアラニンがバリンまたはスレオニンに置換
(9)配列番号21の71番目のセリンがスレオニンまたはロイシンに置換
(10)配列番号21の78番目のアスパラギン酸がグルタミン酸に置換
(11)配列番号21の81番目のイソロイシンがバリンに置換
(12)配列番号21の84番目のセリンがスレオニンに置換
(13)配列番号21の88番目のフェニルアラニンがチロシンに置換
(14)配列番号21の95番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号21の119番目のヒスチジンがグルタミンに置換
(16)配列番号21の127番目のバリンがアラニンに置換
(17)配列番号21の146番目のアルギニンがリジンに置換
(18)配列番号21の147番目のアスパラギン酸がアスパラギンに置換
(19)配列番号21の151番目のヒスチジンがチロシンに置換
(20)配列番号21の178番目のスレオニンがアラニンに置換
(21)配列番号21の191番目のアルギニンがリジンに置換
(22)配列番号21の199番目のスレオニンがアラニンに置換
(23)配列番号21の200番目のロイシンがメチオニンに置換
(24)配列番号21の213番目のスレオニンがアラニンに置換
(25)配列番号21の216番目のバリンがアラニンに置換
(26)配列番号21の221番目のロイシンがアルギニンに置換
(27)配列番号21の229番目のセリンがアスパラギンに置換
(28)配列番号21の236番目のイソロイシンがリジンに置換
(29)配列番号21の244番目のチロシンがヒスチジンに置換
(30)配列番号21の253番目のスレオニンがアラニンに置換
(31)配列番号21の290番目のアルギニンがグルタミンに置換
(32)配列番号21の293番目のリジンがアスパラギンに置換
(33)配列番号21の297番目のリジンがグルタミン酸に置換
(34)配列番号21の306番目のプロリンがスレオニンに置換
(35)配列番号21の34番目のグルタミンがアルギニンに置換
(36)配列番号21の45番目のグルタミンがリジンに置換
(37)配列番号21の82番目のグルタミンがプロリンに置換
(38)配列番号21の177番目のアスパラギンがアスパラギン酸に置換
(39)配列番号21の213番目のスレオニンがセリンに置換
(40)配列番号21の242番目のグルタミンがアルギニンに置換
(41)配列番号21の253番目のスレオニンがセリンに置換
(42)配列番号21の271番目のグルタミン酸がアスパラギン酸に置換
また前記(iv)の具体例としては、配列番号22に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(1)から(40)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質(特願2013−202245号)があげられる。
(1)配列番号22の18番目のメチオニンがアルギニンに置換
(2)配列番号22の27番目のバリンがグルタミン酸に置換
(3)配列番号22の29番目のフェニルアラニンがロイシンまたはセリンに置換
(4)配列番号22の30番目のロイシンがグルタミンに置換
(5)配列番号22の35番目のチロシンがアスパラギン酸、グリシン、リジン、ロイシン、アスパラギン、プロリン、セリン、スレオニン、ヒスチジンのいずれかに置換
(6)配列番号22の46番目のリジンがイソロイシンまたはスレオニンに置換
(7)配列番号22の48番目のグルタミンがヒスチジンまたはロイシンに置換
(8)配列番号22の50番目のアラニンがヒスチジンに置換
(9)配列番号22の51番目のチロシンがアスパラギン酸またはヒスチジンに置換
(10)配列番号22の54番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(11)配列番号22の56番目のアスパラギンがスレオニンに置換
(12)配列番号22の59番目のグルタミンがアルギニンに置換
(13)配列番号22の61番目のフェニルアラニンがチロシンに置換
(14)配列番号22の64番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号22の65番目のセリンがアルギニンに置換
(16)配列番号22の71番目のアラニンがアスパラギン酸に置換
(17)配列番号22の75番目のフェニルアラニンがロイシン、セリン、チロシンのいずれかに置換
(18)配列番号22の77番目のアスパラギン酸がアスパラギンに置換
(19)配列番号22の78番目のアラニンがセリンに置換
(20)配列番号22の82番目のアスパラギン酸がグルタミン酸またはバリンに置換
(21)配列番号22の90番目のグルタミンがアルギニンに置換
(22)配列番号22の92番目のアスパラギンがセリンに置換
(23)配列番号22の93番目のロイシンがアルギニンまたはメチオニンに置換
(24)配列番号22の95番目のスレオニンがアラニンまたはセリンに置換
(25)配列番号22の110番目のロイシンがグルタミンに置換
(26)配列番号22の115番目のアルギニンがグルタミンに置換
(27)配列番号22の116番目のトリプトファンがロイシンに置換
(28)配列番号22の118番目のフェニルアラニンがチロシンに置換
(29)配列番号22の119番目のリジンがグルタミン酸に置換
(30)配列番号22の120番目のグルタミン酸がバリンに置換
(31)配列番号22の121番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(32)配列番号22の151番目のフェニルアラニンがセリンまたはチロシンに置換
(33)配列番号22の155番目のセリンがスレオニンに置換
(34)配列番号22の163番目のスレオニンがセリンに置換
(35)配列番号22の167番目のセリンがグリシンに置換
(36)配列番号22の169番目のセリンがグリシンに置換
(37)配列番号22の171番目のフェニルアラニンがチロシンに置換
(38)配列番号22の180番目のアスパラギンがリジン、セリン、イソロイシンのいずれかに置換
(39)配列番号22の185番目のスレオニンがセリンに置換
(40)配列番号22の192番目のグルタミンがリジンに置換
本発明の形質転換体を作製する際に用いる宿主としては、COS細胞やCHO細胞に代表される動物細胞、バチルス属(ブレビバチルス属細菌やパエニバチルス属細菌のような広義のバチルス属細菌も含む)や大腸菌に代表される細菌、サッカロマイセス属、ピキア属、シゾサッカロマイセス属に代表される酵母、麹菌に代表される糸状菌等が例示できるが、取扱いの簡便な大腸菌を宿主とするのが好ましい。なお宿主が大腸菌でタンパク質がFc結合性タンパク質の場合は、特開2012−034591号に開示した方法等により本発明の形質転換体を培養することで前記タンパク質を発現させればよい。
Specific examples of the above (ii) include the Fc binding protein disclosed in JP2011-206046 and the following amino acid residues in the 34th to 307th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 21 ( Examples thereof include Fc-binding proteins (Japanese Patent Application Laid-Open No. 2014-027916) in which at least one substitution of 1) to (42) has occurred.
(1) 37th threonine of SEQ ID NO: 21 is replaced with isoleucine (2) 38th proline of SEQ ID NO: 21 is replaced with serine (3) 53rd leucine of SEQ ID NO: 21 is replaced with glutamine (4) SEQ ID NO: The 62nd glutamic acid of 21 is replaced with valine (5) The 63rd valine of SEQ ID NO: 21 is replaced with alanine or glutamic acid (6) The 66th leucine of SEQ ID NO: 21 is replaced with glutamine or proline (7) SEQ ID NO: 21 67 of serine is replaced with proline (8) 69th alanine of SEQ ID NO: 21 is replaced with valine or threonine (9) 71st serine of SEQ ID NO: 21 is replaced with threonine or leucine (10) 78th aspartic acid is replaced by glutamic acid (11) 81st isoleucine of SEQ ID NO: 21 is (12) The 84th serine of SEQ ID NO: 21 is replaced with threonine (13) The 88th phenylalanine of SEQ ID NO: 21 is replaced with tyrosine (14) The 95th glutamic acid of SEQ ID NO: 21 is replaced with aspartic acid ( 15) 119th histidine of SEQ ID NO: 21 replaced with glutamine (16) 127th valine of SEQ ID NO: 21 replaced with alanine (17) 146th arginine of SEQ ID NO: 21 replaced with lysine (18) SEQ ID NO: 21 The aspartic acid at position 147 was replaced with asparagine (19) The histidine at position 151 in SEQ ID NO: 21 was replaced with tyrosine (20) The threonine at position 178 in SEQ ID NO: 21 was replaced with alanine (21) The position 191 of SEQ ID NO: 21 Arginine is replaced with lysine (22) The 199th threonine of SEQ ID NO: 21 is (23) 200th leucine of SEQ ID NO: 21 replaced with methionine (24) 213th threonine of SEQ ID NO: 21 replaced with alanine (25) 216th valine of SEQ ID NO: 21 replaced with alanine (26 ) The 221st leucine of SEQ ID NO: 21 was replaced with arginine (27) The 229th serine of SEQ ID NO: 21 was replaced with asparagine (28) The 236th isoleucine of SEQ ID NO: 21 was replaced with lysine (29) 244th tyrosine is replaced with histidine (30) 253rd threonine of SEQ ID NO: 21 is replaced with alanine (31) 290th arginine of SEQ ID NO: 21 is replaced with glutamine (32) 293rd lysine of SEQ ID NO: 21 is replaced Substitution for asparagine (33) The 297th lysine of SEQ ID NO: 21 was substituted for glutamic acid. Substitution (34) The 306th proline of SEQ ID NO: 21 is replaced with threonine (35) The 34th glutamine of SEQ ID NO: 21 is substituted with arginine (36) The 45th glutamine of SEQ ID NO: 21 is substituted with lysine (37) The 82nd glutamine of No. 21 is replaced with proline (38) The 177th asparagine of SEQ ID NO: 21 is replaced with aspartic acid (39) The 213th threonine of SEQ ID NO: 21 is replaced with serine (40) 242 of SEQ ID NO: 21 The 41st glutamine is replaced with arginine (41) The 253rd threonine of SEQ ID NO: 21 is replaced with serine (42) The 271st glutamic acid of SEQ ID NO: 21 is replaced with aspartic acid, and as a specific example of the above (iv), Contains amino acid residues from position 17 to position 192 of the amino acid sequence of number 22. And an Fc-binding protein in which at least any one of the following (1) to (40) has occurred in the 17th to 192th amino acid residues (Japanese Patent Application No. 2013-202245) Can be given.
(1) 18th methionine of SEQ ID NO: 22 is replaced with arginine (2) 27th valine of SEQ ID NO: 22 is replaced with glutamic acid (3) 29th phenylalanine of SEQ ID NO: 22 is replaced with leucine or serine (4) 30th leucine of SEQ ID NO: 22 is replaced with glutamine (5) 35th tyrosine of SEQ ID NO: 22 is replaced with any of aspartic acid, glycine, lysine, leucine, asparagine, proline, serine, threonine, histidine (6) The 46th lysine of SEQ ID NO: 22 is replaced with isoleucine or threonine (7) The 48th glutamine of SEQ ID NO: 22 is replaced with histidine or leucine (8) The 50th alanine of SEQ ID NO: 22 is replaced with histidine (9) 51st tyrosine of number 22 is aspartic acid or histidine (10) The 54th glutamic acid of SEQ ID NO: 22 is replaced with aspartic acid or glycine (11) The 56th asparagine of SEQ ID NO: 22 is replaced with threonine (12) The 59th glutamine of SEQ ID NO: 22 is replaced with arginine (13) 61st phenylalanine of SEQ ID NO: 22 is replaced with tyrosine (14) 64th glutamic acid of SEQ ID NO: 22 is replaced with aspartic acid (15) 65th serine of SEQ ID NO: 22 is replaced with arginine (16) The 71st alanine of number 22 is replaced with aspartic acid (17) The 75th phenylalanine of SEQ ID NO: 22 is replaced with either leucine, serine or tyrosine (18) The 77th aspartic acid of SEQ ID NO: 22 is replaced with asparagine (19) The 78th alanine of SEQ ID NO: 22 becomes serine (20) The 82nd aspartic acid of SEQ ID NO: 22 is replaced with glutamic acid or valine (21) The 90th glutamine of SEQ ID NO: 22 is replaced with arginine (22) The 92nd asparagine of SEQ ID NO: 22 is replaced with serine ( 23) 93th leucine of SEQ ID NO: 22 is replaced with arginine or methionine (24) 95th threonine of SEQ ID NO: 22 is replaced with alanine or serine (25) 110th leucine of SEQ ID NO: 22 is replaced with glutamine (26 ) 115th Arginine of SEQ ID NO: 22 is replaced with glutamine (27) 116th Tryptophan of SEQ ID NO: 22 is replaced with leucine (28) 118th phenylalanine of SEQ ID NO: 22 is replaced with tyrosine (29) 119th lysine substituted with glutamic acid (30) sequence The 120th glutamic acid of No. 22 is substituted with valine (31) The 121st glutamic acid of SEQ ID No. 22 is substituted with aspartic acid or glycine (32) The 151st phenylalanine of SEQ ID No. 22 is substituted with serine or tyrosine (33) The 155th serine of No. 22 is replaced with threonine (34) The 163rd threonine of SEQ ID NO: 22 is replaced with serine (35) The 167th serine of SEQ ID NO: 22 is replaced with glycine (36) The 169th position of SEQ ID NO: 22 (37) 171th phenylalanine of SEQ ID NO: 22 is replaced with tyrosine (38) 180th asparagine of SEQ ID NO: 22 is replaced with lysine, serine or isoleucine (39) of SEQ ID NO: 22 185th threonine is replaced by serine (40) The 192st glutamine of 22 is replaced by lysine. The host used in preparing the transformant of the present invention includes animal cells typified by COS cells and CHO cells, Bacillus (Brevibacillus and Paenibacillus). And bacteria represented by Escherichia coli, yeasts represented by Saccharomyces, Pichia and Schizosaccharomyces, and filamentous fungi represented by Aspergillus. Preferably, Escherichia coli is used as a host. When the host is Escherichia coli and the protein is an Fc binding protein, the protein may be expressed by culturing the transformant of the present invention by the method disclosed in JP2012-034591A.

