JP6584845B2 - 環境発電システム - Google Patents

環境発電システム Download PDF

Info

Publication number
JP6584845B2
JP6584845B2 JP2015137563A JP2015137563A JP6584845B2 JP 6584845 B2 JP6584845 B2 JP 6584845B2 JP 2015137563 A JP2015137563 A JP 2015137563A JP 2015137563 A JP2015137563 A JP 2015137563A JP 6584845 B2 JP6584845 B2 JP 6584845B2
Authority
JP
Japan
Prior art keywords
energy harvesting
data processing
circuit
power
level determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015137563A
Other languages
English (en)
Other versions
JP2017022508A (ja
Inventor
隆志 津和
隆志 津和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2015137563A priority Critical patent/JP6584845B2/ja
Publication of JP2017022508A publication Critical patent/JP2017022508A/ja
Application granted granted Critical
Publication of JP6584845B2 publication Critical patent/JP6584845B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、環境発電システムに関する。
環境発電システムは、周りの環境からエネルギーを収穫し、その収穫したエネルギーを電力に変換してシステム内の電源電力として利用している。環境発電システムはエナジーハーベスティングシステムとも呼ばれる。
環境発電システムは、バッテリレス及びメンテナンスフリーのシステムを構築することが可能であり、例えば、i)ウェアラブル機器、ii)インテリジェントビルの室内モニタリング、iii)橋、トンネル、ダムのような構造物のモニタリング、等への適用が検討されている。
特開2013−137671号公報
例えば特許文献1で開示されているセンサ情報無線伝送システムのセンサノードにおいては、太陽電池などの環境発電素子の発電量が多い期間でノード制御部、センサ、及び無線部が動作し、太陽電池などの環境発電素子の発電量が少ない期間でノード制御部、センサ、及び無線部が動作を停止する。
特許文献1で開示されているセンサ情報無線伝送システムのセンサノードにおいては、ノード制御部、センサ、及び無線部の動作停止期間ではノード制御部がセンサ情報を取得できない。
本発明は、上記の状況に鑑み、動作期間をより多く確保できる環境発電システムを提供することを目的とする。
上記目的を達成するために、本発明に係る環境発電システムは、環境発電素子と、前記環境発電素子から出力される電力のレベルに応じて3種類以上のレベル判定信号のいずれかを出力する信号出力部と、前記環境発電素子から出力される電力を用いて駆動するデータ処理部と、を有し、前記データ処理部は、前記信号出力部から出力される前記レベル判定信号に応じたデータ処理を実行する構成(第1の構成)とされている。
また、上記第1の構成から成る環境発電システムにおいて、前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが大きいほど、前記データ処理部は、消費電力の大きいデータ処理を実行する構成(第2の構成)であっても良い。
また、上記第2の構成から成る環境発電システムにおいて、前記データ処理部は、データを無線伝送する無線伝送部を有し、前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが最も大きい場合に、前記データ処理部は、前記無線伝送部を動作させる構成(第3の構成)であっても良い。
また、上記第3の構成から成る環境発電システムにおいて、前記データ処理部は、センサを有し、前記無線伝送部によって無線伝送されるデータは、前記センサの出力に関するデータを含む構成(第4の構成)であっても良い。
また、上記第1〜第4いずれかの構成から成る環境発電システムにおいて、前記信号出力部は、前記レベル判定信号をパラレルデータで前記データ処理部に送信する構成(第5の構成)であっても良い。
また、上記第1〜第5いずれかの構成から成る環境発電システムにおいて、前記信号出力部は、前記環境発電素子から出力される電力のレベルに応じて3種類以上の前記レベル判定信号のいずれかを出力するための2つ以上の閾値を保持する保持部を有し、前記閾値が変更可能である構成(第6の構成)であっても良い。
また、上記第1〜第6いずれかの構成から成る環境発電システムにおいて、前記環境発電素子から出力される電力を安定化された直流電力に変換し前記安定化された直流電力を前記データ処理部に供給する電力変換部を有する構成(第7の構成)であっても良い。
また、上記第7の構成から成る環境発電システムにおいて、前記信号出力部および前記電力変換部が第1の集積回路パッケージに搭載され、前記データ処理部の少なくとも一部が第2の集積回路パッケージに搭載される構成(第8の構成)であっても良い。
また、本発明の一の態様に係る集積回路パッケージは、環境発電素子から出力される電力のレベルに応じて3種類以上のレベル判定信号のいずれかを出力する信号出力部と、前記環境発電素子から出力される電力を安定化された直流電力に変換し前記安定化された直流電力を前記データ処理部に供給する電力変換部と、を有する構成(第9の構成)とされている。
