JP6586478B2 - セルスタック - Google Patents

セルスタック Download PDF

Info

Publication number
JP6586478B2
JP6586478B2 JP2018050988A JP2018050988A JP6586478B2 JP 6586478 B2 JP6586478 B2 JP 6586478B2 JP 2018050988 A JP2018050988 A JP 2018050988A JP 2018050988 A JP2018050988 A JP 2018050988A JP 6586478 B2 JP6586478 B2 JP 6586478B2
Authority
JP
Japan
Prior art keywords
fuel cell
joint
fuel
current collecting
collecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050988A
Other languages
English (en)
Other versions
JP2019164901A (ja
Inventor
裕己 田中
裕己 田中
中村 俊之
俊之 中村
誠 大森
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2018050988A priority Critical patent/JP6586478B2/ja
Publication of JP2019164901A publication Critical patent/JP2019164901A/ja
Application granted granted Critical
Publication of JP6586478B2 publication Critical patent/JP6586478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、セルスタックに関するものである。
従来、複数の燃料電池セルと、隣接する2つの燃料電池セルを電気的に接続する集電部材とを備えるセルスタックが知られている。特許文献1には、一方の燃料電池セルに接合される複数の導電片と、他方の燃料電池セルに接合される複数の導電片とを有する集電部材が開示されている。各導電片は導電性接合材を介して各燃料電池セルに接合される。
特開2015−183252号公報
しかしながら、特許文献1に記載の各導電片は、導電性接合材から剥離するおそれがあるため、燃料電池セルに対する集電部材の接合強度を向上させたいという要請がある。
本発明は、上述した状況に鑑みてなされたものであり、燃料電池セルに対する集電部材の接合強度を向上可能なセルスタックを提供することを目的とする。
本発明に係るセルスタックは、第1燃料電池セルと、第1燃料電池セルに隣接する第2燃料電池セルと、第1燃料電池セルと第2燃料電池セルとを電気的に接続する集電部材とを備える。集電部材は、第1燃料電池セルに接合される第1接合部と、第1接合部と電気的に接続され、第2燃料電池セルに接合される第2接合部とを有する。第1接合部は、導電性接合材を介して第1燃料電池セルに接合される主面と、主面に形成され、接合材が充填される貫通孔とを有する。主面側から見た第1接合部の面積に対する、貫通孔を画定する内壁面の面積の割合は、0.03以上である。
本発明によれば、燃料電池セルに対する集電部材の接合強度を向上可能なセルスタックを提供することができる。
セルスタック装置の斜視図。 セルスタック装置の断面図。 燃料マニホールドの斜視図。 燃料電池セルの斜視図。 燃料電池セルの断面図。 燃料電池セルの基端側の断面図。 集電部材の斜視図。 図7のA−A断面図。 図7のB−B断面図。
以下、本発明に係る集電部材を用いたセルスタックの実施形態について図面を参照しつつ説明する。
図1及び図2に示すように、セルスタック装置100は、燃料マニホールド200と、複数の燃料電池セル300と、を備えている。
[燃料マニホールド]
図3に示すように、燃料マニホールド200は、燃料ガス(例えば、水素など)を各燃料電池セル300に分配するように構成されている。燃料マニホールド200は、中空状であり、内部空間を有している。燃料マニホールド200の内部空間には、導入管201を介して燃料ガスが供給される。燃料マニホールド200は、互いに間隔をあけて並ぶ複数の挿入孔202を有している。各挿入孔202は、燃料マニホールド200の天板203に形成されている。各挿入孔202は、燃料マニホールド200の内部空間と外部に連通する。
[燃料電池セル]
図2に示すように、各燃料電池セル300は、燃料マニホールド200から延びている。詳細には、各燃料電池セル300は、燃料マニホールド200の天板203から上方(x軸方向)に延びている。すなわち、各燃料電池セル300の長手方向(x軸方向)は、上方に延びている。各燃料電池セル300の長手方向(x軸方向)の長さは、100〜300mm程度とすることができる。
