JP6586894B2 - 原子炉格納容器漏えい率検査用の圧縮空気ブロー構造 - Google Patents

原子炉格納容器漏えい率検査用の圧縮空気ブロー構造 Download PDF

Info

Publication number
JP6586894B2
JP6586894B2 JP2016009072A JP2016009072A JP6586894B2 JP 6586894 B2 JP6586894 B2 JP 6586894B2 JP 2016009072 A JP2016009072 A JP 2016009072A JP 2016009072 A JP2016009072 A JP 2016009072A JP 6586894 B2 JP6586894 B2 JP 6586894B2
Authority
JP
Japan
Prior art keywords
valve
containment vessel
compressed air
reactor containment
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016009072A
Other languages
English (en)
Other versions
JP2017129463A (ja
Inventor
暢宏 吉持
暢宏 吉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2016009072A priority Critical patent/JP6586894B2/ja
Publication of JP2017129463A publication Critical patent/JP2017129463A/ja
Application granted granted Critical
Publication of JP6586894B2 publication Critical patent/JP6586894B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

この発明は、原子炉格納容器の漏えい率検査時に、原子炉格納容器を不活性ガスで加圧する前に、所内用圧縮空気をブローする原子炉格納容器漏えい率検査用の圧縮空気ブロー構造に関する。
原子炉は原子炉格納容器(RCCVまたはPCV)に格納され、さらに原子炉格納容器は原子炉建物内に設置されている。原子炉格納容器には、所内用圧縮空気系(以下、「SA系」という)が外側隔離弁を介在して接続されている。SA系は、原子力発電所の所内、例えば原子炉建物、原子炉建物内の原子炉格納容器や制御室建物等に所内用圧縮空気(SA)を供給する系統である。SA系には、所内用空気圧縮機で生成した所内用圧縮空気を貯える空気貯槽が、元弁を介在して接続されている。通常、元弁は開かれていて、空気貯槽からの所内用圧縮空気は、原子炉建物内の各所に供給される。こうしたSA系の用途には、
・機器のパージ
・フィルタの逆洗
・流体の撹拌
・空気作動機器・工具等の駆動
がある。例えば、空気作動機器・工具等には、接続装置を経て所内用圧縮空気が供給される。接続装置は、所内用圧縮空気を外部に供給するためのものである。
ところで、原子炉格納容器の設置時および定期点検時には漏えい率検査を行う(例えば、特許文献1参照。)。原子炉格納容器の漏えい率検査を行う場合には、担当者は系統隔離作業を行う。つまり、担当者は原子炉格納容器の外側に設けられている、SA系の外側隔離弁を必ず閉じておく。同じように、担当者は、原子炉格納容器に対する加圧源である不活性ガス系以外の各系統の隔離弁を閉じておく。系統隔離作業の後、担当者はSA系に設けられ、ブローラインとして使用される接続装置の弁を開いて、SA系から原子炉格納容器内への圧縮空気の流入防止のため、原子炉格納容器外側のSA系をブローしている。つまり、担当者は、接続装置の弁と接続器具(カプラー)を開くことで、SA系を減圧して大気圧にし、漏えい率検査時に、原子炉格納容器の内部圧力の増に所内用圧縮空気が影響しないようにしている。系統の隔離、ブローが終了すると、担当者は加圧源となる不活性ガス系による加圧を行う。これにより、不活性ガス系から不活性ガスが原子炉格納容器に供給され、原子炉格納容器が加圧される。