また、本発明の他の態様に係る集積回路パッケージは、環境発電素子から出力される電力のレベルに応じた3種類以上のレベル判定信号のいずれかを入力する集積回路パッケージであって、前記環境発電素子から出力される電力を用いて駆動するデータ処理部を有し、前記データ処理部は、前記入力した前記レベル判定信号に応じたデータ処理を実行する構成(第10の構成)とされている。
本発明によれば、動作期間をより多く確保できる環境発電システムを提供することができる。
第1実施形態のセンサ情報無線伝送システムの構成を示す図 レベル判定信号とセンサネットワークLSIパッケージの動作との関係を示す図 環境発電素子の発電量とセンサネットワークLSIパッケージの動作との関係を示す図 レベル判定信号出力回路の一構成例を示す図 センサネットワークLSIパッケージの一構成例を示す図 第2実施形態のセンサ情報無線伝送システムの構成を示す図 レベル判定信号とセンサネットワークLSIパッケージの動作との関係を示す図 第3実施形態のセンサ情報無線伝送システムの構成を示す図 第1実施形態のセンサ情報無線伝送システムに充放電制御回路と二次電池を追加した構成を示す図 比較例に係るセンサ情報無線伝送システムを示す図
<第1実施形態>
図1は、第1実施形態のセンサ情報無線伝送システムの構成を示す図である。図1に示すセンサ情報無線伝送システムは、環境発電素子10と、電源ICパッケージ20と、センサネットワークLSI[Large Scale Integrated circuit]パッケージ30と、複数のセンサ40_1〜40_nと、を備える。
環境発電素子10は、周りの環境からエネルギーを収穫し、その収穫したエネルギーを電力に変換する素子である。例えば、太陽光エネルギーを電力に変換する太陽電池、2枚の圧電板を貼り合わせた構造であって加えられた力による変位(機械的エネルギー)を電力に変換するバイモルフ、熱エネルギーを電力に変換する熱電素子などを挙げることができる。図1は環境発電素子10を一つのみ設ける構成を図示しているが、複数の環境発電素子10を設けてもよい。複数の環境発電素子10を設ける場合、全ての環境発電素子10が同種の環境発電素子であってもよく、複数の環境発電素子10が複数種類の環境発電素子で構成されていてもよい。
電源ICパッケージ20は、安定化電源回路21と、レベル判定信号出力回路22と、を有する。
安定化電源回路21は、環境発電素子10から供給される電力を所定電圧値の直流電力に変換して消費電流制御回路31(後述)に出力する。また、消費電流制御回路31(後述)から受け取る制御信号がセンサ40_1〜40_nへの電力供給を指示する旨の信号である場合に、安定化電源回路21は、環境発電素子10から供給される電力を所定電圧値の直流電力に変換してセンサ40_1〜40_nに出力する。
レベル判定信号出力回路22は、環境発電素子10から供給される電力(環境発電素子10の発電量)を検出するための検出端子T1に入力される信号に基づいて、環境発電素子10から出力される電力のレベルに応じて4種類のレベル判定信号のいずれかを出力端子T2からシリアルデータで出力する。以下、レベル判定信号出力回路22の出力端子T2から出力されるシリアルデータのレベル判定信号をレベル判定信号S0と称す。
環境発電素子10から供給される電力が例えば33[mW]以上である場合、レベル判定信号出力回路22はレベル判定信号S0をHHとする。また、環境発電素子10から供給される電力が例えば9.9[mW]以上33[mW]未満である場合、レベル判定信号出力回路22はレベル判定信号S0をHLとする。また、環境発電素子10から供給される電力が例えば6.6[μW]以上9.9[mW]未満である場合、レベル判定信号出力回路22はレベル判定信号S0をLHとする。また、環境発電素子10から供給される電力が例えば6.6[mW]未満である場合、レベル判定信号出力回路22はレベル判定信号S0をLLとする。なお、Hはハイレベルを示し、Lはローレベルを示している。
センサネットワークLSIパッケージ30は、例えば3.3[V]の電源電圧で駆動する。センサネットワークLSIパッケージ30は、消費電流制御回路31と、発振回路32と、センサデータ処理回路33と、CPU[Central Processing Unit]34と、RF[Radio Frequency]回路35と、を有する。
センサデータ処理回路33は、複数のセンサ40_1〜40_nの各出力(各センサデータ)を取得する。複数のセンサ40_1〜40_nは、全てが同種のセンサであってもよく、複数種類のセンサで構成されていてもよい。複数のセンサ40_1〜40_nは、安定化電源回路21からの電力供給があるときに駆動し、安定化電源回路21からの電力供給がないときに駆動を停止する。センサの種類としては、例えば温度センサ、湿度センサ、振動センサ、人感センサなどを挙げることができる。また、図1に示す構成とは異なり、センサデータ処理回路33が単一のセンサの出力のみを取得する構成であってもよい。
CPU34は、センサデータに対してデータ処理を行う。例えば、CPU34は、振動センサのデータに対してフーリエ変換処理を行い、振動センサのデータを時間成分の信号から周波数成分の信号に変換する。
RF回路35は、CPU34によってデータ処理が施された後のデータを例えばBluetooth(登録商標)通信、Zigbee(登録商標)、特定小電力無線などの無線高周波通信によって外部に送信する。
消費電流制御回路31は、電源ICパッケージ20から所定電圧値の直流電力を受け取り、発振回路32から出力されるクロック信号に基づいて動作する。消費電流制御回路31は、レベル判定信号S0に従って安定化電源回路21からセンサ40_1〜40_nへの電力供給/停止並びにセンサデータ処理回路33、CPU34、及びRF回路35の動作/停止、すなわち駆動電力の供給を制御することで、センサネットワークLSIパッケージ30の消費電流ひいては消費電力を制御する。なお、本実施形態とは異なり、消費電流制御回路31は安定化電源回路21からセンサ40_1〜40_nへの電力供給/停止を制御せずに、安定化電源回路21がレベル判定信号出力回路22から出力されるレベル判定信号S0に応じてセンサ40_1〜40_nへの電力供給/停止を切り替えるようにしてもよい。この構成の場合、電源ICパッケージ20のピン数とセンサネットワークLSIパッケージ30のピン数をそれぞれ一つずつ削減することができる。