各燃料電池セル300の基端部は、燃料マニホールド200の挿入孔202に挿入されている。各燃料電池セル300は、接合材101によって挿入孔202に固定されている。燃料電池セル300は、挿入孔202に挿入された状態で、接合材101によって燃料マニホールド200に固定されている。接合材101は、燃料電池セル300と挿入孔202の隙間に充填される。接合材101としては、例えば、結晶化ガラス、非晶質ガラス、ろう材、及びセラミックスなどが挙げられる。結晶化ガラスとは、全体積に対する「結晶相が占める体積」の割合(結晶化度)が60%以上であり、全体積に対する「非晶質相及び不純物が占める体積」の割合が40%未満のガラスである。このような結晶化ガラスとしては、例えば、SiO−B系、SiO−CaO系、又はSiO−MgO系が挙げられる。
各燃料電池セル300は、長手方向(x軸方向)及び幅方向(y軸方向)に広がる板状に形成されている。各燃料電池セル300は、配列方向(z軸方向)に間隔をあけて配列されている。隣り合う2つの燃料電池セル300の間隔は特に制限されないが、1〜5mm程度とすることができる。隣り合う2つの燃料電池セル300は、集電部材301によって電気的に接続されている。複数の燃料電池セル300が集電部材301で接続されることによってセルスタックが形成されている。集電部材301の構成については後述する。
燃料電池セル300は、複数の発電素子部10と、支持基板20とを備える。
[支持基板]
図4に示すように、支持基板20は、支持基板20の長手方向(x軸方向)に沿って延びる複数のガス流路21を内部に有している。各ガス流路21は、支持基板20の基端側から先端側に向かって延びている。各ガス流路21は、互いに実質的に平行に延びている。なお、基端側とは、ガス流路のガス供給側を意味する。具体的には、燃料マニホールド200に燃料電池セル300を取り付けた場合において、その燃料マニホールド200に近い側を意味する。また、先端側とは、ガス流路のガス供給側とは反対側を意味する。具体的には、燃料電池セル300を燃料マニホールド200に取り付けた場合において、その燃料マニホールド200から遠い側を意味する。例えば、図2に示す例では、下側が基端側であり、上側が先端側となる。
図5に示すように、支持基板20は、複数の第1凹部22を有する。本実施形態において、各第1凹部22は、支持基板20の両主面に形成されているが、一方の主面にだけ形成されていてもよい。各第1凹部22は支持基板20の長手方向において互いに間隔をあけて配置されている。
支持基板20は、電子伝導性を有さない多孔質の材料によって構成される。支持基板20は、例えば、CSZ(カルシア安定化ジルコニア)から構成され得る。或いは、支持基板20は、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とから構成されてもよい。支持基板20の気孔率は、例えば、20〜60%程度である。
[発電素子部]
各発電素子部10は、支持基板20に支持されている。本実施形態において、各発電素子部10は、支持基板20の両主面に形成されているが、一方の主面にだけ形成されていてもよい。各発電素子部10は、支持基板20の長手方向において、互いに間隔をあけて配置されている。すなわち、本実施形態に係る燃料電池セル300は、いわゆる横縞型の燃料電池である。長手方向に隣り合う発電素子部10は、インターコネクタ31によって互いに電気的に接続されている。
発電素子部10は、燃料極4、電解質5、及び空気極6を有している。また、発電素子部10は、反応防止膜7をさらに有している。
[燃料極]
燃料極4は、電子伝導性を有する多孔質の材料から構成される焼成体である。燃料極4は、燃料極集電部41と燃料極活性部42とを有する。
燃料極集電部41は、第1凹部22内に配置されている。詳細には、燃料極集電部41は、第1凹部22内に充填されており、第1凹部22と同様の外形を有する。燃料極集電部41は、第2凹部411及び第3凹部412を有している。第2凹部411内には、燃料極活性部42が配置されている。また、第3凹部412には、インターコネクタ31が配置されている。
燃料極集電部41は、電子伝導性を有する。燃料極集電部41は、燃料極活性部42よりも高い電子伝導性を有していることが好ましい。燃料極集電部41は、酸素イオン伝導性を有していてもよいし、有していなくてもよい。
燃料極集電部41は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極集電部41は、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極集電部41の厚さ、及び第1凹部22の深さは、50〜500μm程度である。