本発明の形質転換体の培養液から、発現したタンパク質を回収するには、発現の形態によって適宜選択すればよい。例えば、発現したタンパク質が宿主細胞のペリプラズムに発現する場合は、培養液を遠心分離して得られる宿主細胞を適切な緩衝液で懸濁し細胞破砕(物理的破砕、薬剤による破砕など)後、遠心分離により破砕残渣を除去することで、発現したタンパク質を含む無細胞抽出液を得ればよく、発現したタンパク質が宿主細胞のペリプラズムから培養上清に漏出する場合は、培養液を遠心分離して得られる培養上清から発現したタンパク質を回収すればよい。なお薬剤により宿主細胞を破砕する際は、例えば、150mM NaClと1mM EDTAと6mM MgSOと250U/L Benzonase(商品名)と0.3g/L Lysozymeと0.4% Triton X−100(商品名)と0.5% CTAB(臭化ヘキサデシルトリメチルアンモニウム)と50mM CaClを含む50mM Tris−HCl(pH8.0)(特開2013−252099号)や、BugBuster Protein extraction kit(タカラバイオ社製)等の市販の抽出試薬を用いて破砕するとよい。 What is necessary is just to select suitably according to the form of expression, in order to collect | recover expressed proteins from the culture solution of the transformant of this invention. For example, when the expressed protein is expressed in the periplasm of the host cell, the host cell obtained by centrifuging the culture medium is suspended in an appropriate buffer, disrupted (physical disruption, disruption with drugs, etc.), and then centrifuged. By removing the crushing residue by separation, it is sufficient to obtain a cell-free extract containing the expressed protein. When the expressed protein leaks from the periplasm of the host cell to the culture supernatant, the culture solution is centrifuged. What is necessary is just to collect | recover the protein expressed from the culture supernatant obtained. When disrupting host cells with a drug, for example, 150 mM NaCl, 1 mM EDTA, 6 mM MgSO 4 , 250 U / L Benzonase (trade name), 0.3 g / L Lysozyme, and 0.4% Triton X-100 (trade name) ), 0.5% CTAB (hexadecyltrimethylammonium bromide) and 50 mM CaCl 2 , 50 mM Tris-HCl (pH 8.0) (Japanese Patent Laid-Open No. 2013-252099), BugBuster Protein extraction kit (manufactured by Takara Bio Inc.) It is good to crush using commercially available extraction reagents, such as.