図2はレベル判定信号S0とセンサネットワークLSIパッケージ30の動作との関係を示す図である。
レベル判定信号S0がHHであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば10[mA]に設定するとともに、ンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動し、センサネットワークLSIパッケージ30は、RF回路35による無線通信、センサデータ処理回路33によるセンサデータ取得処理(センシング)、CPU34によるセンサデータのデータ処理(CPU処理)、消費電流制御回路31による経過時間監視(ステート管理)の全てを実行する。
レベル判定信号S0がHLであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば3[mA]に設定するとともに、ンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動し、センサネットワークLSIパッケージ30は、最も消費電力が大きい無線通信を禁止し、センシング、CPU処理、ステート管理のみを実行する。
レベル判定信号S0がLHであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば2[μA]に設定するともに、ンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動し、センサネットワークLSIパッケージ30は、CPU処理も禁止し、センシング、ステート管理のみを実行する。
レベル判定信号S0がLLであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば1[μA]に設定するとともに、ンサ40_1〜40_nへの電力供給停止を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動を停止し、センサネットワークLSIパッケージ30は、センシングも禁止し、ステート管理のみを実行する。なお、環境発電素子10の発電量が減少し、電源ICパッケージ20から送られてくる電力ではステート管理ですら実行できなくなると、センサネットワークLSIパッケージ30は完全停止状態となる。
なお、本実施形態において、請求項に記載の「データ処理」(広義のデータ処理)に対応するセンサネットワークLSIパッケージ30の動作は、無線通信、センシング、CPU処理、及びステート管理の少なくとも一つを含む動作である。なお、センサネットワークLSIパッケージ30の無線通信、センシング、CPU処理、及びステート管理の動作/停止の切り替え順序は、センサネットワークLSIパッケージ30の各回路の種類に基づいて決定されるものではなく、あくまでも各回路の消費電力のレベルに基づいて決定される。この点は後述する他の実施形態や変形例についても同様である。
図3は環境発電素子10の発電量とセンサネットワークLSIパッケージ30の動作との関係の一例を示す図である。
図3について説明するのに際してまず始めに比較例のセンサ情報無線伝送システムについて説明する。図10は比較例のセンサ情報無線伝送システムの構成を示す図である。図10に示す比較例のセンサ情報無線伝送システムは、図1に示す本実施形態のセンサ情報無線伝送システムに対してレベル判定信号出力回路22をイネーブル信号出力回路22’に置換し消費電流制御回路31をイネーブル制御回路31’に置換した構成である。
イネーブル信号出力回路22’は、環境発電素子10の発電量が閾値TH以上であればハイレベルのイネーブル信号をイネーブル制御回路31’に出力し、環境発電素子10の発電量が閾値TH未満であればローレベルのイネーブル信号をイネーブル制御回路31’に出力する。なお、ローレベルのイネーブル信号はイネーブル信号が無効であることを示している。すなわちローレベルのイネーブル信号はディセーブル信号を意味している。
図10に示す比較例のセンサ情報無線伝送システムでは、閾値THが例えば33[mW]に設定され、環境発電素子10の発電量が閾値TH以上であればイネーブル制御回路31’はイネーブル信号出力回路22’から出力されるハイレベルのイネーブル信号に応じてセンサネットワークLSIパッケージ30の全ての動作を実行させるとともにセンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。また、図10に示す比較例のセンサ情報無線伝送システムでは、環境発電素子10の発電量が閾値TH未満であればイネーブル制御回路31’はイネーブル信号出力回路22’から出力されるローレベルのイネーブル信号に応じてセンサネットワークLSIパッケージ30の全ての動作を停止させるとともにセンサ40_1〜40_nへの電力供給停止を指示する旨の制御信号を安定化電源回路21に出力する。図10に示す比較例のセンサ情報無線伝送システムでは、時間T0〜T1の期間および時間T3〜T4の期間しかセンシングができていない。すなわち、センサネットワークLSIパッケージ30の動作期間の周期が環境発電素子10の発電量に依存しており不規則である。しかも時間T1〜T3の期間および時間T4以降の期間ではステート管理ができていないので、図10に示す比較例のセンサ情報無線伝送システムはセンシングの停止期間を把握できていない。センサネットワークLSIパッケージ30の動作停止期間を把握できなければ、センサネットワークLSIパッケージ30の動作停止期間の長さが分からないため、動作停止期間の直前で取得したセンサ情報と動作停止期間の直後で取得したセンサ情報とが互いに関連性のない情報になってしまう。