燃料極活性部42は、酸素イオン伝導性を有するとともに、電子伝導性を有する。燃料極活性部42は、燃料極集電部41よりも酸素イオン伝導性を有する物質の含有率が大きい。詳細には、燃料極活性部42における、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合は、燃料極集電部41における、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合よりも大きい。
燃料極活性部42は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極活性部42は、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極活性部42の厚さは、5〜30μmである。
[電解質]
電解質5は、燃料極4上を覆うように配置されている。詳細には、電解質5は、あるインターコネクタ31から隣のインターコネクタ31まで長手方向に延びている。すなわち、支持基板20の長手方向(x軸方向)において、電解質5とインターコネクタ31とが交互に連続して配置されている。電解質5は、支持基板20の第1主面23a及び第2主面23bを覆うように構成されている。
電解質5は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料から構成される焼成体である。電解質5は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。或いは、電解質5は、LSGM(ランタンガレート)から構成されてもよい。電解質5の厚さは、例えば、3〜50μm程度である。
[反応防止膜]
反応防止膜7は、緻密な材料から構成される焼成体である。反応防止膜7は、電解質5と空気極活性部61との間に配置されている。反応防止膜7は、電解質5内のYSZと空気極6内のSrとが反応して電解質5と空気極6との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するために設けられている。
反応防止膜7は、希土類元素を含むセリアを含んだ材料から構成されている。反応防止膜7は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。反応防止膜7の厚さは、例えば、3〜50μm程度である。
[空気極]
空気極6は、電子伝導性を有する多孔質の材料から構成される焼成体である。空気極6は、電解質5を基準にして、燃料極4と反対側に配置されている。空気極6は、空気極活性部61と空気極集電部62とを有している。
空気極活性部61は、反応防止膜7上に配置されている。空気極活性部61は、酸素イオン伝導性を有するとともに、電子伝導性を有する。空気極活性部61は、空気極集電部62よりも酸素イオン伝導性を有する物質の含有率が大きい。詳細には、空気極活性部61おける、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合は、空気極集電部62における、気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合よりも大きい。
空気極活性部61は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、空気極活性部61は、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、又は、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。空気極活性部61は、LSCFから構成される第1層(内側層)とLSCから構成される第2層(外側層)との2層によって構成されてもよい。空気極活性部61の厚さは、例えば、10〜100μmである。
空気極集電部62は、空気極活性部61上に配置されている。また、空気極集電部62は、空気極活性部61から、隣の発電素子部に向かって延びている。燃料極集電部41と空気極集電部62とは、発電領域から互いに反対側に延びている。発電領域とは、燃料極活性部42と電解質5と空気極活性部61とが重複する領域である。
空気極集電部62は、電子伝導性を有する多孔質の材料から構成される焼成体である。空気極集電部62は、空気極活性部61よりも高い電子伝導性を有していることが好ましい。空気極集電部62は、酸素イオン伝導性を有していてもよいし、有していなくてもよい。
空気極集電部62は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、空気極集電部62は、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、空気極集電部62は、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電部62の厚さは、例えば、50〜500μm程度である。