回収したタンパク質を含む溶液は、陽イオン交換クロマトグラフィー、疎水クロマトグラフィー等により当該タンパク質を精製単離することができる。陽イオン交換クロマトグラフィー用担体は、カルボキシメチル基、スルホプロピル基といった陽イオン交換基を担体に結合したものであり、一例として、TOYOPEARL CM−650、TOYOPEARL SP−650、(以上、東ソー社製)、CM Sepharose FastFlow(GEヘルスケア社製)があげられる。疎水クロマトグラフィー用担体は、エーテル基、フェニル基、ブチル基といった疎水性官能基を担体に結合させたものであり、一例として、TOYOPEARL Ether−650、TOYOPEARL Phenyl−650、TOYOPEARL Butyl−650(以上、東ソー社製)があげられる。各種クロマトグラフィー用担体を用いて精製を行なう際は、アプライ液の導入量や前記担体のタンパク吸着性能などによって決定した量の担体を、適切なオープンカラム等に充填して行なえばよい。また、クロマトグラフィー用担体は、アプライ液を導入する前に、あらかじめ適切な緩衝液(トリス/トリス塩酸塩緩衝液、グリシン/水酸化ナトリウム緩衝液、リン酸塩緩衝液等)により平衡化しておく。前述の方法で回収したタンパク質を含む溶液を、平衡化したクロマトグラフィー用担体に導入することで前記タンパク質を担体に吸着させ、平衡化に用いた緩衝液と同じ緩衝液で洗浄する。その後、溶出用緩衝液を用いて吸着した前記タンパク質を溶出させることにより精製された前記タンパク質を含む溶液を得ることができる。   The solution containing the recovered protein can be purified and isolated by cation exchange chromatography, hydrophobic chromatography, or the like. The carrier for cation exchange chromatography is obtained by binding a cation exchange group such as carboxymethyl group or sulfopropyl group to a carrier. As an example, TOYOPEARL CM-650, TOYOPEARL SP-650 (above, manufactured by Tosoh Corporation) CM Sepharose FastFlow (manufactured by GE Healthcare). The carrier for hydrophobic chromatography is obtained by binding a hydrophobic functional group such as an ether group, a phenyl group or a butyl group to the carrier. Manufactured by Tosoh Corporation). When purification is performed using various chromatographic carriers, an appropriate open column or the like may be filled with the amount of carrier determined by the amount of Apply solution introduced or the protein adsorption performance of the carrier. The chromatographic carrier is equilibrated in advance with an appropriate buffer (Tris / Tris hydrochloride buffer, glycine / sodium hydroxide buffer, phosphate buffer, etc.) before introducing the apply solution. . The protein-containing solution recovered by the above-described method is introduced into an equilibrated chromatographic support so that the protein is adsorbed onto the support and washed with the same buffer as that used for equilibration. Thereafter, a purified solution containing the protein can be obtained by eluting the adsorbed protein using an elution buffer.

本発明のシグナルペプチドは、天然型PelBシグナルペプチドのうち、N末端領域(1番目のメチオニンから4番目のロイシンまでの領域)のいずれかに塩基性アミノ酸が挿入されたオリゴペプチドであり、本発明のオリゴペプチドをペリプラズムにタンパク質を分泌させるためのシグナルペプチドとして用いることで、天然型PelBシグナルペプチドを用いた時と比較し、組換えタンパク質生産量を大幅に向上させることが可能となり、産業上有用な組換えタンパク質の製造効率を大幅に向上させることができる。   The signal peptide of the present invention is an oligopeptide in which a basic amino acid is inserted into any of the N-terminal regions (regions from the first methionine to the fourth leucine) of the natural PelB signal peptides. By using this oligopeptide as a signal peptide for secreting proteins into the periplasm, it is possible to significantly improve the amount of recombinant protein produced compared to when using a natural PelB signal peptide, which is industrially useful. The production efficiency of a simple recombinant protein can be greatly improved.

天然型ヒトFcγRIの構造を示す図。The figure which shows the structure of natural type human FcγRI. Fc結合性タンパク質(ヒトFcγRI由来)のN末端側に、天然型PelBシグナルペプチドを付加させたときと、本発明のシグナルペプチドを付加させたときで、Fc結合性タンパク質の生産性を比較した図。The figure which compared the productivity of Fc binding protein when natural type PelB signal peptide was added to the N terminal side of Fc binding protein (human FcγRI origin) and when the signal peptide of the present invention was added. . Fc結合性タンパク質(ヒトFcγRIIIa由来)のN末端側に、天然型PelBシグナルペプチドを付加させたときと、本発明のシグナルペプチドを付加させたときで、Fc結合性タンパク質の生産性を比較した図。The figure which compared the productivity of Fc binding protein when a natural type PelB signal peptide was added to the N terminal side of Fc binding protein (human FcγRIIIa), and when the signal peptide of the present invention was added. . 天然型ヒトFcγRIIIaの構造を示す図。The figure which shows the structure of natural type | mold human FcγRIIIa.

以下、タンパク質としてFc結合性タンパク質を用いたときの実施例および比較例を用いて、本発明をさらに詳細に説明するが、本発明は前記例に限定されるものではない。   Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples when Fc-binding proteins are used as proteins, but the present invention is not limited to the above examples.