また、図10に示す比較例のセンサ情報無線伝送システムは、環境発電素子10の発電量の突発的な低下によってCPU34が内蔵の不揮発性メモリにセンサデータ処理回路33によって取得されたセンサデータを不揮発的に記憶するデータ退避を行えずにデータを消失してしまう可能性がある。このため、図10に示す比較例のセンサ情報無線伝送システムは、CPU34がデータ処理を行ってデータ退避を行う迄の一連のルーチン時間を長く設定することができないという問題を有している。
一方、図1に示すセンサ情報無線伝送システムでは、上述した動作が実行されるように、第1の閾値TH1が例えば33[mW]に設定され、第2の閾値TH2が例えば9.9[mW]に設定され、第3の閾値TH3が例えば6.6[μW]に設定されている。これにより、図1に示すセンサ情報無線伝送システムは、時間T5〜T6の期間以外はセンシングが可能になっている。すなわち、図1に示すセンサ情報無線伝送システムは、動作停止期間の発生を抑えることができる。第1の閾値TH1に対して第2の閾値TH2および第3の閾値TH3が極端に小さいので、動作停止期間の発生を大幅に抑えることができる。すなわち、図1に示すセンサ情報無線伝送システムは、動作期間をより多く確保することができ、ひいては、単位時間当たりの情報取得量をより多くすることができる。
また、図1に示すセンサ情報無線伝送システムは、電源ICパッケージ20から送られてくる電力ではステート管理ですら実行できなくなる場合を除いてステート管理を実行する。換言すれば、図1に示すセンサ情報無線伝送システムは、極力ステート管理を実行する。センシングの停止期間が把握できない状況の発生を低減することができる。
また、環境発電素子10の発電量の突発的な低下によってCPU34が内蔵の不揮発性メモリにセンサデータ処理回路33によって取得されたセンサデータを不揮発的に記憶するデータ退避を行えずにデータを消失してしまう可能性を回避することができるため、図1に示すセンサ情報無線伝送システムは、CPU34がデータ処理を行ってデータ退避を行う迄の一連のルーチン時間を図10に示す従来例のセンサ情報無線伝送システムよりも長く設定することができるという利点も有している。
図4はレベル判定信号出力回路22の一構成例を示す図である。図4に示す例においてレベル判定信号出力回路22は、発電量検出回路221と、閾値保持回路222と、判定回路223と、検出端子T1と、出力端子T2と、を有する。
発電量検出回路221は、環境発電素子10から供給される電力(環境発電素子10の発電量)を検出端子T1に入力される信号に基づいて検出する。例えば、環境発電素子10の出力電流が略一定である場合は発電量検出回路221を電圧検出回路で構成すればよく、環境発電素子10の出力電圧が略一定である場合は発電量検出回路221を電流検出回路で構成すればよい。なお、環境発電素子10の出力電流、出力電圧の両方が周囲の環境によって変動する場合は、発電量検出回路221を電流および電圧の両方が検出できる回路で構成すればよい。
閾値保持回路222は、三種類の閾値(第1の閾値TH1、第2の閾値TH2、第3の閾値TH3)を不揮発的に保持している。なお、閾値書き換え指令信号を入力するための外部入力ピンを電源ICパッケージ20に設け、閾値保持回路222が閾値書き換え指令信号に従って閾値を変更して保持できることが望ましい。このように閾値の変更を可能とすることで、電源ICパッケージ20の前段に設けられる環境発電素子10の仕様や電源ICパッケージ20の後段に設けられるセンサネットワークLSIパッケージ30の仕様に合わせて適切な閾値を設定することが可能になり、電源ICパッケージ20の汎用性が高くなる。
判定回路223は、レベル判定信号S0を4種類のレベル判定信号のいずれかにするかを判定する。判定回路223は、環境発電素子10の発電量が第1の閾値TH1以上である場合、レベル判定信号S0をHHとする。この場合、環境発電素子10の発電量が第1の区分(最も発電量が多い区分)に属することになる。また、判定回路223は、環境発電素子10の発電量が第2の閾値TH2以上第1の閾値TH1未満である場合、レベル判定信号S0をHLとする。この場合、環境発電素子10の発電量が第2の区分(二番目に発電量が多い区分)に属することになる。また、判定回路223は、環境発電素子10の発電量が第3の閾値TH3以上第2の閾値TH2未満である場合、レベル判定信号S0をLHとする。この場合、環境発電素子10の発電量が第3の区分(三番目に発電量が多い区分)に属することになる。また、判定回路223は、環境発電素子10の発電量が第3の閾値TH3未満である場合、レベル判定信号S0をLLとする。この場合、環境発電素子10の発電量が第4の区分(最も発電量が少ない区分)に属することになる。
図5はセンサネットワークLSIパッケージ30の一構成例を示す図である。図5に示す例においてセンサネットワークLSIパッケージ30は、電力供給回路311と、動作制御兼ステート管理回路312と、クロック制御回路313と、低周波発振回路321と、高周波発振回路322と、センサデータ処理回路33と、CPU34と、RF回路35と、を有する。
電力供給回路311は、電源ICパッケージ20の安定化電源回路21(図1参照)から出力される電力Pを、動作制御兼ステート管理回路312の指示に基づいて分配して動作制御兼ステート管理回路312、センサデータ処理回路33、CPU34、およびRF回路35の少なくとも一つに供給する。
動作制御兼ステート管理回路312は、低周波発振回路321を制御するとともに低周波発振回路321から出力される低周波クロック信号に基づいて動作する。動作制御兼ステート管理回路312は、電源ICパッケージ20のレベル判定信号出力回路22(図1参照)から出力されるレベル判定信号S0を受け取る。レベル判定信号S0がHHである場合、動作制御兼ステート管理回路312は、動作制御兼ステート管理回路312、センサデータ処理回路33、CPU34、およびRF回路35に電力を供給するように電力供給回路311に指示を出し、センサデータ処理回路33、CPU34、およびRF回路35に高周波クロック信号を供給するようにクロック制御回路313に指示を出す。レベル判定信号S0がHLである場合、動作制御兼ステート管理回路312は、動作制御兼ステート管理回路312、センサデータ処理回路33およびCPU34に電力を供給するように電力供給回路311に指示を出し、センサデータ処理回路33およびCPU34に高周波クロック信号を供給するようにクロック制御回路313に指示を出す。レベル判定信号S0がLHである場合、動作制御兼ステート管理回路312は、動作制御兼ステート管理回路312およびセンサデータ処理回路33に電力を供給するように電力供給回路311に指示を出し、センサデータ処理回路33に高周波クロック信号を供給するようにクロック制御回路313に指示を出す。レベル判定信号S0がLLである場合、動作制御兼ステート管理回路312は、動作制御兼ステート管理回路312に電力を供給するように電力供給回路311に指示を出し、高周波クロック信号の供給を停止するようにクロック制御回路313に指示を出す。