こうした系統隔離およびブロー作業と加圧作業とが終了すると、次に、担当者は原子炉格納容器の漏えい率を測定する測定作業を行う。担当者は、あらかじめ原子炉格納容器内に設置されている、漏えいの無い基準容器の圧力と、原子炉格納容器の圧力とを比較して、原子炉格納容器の漏えい率を調べる。こうした測定作業は所定時間、例えば数時間行われる。
測定作業が終了すると、担当者は先の系統隔離作業とは逆の作業である終了作業を行い、原子炉格納容器の漏えい率測定を終了する。
特開平6−242282号公報
ところで、先に述べた原子炉格納容器の漏えい率検査のために行われるSA系の系統隔離作業には次の課題がある。つまり、原子炉格納容器は高さが数十メートルの大型のものである。このために、原子炉格納容器を収容する原子炉建物も、例えば3階建てのような高さになる。そして、所内用空気圧縮機や空気貯槽は原子炉建物の1階に設置され、SA系は原子炉建物全域に設置される。また、SA系から原子炉格納容器に圧縮空気を供給する配管は3階に設置されている。このために、例えば、元弁は原子炉建物の1階に設置され、原子炉建物2階に設置されている接続装置がブローラインとして使用され、外側隔離弁は3階に設置されている。
原子炉格納容器の漏えい率検査の際には、担当者はSA系を隔離する系統隔離作業とブロー作業とを行う。つまり、担当者は、原子炉建物の1階、2階、3階に移動して、SA系の元弁、ブローラインとして使用されている接続装置の弁、外側隔離弁の開閉操作をしなければならない。したがって、系統隔離作業やブロー作業に時間を要し、系統隔離作業やブロー作業を行う担当者の負担が大きい。測定作業が終了して終了作業を行う場合も同様である。
この他にも、次のような課題がある。原子炉格納容器の漏えい率検査の際には、担当者が元弁を閉じて、SA系をブローするので、原子炉建物に対する所内用圧縮空気の供給が全面的に止まり、RCCV漏えい率検査と並行して進めたい作業であり、かつ原子炉建物内でSA系を使用する別の作業に支障をきたすことになる。
この発明の目的は、前記の課題を解決し、原子炉格納容器の漏えい率検査の際に、SA系の系統隔離作業やブロー作業などに要する時間を短縮し、また、原子炉建物内でSA系を使用する作業を可能にする原子炉格納容器漏えい率検査用の圧縮空気ブロー構造を提供することにある。
前記の課題を解決するために、請求項1の発明は、原子炉格納容器側に設けられ、前記原子炉格納容器の漏えい率検査のときには、前記原子炉格納容器に対する不活性ガスの供給で加圧された前記原子炉格納容器を、所内用圧縮空気を前記原子炉格納容器に供給する所内用圧縮空気系から隔離するために閉じられる第1の弁を備える原子炉格納容器漏えい率検査用の圧縮空気ブロー構造において、前記第1の弁の近傍に設けられ、前記原子炉格納容器の漏えい率検査のときには閉じられる第2の弁と、前記第1の弁と前記第2の弁との間に設けられ、前記第1の弁と前記第2の弁とが閉じられた状態で前記第1の弁と前記第2の弁との間の所内用圧縮空気をブローして、前記加圧された前記原子炉格納容器の圧力に対する影響を防ぐブローラインと、を備えることを特徴とする原子炉格納容器漏えい率検査用の圧縮空気ブロー構造である。
請求項1の発明では、第1の弁は原子炉格納容器側に設けられ、第2の弁は第1の弁の近傍に設けられ、ブローラインは第1の弁と第2の弁との間に設けられている。そして、第1の弁は、原子炉格納容器の漏えい率検査のときには閉じられる。第2の弁は、原子炉格納容器の漏えい率検査のときには閉じられる。ブローラインは、第1の弁と第2の弁とが閉じられた状態で第1の弁と第2の弁との間の所内用圧縮空気をブローして、加圧された原子炉格納容器の圧力に対する影響を防ぐ。
請求項2の発明は、請求項1に記載の原子炉格納容器漏えい率検査用の圧縮空気ブロー構造において、前記第2の弁と前記ブローラインとは、前記原子炉格納容器を収容する原子炉建物内で、前記第1の弁が設置されている階と同じ階に設置されている、ことを特徴とする。
請求項3の発明は、請求項1または2に記載の原子炉格納容器漏えい率検査用の圧縮空気ブロー構造において、前記ブローラインは、前記所内用圧縮空気を外部に供給するための既設の接続装置である、ことを特徴とする。
請求項1の発明によれば、第1の弁と第2の弁とが閉じられた状態で、第1の弁と第2の弁との間をブローラインがブローするので、漏えい率検査の際に、所内用圧縮空気系から原子炉格納容器に所内用圧縮空気が流れること、つまり、原子炉格納容器の内部圧力の増に所内用圧縮空気が影響することを防ぐことができる。かつ、第2の弁が第1の弁の近傍に設けられていると共に第1の弁と第2の弁との間にブローラインが設けられているので、第1の弁と第2の弁とブローラインとを操作して、所内用圧縮空気系から原子炉格納容器を隔離するための作業や、第1の弁と第2の弁との間をブローするための作業の効率化を可能にする。さらに、請求項1の発明によれば、第1の弁と第2の弁との間だけをブローするので、ブロー範囲を狭くして所内用圧縮空気の供給範囲を広げることができる。
請求項2の発明によれば、第2の弁が第1の弁の近傍に設けられ、かつ、第2の弁とブローラインとは、原子炉建物内で第1の弁が設置されている階と同じ階に設置されているので、第1の弁と第2の弁とブローラインとを操作して、第1の弁と第2の弁との間を隔離する作業や、第1の弁と第2の弁との間をブローするための作業の、より一層の効率化を可能にする。
請求項3の発明によれば、ブローラインとして既設の接続装置を利用するので、所内用圧縮空気系から原子炉格納容器を隔離するためには、第2の弁だけを設置すればよい。
この発明の実施の形態1による原子炉格納容器漏えい率検査用の圧縮空気ブロー構造の一例を示す構成図である。 従来の原子炉格納容器漏えい率検査時の圧縮空気ブローを説明するための構成図である。 実施の形態1による原子炉格納容器漏えい率検査時の圧縮空気ブローを説明するための構成図である。 この発明の実施の形態2による原子炉格納容器漏えい率検査用の圧縮空気ブロー構造の一例を示す構成図である。 実施の形態2による原子炉格納容器漏えい率検査時の圧縮空気ブローを説明するための構成図である。
次に、この発明の各実施の形態について、図面を用いて詳しく説明する。
(実施の形態1)
この実施の形態による原子炉格納容器漏えい率検査用の圧縮空気ブロー構造を図1に示す。図1の原子炉格納容器漏えい率検査用の圧縮空気ブロー構造は、原子力発電所の原子炉建物内のSA系10に設けられているブローライン1と隔離弁2とを備えている。
ここで、SA系10は、原子力発電所の各建物に所内用空気を供給するSA系の中で、原子炉建物内に所内用圧縮空気を供給するための系統である。原子炉建物内には原子炉格納容器100が設置されている。図1はSA系10を主に示したものである。ここで原子力発電所のSA系について説明する。原子力発電所のSA系は、所内用空気圧縮機11と空気貯槽12とを基本的に備えている。所内用空気圧縮機11と空気貯槽12とは、例えば原子炉建物の1階に設置されている。
空気圧縮機11は、空気を圧縮して圧縮空気を生成する。空気貯槽12は、弁13Aを経て空気圧縮機11と接続されている。空気貯槽12は、空気圧縮機11で生成した圧縮空気を貯える。空気貯槽12は、貯えた圧縮空気を所内用圧縮空気として、原子炉建物、制御室建物、タービン建物などの各SA系に供給する。こうして原子力建物に所内用圧縮空気を供給する系統が先に述べたSA系10である。
SA系10の管路14Aに対しては、空気貯槽12からの所内用圧縮空気が供給される。元弁13Bは、担当者による開閉操作で、空気貯槽12からの所内用圧縮空気をSA系10に供給するか供給停止にするかを切り替える。元弁13Bは、所内用空気圧縮機11と空気貯槽12とが原子炉建物の1階に設置されているので、原子炉建物の1階に設置されている。なお、図1を含む以下の各図では、黒く塗りつぶされた弁は閉じた状態を表している。つまり、所内用圧縮空気の流れを止めている。
原子炉建物のSA系10は、各種の装置を備えている。例えば、SA系10は接続装置15〜1521を備えている。接続装置15は、弁151Aと継手151Bと管路151Cとで構成されている。管路151CはSA系10に接続され、所内用圧縮空気を流すためのものである。弁151Aは管路151Cを開閉する弁である。継手151Bは管路151Cの先端に接続され、外部からのホースを接続するための器具である。こうした弁151Aと継手151Bと管路151Cとで構成される接続装置15は、例えば所内用圧縮空気で作動する機器(以下、「圧縮空気作動機器」と記す)を作業者が原子炉建物内で使用する場合に、この圧縮空気作動機器のホースを接続するためのものである。他の接続装置15〜1521は、接続装置15と同様である。
こうした接続装置15〜1521は、作業者による各階での作業に備えるために、原子炉建物内の各階に分散されて設置されている。
原子炉建物のSA系10は管路14Bを備えている。管路14Bは、管路14Aを含む管路を経て来た所内用圧縮空気を流すためのものである。SA系10の管路は、基本的に原子炉建物全域に設置されている。管路14Bの先端は原子炉格納容器100を貫通している。原子炉格納容器100を管路14Bが貫通している側壁を挟むようにして、原子炉格納容器100の外側には外側隔離弁13Cが設置され、原子炉格納容器100の内側には逆止弁101が設置されている。
外側隔離弁13Cは、原子炉格納容器100の漏えい率検査に際して、不活性ガス系(図示を省略)からの不活性ガスで加圧された原子炉格納容器100に対して、SA系10から原子炉格納容器100の内部に所内用圧縮空気が流れること、つまり、検査中の原子炉格納容器100の内部圧力の増減に影響することを防止する。このために、外側隔離弁13Cは漏えい率検査に際して必ず閉じられる弁である。外側隔離弁13Cは原子炉建物の3階に設置されている。
逆止弁101は、原子炉格納容器100内の所内用圧縮空気が管路14Bの上流に向かって逆流すること、つまり原子炉格納容器100の外側に流れることを防ぐための弁である。
こうした外側隔離弁13Cと逆止弁101とが設置されている管路14Bの先端には、接続装置102A〜102Dが接続されている。接続装置102A〜102Dは、接続装置15と同様である。そして、接続装置102A〜102Dは、例えば原子炉格納容器100の内部で作業が行われる場合に、外側隔離弁13Cが開かれているときに、所内用圧縮空気の供給を可能にする。
原子炉建物のSA系10は、接続装置16を備えている。接続装置16は、原子炉建物の2階に設置されている接続装置の1つであり、ブローラインとして使用されている。接続装置16は、弁16Aと管路16Bと継手16Cとで構成されている。これらは、接続装置15〜1521と同様である。接続装置16がブローラインとして使用される場合、原子炉格納容器100の漏えい率検査に際して、原子炉格納容器100を不活性ガス系の不活性ガスで加圧する前に、SA系10から原子炉格納容器100の内部に所内用圧縮空気が流れること、つまり、検査中の原子炉格納容器100の内部圧力の増減に影響することを防止するために、接続装置16は、担当者の操作により所内用圧縮空気をブローする。これにより、従来であれば、原子炉建物内ではSA系10の所内用圧縮空気が大気中に放出される。
しかし、この実施の形態では、原子炉格納容器100の漏えい率検査に接続装置16はブローラインとして使用されず、本来の接続装置として使用される。
また、SA系10は各種の系統に所内用圧縮空気を供給している。例えば、弁13Dを介在してSLC(ほう酸水注入系)の系統17AがSA系10に接続され、SA系10から所内用圧縮空気が供給されている。また、CUW(原子炉冷却材浄化系)のF/D(ろ過脱塩装置)、FPC(燃料プール冷却浄化系)のF/D(ろ過脱塩装置)、MPPC(多目的プール冷却浄化系)のF/D(ろ過脱塩装置)の系統17BがSA系10に接続され、SA系10から所内用圧縮空気が供給されている。
さらに、この実施の形態では、SA系10に対してブローライン1と隔離弁2とが設けられている。ブローライン1はブロー用弁1Aと管路1Bとで構成されている。
隔離弁2は、原子炉格納容器100の外側に設置されている外側隔離弁13Cの近傍に設けられている。外側隔離弁13Cの近傍とは、外側隔離弁13Cが設置されている原子炉建物の階と同じ階、この実施の形態では3階である。そして、隔離弁2の設置場所としては、外側隔離弁13Cが設置されている部屋と同室または隣室が望ましい。隔離弁2は、原子炉格納容器100の漏えい率の測定時に、外側隔離弁13Cと共に必ず閉じられる弁である。
ブローライン1の管路1Bの一端は、原子炉格納容器100を貫通する管路14Bに接続されている。管路1Bは、管路14Bの所内用圧縮空気を他端から大気に流すためのものである。管路1Bは、隔離弁2と外側隔離弁13Cとの間の管路14Bに接続されている。管路1Bには、ブロー用弁1Aが接続されている。
ブロー用弁1Aは、原子炉格納容器100の漏えい率検査に際して、担当者に操作される。つまり、SA系10から原子炉格納容器100の内部に所内用圧縮空気が流れることを防止するために、ブロー用弁1Aは、担当者の操作によって開かれて、隔離弁2と外側隔離弁13Cとの間の管路14Bの所内用圧縮空気をブローする。この後、原子炉格納容器100が不活性ガスで加圧される。ブロー用弁1Aは、隔離弁2と同様に、原子炉建物の3階に設置され、かつ、外側隔離弁13Cの近傍に設けられている。
こうしたブローライン1は、原子炉格納容器100の漏えい率検査に際して、隔離弁2と外側隔離弁13Cとの間の所内用圧縮空気を大気中に放出し、SA系10の管路14Bから原子炉格納容器100の内部に所内用圧縮空気が流れることを防止する。つまり、ブローライン1は、所内用圧縮空気が検査中の原子炉格納容器100の内部圧力の増に影響することを防止する。
以上がこの実施の形態による原子炉格納容器漏えい率検査用の圧縮空気ブロー構造の構成である。次に、原子炉格納容器漏えい率検査用の圧縮空気ブロー構造による、原子炉格納容器の漏えい率検査時の作用について、従来技術と対比しながら説明する。
原子炉格納容器の漏えい率検査を行う場合には、担当者は系統隔離作業とブロー作業とを行う。このとき、外側隔離弁13Cを含む各系統の隔離弁は必ず閉じられる。
従来であれば、担当者は元弁13Bを閉じて、所内用圧縮空気を貯える空気貯槽12側から原子炉建物のSA系10を遮断する。この後、担当者は、ブロー作業を行い、SA系10に設けられている接続装置16の弁16Aを開いて、SA系10から原子炉格納容器100内への所内用圧縮空気の流入防止のため、原子炉格納容器100外側のSA系10を、図2に示すようにブローしている。つまり、弁16Aを開き、SA系10を減圧して大気圧にしている。図2では、SA系10のブローされるブロー範囲を太線が表している。以下の図も同様である。
この結果、従来ではSA系10のブロー範囲が原子炉建物内で広範囲に及ぶことになる。例えば、原子炉建物の各階に分散して設置されている接続装置15〜1519もSA系10のブロー範囲に入り、接続装置15〜1519には所内用圧縮空気が供給されない状態になる。つまり、原子炉建物内では圧縮空気作動機器が使用できない。
これに対して、この実施の形態による原子炉格納容器漏えい率検査用の圧縮空気ブロー構造によれば、SA系10の管路14Bに対してブローライン1と隔離弁2とが設けられている。これにより、原子炉格納容器の漏えい率検査を行う場合は次のようになる。
担当者は隔離弁2を閉じて、隔離弁2から上流側のSA系10と原子炉格納容器100との間を隔離する。
この後、担当者は、ブロー作業を行い、ブローライン1に設けられているブロー用弁1Aを開いて、隔離弁2と外側隔離弁13Cとの間の管路14Bであるブロー範囲を、図3に示すようにブローしている。つまり、ブロー用弁1Aを開き、ブロー範囲を減圧して大気圧にしている。これにより、SA系10から原子炉格納容器100内への所内用圧縮空気の流入が防止され、検査中の原子炉格納容器100の内部圧力の増に影響することを防いでいる。
この後、不活性ガス系から原子炉格納容器100に不活性ガスが供給され、原子炉格納容器100が加圧されて、原子炉格納容器漏えい率検査が行われる。
そして、加圧された原子炉格納容器100の測定作業が終了すると、担当者は先の系統隔離作業とは逆の終了作業を行う。このとき、担当者は、外側隔離弁13Cを閉じたままにし、ブローライン1のブロー用弁1Aを閉じ、さらに、隔離弁2を開くが、管路14Bを含むブロー範囲が従来のブロー範囲つまり原子炉建物全体に及ぶブロー範囲に比較すると狭くなっている。この結果、このブロー範囲に対する所内用圧縮空気の供給が短時間で終了する。
こうして、担当者は原子炉格納容器の漏えい率測定に係るSA系の復旧操作を終了する。
このように、この実施の形態によれば、以下の効果を達成することができる。
この実施の形態によれば、原子炉格納容器漏えい率検査時の原子炉建物内でのSA系10の使用を可能にする。つまり、原子炉格納容器100を貫通する管路14Bの隔離弁2と外側隔離弁13Cとの間だけをブローするので、隔離弁2より上流側のSA系10を使用可能にする。例えば、元弁13Bの下流側に設置されている接続装置15〜1519を使用することができ、また同じく、元弁13Bの下流側にあるSLC(ほう酸水注入系)の系統17Aと、CUW(原子炉冷却材浄化系)のF/D(ろ過脱塩装置)、FPC(燃料プール冷却浄化系)のF/D(ろ過脱塩装置)、MPPC(多目的プール冷却浄化系)のF/D(ろ過脱塩装置)の系統17Bとに、SA系10からの所内用圧縮空気を供給することができる。つまり、この実施の形態により、原子炉格納容器100の漏えい率検査時に、ブロー範囲が狭くなったので、所内用圧縮空気の供給範囲を広げることができる。
また、この実施の形態によれば、原子炉格納容器漏えい率検査に伴うSA系10の隔離やブロー作業の効率化が可能になる。つまり、追設した隔離弁2およびブローライン1を既設の外側隔離弁13Cに近接して設置することにより、系統隔離作業等の効率化を可能にする。
また、この実施の形態によれば、原子炉格納容器漏えい率検査に伴うSA系10のブロー所要時間の短縮を可能にする。つまり、ブロー対象は隔離弁2と外側隔離弁13Cとの間であり、ブロー範囲が狭いので、ブロー所要時間の短縮を可能にしている。
また、この実施の形態によれば、SA系10のブロー範囲の縮小に伴い、SA系10の空気使用量(ブロー量および検査終了後の供給量)の削減を可能にしている。
さらに、この実施の形態によれば、原子炉格納容器漏えい率検査時の原子炉建物内でのSA系10の使用制限を周知する業務の削減が可能である。つまり、隔離弁2の上流側のSA系10は使用可能になるので、SA系10の使用制限を周知する業務を削減することができる。
(実施の形態2)
この実施の形態による原子炉格納容器漏えい率検査用の圧縮空気ブロー構造を図4に示す。なお、この実施の形態では、先に説明した実施の形態1と同一もしくは同一と見なされる構成要素には、それと同じ参照符号を付けて、その説明を省略する。
図4の原子炉格納容器漏えい率検査用の圧縮空気ブロー構造では、ブローラインとして既設の接続装置16を利用する。そして、隔離弁2は、原子炉格納容器100の外側に設置されている外側隔離弁13Cの上流側に、かつ、接続装置16の上流側の近傍に設けられている。接続装置16の上流側の近傍とは、接続装置16が設置されている原子炉建物の階と同階、この実施の形態では2階である。
こうした原子炉格納容器漏えい率検査用の圧縮空気ブロー構造により、原子炉格納容器の漏えい率検査を行う場合には、担当者は次のようにして系統隔離作業を行う。担当者は原子炉建物の3階に行き、原子炉格納容器100側に設けられている外側隔離弁13Cを必ず閉じておく。さらに、担当者は2階に移動し、隔離弁2を必ず閉じて、隔離弁2から上流側のSA系10と、原子炉格納容器100との間を隔離しておく。
この後、担当者は既設の接続装置16に設けられている弁16Aを開いて、図5に示すように、隔離弁2と外側隔離弁13Cとの間の管路14Bであるブロー範囲をブローしている。これにより、SA系10から原子炉格納容器100内への所内用圧縮空気の流入が防止され、検査中の原子炉格納容器100の内部圧力の増に影響することを防いでいる。
このように、この実施の形態によれば、ブローラインとして既設の接続装置16を利用するので、SA系10から原子炉格納容器100を隔離するために隔離弁2だけを設置すればよい。また、既設の接続装置16に対して隔離弁2を設置することにより、担当者が原子炉建物の2階と3階とを行き来するだけで、原子炉格納容器の漏えい率検査の際に必要とする系統隔離作業やブロー作業を行うことができる。
1 ブローライン
1A 弁
1B 管路
2 隔離弁(第2の弁)
10 SA系
11 空気圧縮機
12 空気貯槽
13A、13D、13E 弁
13B 元弁
13C 外側隔離弁(第1の弁)
14A〜14B 管路
15〜1521 接続装置
151A
151B 継手
151C 管路
16 接続装置
16A 弁
16B 管路
16C 継手
100 原子炉格納容器
101 逆止弁
102A〜102D 接続装置

Claims (3)

  1. 原子炉格納容器側に設けられ、前記原子炉格納容器の漏えい率検査のときには、前記原子炉格納容器に対する不活性ガスの供給で加圧された前記原子炉格納容器を、所内用圧縮空気を前記原子炉格納容器に供給する所内用圧縮空気系から隔離するために閉じられる第1の弁を備える原子炉格納容器漏えい率検査用の圧縮空気ブロー構造において、
    前記第1の弁の近傍に設けられ、前記原子炉格納容器の漏えい率検査のときには閉じられる第2の弁と、
    前記第1の弁と前記第2の弁との間に設けられ、前記第1の弁と前記第2の弁とが閉じられた状態で前記第1の弁と前記第2の弁との間の所内用圧縮空気をブローして、前記加圧された前記原子炉格納容器の圧力に対する影響を防ぐブローラインと、
    を備えることを特徴とする原子炉格納容器漏えい率検査用の圧縮空気ブロー構造。
  2. 前記第2の弁と前記ブローラインとは、前記原子炉格納容器を収容する原子炉建物内で、前記第1の弁が設置されている階と同じ階に設置されている、
    ことを特徴とする請求項1に記載の原子炉格納容器漏えい率検査用の圧縮空気ブロー構造。
  3. 前記ブローラインは、前記所内用圧縮空気を外部に供給するための既設の接続装置である、
    ことを特徴とする請求項1または2に記載の原子炉格納容器漏えい率検査用の圧縮空気ブロー構造。
JP2016009072A 2016-01-20 2016-01-20 原子炉格納容器漏えい率検査用の圧縮空気ブロー構造 Active JP6586894B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009072A JP6586894B2 (ja) 2016-01-20 2016-01-20 原子炉格納容器漏えい率検査用の圧縮空気ブロー構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009072A JP6586894B2 (ja) 2016-01-20 2016-01-20 原子炉格納容器漏えい率検査用の圧縮空気ブロー構造

Publications (2)

Publication Number Publication Date
JP2017129463A JP2017129463A (ja) 2017-07-27
JP6586894B2 true JP6586894B2 (ja) 2019-10-09

Family

ID=59396161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009072A Active JP6586894B2 (ja) 2016-01-20 2016-01-20 原子炉格納容器漏えい率検査用の圧縮空気ブロー構造

Country Status (1)

Country Link
JP (1) JP6586894B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444299B (zh) * 2019-07-17 2021-05-07 中广核工程有限公司 一种核电厂双层安全壳设备密封舱及其启闭方法
CN113223739B (zh) * 2021-04-16 2023-08-22 中广核工程有限公司 一种纵深防御下的核电站安全壳试验系统
CN114220579B (zh) * 2021-10-29 2022-11-29 华能核能技术研究院有限公司 一种高温气冷堆一回路役前压力试验的升压系统及方法
KR20240136601A (ko) * 2023-03-07 2024-09-19 한국수력원자력 주식회사 원자로 격납건물의 누설률 시험방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359904A (en) * 1976-11-10 1978-05-30 Toshiba Corp Compressed-gas supply system
JPS5853880B2 (ja) * 1978-11-17 1983-12-01 株式会社東芝 原子力発電プラントの圧縮空気系
JPH06242282A (ja) * 1993-02-18 1994-09-02 Toshiba Corp 主蒸気隔離弁漏えい試験用水位確認方法とその装置
US5388130A (en) * 1993-12-21 1995-02-07 Posta; Bekeny Steam generator located outside nuclear power plant primary containment
JP2003035796A (ja) * 2001-07-25 2003-02-07 Toshiba Corp 沸騰水型原子力発電所とその原子炉圧力容器の脱気方法および耐圧漏洩検査方法
JP6081127B2 (ja) * 2011-11-11 2017-02-15 株式会社東芝 原子炉水位計の水張り設備

Also Published As

Publication number Publication date
JP2017129463A (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6586894B2 (ja) 原子炉格納容器漏えい率検査用の圧縮空気ブロー構造
JP2013517481A (ja) 静水圧試験システムおよび方法
US10964436B2 (en) System for hydrogen injection for boiling water reactors (BWRs) during startup / shutdown
KR200475667Y1 (ko) 닫힘 토크제어 모터구동 평형게이트 밸브용 누설검사 장치 및 검사방법
CN106197864A (zh) 飞机气体管路渗漏测试与冲洗工具
CN203216669U (zh) 一种压力校验装置
US9903783B2 (en) Transportable hose-test containers, systems and methods
JP2018527557A (ja) ガスバルブ装置、及びガスバルブ装置の圧力試験を行う方法
KR101227166B1 (ko) 블록배관라인 수압검사 일체형 시스템
CN104121421A (zh) 一种lng动力船舶供气系统双层管的施工工艺
CN106840905B (zh) 油气管道压力综合教学实验装置
CN112834135A (zh) 一种便携式铁路机车空气管路气密性试验装置
KR100916662B1 (ko) 천연 가스 공급 설비에서의 안정성 테스트 방법
JP4586059B2 (ja) 簡易型気密試験機
CN104344073A (zh) 一种化工管道的安装方法
JP3935040B2 (ja) ガス配管の漏洩検査方法及びそれに用いる漏洩検査装置
KR101724443B1 (ko) 멀티 케이블 트랜시트 리크 테스트 장치
KR20190000362U (ko) 천연가스 공급설비의 시험장치
KR101269526B1 (ko) 누설 탐지 지그 장치
KR20230112414A (ko) 가습기의 압력제어밸브 점검장치
JP2003106929A (ja) ガス供内管の漏洩試験方法および漏洩試験用工具
KR20130063063A (ko) 유색기체를 이용한 선박의 배관 누설 검사방법 및 장치
KR20150049805A (ko) 배관 모델에 배관 라인 정보를 반영하기 위한 시스템
CN113686503A (zh) 一种船舶水密风闸叶片密性检验方法
Cleveland Hanford spent nuclear fuel hot conditioning system test procedure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190826

R150 Certificate of patent or registration of utility model

Ref document number: 6586894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150