[インターコネクタ]
インターコネクタ31は、支持基板20の長手方向(x軸方向)に隣り合う発電素子部10を電気的に接続するように構成されている。詳細には、一方の発電素子部10の空気極集電部62は、他方の発電素子部10に向かって延びている。また、他方の発電素子部10の燃料極集電部41は、一方の発電素子部10に向かって延びている。そして、インターコネクタ31は、一方の発電素子部10の空気極集電部62と、他方の発電素子部10の燃料極集電部41とを電気的に接続している。インターコネクタ31は、燃料極集電部41の第3凹部412内に配置されている。詳細には、インターコネクタ31は、第3凹部412内に埋設されている。
インターコネクタ31は、電子伝導性を有する緻密な材料から構成される焼成体である。インターコネクタ31は、例えば、LaCrO(ランタンクロマイト)から構成され得る。或いは、インターコネクタ31は、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。インターコネクタ31の厚さは、例えば、10〜100μmである。
[集電部材]
図6に示すように、隣接する2つの燃料電池セル300(第1燃料電池セル300a及び第2燃料電池セル300b)は、集電部材301によって電気的に接続される。集電部材301は、第1燃料電池セル300aと第2燃料電池セル300bの間に配置される。集電部材301は、支持基板20の両主面に配置された複数の発電素子部10のうち、最も基端側に配置された基端側発電素子部10aよりも基端側に配置されている。
集電部材301は、第1燃料電池セル300a及び第2燃料電池セル300bそれぞれの基端側に接合される。詳細には、集電部材301は、導電性接合材102を介して、第1燃料電池セル300aの基端側発電素子部10aから延びる空気極集電部62と、第2燃料電池セル300bの基端側発電素子部10aから延びる空気極集電部62とに接合される。
導電性接合材102としては、周知の導電性セラミックス等を用いることができる。例えば、導電性接合材102は、(Mn,Co)、(La,Sr)MnO、及び(La,Sr)(Co,Fe)Oなどから選ばれる少なくとも1種によって構成することができる。
ここで、図7は、集電部材301の斜視図である。図7では、集電部材301が第1燃料電池セル300aに接合された状態が示されている。図7では、第2燃料電池セル300bが省略されているが、実際には第1燃料電池セル300aと対向するように第2燃料電池セル300bが配置されている。
集電部材301は、折り曲げ加工された金属板(例えば、ステンレス板)によって構成することができる。集電部材301は、第1接合部a1、第2接合部a2、第1連結部b1、及び第2連結部b2を有する。
第1接合部a1は、第1燃料電池セル300aに接合される。詳細には、第1接合部a1は、導電性接合材102によって、第1燃料電池セル300aの基端側発電素子部10a(図6参照)から延びる空気極集電部62に接合される。
第1接合部a1は、平板状に形成される。本実施形態において、第1接合部a1は、幅方向に延びる矩形に形成されているが、第1接合部a1の形状に特に制限はなく、三角以上の多角形、円形、楕円形、或いは、これら以外の複雑形状であってもよい。
第1接合部a1には、複数の第1貫通孔c1が形成される。各第1貫通孔c1には、導電性接合材102が充填されている。これによって、第1燃料電池セル300aに対する第1接合部a1の接合力を向上させることができる。導電性接合材102は、各第1貫通孔c1から外側に突出していてもよく、さらに第1接合部a1の外表面上に広がっていてもよい。
本実施形態において、各第1貫通孔c1は、幅方向に沿って延びる矩形状に形成されているが、各第1貫通孔c1の形状に特に制限はなく、円形、楕円形、三角以上の多角形、又は、これら以外の複雑形状であってもよい。また、本実施形態では、3個の第1貫通孔c1が設けられているが、第1貫通孔c1の個数及び位置は適宜変更可能である。
第2接合部a2は、第1接合部a1と電気的に接続される。第2接合部a2は、第2燃料電池セル300bに接合される。詳細には、第2接合部a2は、導電性接合材102によって、第2燃料電池セル300bの基端側発電素子部10a(図6参照)から延びる空気極集電部62に接合される。第2接合部a2は、配列方向において第1接合部a1と対向する。
第2接合部a2は、平板状に形成される。本実施形態において、第2接合部a2は、第1接合部a1と同様の形状を有しているが、第1接合部a1と異なる形状であってもよい。第2接合部a2の形状に特に制限はなく、三角以上の多角形、円形、楕円形、或いは、これら以外の複雑形状であってもよい。
第2接合部a2には、複数の第2貫通孔c2が形成される。各第2貫通孔c2には、導電性接合材102が充填されている。これによって、第2燃料電池セル300bに対する第2接合部a2の接合力を向上させることができる。導電性接合材102は、各第2貫通孔c1から外側に突出していてもよく、さらに第2接合部a2の外表面上に広がっていてもよい。
本実施形態において、各第2貫通孔c2は、幅方向に沿って延びる矩形状に形成されているが、各第2貫通孔c1の形状に特に制限はなく、円形、楕円形、三角以上の多角形、又は、これら以外の複雑形状であってもよい。また、本実施形態では、3個の第2貫通孔c2が設けられているが、第2貫通孔c2の個数及び位置は適宜変更可能である。
第1及び第2連結部b1,b2は、それぞれ第1接合部a1と第2接合部a2とに連結される。本実施形態において、第1及び第2連結部b1,b2は、それぞれ湾曲しているが、これに限られない。第1及び第2連結部b1,b2は、それぞれ平板状であってもよいし、少なくとも1箇所で屈曲する形状であってもよい。
また、本実施形態では、第1及び第2連結部b1,b2が、集電部材301の両端部に配置されているが、第1及び第2連結部b1,b2の位置は特に制限されない。
[接合部の貫通孔]
図8は、図7のA−A断面図である。
集電部材301の第1接合部a1は、第1主面Sa1を有する。第1接合部a1の第1主面Sa1は、第1燃料電池セル300aの外表面Ta側を向いている。第1接合部a1の第1主面Sa1は、第1燃料電池セル300aに導電性接合材102を介して接合される。
第1主面Sa1から見た第1接合部a1の面積A1に対する、貫通孔c1を画定する内壁面Sc1の面積A2の割合A2/A1は、0.03以上である。これによって、第1接合部a1が導電性接合材102から剥離することを特に抑制することができるため、第1燃料電池セル300aに対する集電部材301の接合強度を向上させることができる。
また、第1主面Sa1から見た第1接合部a1の面積A1に対する、貫通孔c1を画定する内壁面Sc1の面積A2の割合A2/A1は、0.85以下であることが好ましい。これによって、貫通孔c1形成による加工ひずみを抑制して第1接合部a1を平坦に作製でき、電池セル300aとの接合不良を抑制することができる。
本実施形態のように、第1接合部a1が複数の貫通孔c1を有する場合、内壁面Sc1の面積A2とは、各貫通孔c1を画定する内壁面Sc1の面積の合計値を意味する。また、第1接合部a1の面積A1とは、貫通孔c1も含む面積である。例えば、本実施形態のように第1接合部a1が矩形状の場合、第1接合部a1の面積A1は、第1接合部a1のx軸方向における高さに第1接合部a1のy軸方向における幅を乗じることによって求められる。
以上、集電部材301の第1接合部a1の構成について説明したが、この構成は、集電部材301の第2接合部a2にも適用することが好ましい。
[接合部の断面形状]
図9は、図7のB−B断面図である。
図9に示すように、集電部材301の第1接合部d1は、導電性接合材102を介して、第1燃料電池セル300aの外表面Taに接合される。第1接合部d1は、基材301Xと酸化クロム膜301Yとを有する。
基材301Xは、板状に形成される。基材301Xの厚みは特に制限されないが、例えば0.1〜4.0mmとすることができる。
基材301Xは、Cr(クロム)を含有する合金によって構成される。このような合金としては、Fe−Cr系合金鋼(ステンレス鋼など)、又はNi−Cr系合金鋼などを用いることができる。基材301XにおけるCrの含有割合は特に制限されないが、例えば4〜30質量%とすることができる。
基材301Xは、Ti(チタン)やAl(アルミニウム)を含有していてもよい。基材301XにおけるTiの含有割合は特に制限されないが、例えば0.01〜1.0at.%とすることができる。基材301XにおけるAlの含有割合は特に制限されないが、例えば0.01〜0.4at.%とすることができる。基材301Xは、TiをTiO(チタニア)として含有していてもよいし、AlをAl(アルミナ)として含有していてもよい。
酸化クロム膜301Yは、基材301X上に形成される。酸化クロム膜301Yは、基材301Xを覆う。酸化クロム膜301Yは、基材301Xの表面全体を覆っていることが好ましいが、基材301Xの表面を部分的に覆っていなくてもよい。酸化クロム膜301Yの厚みは特に制限されないが、例えば1μm〜20μmとすることができる。
酸化クロム膜301Yは、酸化クロム(Cr)を主成分として含む。具体的には、酸化クロム膜301Yは、酸化クロムを50wt%以上含む。酸化クロム膜301Yは、Mn、Fe、Cr、Mo、Siなどを不純物として含有していてもよい。酸化クロム膜301Yは、RF(radio-frequency)マグネトロンスパッタ装置を用いてCrターゲットをArスパッタリングし、反応ガス(例えば、酸素)との反応により酸化物を成膜することによって形成することができる。