クロック制御回路313は、高周波発振回路322を制御するとともに高周波発振回路322から出力される高周波クロック信号に基づいて動作する。クロック制御回路313は、上述した通り、動作制御兼ステート管理回路312の指示に基づいて、センサデータ処理回路33、CPU34、およびRF回路35の少なくとも一つに高周波クロック信号を供給する動作を行うか、あるいは、高周波クロック信号の供給動作を停止する。
なお、本実施形態では、センサデータ処理回路33、CPU34、およびRF回路35のそれぞれについて動作を行うか動作を停止するかの二者択一であったが、例えば、センサデータ処理回路33、CPU34、およびRF回路35に供給するクロック信号の周波数を変更することでセンサデータ処理回路33、CPU34、およびRF回路35の消費電力を変更するようにして、動作を行う場合の消費電力パターンを多様化してもよい。
<第2実施形態>
図6は、第2実施形態のセンサ情報無線伝送システムの構成を示す図である。図6において図1と同一または類似する部分は同じ符号を付している。
第2実施形態のセンサ情報無線伝送システムは、レベル判定信号がシリアルデータではなくパラレルデータである点で第1実施形態のセンサ情報無線伝送システムと異なっており、それ以外の点では第1実施形態のセンサ情報無線伝送システムと基本的に同一である。
本実施形態において、レベル判定信号出力回路22から出力されるレベル判定信号は第1の二値化信号S1と第2の二値化信号S2によって構成される。なお、本実施形態では環境発電素子10の発電量に応じて4種類のレベル判定信号のいずれかをレベル判定信号出力回路22から出力するので二つの二値化信号を用いたが、レベル判定信号の種類数を増やす場合にはレベル判定信号の種類数に応じて二値化信号の数も増やせばよい。
図7はレベル判定信号(第1の二値化信号S1および第2の二値化信号S2)とセンサネットワークLSIパッケージ30の動作との関係を示す図である。
第1の二値化信号S1および第2の二値化信号S2がともにハイレベルであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば10[mA]に設定するとともに、消費電流制御回路31から受け取る制御信号がセンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動し、センサネットワークLSIパッケージ30は、RF回路35による無線通信、センサデータ処理回路33によるセンサデータ取得処理(センシング)、CPU34によるセンサデータのデータ処理(CPU処理)、消費電流制御回路31による経過時間監視(ステート管理)の全てを実行する。
第1の二値化信号S1がハイレベルであって第2の二値化信号S2がローレベルであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば3[mA]に設定するとともに、消費電流制御回路31から受け取る制御信号がセンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動し、センサネットワークLSIパッケージ30は、最も消費電力が大きい無線通信を禁止し、センシング、CPU処理、ステート管理のみを実行する。
第1の二値化信号S1がローレベルであって第2の二値化信号S2がハイレベルであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば2[μA]に設定するとともに、消費電流制御回路31から受け取る制御信号がセンサ40_1〜40_nへの電力供給を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動し、センサネットワークLSIパッケージ30は、CPU処理も禁止し、センシング、ステート管理のみを実行する。
第1の二値化信号S1および第2の二値化信号S2がともにローレベルであれば、消費電流制御回路31は、センサデータ処理回路33、CPU34、及びRF回路35への最大供給電流を例えば1[μA]に設定するとともに、消費電流制御回路31から受け取る制御信号がセンサ40_1〜40_nへの電力供給停止を指示する旨の制御信号を安定化電源回路21に出力する。これにより、センサ40_1〜40_nは駆動を停止し、センサネットワークLSIパッケージ30は、センシングも禁止し、ステート管理のみを実行する。なお、環境発電素子10の発電量が減少し、電源ICパッケージ20から送られてくる電力ではステート管理ですら実行できなくなると、センサネットワークLSIパッケージ30は完全停止状態となる。
なお、本実施形態においても、請求項に記載の「データ処理」(広義のデータ処理)に対応するセンサネットワークLSIパッケージ30の動作は、無線通信、センシング、CPU処理、及びステート管理の少なくとも一つを含む動作である。
本実施形態では、第1実施形態で得られる効果に加えて、電源ICパッケージ20でシリアルデータを生成する必要がない分電源ICパッケージ20の消費電力を抑えることができ、環境発電素子10の発電量をより有効に利用することができる。
<第3実施形態>
図8は、第3実施形態のセンサ情報無線伝送システムの構成を示す図である。図8において図6と同一または類似する部分は同じ符号を付している。