実施例1 発現ベクターの作製
以下に示す方法にて天然型PelBシグナルペプチド(アミノ酸配列:MKYLLPTAAAGLLLLAAQPAMA、配列番号2)をコードするポリヌクレオチドをプラスミドpTrc99a(GEヘルスケア社製)に挿入することで、発現ベクターpTrcpelを作製した。
(1)配列番号6(5’−CATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGC−3’)および配列番号7(5’−CATGGCCATCGCCGGCTGGGCAGCGAGGAGCAGCAGACCAGCAGCAGCGGTCGGCAGCAGGTATTT−3’)に記載の配列からなるオリゴヌクレオチドを等量混合し、95℃で5分間加熱後、15℃になるまで1分間で1℃毎に温度を下げることで、二本鎖オリゴヌクレオチドPelBp1を調製した。なお、PelBp1は使用時まで15℃で保持した。
(2)(1)で調製したPelBp1を、あらかじめ制限酵素NcoIで消化したプラスミドpTrc99aに、DNA Ligation kit(タカラバイオ社製)を用いてライゲーションし、このライゲーション産物を用いて大腸菌JM109株(タカラバイオ社製)を形質転換した。
(3)得られた形質転換体を、100μg/mLのカルベニシリンナトリウム(和光純薬社製)を含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン社製)を用いて、発現ベクターpTrcpelを抽出した。
(4)(3)で作製した発現ベクターpTrcpelのうち、PelBシグナルペプチドをコードするポリヌクレオチドおよびその周辺の領域について、チェーンターミネータ法に基づくBig Dye Terminator Cycle Sequencing FS read Reaction kit(ライフテクノロジー社製)を用いてサイクルシークエンス反応に供し、全自動DNAシークエンサーABI Prism 3700 DNA analyzer(ライフテクノロジー社製)にてヌクレオチド配列を解析した。なお当該解析の際、配列番号8(5’−TGTGGTATGGCTGTGCAGG−3’)または配列番号9(5’−TCGGCATGGGGTCAGGTG−3’)に記載のオリゴヌクレオチドのいずれかをシークエンス用プライマーとして使用した。
Example 1 Preparation of Expression Vector Expression is performed by inserting a polynucleotide encoding a natural PelB signal peptide (amino acid sequence: MKYLLPTAAAGLLLLAAQPAMA, SEQ ID NO: 2) into a plasmid pTrc99a (manufactured by GE Healthcare) by the following method. The vector pTrcpel was made.
(1) SEQ ID NO: 6 (5′-CATGAAATACCTGCTGCCGCACCGCTGCTGCTGTGTCTGCTGCCTCCGCCTGCC A double-stranded oligonucleotide PelBp1 was prepared by lowering the temperature every 1 ° C. over 1 minute until reaching 15 ° C. PelBp1 was kept at 15 ° C. until use.
(2) PelBp1 prepared in (1) was ligated to the plasmid pTrc99a previously digested with the restriction enzyme NcoI using DNA Ligation kit (manufactured by Takara Bio Inc.), and Escherichia coli JM109 strain (Takara Bio) was used using this ligation product. The product was transformed.
(3) After culturing the obtained transformant in an LB medium containing 100 μg / mL carbenicillin sodium (manufactured by Wako Pure Chemical Industries, Ltd.), the expression vector pTrcpel was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen). Extracted.
(4) Big Dye Terminator Cycle Sequencing FS read Reaction kit (manufactured by Life Technologies) based on the chain terminator method for the polynucleotide encoding the PelB signal peptide and the surrounding region of the expression vector pTrcpel prepared in (3) The nucleotide sequence was analyzed with a fully automatic DNA sequencer ABI Prism 3700 DNA analyzer (manufactured by Life Technology Co., Ltd.). In the analysis, any one of the oligonucleotides described in SEQ ID NO: 8 (5′-TGTGGTATGGCTTGTGCAGG-3 ′) or SEQ ID NO: 9 (5′-TCGGCATGGGGTCAGGGTG-3 ′) was used as a sequencing primer.

解析の結果設計通りであることを確認した。本実施例で合成した天然型PelBシグナルペプチドをコードするポリヌクレオチドの配列を配列番号3に示す。   As a result of analysis, it was confirmed that it was as designed. The sequence of the polynucleotide encoding the natural PelB signal peptide synthesized in this example is shown in SEQ ID NO: 3.

実施例2 Fc結合性タンパク質(FcRm68)発現ベクターの作製(その1)
配列番号11に記載のアミノ酸配列からなるFc結合性タンパク質FcRm68のC末端側にシステインタグ(アミノ酸配列:CG)を付加したポリペプチド(FcRm68−CG)をコードするポリヌクレオチドを、実施例1で作製した発現ベクターpTrcpelに挿入し、前記タンパク質発現ベクターを作製した。なおFcRm68は、配列番号10に記載のアミノ酸配列中、34番目のグルタミンから307番目のアスパラギン酸までの領域からなるFc結合性タンパク質FcRm60c(特開2011−206046号公報)のうち、
配列番号10の37番目のスレオニンがイソロイシンに、
配列番号10の63番目のバリンがグルタミン酸に、
配列番号10の69番目のアラニンがバリンに、
配列番号10の71番目のセリンがロイシンに、
配列番号10の84番目のセリンがスレオニンに、
配列番号10の95番目のグルタミン酸がアスパラギン酸に、
配列番号10の292番目のプロリンがリジンに、
配列番号10の293番目のグルタミン酸がリジンに、
配列番号10の297番目のグルタミンがリジンに、
配列番号10の301番目のヒスチジンがリジンに、
配列番号10の304番目のプロリンがリジンに、
それぞれ置換したFc結合性タンパク質である。またFc結合性タンパク質FcRm60cのアミノ酸配列は、配列番号1に記載のヒトFc受容体FcγRIのアミノ酸配列において16番目のグルタミンから289番目のバリンまでの領域に相当し、当該領域において60箇所置換が生じている(特開2011−206046号公報)。
(1)配列番号11に記載のアミノ酸配列からなるFc結合性タンパク質FcRm68をコードするポリヌクレオチドである、配列番号12に記載の配列からなるポリヌクレオチドを鋳型とし、配列番号13(5’−CATGCCATGGGACAAGTAGATATCCCCAAAGCTGTGATTAAGCTGCAACC−3’)および配列番号14(5’−CCGGAAGCTTAGCCGCAGTCCGGGGTCTTCTGTTGTTTACCCAGTAC−3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、PCRを実施した。PCRは、表1に示す組成の反応液を調製後、当該反応液を、98℃で10秒間の第1ステップ、50℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。得られたPCR産物を精製することで、FcRm68−CGをコードするポリヌクレオチドを得た。
Example 2 Preparation of Fc Binding Protein (FcRm68) Expression Vector (Part 1)
A polynucleotide encoding a polypeptide (FcRm68-CG) in which a cysteine tag (amino acid sequence: CG) is added to the C-terminal side of the Fc binding protein FcRm68 consisting of the amino acid sequence set forth in SEQ ID NO: 11 was prepared in Example 1. The protein expression vector was prepared by inserting the expression vector pTrcpel. FcRm68 is an Fc-binding protein FcRm60c (JP-A 2011-206046) consisting of a region from the 34th glutamine to the 307th aspartic acid in the amino acid sequence shown in SEQ ID NO: 10.
37th threonine of SEQ ID NO: 10 is isoleucine,
The 63rd valine of SEQ ID NO: 10 is glutamic acid,
The 69th alanine of SEQ ID NO: 10 is valine,
The 71st serine of SEQ ID NO: 10 is leucine,
84th serine of SEQ ID NO: 10 is threonine,
95th glutamic acid of SEQ ID NO: 10 is aspartic acid,
The 292nd proline of SEQ ID NO: 10 is lysine,
The 293rd glutamic acid of SEQ ID NO: 10 is lysine,
The 297th glutamine of SEQ ID NO: 10 is lysine,
301st histidine of SEQ ID NO: 10 to lysine
The 304th proline of SEQ ID NO: 10 is lysine,
Each is a substituted Fc binding protein. The amino acid sequence of the Fc binding protein FcRm60c corresponds to the region from the 16th glutamine to the 289th valine in the amino acid sequence of the human Fc receptor FcγRI described in SEQ ID NO: 1, and 60 substitutions occurred in this region. (JP 2011-206046 A).
(1) A polynucleotide encoding the Fc-binding protein FcRm68 consisting of the amino acid sequence shown in SEQ ID NO: 11, and using the polynucleotide consisting of the sequence shown in SEQ ID NO: 12 as a template, SEQ ID NO: 13 PCR was carried out using oligonucleotides having the sequences described in 3 ′) and SEQ ID NO: 14 (5′-CCCGGAAGCTTAGCCGCCAGCTCCGGGGTTCTCTGTTGTTACCCAGTAC-3 ′) as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 1, the reaction solution was subjected to a first step at 98 ° C. for 10 seconds, a second step at 50 ° C. for 5 seconds, and a third step at 72 ° C. for 1 minute. The reaction for 1 cycle was repeated 30 times. By purifying the obtained PCR product, a polynucleotide encoding FcRm68-CG was obtained.