図9に示すように、集電部材301は、第1燃料電池セル300aの外表面Taに垂直な断面において、第1面Y1、第2面Y2及び角部Y3を含む。
第1面Y1は、第1燃料電池セル300aの外表面Taに対して角度を有する。すなわち、第1面Y1は、外表面Taと平行ではなく、外表面Taに対して傾斜している。第1面Y1は、角部Y3側に向かうほど外表面Taに近づく。外表面Taに対する第1面Y1の角度θ1は特に制限されないが、例えば0.5度〜45度とすることができる。なお、図9に示す例では、第1面Y1が平坦に形成されているが、実際には微小な凹凸が形成されていてもよい。
第1面Y1において、酸化クロム膜301Yは、基材301Xを覆っていることが好ましい。第1面Y1に形成された酸化クロム膜301Yの厚みは、角部Y3に近づくほど厚く形成されていてもよい。
第2面Y2は、第1面Y1に連なる。第2面Y2は、第1燃料電池セル300aの外表面Taに対して角度を有する。すなわち、第2面Y2は、外表面Taと平行ではなく、外表面Taに対して傾斜している。第2面Y2は、角部Y3側に向かうほど外表面Taに近づく。外表面Taに対する第2面Y2の角度θ2は特に制限されないが、例えば45度〜135度とすることができる。
また、第2面Y2は、第1面Y1に対して角度を有する。すなわち、第2面Y2は、第1面Y1と平行ではなく、第1面Y1に対して傾斜している。第1面Y1に対する第2面Y2の角度θ3は特に制限されないが、例えば30度〜135度とすることができる。なお、図9に示す例では、第2面Y2が平坦に形成されているが、実際には微小な凹凸が形成されていてもよい。
第2面Y2において、酸化クロム膜301Yは、基材301Xを覆っていることが好ましい。第2面Y2に形成された酸化クロム膜301Yの厚みは、角部Y3に近づくほど厚く形成されていてもよい。
角部Y3は、第1面Y1と第2面Y2とによって形成される。本実施形態において、「第1面Y1と第2面Y2とによって形成される」とは、“第1面Y1と第2面Y2とによって規定される”、“第1面Y1と第2面Y2とによって区画される”、及び“第1面Y1と第2面Y2との間に設けられる”のうち少なくとも1つを意味する。
角部Y3は、第1面Y1と第2面Y2とが屈曲するように連なることで形成されていてもよいし、第1面Y1と第2面Y2とが他の1以上の面(湾曲面又は屈曲面)を介して連なることによって形成されていてもよい。
角部Y3において、酸化クロム膜301Yは、基材301Xを覆っていることが好ましい。角部Y3に形成された酸化クロム膜301Yは、角部Y3周辺において他の部分よりも厚く形成されていてもよい。
角部Y3は、第1面Y1及び第2面Y2それぞれよりも第1燃料電池セル300aの外表面Taに近接している。本実施形態において、角部Y3は、集電部材301のうち、第1燃料電池セル300aの外表面Taに最も近接する部位である。角部Y3から外表面Taまでの距離Dは特に制限されないが、0.5〜2000μmとすることができる。
第1燃料電池セル300aから集電部材301に流れる電流、又は、集電部材301から第1燃料電池セル300aに流れる電流は、集電部材301のうち第1燃料電池セル300aの外表面Taに近接する角部Y3に集中する。角部Y3に電流が集中すると、角部Y3に形成された酸化クロム膜301Yの温度が上昇して、酸化クロム膜301Yの電気抵抗が低下する。その結果、第1燃料電池セル300aから集電部材301へ、又は、集電部材301から第1燃料電池セル300aへスムーズに電流を流すことができるため、第1燃料電池セル300aと集電部材301との電気的接続性を向上させることができる。
また、角部Y3を形成する第1面Y1及び第2面Y2のそれぞれが外表面Taに対して角度を有しているため、角部Y3を導電性接合材102に挿入した際に、導電性接合材102中の気泡を角部Y3周辺から排除することができる。その結果、第1燃料電池セル300aと集電部材301との電気的接続性を更に向上させることができる。
以上、集電部材301の第1接合部d1の構成について説明したが、この構成は、集電部材301の第2接合部d2にも適用することが好ましい。
(実施形態の変形例)
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
変形例1
上記実施形態では、本発明に係る集電部材301を横縞型の燃料電池セルに適用した場合について説明したが、いわゆる縦縞型の燃料電池セルなどにも適用することができる。縦縞型の燃料電池セルは、導電性の支持基板と、支持基板の一主面上に配置される発電部(燃料極、固体電解質層及び空気極)と、支持基板の他主面上に配置されるインターコネクタとを備える。
変形例2
上記実施形態において、第1連結部b1には貫通孔が形成されていないが、少なくとも1つの貫通孔が形成されていてもよい。これによって、第1連結部b1自体の可撓性を向上させることができるため、集電部材301からの押圧力によって第1及び第2燃料電池セル300a,300bにクラックが生じることを抑制できる。同様に、第2連結部b2には貫通孔が形成されていないが、少なくとも1つの貫通孔が形成されていてもよい。
変形例3
上記実施形態において、第1及び第2接合部a1,a2は、第1及び第2連結部b1,b2によって連結されることとしたが、これに限られない。集電部材301は、電気的に接続された第1及び第2接合部a1,a2を有していればよく、第1及び第2接合部a1,a2の連結手段は制限されない。例えば、第1及び第2接合部a1,a2は、3つ以上の連結部によって連結されていてもよいし、1つの連結部によって連結されていてもよい。
変形例4
上記実施形態では、接合部の断面形状について、図9を参照して、第1燃料電池セル300aと集電部材301との電気的接続性を向上可能な構成を説明したが、当該構成は集電部材301に適用されなくてもよい。この場合であっても、第1接合部a1の面積A1に対する貫通孔c1の内壁面Sc1の面積A2の割合A2/A1を0.03以上とすることによって、第1接合部a1と導電性接合材102との間の剥離を抑制することができる。
以下に実施例を示して、実施形態に係る集電部材の接合部に形成される貫通孔の好適なサイズについて具体的に説明する。なお、本発明は、下記実施例に限定されるものではない。
図7及び図8に示すような構成の集電部材301を複数作製した。ただし、第1接合部a1の面積A1と貫通孔c1を画定する内壁面Sc1の面積A2とを変更することによって、面積A1に対する面積A2の割合A2/A1を、集電部材301ごとに変更した。各集電部材301の第1接合部a1の面積A1、複数の貫通孔c1の内壁面Sc1の面積の合計値A2、及び割合A2/A1は、表1の通りである。
以上のように作製した各集電部材301を、導電性接合材102を介して、第1燃料電池セル300aの空気極集電部62に接合した。そして、熱処理によって、導電性接合材102を固化させた。このときの熱処理温度は900℃、熱処理時間は1hrとした。
導電性接合材102は、図8に示すように、第1接合部a1の第1主面Sa1と第1燃料電池セル300aの外表面Taとの間、及び各貫通孔c1内に充填されている。なお、導電性接合材102は、第1接合部a1の外表面上にはみ出していない。導電性接合材102、集電部材301及び空気極集電部62の材料は、表1の通りであり、端部集電部材3の材料にはSUS445J1(Cr含有量22wt.%)またはSUS430(Cr含有量16wt.%)を用いた。その他の条件は、各サンプルともに基本的に同じ条件とした。
(評価方法)
以上のように作製された各サンプル1〜32に対して、熱サイクル試験を行った。具体的には、まず、常温から800℃まで昇温速度300℃/hrで昇温した後、800℃で2hr維持し、さらに300℃/hrで50℃まで降温するサイクルを20回繰り返した。
その後、各サンプルにおける剥離の有無を確認した。具体的には、第1接合部a1と導電性接合材102との間で剥離が生じているか否かを光学顕微鏡で観察を行い確認した。
以上の結果を評価として表1に示している。表1における評価「○」は、熱サイクル試験によって剥離が生じなかったことを意味する。また、表1における評価「△」とは熱サイクル試験によって剥離が生じたことを意味する。
Figure 0006586478
表1に示すように、第1主面Sa1側から見た第1接合部a1の面積A1に対する、貫通孔c1を画定する内壁面Sc1の面積A2の割合A2/A1を0.03以上とすることにより、第1接合部a1と導電性接合材102との間の剥離を抑制できることが確認できた。
100 セルスタック
102 導電性接合材
200 燃料マニホールド
300 燃料電池セル
300a 第1燃料電池セル
300b 第2燃料電池セル
301、302 集電部材
a1、d1 第1接合部
a2、d2 第2接合部
b1、e1 第1連結部
b2、e2 第2連結部
c1 第1貫通孔
c2 第2貫通孔

Claims (2)

  1. 第1燃料電池セルと、
    前記第1燃料電池セルに隣接する第2燃料電池セルと、
    前記第1燃料電池セルと前記第2燃料電池セルとを電気的に接続する集電部材と、
    を備え、
    前記集電部材は、前記第1燃料電池セルに接合される第1接合部と、前記第1接合部と電気的に接続され、前記第2燃料電池セルに接合される第2接合部とを有し、
    前記第1接合部は、導電性接合材を介して前記第1燃料電池セルに接合される主面と、前記主面に形成され、前記導電性接合材が充填される貫通孔とを有し、
    前記主面側から見た前記第1接合部の面積に対する、前記貫通孔を画定する内壁面の面積の割合は、0.03以上であ
    前記集電部材は、Crを含む合金によって構成される基材と、前記基材を覆う酸化クロム膜とを有し、
    前記第1燃料電池セルの外表面に垂直な断面において、前記第1接合部は、前記外表面に対して角度を有する第1面と、前記外表面に対して角度を有する第2面と、前記第1面と前記第2面とによって形成される角部とを含み、
    前記角部は、前記第1面及び前記第2面それぞれよりも前記外表面に近接している、
    セルスタック。
  2. 前記主面側から見た前記第1接合部の面積に対する、前記貫通孔を画定する内壁面の面積の割合は、0.85以下である、
    請求項1に記載のセルスタック。
JP2018050988A 2018-03-19 2018-03-19 セルスタック Active JP6586478B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018050988A JP6586478B2 (ja) 2018-03-19 2018-03-19 セルスタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050988A JP6586478B2 (ja) 2018-03-19 2018-03-19 セルスタック

Publications (2)

Publication Number Publication Date
JP2019164901A JP2019164901A (ja) 2019-09-26
JP6586478B2 true JP6586478B2 (ja) 2019-10-02

Family

ID=68065699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050988A Active JP6586478B2 (ja) 2018-03-19 2018-03-19 セルスタック

Country Status (1)

Country Link
JP (1) JP6586478B2 (ja)

Also Published As

Publication number Publication date
JP2019164901A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP6329683B1 (ja) セルスタック
JP6329682B1 (ja) セルスタック
JP6345861B2 (ja) セルスタック
JP6586478B2 (ja) セルスタック
JP6077095B1 (ja) マニホールド、及び燃料電池スタック
JP6359169B2 (ja) 燃料電池スタック
JP6378820B2 (ja) 端部集電部材、及びセルスタック装置
JP6527990B1 (ja) 合金部材、セルスタック及びセルスタック装置
JP6159868B1 (ja) 燃料電池スタック
JP6427652B2 (ja) 燃料電池セル
JP6378742B2 (ja) 燃料電池スタック
JP2019215980A (ja) 電気化学セル用金属部材、セルスタック及びセルスタック装置
JP6541854B2 (ja) セルスタック
JP6124983B1 (ja) 燃料電池スタック及びその製造方法
JP6554588B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6507290B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6297199B1 (ja) 端部集電部材、及びセルスタック装置
JP6572349B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6507291B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6554585B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6554587B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6482716B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6554586B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
JP6527989B1 (ja) 合金部材、セルスタック及びセルスタック装置
JP6466902B2 (ja) マニホールド、及び燃料電池スタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6586478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150