第3実施形態のセンサ情報無線伝送システムは、第2実施形態のセンサ情報無線伝送システムに充放電制御回路23と二次電池50を追加した構成である。
充放電制御回路23は、電源ICパッケージ20に搭載され、二次電池50の充電および放電を制御する。
安定化電源回路21は、環境発電素子10から供給される電力が第4の閾値(>第1の閾値TH1)よりも大きい場合に第4の閾値を超えた余剰電力を充放電制御回路23に供給し、充放電制御回路23がその余剰電力を二次電池50に供給する。また、安定化電源回路21は、環境発電素子10から供給される電力が第1の閾値よりも小さい場合に第1の閾値に到達するために必要な不足電力を充放電制御回路23に知らせ、充放電制御回路23がその不足電力を二次電池50から放電させて安定化電源回路21に供給する。
充放電制御回路23は、二次電池50のSOC(State of Charge)を検出しており、その検出信号S3をセンサネットワークICパッケージ30の消費電流制御31に出力している。
消費電流制御回路31は、検出信号S3に基づいて、レベル判定信号有効モードとレベル判定信号無効モードのいずれかを選択する。消費電流制御回路31は、二次電池50のSOCが所定値(例えば30%)未満である場合にレベル判定信号有効モードを選択する。環境発電素子10から供給される電力が第1の閾値よりも小さいときに第1の閾値に到達するために必要な不足電力を二次電池50からの放電で賄えきれないおそれがあるためである。一方、二次電池50のSOCが所定値(例えば30%)以上である場合にレベル判定信号無効モードを選択する。
レベル判定信号有効モードにおいて、消費電流制御回路31は、第2実施形態と同様に第1の二値化信号S1および第2の二値化信号S2に従ってセンサデータ処理回路33、CPU34、及びRF回路35を制御することで、センサネットワークLSIパッケージ30の消費電流ひいては消費電力を制御する。
一方、レベル判定信号無効モードにおいて、消費電流制御回路31は、第2実施形態とは異なり第1の二値化信号S1および第2の二値化信号S2のレベルにかかわらずセンサデータ処理回路33、CPU34、及びRF回路35の全てを動作させる。すなわち、二次電池50に蓄えられた電力が潤沢にあるため、センサネットワークLSIパッケージ30の動作を制限しない。
なお、本実施形態では蓄電装置として二次電池を用いたが、電気二重層キャパシタ等の他の蓄電装置を用いても構わない。
本実施形態のセンサ情報無線伝送システムは第2実施形態で得られる効果に加えて、二次電池50に蓄えられた電力が潤沢にある場合には環境発電素子10の発電量にかかわらずセンサネットワークLSIパッケージ30の動作が制限されないという効果も奏する。
また、本実施形態のセンサ情報無線伝送システムは第2実施形態のセンサ情報無線伝送システムに充放電制御回路23と二次電池50を追加した構成であるが、図9に示すように、第1実施形態のセンサ情報無線伝送システムに充放電制御回路23と二次電池50を追加した構成にしてもよい。
図9に示すセンサ情報無線伝送システムの消費電流制御回路31は、本実施形態と同様に、検出信号S3に基づいて、レベル判定信号有効モードとレベル判定信号無効モードのいずれかを選択する。
レベル判定信号有効モードにおいて、図9に示すセンサ情報無線伝送システムの消費電流制御回路31は、第1実施形態と同様にレベル判定信号S0に従ってセンサデータ処理回路33、CPU34、及びRF回路35を制御することで、センサネットワークLSIパッケージ30の消費電流ひいては消費電力を制御する。
一方、レベル判定信号無効モードにおいて、図9に示すセンサ情報無線伝送システムの消費電流制御回路31は、第1実施形態とは異なりレベル判定信号S0にかかわらずセンサデータ処理回路33、CPU34、及びRF回路35の全てを動作させる。すなわち、二次電池50に蓄えられた電力が潤沢にあるため、センサネットワークLSIパッケージ30の動作を制限しない。
図9に示すセンサ情報無線伝送システムは第1実施形態で得られる効果に加えて、二次電池50に蓄えられた電力が潤沢にある場合には環境発電素子10の発電量にかかわらずセンサネットワークLSIパッケージ30の動作が制限されないという効果も奏する。
<その他の変形例>
なお、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。また、上記実施形態において用いた具体的な数値は、あくまで例示であり、当然の事ながら他の数値を採用することが可能である。
例えば、上記実施形態ではレベル判定信号をデジタル信号にしているが、レベル判定信号はアナログ信号であってもよい。ただし、レベル判定信号をアナログ信号にした場合、ノイズに弱くなり、またアナログ−デジタル変換処理が必要となり余分な処理が増える。このため、レベル判定信号はデジタル信号であることが望ましい。
また、上記実施形態では、安定化電源回路とレベル判定信号出力回路を一の電源ICパッケージに搭載したが、安定化電源回路とレベル判定信号出力回路を別々のICパッケージに搭載する構成であっても構わない。レベル判定信号出力回路を電源ICパッケージ内に設けた場合には、安定化電源回路とレベル判定信号出力回路を個別にパッケージする必要がないため、システム面積の増大を抑制できるという利点がある。また、レベル判定信号出力回路をセンサネットワークICパッケージ外に設けることで、レベル判定信号によってセンサネットワークICパッケージ全体の動作状態を制御することが可能となるという利点がある。
また、上記実施形態ではセンサ情報無線伝送システムについて説明したが、本発明に係る環境発電システムはセンサ情報の処理や無線伝送を実行しないシステムであってもよい。例えば、本発明に係る環境発電システムを電子式卓上計算機であってもよい。電子式卓上計算機に本発明を適用する場合には、例えば、レベル判定信号出力回路から出力されるレベル判定信号に対応する環境発電素子から出力される電力のレベルが最も大きい場合に入力データ保持処理、計算処理、および計算結果表示処理の全てを行い、レベル判定信号出力回路から出力されるレベル判定信号に対応する環境発電素子から出力される電力のレベルが二番目に大きい場合に入力データ保持処理および計算処理のみを行い、レベル判定信号出力回路から出力されるレベル判定信号に対応する環境発電素子から出力される電力のレベルが最も小さい場合に入力データ保持処理のみを行うようにすればよい。