Figure 2014223064
(2)得られたFcRm68−CGをコードするポリヌクレオチドを制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化した実施例1で作製した発現ベクターpTrcpelにライゲーションし、このライゲーション産物を用いて大腸菌W3110株を形質転換した。
(3)得られた形質転換体を、100μg/mLのカルベニシリンナトリウム(和光純薬社製)を含むLB培地で培養後、QIAprep Spin Miniprep kit(キアゲン社製)を用いて、FcRm68−CGをコードするポリヌクレオチドを含む発現ベクターpTrcFcRm68−CGを抽出した。
(4)(3)で作製した発現ベクターpTrcFcRm68−CGのうち、FcRm68をコードするポリヌクレオチドおよびその周辺の領域について、実施例1(4)と同様の方法でヌクレオチド配列を解析した。
Figure 2014223064
(2) The obtained polynucleotide encoding FcRm68-CG was digested with restriction enzymes NcoI and HindIII, and then ligated with the expression vector pTrcpel prepared in Example 1 previously digested with restriction enzymes NcoI and HindIII. Escherichia coli W3110 strain was used to transform it.
(3) The obtained transformant is cultured in an LB medium containing 100 μg / mL of carbenicillin sodium (manufactured by Wako Pure Chemical Industries, Ltd.), and then encoded using FIAR Spin Miniprep kit (manufactured by Qiagen) to encode FcRm68-CG. The expression vector pTrcFcRm68-CG containing the polynucleotide to be extracted was extracted.
(4) Among the expression vector pTrcFcRm68-CG produced in (3), the nucleotide sequence of the polynucleotide encoding FcRm68 and the surrounding region were analyzed in the same manner as in Example 1 (4).

発現ベクターpTrcFcRm68−CGにより発現されるポリペプチドのアミノ酸配列を配列番号15に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号16に、それぞれ示す。なお配列番号15において、1番目のメチオニンから22番目のアラニンまでがPelBシグナルペプチドのアミノ酸配列(配列番号2)、25番目のグルタミンから298番目のアスパラギン酸までがFc結合性タンパク質FcRm68のアミノ酸配列(配列番号11)、299番目のシステインから300番目のグリシンまでがシステインタグのアミノ酸配列である。なお配列番号15において、FcRm68のアミノ酸配列(25番目のグルタミンから298番目のアスパラギン酸までの領域)は、配列番号1に記載のヒトFc受容体FcγRIのアミノ酸配列では16番目のグルタミンから289番目のバリンまでの領域に相当する。   The amino acid sequence of the polypeptide expressed by the expression vector pTrcFcRm68-CG is shown in SEQ ID NO: 15, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 16, respectively. In SEQ ID NO: 15, the amino acid sequence of the PelB signal peptide is from the first methionine to the 22nd alanine (SEQ ID NO: 2), and the amino acid sequence of the Fc-binding protein FcRm68 is from the 25th glutamine to the 298th aspartic acid ( SEQ ID NO: 11) The amino acid sequence of the cysteine tag is from the 299th cysteine to the 300th glycine. In SEQ ID NO: 15, the amino acid sequence of FcRm68 (the region from the 25th glutamine to the 298th aspartic acid) is the amino acid sequence of the human Fc receptor FcγRI described in SEQ ID NO: 1 from the 16th glutamine to the 289th position. It corresponds to the area up to valine.

実施例3 Fc結合性タンパク質(FcRm68)発現ベクターの作製(その2)
配列番号2に記載のアミノ酸配列からなる天然型PelBシグナルペプチドのうち、2番目のリジンと3番目のチロシンとの間にリジンを挿入した本発明のシグナルペプチド(アミノ酸配列:MKKYLLPTAAAGLLLLAAQPAMA、配列番号4)を、実施例2で作製したFcRm68−CGのN末端側に付加したポリペプチドFcRm68−CG−V1を、以下に示す方法で作製した。
(2)実施例2で作製した発現ベクターpTrcFcRm68−CGを鋳型とし、配列番号17(5’−GGAAACAGACCATGAAAAAGTACCTGCTGCCGACCGCTG−3’、3’末端側28ヌクレオチドは配列番号5(配列番号4に記載の配列からなる本発明のシグナルペプチドをコードするポリヌクレオチドの配列)の1番目から28番目までの領域に相当)および配列番号18(5’−CAGCGGTCGGCAGCAGGTACTTTTTCATGGTCTGTTTCC−3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして、以下の反応を実施した。表1に示す組成の反応液を調製後、当該反応液を、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で5分間の第3ステップを1サイクルとする反応を16サイクル繰り返すことで実施した。得られた産物を制限酵素DpnIで消化することで鋳型プラスミドを分解し、FcRm68−CG−V1をコードするポリヌクレオチドを含むプラスミドを得た。
(2)得られたFcRm68−CG−V1をコードするポリヌクレオチドを含むプラスミドを用いて大腸菌W3110株を形質転換した。
(3)得られた形質転換体を100μg/mLのカルベニシリンナトリウム(和光純薬社製)を含むLB培地で培養し、QIAprep Spin Miniprep kit(キアゲン社製)を用いて、FcRm68−CG−V1をコードするポリヌクレオチドを含む発現ベクターpTrcFcRm68−CG−V1を抽出した。
(4)実施例1(4)に記載の配列解析により所望の配列であることを確認した。
Example 3 Preparation of Fc Binding Protein (FcRm68) Expression Vector (Part 2)
The signal peptide of the present invention in which lysine is inserted between the second lysine and the third tyrosine among the natural PelB signal peptides consisting of the amino acid sequence set forth in SEQ ID NO: 2 (amino acid sequence: MKKKYLLPTAAAGLLLLAAQPAMA, SEQ ID NO: 4) A polypeptide FcRm68-CG-V1 added to the N-terminal side of FcRm68-CG prepared in Example 2 was prepared by the method shown below.
(2) Using the expression vector pTrcFcRm68-CG prepared in Example 2 as a template, SEQ ID NO: 17 (5′-GGAAACAGACATCATAAAAAGTACCTGCTGCCGCACCGCTG-3 ′, and 28 nucleotides on the 3 ′ terminal side consist of the sequence described in SEQ ID NO: 4 (Corresponding to the region from the first to the 28th region of the polynucleotide sequence encoding the signal peptide of the present invention)) and an oligonucleotide having the sequence set forth in SEQ ID NO: 18 (5′-CACGCGTCGGCAGCAGGTACTTTTTCATGGTCTGTTTC-3 ′) as a primer, The following reaction was performed. After preparing a reaction solution having the composition shown in Table 1, the reaction solution was defined as one cycle of 98 ° C. for 10 seconds for the first step, 55 ° C. for 5 seconds for the second step, and 72 ° C. for 5 minutes for 5 minutes. This reaction was performed by repeating 16 cycles. The resulting product was digested with the restriction enzyme DpnI to decompose the template plasmid, and a plasmid containing a polynucleotide encoding FcRm68-CG-V1 was obtained.
(2) Escherichia coli W3110 was transformed with the obtained plasmid containing a polynucleotide encoding FcRm68-CG-V1.
(3) The obtained transformant is cultured in an LB medium containing 100 μg / mL of carbenicillin sodium (manufactured by Wako Pure Chemical Industries, Ltd.), and using QIAprep Spin Miniprep kit (manufactured by Qiagen), FcRm68-CG-V1 The expression vector pTrcFcRm68-CG-V1 containing the encoding polynucleotide was extracted.
(4) The desired sequence was confirmed by the sequence analysis described in Example 1 (4).

発現ベクターpTrcFcRm68−CG−V1により発現されるポリペプチドのアミノ酸配列を配列番号19に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号20に、それぞれ示す。なお配列番号19において、1番目のメチオニンから23番目のアラニンまでが本発明のシグナルペプチドのアミノ酸配列(配列番号4)、26番目のグルタミンから299番目のアスパラギン酸までがFc結合性タンパク質FcRm68のアミノ酸配列(配列番号11)、300番目のシステインから301番目のグリシンまでがシステインタグである。   The amino acid sequence of the polypeptide expressed by the expression vector pTrcFcRm68-CG-V1 is shown in SEQ ID NO: 19, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 20, respectively. In SEQ ID NO: 19, the amino acid sequence of the signal peptide of the present invention (SEQ ID NO: 4) is from the first methionine to the 23rd alanine, and the amino acid sequence of the Fc-binding protein FcRm68 is from the 26th glutamine to the 299th aspartic acid. The sequence (SEQ ID NO: 11), from the 300th cysteine to the 301st glycine is a cysteine tag.

実施例4 Fc結合性タンパク質の発現(その1)
(1)実施例3で作製した発現ベクターpTrcFcRm68−CG−V1を用いて大腸菌W3110株を形質転換し、100μg/mLのカルベニシリンナトリウムを含む2YT(Tryptone:16g/L、酵母エキス:10g/L、塩化ナトリウム:5g/L)液体培地に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
(2)100μg/mLのカルベニシリンナトリウムを含む2YT液体培地20mLに前培養液を600μL接種し、37℃で好気的に振とう培養を行なった。
(3)培養開始3時間後、培養温度を20℃に変更して30分間振とう培養後、終濃度0.05mMとなるようIPTG(イソプロピル−β−チオガラクトピラノシド)を添加し、引き続き20℃で一晩、好気的に振とう培養した。
(4)培養終了後、遠心分離により集菌し、BugBuster Protein extraction kit(タカラバイオ社製)を用いてタンパク質抽出液を調製した。
(5)(4)で調製したタンパク質抽出液中のFc結合性タンパク質の濃度を、下記に示すELISA法を用いて抗体結合活性を測定し、既知濃度のFc結合性タンパク質における値と比較して測定した。
(5−1)ヒト抗体であるガンマグロブリン製剤(化学及血清療法研究所製)を、96穴マイクロプレートのウェルに1μg/wellの濃度で固定化し(4℃で18時間)、固定化終了後、0.5%(w/v)のBSA(SigmaAldrich社製)および150mMのNaClを含む20mMのTris−HCl緩衝液(pH7.4)によりブロッキングした。
(5−2)洗浄緩衝液(0.05%(w/v)のTween 20と150mMのNaClを含む20mMのTris−HCl緩衝液(pH7.4))で洗浄後、調製したFc結合性タンパク質を含む溶液を固定化ガンマグロブリンと反応させた(30℃で1時間)。
(5−3)反応終了後、前記洗浄緩衝液で洗浄し、50ng/mLに希釈したAnti−FcγRI抗体(R&D Systems社製)を100μL/well添加した。
(5−4)30℃で1時間反応後、前記洗浄緩衝液で洗浄し、50ng/mLに希釈したHorse radish Peroxidase(HRP)標識のAnti−mouse−IgG抗体(BETHYL社製)を100μL/well添加した。
(5−5)30℃で1時間反応後、前記洗浄緩衝液で洗浄し、TMB Peroxidase Substrate(KPL社製)を50μL/well添加し、1Mのリン酸水溶液50μL/wellを添加し発色反応を停止し、450nmの吸光度を測定した。
Example 4 Expression of Fc-binding protein (1)
(1) E. coli W3110 strain was transformed with the expression vector pTrcFcRm68-CG-V1 prepared in Example 3, and 2YT containing 100 μg / mL carbenicillin sodium (Tryptone: 16 g / L, yeast extract: 10 g / L, Sodium chloride: 5 g / L) Inoculated in a liquid medium and precultured by aerobic shaking culture at 37 ° C. overnight.
(2) 600 μL of the preculture was inoculated into 20 mL of 2YT liquid medium containing 100 μg / mL carbenicillin sodium, and cultured with shaking at 37 ° C. aerobically.
(3) Three hours after the start of the culture, the culture temperature was changed to 20 ° C., and after 30 minutes of shaking culture, IPTG (isopropyl-β-thiogalactopyranoside) was added to a final concentration of 0.05 mM. The culture was aerobically shaken overnight at 20 ° C.
(4) After completion of the culture, the cells were collected by centrifugation, and a protein extract was prepared using BugBuster Protein extraction kit (Takara Bio Inc.).
(5) The concentration of the Fc binding protein in the protein extract prepared in (4) was measured for the antibody binding activity using the ELISA method shown below, and compared with the value in the Fc binding protein at a known concentration. It was measured.
(5-1) A gamma globulin preparation which is a human antibody (manufactured by Chemical and Serum Therapy Research Laboratories) was immobilized in a well of a 96-well microplate at a concentration of 1 μg / well (18 hours at 4 ° C.), and after the immobilization was completed Blocking was performed with 20 mM Tris-HCl buffer (pH 7.4) containing 0.5% (w / v) BSA (Sigma Aldrich) and 150 mM NaCl.
(5-2) Fc-binding protein prepared after washing with washing buffer (20 mM Tris-HCl buffer (pH 7.4) containing 0.05% (w / v) Tween 20 and 150 mM NaCl) The solution containing was reacted with immobilized gamma globulin (1 hour at 30 ° C.).
(5-3) After completion of the reaction, 100 μL / well of Anti-FcγRI antibody (manufactured by R & D Systems) diluted with 50 ng / mL was washed with the washing buffer.
(5-4) After reacting at 30 ° C. for 1 hour, Horse radish Peroxidase (HRP) -labeled Anti-mouse-IgG antibody (manufactured by BETHYL) diluted with 50 ng / mL was washed with 100 μL / well. Added.
(5-5) After reacting at 30 ° C. for 1 hour, the plate is washed with the washing buffer, TMB Peroxidase Substrate (manufactured by KPL) is added at 50 μL / well, and 1M phosphoric acid aqueous solution is added at 50 μL / well for color reaction. Stop and measure the absorbance at 450 nm.

ELISA法によって濃度既知の精製Fc結合性タンパク質を用いた検量線から、培養後のFc結合性タンパク質の濃度測定を行なった。また、培養終了時の菌体量として測定した600nmの吸光度で培養後のFc結合性タンパク質の濃度を除することで、菌体あたりのFc結合性タンパク質の生産性を算出した。結果を図2に示す。   The concentration of Fc-binding protein after culture was measured from a calibration curve using purified Fc-binding protein of known concentration by ELISA. The productivity of Fc-binding protein per cell was calculated by dividing the concentration of Fc-binding protein after culture by the absorbance at 600 nm measured as the amount of cells at the end of the culture. The results are shown in FIG.

比較例1 Fc結合性タンパク質の発現(その2)
実施例2で作製した天然型のPelBシグナルペプチド(配列番号2)を含むFc結合性タンパク質発現ベクターpTrcFcRm68−CGを用いて、大腸菌W3110株を形質転換後、実施例4と同様の方法にて培養し、Fc結合性タンパク質の生産性を算出した。結果を図2に示す。
Comparative Example 1 Expression of Fc binding protein (2)
Using the Fc-binding protein expression vector pTrcFcRm68-CG containing the natural PelB signal peptide (SEQ ID NO: 2) prepared in Example 2, E. coli strain W3110 was transformed and cultured in the same manner as in Example 4. The productivity of the Fc binding protein was calculated. The results are shown in FIG.

実施例5 Fc結合性タンパク質(FcR5a)発現ベクターの作製
実施例3で作製した発現ベクターpTrcFcRm68−CG−V1のうち、Fc結合性タンパク質をコードするポリヌクレオチドの領域を配列番号23に記載のアミノ酸配列からなるFc結合性タンパク質FcR5aをコードするポリヌクレオチドに置き換えた発現ベクターpTrcFcR5a−V1を以下に示す方法で作製した。なおFcR5aは、配列番号22に記載のアミノ酸配列中、17番目のグリシンから192番目のグルタミンまでの領域からなるFc結合性タンパク質のうち、
配列番号22の27番目のバリンをグルタミン酸に、
配列番号22の35番目のチロシンをアスパラギンに、
配列番号22の75番目のフェニルアラニンをロイシンに
配列番号22の92番目のアスパラギンをセリンに、
配列番号22の121番目のグルタミン酸をグリシンに、
それぞれ置換したFc結合性タンパク質である(特願2013−202245号)。
(1)配列番号23に記載のアミノ酸配列からなるFc結合性タンパク質FcR5aをコードするポリヌクレオチドである、配列番号24に記載の配列からなるポリヌクレオチドを発現ベクターpETMalE(特開2011−206046号公報)に導入することで、発現ベクターpET−FcR5a(特願2013−202245号)を得た。
(2)得られた発現ベクターpET−FcR5aを、制限酵素NcoIとHindIIIにて消化し、ベクター部分を除くことで消化産物を得た。
(3)実施例3で得たpTrcFcRm68−CG−V1を、あらかじめ制限酵素NcoIとHindIIIにて消化し、ベクター部分を精製したものと、(2)で作製した消化産物とをライゲーションし、これを用いて大腸菌W3110株を形質転換した。
(4)得られた形質転換体を100μg/mLのカルベニシリンナトリウム(和光純薬社製)を含むLB培地で培養し、QIAprep Spin Miniprep kit(キアゲン社製)を用いて、配列番号4に記載の配列からなる本発明のシグナルペプチドをFc結合性タンパク質FcR5aのN末端側に付加したポリペプチドFcR5a−V1をコードするポリヌクレオチドを含む発現ベクターpTrcFcR5a−V1を抽出した。
Example 5 Preparation of Fc Binding Protein (FcR5a) Expression Vector In the expression vector pTrcFcRm68-CG-V1 prepared in Example 3, the region of the polynucleotide encoding the Fc binding protein is the amino acid sequence set forth in SEQ ID NO: 23. An expression vector pTrcFcR5a-V1 substituted with a polynucleotide encoding Fc-binding protein FcR5a comprising: FcR5a is an Fc-binding protein consisting of a region from the 17th glycine to the 192nd glutamine in the amino acid sequence shown in SEQ ID NO: 22,
27th valine of SEQ ID NO: 22 to glutamic acid,
Asparagine of the 35th tyrosine of SEQ ID NO: 22,
The 75th phenylalanine of SEQ ID NO: 22 is used as leucine and the 92nd asparagine of SEQ ID NO: 22 is used as serine,
Glycine is the 121st glutamic acid of SEQ ID NO: 22,
Each is a substituted Fc-binding protein (Japanese Patent Application No. 2013-202245).
(1) An expression vector pETmalE (Japanese Patent Application Laid-Open No. 2011-206046), which is a polynucleotide encoding the Fc-binding protein FcR5a consisting of the amino acid sequence shown in SEQ ID NO: 23, which is the sequence shown in SEQ ID NO: 24 The expression vector pET-FcR5a (Japanese Patent Application No. 2013-202245) was obtained.
(2) The obtained expression vector pET-FcR5a was digested with restriction enzymes NcoI and HindIII, and the digested product was obtained by removing the vector portion.
(3) The pTrcFcRm68-CG-V1 obtained in Example 3 was digested with restriction enzymes NcoI and HindIII in advance and the vector portion was purified, and the digested product prepared in (2) was ligated, Escherichia coli W3110 strain was used to transform it.
(4) The obtained transformant is cultured in an LB medium containing 100 μg / mL of carbenicillin sodium (manufactured by Wako Pure Chemical Industries, Ltd.), and is described in SEQ ID NO: 4 using QIAprep Spin Miniprep kit (manufactured by Qiagen). An expression vector pTrcFcR5a-V1 containing a polynucleotide encoding the polypeptide FcR5a-V1 obtained by adding the signal peptide of the present invention consisting of a sequence to the N-terminal side of the Fc binding protein FcR5a was extracted.

発現ベクターpTrcFcR5a−V1に対し、実施例1(4)に記載の配列解析を行なった結果、所望の配列であることを確認した。   The sequence analysis described in Example 1 (4) was performed on the expression vector pTrcFcR5a-V1, and as a result, it was confirmed that the desired sequence was obtained.

実施例6 Fc結合性タンパク質の発現(その3)
実施例5で作製した発現ベクターpTrcFcR5a−V1を用いて大腸菌W3110株を形質転換し、得られた形質転換体を実施例4(1)から(3)と同様な方法で培養した後、実施例4(4)と同様な方法でタンパク質抽出液を調製し、実施例4(5)と同様な方法でFc結合性タンパク質の濃度を測定することで、Fc結合性タンパク質の生産性を算出した(ただし、実施例4(5−3)におけるAnti−FcγRI抗体はAnti−FcγRIII抗体を使用した)。結果を図3に示す。
Example 6 Expression of Fc-binding protein (Part 3)
Escherichia coli W3110 was transformed with the expression vector pTrcFcR5a-V1 prepared in Example 5, and the obtained transformant was cultured in the same manner as in Examples 4 (1) to (3). A protein extract was prepared in the same manner as in 4 (4), and the concentration of the Fc binding protein was measured in the same manner as in Example 4 (5) to calculate the productivity of the Fc binding protein ( However, the Anti-FcγRI antibody in Example 4 (5-3) was an Anti-FcγRIII antibody). The results are shown in FIG.

比較例2 Fc結合性タンパク質の発現(その4)
実施例2で作製した天然型のPelBシグナルペプチドを含むFc結合性タンパク質発現ベクターpTrcFcRm68−CGのうち、Fc結合性タンパク質をコードするポリヌクレオチドの領域を配列番号23に記載のアミノ酸配列からなるFc結合性タンパク質FcR5aをコードするポリヌクレオチド(配列番号24)に置き換えた発現ベクターpTrcFcR5aを実施例5と同様な方法で作製し、実施例6と同様な方法でFc結合性タンパク質の生産性を算出した。結果を図3に示す。
Comparative Example 2 Expression of Fc binding protein (4)
Of the Fc-binding protein expression vector pTrcFcRm68-CG containing the natural PelB signal peptide prepared in Example 2, the region of the polynucleotide encoding the Fc-binding protein is the Fc binding consisting of the amino acid sequence set forth in SEQ ID NO: 23 An expression vector pTrcFcR5a substituted with a polynucleotide encoding the sex protein FcR5a (SEQ ID NO: 24) was prepared in the same manner as in Example 5, and the productivity of Fc-binding protein was calculated in the same manner as in Example 6. The results are shown in FIG.

図2および3より、組換えタンパク質をペリプラズムに分泌させるシグナルペプチドとして、天然型PelBシグナルペプチドの2番目と3番目の間に塩基性アミノ酸を挿入した本発明のシグナルペプチドを用いる(実施例4および6)ことで、天然型PelBシグナルペプチドを用いたとき(比較例1および2)と比較し、前記タンパク質の生産性が向上していることがわかる。   2 and 3, the signal peptide of the present invention in which a basic amino acid is inserted between the second and third of the natural PelB signal peptide is used as a signal peptide for secreting the recombinant protein into the periplasm (Examples 4 and 3). 6) Thus, it can be seen that the productivity of the protein is improved as compared with the case of using the natural PelB signal peptide (Comparative Examples 1 and 2).

Claims (8)

配列番号2に記載のアミノ酸配列からなるオリゴペプチドのうち、N末端領域のいずれかに塩基性アミノ酸を挿入した、ペリプラズムにタンパク質を分泌させるためのシグナルペプチド。 A signal peptide for secreting a protein into the periplasm, wherein a basic amino acid is inserted into any of the N-terminal regions of the oligopeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2. 配列番号2に記載のアミノ酸配列からなるオリゴペプチドのうち、2番目のリジンと3番目のチロシンとの間に塩基性アミノ酸を1残基挿入した、ペリプラズムにタンパク質を分泌させるためのシグナルペプチド。 A signal peptide for secreting a protein into the periplasm, wherein one residue of a basic amino acid is inserted between the second lysine and the third tyrosine of the oligopeptide having the amino acid sequence set forth in SEQ ID NO: 2. 塩基性アミノ酸がリジンである、請求項1または2に記載のシグナルペプチド。 The signal peptide according to claim 1 or 2, wherein the basic amino acid is lysine. 請求項1から3のいずれかに記載のシグナルペプチドをコードするポリヌクレオチドとタンパク質をコードするポリヌクレオチドとを含む、前記タンパク質を発現させるためのプラスミド。 The plasmid for expressing the said protein containing the polynucleotide which codes the signal peptide in any one of Claim 1 to 3, and the polynucleotide which codes protein. タンパク質がヒトFc結合性タンパク質である、請求項4に記載のプラスミド。 The plasmid according to claim 4, wherein the protein is a human Fc-binding protein. 請求項4または5に記載のプラスミドを用いて宿主を形質転換して得られる、形質転換体。 A transformant obtained by transforming a host with the plasmid according to claim 4 or 5. 宿主が大腸菌である、請求項6に記載の形質転換体。 The transformant according to claim 6, wherein the host is Escherichia coli. 請求項6または7に記載の形質転換体を培養することで前記形質転換体からタンパク質を発現させる工程と、前記形質転換体から当該タンパク質を単離する工程とを含む、前記タンパク質の製造方法。 A method for producing the protein, comprising a step of expressing the protein from the transformant by culturing the transformant according to claim 6 or 7, and a step of isolating the protein from the transformant.
JP2014084344A 2013-04-24 2014-04-16 Signal peptide and protein production method using the same Active JP6413313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084344A JP6413313B2 (en) 2013-04-24 2014-04-16 Signal peptide and protein production method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013091208 2013-04-24
JP2013091208 2013-04-24
JP2014084344A JP6413313B2 (en) 2013-04-24 2014-04-16 Signal peptide and protein production method using the same

Publications (2)

Publication Number Publication Date
JP2014223064A true JP2014223064A (en) 2014-12-04
JP6413313B2 JP6413313B2 (en) 2018-10-31

Family

ID=52122311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084344A Active JP6413313B2 (en) 2013-04-24 2014-04-16 Signal peptide and protein production method using the same

Country Status (1)

Country Link
JP (1) JP6413313B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819647A (en) * 2018-08-07 2020-02-21 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN111320700A (en) * 2018-12-15 2020-06-23 上海渔霁生物技术有限公司 Recombinant staphylococcus aureus protein A as well as preparation method and application thereof
CN114921444A (en) * 2022-05-23 2022-08-19 河南晟明生物技术研究院有限公司 Preparation method of V8 protease

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175686A (en) * 1998-12-15 2000-06-27 National Institute Of Animal Health Dna encoding modified signal peptide
JP2012147772A (en) * 2010-12-28 2012-08-09 Tosoh Corp Recombinant plasmid vector and method for producing protein by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175686A (en) * 1998-12-15 2000-06-27 National Institute Of Animal Health Dna encoding modified signal peptide
JP2012147772A (en) * 2010-12-28 2012-08-09 Tosoh Corp Recombinant plasmid vector and method for producing protein by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOICHI SASAKI ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 265, no. 8, JPN6018006078, 1990, pages 4358 - 4363 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528575B (en) * 2018-08-07 2022-06-21 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113528575A (en) * 2018-08-07 2021-10-22 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN110819647A (en) * 2018-08-07 2020-02-21 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113528574A (en) * 2018-08-07 2021-10-22 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113528574B (en) * 2018-08-07 2022-06-21 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113584060A (en) * 2018-08-07 2021-11-02 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113584058A (en) * 2018-08-07 2021-11-02 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113481226B (en) * 2018-08-07 2022-06-21 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113481226A (en) * 2018-08-07 2021-10-08 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113667685B (en) * 2018-08-07 2023-02-28 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113667685A (en) * 2018-08-07 2021-11-19 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113584058B (en) * 2018-08-07 2023-02-10 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN113584060B (en) * 2018-08-07 2023-02-07 康码(上海)生物科技有限公司 Signal peptide related sequence and application thereof in protein synthesis
CN111320700B (en) * 2018-12-15 2022-12-06 上海渔霁生物技术有限公司 Recombinant staphylococcus aureus protein A as well as preparation method and application thereof
CN111320700A (en) * 2018-12-15 2020-06-23 上海渔霁生物技术有限公司 Recombinant staphylococcus aureus protein A as well as preparation method and application thereof
CN114921444A (en) * 2022-05-23 2022-08-19 河南晟明生物技术研究院有限公司 Preparation method of V8 protease
CN114921444B (en) * 2022-05-23 2023-10-10 晟明生物技术(郑州)有限公司 Preparation method of V8 protease

Also Published As

Publication number Publication date
JP6413313B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6276694B2 (en) Protein ligand for affinity separation matrix
EP2690173B1 (en) Protein for affinity-separation matrix
JP5522723B2 (en) Novel polypeptide, material for affinity chromatography, and method for separation and / or purification of immunoglobulin
JPWO2010110288A1 (en) Proteins having affinity for immunoglobulin and immunoglobulin binding affinity ligands
EP3255058B1 (en) Protein having affinity to immunoglobulin, and affinity separation medium and column for liquid chromatography using same
JP6464089B2 (en) Separation-enhanced ligand for affinity separation matrix
JP6413313B2 (en) Signal peptide and protein production method using the same
JP7030702B2 (en) Improved recombinant FcγRII
US10000544B2 (en) Process for production of insulin and insulin analogues
JP6451119B2 (en) Method for separating antibodies based on the strength of antibody-dependent cytotoxic activity
JP6421456B2 (en) Signal peptide and protein production method using the same
JP2017178908A (en) MODIFICATION TYPE RECOMBINANT FcγRIIb
JP6435770B2 (en) Polynucleotide encoding signal peptide and method for producing protein using the same
JP6116884B2 (en) Improved Fc-binding protein and method for producing the same
EP2727934B1 (en) Fusion proteins with representation of different allergens: vaccine proposal for mite allergies
JP7386647B2 (en) Fucose-binding protein with improved affinity for sugar chains and method for producing the same
JP2012130294A (en) Antibody-binding protein and method for producing the same
KR101747701B1 (en) manufacturing method of panose using recombination dextransucrase
JP2015023821A (en) Method for producing protein using secretion chaperone
US20180170973A1 (en) Immunoglobulin-binding modified protein
EP2834354A1 (en) Improved galactose isomerases and use thereof in the production of tagatose
JP6171331B2 (en) Purification method and quantification method of Fc binding protein
JP2019076069A (en) Fc-binding proteins with amino acid substitution
JP2018000174A (en) Polynucleotide encoding human fcrn and method for producing human fcrn using the polynucleotide
JP2015035958A (en) POLYNUCLEOTIDE ENCODING HUMAN Fc RECEPTOR AND METHOD FOR PRODUCING HUMAN Fc RECEPTOR UTILIZING POLYNUCLEOTIDE CONCERNED

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6413313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151