このように、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
本発明は、例えば、i)ウェアラブル機器、ii)インテリジェントビルの室内モニタリング、iii)橋、トンネル、ダムのような構造物のモニタリング、等で用いられる環境発電システムに利用することが可能である。
10 環境発電素子
20 電源IC
21 安定化電源回路
22 レベル判定信号出力回路
22’ イネーブル信号出力回路
23 充放電制御回路
30 センサネットワークIC
31 消費電流制御回路
31’ イネーブル制御回路
32 発振回路
33 センサデータ処理回路
34 CPU
35 RF回路
40_1〜40_n センサ
50 二次電池
100 太陽電池
200 bq25504チップ
221 発電量検出回路
222 閾値保持回路
223 判定回路
300 システム負荷
311 電力供給回路
312 動作制御兼ステート管理回路
313 クロック制御回路
321 低周波発振回路
322 高周波発振回路
T1 検出端子
T2 出力端子

Claims (9)

  1. 環境発電素子と、
    前記環境発電素子から出力される電力のレベルに応じて3種類以上のレベル判定信号のいずれかを出力する信号出力部と、
    前記環境発電素子から出力される電力を用いて駆動するデータ処理部と、
    を有し、
    前記データ処理部は、センサを有し、
    前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが大きいほど、前記データ処理部は、消費電力の大きいデータ処理を実行し、
    前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが最も小さい場合に、前記データ処理部は、前記センサの駆動を停止させ、可能な限り経過時間監視を実行することを特徴とする環境発電システム。
  2. 前記データ処理部は、前記センサの出力に対してデータ処理を行う演算処理装置を有し、
    前記信号出力部から出力される前記レベル判定信号に応じて、前記演算処理装置の動作と前記演算処理装置の動作停止とを切り替える請求項1に記載の環境発電システム。
  3. 前記レベル判定信号は4種類以上であり、前記演算処理装置の動作と前記演算処理装置の動作停止との切り替わりは、前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが最も小さい場合とそれ以外の場合との境界でもなく、前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが最も大きい場合とそれ以外の場合との境界でもない請求項2に記載の環境発電システム。
  4. 前記データ処理部は、前記センサの出力に関するデータを無線伝送する無線伝送部を有し、
    前記信号出力部から出力される前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが最も大きい場合に、前記データ処理部は、前記無線伝送部を動作させる請求項1〜3のいずれか一項に記載の環境発電システム。
  5. 前記信号出力部は、前記レベル判定信号をパラレルデータで前記データ処理部に送信する請求項1〜4のいずれか一項に記載の環境発電システム。
  6. 前記信号出力部は、前記環境発電素子から出力される電力のレベルに応じて3種類以上の前記レベル判定信号のいずれかを出力するための2つ以上の閾値を保持する保持部を有し、前記閾値が変更可能である請求項1〜5のいずれか一項に記載の環境発電システム。
  7. 前記環境発電素子から出力される電力を安定化された直流電力に変換し前記安定化された直流電力を前記データ処理部に供給する電力変換部を有する請求項請求項1〜6のいずれか一項に記載の環境発電システム。
  8. 前記信号出力部および前記電力変換部が第1の集積回路パッケージに搭載され、
    前記データ処理部の少なくとも一部が第2の集積回路パッケージに搭載される請求項7に記載の環境発電システム。
  9. 環境発電素子から出力される電力のレベルに応じた3種類以上のレベル判定信号のいずれかを入力する集積回路パッケージであって、
    前記環境発電素子から出力される電力を用いて駆動するデータ処理部の一部を有し、
    前記データ処理部は、前記集積回路パッケージに外付けされるセンサを有し、
    前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが大きいほど、前記データ処理部は、消費電力の大きいデータ処理を実行し、
    前記レベル判定信号に対応する前記環境発電素子から出力される電力のレベルが最も小さい場合に、前記データ処理部は、前記センサの駆動を停止させ、可能な限り経過時間監視を実行することを特徴とする集積回路パッケージ。
JP2015137563A 2015-07-09 2015-07-09 環境発電システム Expired - Fee Related JP6584845B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015137563A JP6584845B2 (ja) 2015-07-09 2015-07-09 環境発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015137563A JP6584845B2 (ja) 2015-07-09 2015-07-09 環境発電システム

Publications (2)

Publication Number Publication Date
JP2017022508A JP2017022508A (ja) 2017-01-26
JP6584845B2 true JP6584845B2 (ja) 2019-10-02

Family

ID=57888609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015137563A Expired - Fee Related JP6584845B2 (ja) 2015-07-09 2015-07-09 環境発電システム

Country Status (1)

Country Link
JP (1) JP6584845B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037781B2 (ja) * 2017-08-31 2022-03-17 テセラ・テクノロジー株式会社 発電装置およびこれを用いた施設の環境情報センシングシステム
JP2022014195A (ja) * 2020-07-06 2022-01-19 キヤノン株式会社 情報取得装置、情報取得システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005182643A (ja) * 2003-12-22 2005-07-07 National Agriculture & Bio-Oriented Research Organization 自然エネルギーで駆動する環境計測装置
JP2008292319A (ja) * 2007-05-24 2008-12-04 Kobe Steel Ltd 振動センサシステム
JP2009200702A (ja) * 2008-02-20 2009-09-03 Sharp Corp ネットワークカメラシステム
JP2015039248A (ja) * 2009-12-25 2015-02-26 株式会社東芝 電力供給制御装置および電力供給システム
CN103444050B (zh) * 2011-03-25 2016-08-10 京瓷株式会社 电力管理系统以及电力管理方法

Also Published As

Publication number Publication date
JP2017022508A (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
US9710050B2 (en) Information processing device, semiconductor chip, information processing method, and computer program product
KR102358764B1 (ko) 전자장치의 주변 에너지로부터의 전력의 하베스팅
Jiang et al. Perpetual environmentally powered sensor networks
KR20120006479A (ko) 이벤트 트리거를 사용하는 활성 전원 공급기 세트의 적응
EP2402721B1 (en) Power management system for wireless autonomous transducer solutions
CN105425928A (zh) 电力管理集成电路、电力管理方法和移动设备
JP6584845B2 (ja) 環境発電システム
Calhoun et al. System design principles combining sub-threshold circuit and architectures with energy scavenging mechanisms
JP2015041517A (ja) 半導体装置、電池パック、及び携帯端末
CA3021301C (en) Door lock electrical system and method of operation
Shimamura et al. Nano-watt power management and vibration sensing on a dust-size batteryless sensor node for ambient intelligence applications
JP5782465B2 (ja) コントローラ、および半導体システム
Trigona et al. Vibration-based Transducer for Zero-Energy standby applications
CN103746679A (zh) 掉电记忆电路的掉电记忆方法及掉电记忆电路
CN105162443B (zh) 一种周期性唤醒低功耗定时电路
NL2019730B1 (en) A hybrid electrical power supply control system for providing electrical energy to a load, as well as a corresponding method and a sensor comprising such control system.
JP6023486B2 (ja) 電源管理回路、電子機器および無線センサー
KR102353853B1 (ko) 배터리 수명관리기능을 포함하는 신재생 에너지 센서보드
JP6119502B2 (ja) 電子機器
CN204119195U (zh) 一种抗干扰复位电路
CN105877698A (zh) 生理信号处理电路和方法
CN105718021B (zh) 半导体装置及半导体系统
Dasari et al. Novel ultra low power dual edge triggered retention flip-flop for transiently powered systems
JP2011124632A (ja) 回路装置及び電子機器
TWI723943B (zh) 具備用電源之無線感測系統

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6584845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees