JP6583876B1 - 排水処理施設の試験方法 - Google Patents

排水処理施設の試験方法 Download PDF

Info

Publication number
JP6583876B1
JP6583876B1 JP2019532155A JP2019532155A JP6583876B1 JP 6583876 B1 JP6583876 B1 JP 6583876B1 JP 2019532155 A JP2019532155 A JP 2019532155A JP 2019532155 A JP2019532155 A JP 2019532155A JP 6583876 B1 JP6583876 B1 JP 6583876B1
Authority
JP
Japan
Prior art keywords
activated sludge
water
sludge mixed
amount
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019532155A
Other languages
English (en)
Other versions
JPWO2020183577A1 (ja
Inventor
敏久 江田
敏久 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOHDA WATER TREATMENT TECHNOLOGY CO., INC.
Original Assignee
GOHDA WATER TREATMENT TECHNOLOGY CO., INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOHDA WATER TREATMENT TECHNOLOGY CO., INC. filed Critical GOHDA WATER TREATMENT TECHNOLOGY CO., INC.
Application granted granted Critical
Publication of JP6583876B1 publication Critical patent/JP6583876B1/ja
Publication of JPWO2020183577A1 publication Critical patent/JPWO2020183577A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本発明は、活性汚泥を使用した排水処理施設における曝気槽の状態を試験する試験方法に関する。前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水とを同じ容器に入れて混合し一定時間が経過したときの沈殿量と、前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水とを同じ容器に入れて混合し前記一定時間と同じ時間が経過したときの沈殿量との差を求める試験方法。

Description

本発明は、活性汚泥を使用した排水処理施設における曝気槽の状態を試験する試験方法、前記試験方法を用いた排水処理施設の診断方法及び運転管理方法、並びに前記試験方法を行う試験装置に関する。
近年、地球環境の問題が注目されており、水の重要性への認識が高まってきている。そのため、排水処理施設の運転を適切に維持、管理する必要性が増している。排水処理施設の一般的なフローは、次のとおりである。まず、前処理段階で粗ごみを分離する設備(スクリーン)がある。ここで、無駄に流入するSS分を除去する。次に浄化の中心である生物処理となる。曝気槽で、エアレーション(送風・曝気)で活性汚泥が働くために必要な空気を排水の中に送り込む。最後に、浄化された水と微生物を分離し、浄化された処理水が、河川などに消毒された後放流される。排水処理業界では周知のことであるが、栄養分と酸素を含む水溶液中に微生物が生息する場合、微生物は分裂増殖を繰り返しつつ誘導期、対数増殖期を経て微生物のフロックが形成される。微生物フロックが形成される理由は、曝気槽水中の細菌の中に、対数増殖期の中頃から生命を維持するために細胞内貯蔵物質を粘着物質として分泌する凝集性細菌が存在し、この細菌が粘着性物質を分泌しない非凝集性微生物をも捉えて凝集フロックを形成するためである。原水中の有機物の分解に主役を演じているのは、この活性汚泥と呼ばれる微生物が凝集したフロックの集合体である汚泥である。排水中の栄養分がある限度以下に減少すると、この凝集性細菌は、この分泌した粘着性物質を栄養源として再び細胞内に取り込むため、フロックは凝集性を失い解体することになる。排水処理の分野では、微生物のこの特性を利用し、活性汚泥法に代表されるように、排水中に含まれている汚濁物質を、好気性微生物又は通性嫌気性微生物のフロックを用いて吸収消化分解し、分解終了後に微生物フロックを沈降分離させ、上澄液を処理液として放流するとともに、沈澱した汚泥の一部を余剰汚泥として系外に引き抜き、残りの沈澱汚泥を曝気槽に戻す方法が広く採用されている。したがって、曝気による排水処理を行う為には、曝気槽内の活性汚泥濃度を、汚濁物質を浄化するのに必要十分な濃度に維持すると共に、酸素過多によるフロック解体が起きないような条件で、活性汚泥が活動するのに必要十分な酸素を曝気槽に供給することが、基本的に重要な運転管理方法として採用されている。この運転管理方法を行うために、SV(活性汚泥沈殿率)計、DO(溶存酸素量)計、MLSS(mixed liquor Suspended solids:活性汚泥浮遊物質)濃度計、ORP(oxidation reduction potential:酸化還元電位)計等が使用されている。
しかしながら、排水処理施設の負荷は、様々の要因で大きく変動する場合が極めて多い。大企業の自動化された連続操業プラントから排出される排水を除けば、土曜日曜又は休日の操業が停止となる施設、更には夜間又は深夜に操業が停止となる施設、あるいは完全に操業が停止にならなくとも、深夜や土曜・日曜・祭日等の休日に排水処理負荷が大幅に減少する施設、逆に行楽地における施設のように土曜・日曜・祭日等の休日に排水処理負荷が急激に増大する施設、曜日や季節により生産品目や生産数量が大幅に変動する工場施設など、排水処理装置の負荷量が大幅に変動する場合が極めて多く、これが常態であると言ってよい。さらに、負荷量の変動に加えて、原水中の溶解成分や難分解性の浮遊固形物(SS:suspended solids)濃度が大きく変動し、したがって原水の処理の難易度が大きく変動する場合も多い。さらに、人為的な条件に加えて、気温変動や水温変動、水温変動による活性汚泥の活性度の変動、雨水の混入などの自然的環境変動の影響も、排水処理施設の運転管理状態に影響を及ぼすことになる。排水処理施設には、曝気槽への負荷を均一化するために、原水を半日から1日程度貯める原水槽又は調整槽を備えている設備もかなり多いが、原水、汚濁物質成分、温度、SS濃度等の変動が大きく、原水槽又は調整槽では、負荷の変動を吸収しきれないで、曝気槽の運転管理条件に大きな影響を及ぼしている場合は極めて多い。また、上に述べた要因で曝気槽の負荷が変動する結果、曝気槽内の微生物の種類も変動することになる。上に述べたとおり、排水処理の汚濁物質を微生物により浄化する為には、曝気槽内の活性汚泥濃度を適正な値に維持することが大切である。しかしながら、排水の中に、活性汚泥と微生物以外のSSが含まれている場合、この活性汚泥濃度だけを現場で簡便に測定する方法が世界的に開発されておらず、通常MLSS計で測定したMLSS濃度が、活性汚泥の代用値として使用されている。しかしながら、国内で汚濁排水の最大発生源の一つである畜産排水や屎尿排水をはじめ、小豆加工などの植物繊維の多い原料を加工する工場の排水など、BOD付加に対して原水中のSS濃度が極めて高い排水は、かなり多い。例えば、養豚場の糞尿混合排水では、BOD濃度8,000〜10,000mg/kgに対し、SS濃度は5,000〜20,000mg/kg程度になる場合が多い。このような排水を処理する場合には、MLSS濃度に占める微生物以外のSSの割合が80%を超える場合も多く、微生物以外のSS濃度が10%変動しても、活性汚泥がMLSSに占める割合は、相対的に大きく変動することになる。
したがって、MLSS濃度をもって活性汚泥濃度の近似値と見做すことは、正しい運転管理方法とはならない場合が多い。排水中の汚濁物質を微生物によって浄化するのに必要な酸素供給量の目安として、DO濃度が参考とされている場合が多い。しかしながらDOの最適値は、排水処理設備の構造、原水中の汚濁物質の成分、曝気槽での滞留時間、水温、微生物の種類等によって著しく異なり、DOが2.0mg/kgで適正な場合もあるし、0.5mg/kgで適正な場合もある。特に、森林、原野、農業分野など自然界における天然系有機物の分解の主役である通性嫌気性菌を主体にした曝気処理では、DOが0.5mg/kg以下の酸素量で良好な処理水質を確保できる場合が多い。大気に開放された排水処理設備では、このような通性嫌気性菌主体の曝気処理を行なっていても、当然好気性菌が混入し、通性嫌気性菌と好気性菌の比率は変動すると考えられ、曝気槽のDOの最適値は固定的な値とはならない。近年、ORP計を用いて曝気槽の運転管理を行う例が増えている。曝気槽の混合液サンプルを静置して汚泥を沈降させた上澄液のORPの測定値は、消費されずに残った酸素濃度を計測するDO計の測定値より、曝気槽の管理状態を判断するのに遙かに役立つ場合が多い。一般的傾向としては、酸素過多ではORP計の測定値がプラス100mv以上となり、逆に酸素不足では測定値がマイナス100mv以下になる。しかしながら、酸素過多でも測定値がマイナスになることがあり、ORP計の測定だけでは適切な判断が出来ない場合がある。汚濁物質として天然有機物を主成分とする原水の処理では、曝気槽の混合液のpHは、第1曝気槽から最終曝気槽にかけて、負荷の吸収消化分解にともなって徐々に低下する場合が多いが、難分解性のSS濃度が高い排水では、SSの分解に伴って最終曝気槽でpHが上昇する場合がある。
排水処理施設における最大の目的は、発生した排水を使用前の水質同様、あるいはそれ以上に蘇生して放流することにある。放流水質の目安は、行政が定めた放流水質基準内で安定した水ということとなる。これからの時代における水は、私達が生存するためにも、経済性の観点からも、重要で貴重な存在となっている。安定した状態で処理水の水質を維持する為に最も重要なことは、最終曝気槽(曝気槽が一つしかない連続式処理装置では、その曝気槽、又回分式曝気槽では、曝気処理の後半ないし終了時点で)の運転管理状態が、活性汚泥量に対して適正な酸素量であり、かつ負荷も充分処理されているのか、あるいは負荷は充分処理されているが酸素量が過大であり、活性汚泥フロックが膨化し解体しつあるのか、あるいは活性汚泥量に対して負荷が過大または酸素量不足の状態にあるのかを、適格に判断することである。この判断が迅速に正しく出来るときのみ、運転管理上のトラブルに対して正しい処置が出来るし、あるいは運転管理状態が正常な状態から外れ始めた場合に、早期に対処してトラブルの発生を未然に防ぐことが出来る。特に、曝気槽の運転管理状態の判断を誤り、過大な曝気を長時間継続すると、活性汚泥フロックが解体し、沈澱分離槽での汚泥の沈降分離操作が困難になり、放流処理水に汚泥が混入し、排水処理設備の安定な運転の継続が出来なくなるという問題が生じる。したがって、排水処理業界では、排水処理施設、特に最終曝気槽に重点をおいて、DO、MLSS、pH、SV(30分)等を測定し、その測定結果により曝気装置の運転を制御し、余剰汚泥の引抜量や汚泥返送量を調整する方法が広く採用されている。しかしながら、最終曝気槽の状態がどうなっているのかの判断は、上記した理由により、DO、MLSS、pH、SV(30分)等の測定値だけでは、適切な判断が出来ない場合が多い。排水処理設備の運転管理に経験豊かな専任の管理者が管理に従事している大規模な施設の場合には、これらの測定値に加えて、曝気槽の泡の量や色、濁り等の数値に表わし難い現象の観察を含めて総合的に考察して正しい判断をすることも可能であろう。しかしながら、経験豊かな専任の運転管理者がおらず、排水発生源施設の管理者が兼任して運転管理している中小規模の排水処理施設の場合には、毎日の作業始めなど負荷変動の大きな時ほど排水発生源での業務が忙しく、排水処理設備の運転管理は手薄にならざるを得ない。従って、簡便な測定方法で、曝気槽の運転状況を迅速に正しく判断できる方法の開発が望まれている。
特開平6−126293では、原水槽及び曝気槽内のDOを、DO計及び/又はORP計を用いて連続的に測定し、他方で曝気槽に流入する原水のBOD又はCOD及び原水の流入量を計測し、両者を乗算積分して負荷量を求め、この負荷予測に基づいて曝気槽内のDOを予測しながら、最終曝気槽のDOが目標のDOとなるように、酸素量の制御をおこなうことを提案している。しかしながら、この方法を手動でおこなえば、作業が極めて煩雑であり、作業を自動化すれば、装置は複雑高価になる。特開平11−90480では、オキシデーションデッチにDO計を設置し、DO計測値により、間歇曝気方式或いは曝気用送風機の回転数制御による曝気槽の運転管理方式を開示しているが、DO計測値のみを使用するこの方式を曝気槽一般に適用することは、上記のとおり適切な運転管理方法とはいえない。特開平11−160305では、曝気槽中の混合液に試料排液を加えて曝気してDOの変化を求め(ステップ1)、次に曝気を停止して外部からの酸素の溶け込みを断った状態でのDOの減少する速度を測定し(ステップ2)、更に曝気槽中の混合液に好気性微生物で分解容易な物質の水溶液を規定量添加し、その混合液を曝気する過程におけるDOの変化を測定する(ステップ3)という検査工程を1セットとして、この検査セットを繰り返し行い、その測定結果をコンピューターで演算処理して各ステップに於けるDOの変化曲線又は該変化曲線の形状を特徴づける特性値を取得して、上記試料排液に対する処理適性を評価する試験方法を提案している。しかし、この検査方法は操作が複雑であり、全ての操作を自動化すれば、検査装置は複雑高価にならざるを得ない。上記でも述べたとおり、排水処理施設によって原水水質、原水量、スクリーン目、曝気槽容量、沈殿槽容量等は異なり、BOD値と溶解性SS値、難分解性SS値等は異なる。いずれの現場にもあてはまる適正値というものはなく、活性汚泥が安定した状態である溶存酸素濃度が、その現場における、その水温、その負荷、その環境での適正値となる。すなわち、溶存酸素量の適正値が決まっていて、それに活性汚泥の微生物バランスを合わせる管理をするのではなく、活性汚泥に合わせて、適正溶存酸素量に調整していく必要がある。しかしながら、従来、曝気槽中の溶存酸素量が適切か否かを判断するための指標を得る測定方法は知られていなかった。また、溶存酸素量のみでなく、その他の要素に関しても曝気槽の状態を活性汚泥との関係で適切に把握できる測定方法は知られておらず、このような測定方法の開発が望まれていた。
特開平6−126293 特開平11−90480 特開平11−160305
本発明は、上記問題点を解決し、排水処理施設における曝気槽中の溶存酸素量の適否を判断するための指標を提供することを課題とする。また、前記指標を得るための試験方法及び試験装置、並びに前記指標を用いた排水処理施設の診断方法及び運転管理方法を提供することを課題とする。
排水処理施設では、微生物による生物処理が核となるが、排水処理施設で使用される活性汚泥中には、様々な種類の微生物が数多く存在している。そのため、微生物の塊である活性汚泥の変化を理論的に解明することは難しく、また各排水処理施設を取り巻く環境、例えば、流入負荷の種類、量、活性汚泥の状態、気温や湿度等の気候などは、処理施設ごとに異なっている。これらのことが排水処理施設の適切な運転維持、管理の方法が開発されてこなかった大きな理由である。また、このような状況下、曝気槽の状態を活性汚泥との関係で適切に把握できる測定方法は開発されていなかった。本発明者らは、多くの種類の排水処理施設を数多く調査、観察し、そこで得られた知見から、簡易な方法でありながら曝気槽の状態を活性汚泥との関係で適切に把握できる測定方法を見いだした。この方法は、従来から使用されているSV30の測定方法を利用したものであり、1Lのメスシリンダーを2本用意し、1本には活性汚泥混合液と共に活性汚泥混合液よりも酸素を多く含有する水を加えて酸素が多い状態とし、他の1本には活性汚泥混合液と共に脱酸素水を加えて活性汚泥混合液よりも酸素の少ない状態として、両容器を静置し30分経過後にSV30の測定の場合と同様に沈殿物の体積割合を測定したところ、両容器における測定値の差から、その時点での曝気槽中の溶存酸素量が活性汚泥量にとって適正か否かがわかり、それのみでなく負荷量の活性汚泥量にとっての適否、活性汚泥の異常状態等に関する情報が得られることを見いだした。本発明は、こうして完成されたものである。
すなわち、本発明は以下に示す事項により特定されるものである。
(1)排水処理施設の曝気槽の状態を試験する方法であって、前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水とを同じ容器に入れて混合し一定時間が経過したときの沈殿量と、前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水とを同じ容器に入れて混合し前記一定時間と同じ時間が経過したときの沈殿量との差を求める試験方法。
(2)活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水との比が体積で3:7〜4:6であり、活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水との比が体積で3:7〜4:6であることを特徴とする上記(1)の試験方法。
(3)活性汚泥混合液よりも溶存酸素濃度が高い水における溶存酸素量が7.5〜10.0mg/Lであり、活性汚泥混合液よりも溶存酸素濃度が低い水における溶存酸素量が0.0〜3.5mg/Lであることを特徴とする上記(1)又は(2)の試験方法。
(4)一定時間が30分であることを特徴とする上記(1)〜(3)のいずれかの方法。
(5)排水処理施設の曝気槽から活性汚泥混合液を採取し、採取した前記活性汚泥混合液を使用して上記(1)〜(4)のいずれかの試験方法による試験を行い、得られた結果により前記曝気槽中の溶存酸素量の適否を判定する曝気槽の状態の診断方法。
(6)排水処理施設の曝気槽から活性汚泥混合液を採取し、採取した前記活性汚泥混合液を使用して上記(1)〜(4)のいずれかの試験方法による試験を行い、得られた結果にもとづいて酸素量の維持、増量又は減量を行う排水処理施設の運転管理方法。
(7)排水処理施設の曝気槽の状態を試験する装置であって、前記曝気槽から活性汚泥混合液を採取する自動サンプリング装置、サンプリングされた前記活性汚泥混合液と、前記活性汚泥混合液よりも溶存酸素濃度が高い水又は前記活性汚泥混合液よりも溶存酸素濃度が低い水を、試験容器に注入する自動注入装置、注入後の前記活性汚泥混合液と、前記活性汚泥混合液よりも溶存酸素濃度が高い水又は前記活性汚泥混合液よりも溶存酸素濃度が低い水とを混合する混合装置、試験容器の静置時間を設定するタイマー、沈降汚泥界面自動測定装置、試験容器内の混合液の自動排出装置、試験容器の自動洗浄装置、及び測定結果の自動表示装置から選ばれる少なくとも1つを備えることを特徴とする試験装置。
本発明の試験方法によると、曝気槽中の溶存酸素量が活性汚泥量にとって適正か否かを判断できる指標となる情報が得られる。また、本発明の試験方法によると、負荷量が活性汚泥量にとって適正か否かを判断できる指標となる情報や、活性汚泥の異常状態に関する情報等を得ることができる。本発明の診断方法によると、本発明の試験方法により得られた結果を利用することにより、曝気槽中の溶存酸素量の適否、負荷量の適否、活性汚泥の異常状態等の曝気槽の状態を判定できる。本発明の運転管理方法によると、本発明の試験方法により得られた結果を利用することにより、酸素量や負荷量の維持又は増減を適切に行うことができる。また、本発明の試験装置は、本発明の試験方法を効率よく実施することができる。
本発明の試験方法を示す模式図である。(a)は、活性汚泥混合液と酸素溶存水又は脱酸素水を容器に注入する状態を示す図であり、(b)は、活性汚泥混合液と酸素溶存水又は脱酸素水を混合し一定時間静置した後の状態を示す図である。
本発明の排水処理施設の曝気槽の状態を試験する方法は、前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水とを同じ容器に入れて混合し一定時間が経過したときの沈殿量と、前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水とを同じ容器に入れて混合し前記一定時間と同じ時間が経過したときの沈殿量との差を求める試験方法であることを特徴とする。本発明の試験方法は、例えば、容器を2個用意し、一方の容器(容器A)に、曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水とを入れて混合し、他方の容器(容器B)に、同じ曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水とを入れて混合し、両容器を静置して、一定時間経過後の容器Aにおける沈殿量と容器Bにおける沈殿量との差を求めることにより行うことができる。本発明に使用する容器は、活性汚泥混合液、前記活性汚泥混合液よりも溶存酸素濃度が高い水、及び前記活性汚泥混合液よりも溶存酸素濃度が低い水を収容することができ、沈殿物と上澄液の界面が見える程度に透明又は半透明の容器であれば、特に制限されないが、JISで規定された活性汚泥沈殿率(SV30)を測定するために用いる1Lのメスシリンダーを使用することが好ましい。本発明の試験方法は、最終曝気槽から採取した活性汚泥混合液を使用して行うことが好ましく、回分式曝気沈澱分離法の場合には、曝気槽操作の最終段階で採取した活性汚泥混合液を使用して行うことが好ましい。また、活性汚泥混合液とは、曝気槽中の処理液と汚泥の混合液のことである。
本発明における活性汚泥混合液よりも溶存酸素濃度が高い水(以下、「酸素溶存水」ともいう)とは、前記活性汚泥混合液の溶存酸素濃度よりも溶存酸素濃度が高く、溶存酸素以外に沈殿物の生成に影響を与える物質を含まない水であれば特に制限されず、水道水等の通常の水に含まれる成分を含んでいても構わない。一般的に水道水には7〜8mg/Lの酸素が溶存していることが多く、好適な酸素溶存水として水道水を挙げることができる。また、溶存酸素濃度が高い工業用水、地下水、再生水等を挙げることができ、水を使用した場合と比較して本発明の試験方法に影響を及ばさない水溶液を使用することもできる。酸素溶存水の溶存酸素量は、7.5〜10.0mg/Lが好ましく、8.0〜9.0mg/Lがより好ましい。本発明における活性汚泥混合液よりも溶存酸素濃度が低い水(以下、「脱酸素水」ともいう)とは、前記活性汚泥混合液の溶存酸素濃度よりも溶存酸素濃度が低く、溶存酸素以外に沈殿物の生成に影響を与える物質を含まない水であれば特に制限されず、水道水等の通常の水に含まれる成分を含んでいても構わない。脱酸素水としては、例えば、水道水等の通常の水に脱酸素剤等の薬剤を添加して酸素を除いたもの、脱気したもの、沸騰処理したもの等を挙げることができる。また、水を使用した場合と比較して本発明の試験方法に影響を及ばさない水溶液を使用することもできる。沸騰処理により調製した脱酸素水を使用する場合は、酸素溶存水として使用する水と水温を同じにして使用する。原水槽や曝気の行われていない調整槽で、微生物により酸素が消費された結果溶存酸素濃度が十分低くなっている原水も、本発明の試験結果に影響を与えるSS濃度が十分低くければ使用できる。脱酸素水の溶存酸素量は、0.0〜3.5mg/Lが好ましく、0.0〜1.5mg/Lがより好ましい。活性汚泥混合液と酸素溶存水の混合処理、及び活性汚泥混合液と脱酸素水の混合処理は特に制限されず、公知の方法を適宜使用することができる。例えば、容器を振る等して振動させる、容器を逆さにする、容器中に撹拌子を入れて撹拌するなどを挙げることができる。本発明の試験方法における沈殿量の測定は、一定時間静置後に、従来のSV試験(活性汚泥沈殿率試験)と同様に目視により沈降汚泥界面を判読し、その体積で測定することが好ましい。また、沈殿量は、従来のSV試験と同様に、活性汚泥混合液と酸素溶存水の合計体積に対する沈殿物の体積の割合と、活性汚泥混合液と脱酸素水の合計体積に対する沈殿物の体積の割合で表すことが好ましい。本発明の試験方法では、両沈殿量の差から曝気槽の状態、例えば、酸素量が適正か否かを判別することができる。
活性汚泥混合液、酸素溶存水及び脱酸素水の量や混合比率は特に制限されるものではないが、活性汚泥混合液と酸素溶存水の合計量と、活性汚泥混合液と脱酸素水の合計量とは等しいことが好ましく、活性汚泥混合液と酸素溶存水との比と、活性汚泥混合液と脱酸素水との比は等しいことが好ましい。活性汚泥混合液と酸素溶存水との比、及び活性汚泥混合液と脱酸素水との比は特に制限されるものでなく、例えば、酸素溶存水又は脱酸素水の量を、活性汚泥混合液の量の体積で2〜8倍、1.3〜5倍、1.5〜3.5倍の範囲等にすることができる。活性汚泥混合液と酸素溶存水との比、及び活性汚泥混合液と脱酸素水との比は、共に体積で3:7〜4:6が好ましい。また、活性汚泥混合液と酸素溶存水の合計量、及び活性汚泥混合液と脱酸素水の合計量は、従来のSV計が使用できることから1Lが好ましい。本発明の試験方法は、上記のように別々の容器を用意して2種の沈殿量の測定を同時に行ってもよく、1つの容器を使用して、一方の沈殿量の測定を行った後、他方の沈殿量の測定を行ってもよい。最終曝気槽内の運転管理状況は、最終曝気槽の混合液の1回目のサンプリングと2回目のサンプリング間の短期間内に、酸素量や返送汚泥などの運転管理操作に変更を加えなければ、本発明の試験方法における測定に必要な30分程度の短時間では、変動が少ないので比較判定は可能である。
本発明の試験方法の一実施形態をさらに説明する。本発明の試験方法をSV比較差試験方法ともいう。例えば、容器A及びBとして1Lのメスシリンダーを使用する場合、容器Aには300mLの活性汚泥混合液と、700mLの酸素溶存水を入れ、全量で1L(1,000mL)とする。また、容器Bには300mLの活性汚泥混合液と、700mLの脱酸素水を入れ、全量で1L(1,000mL)とする。こうやって試料を準備した両容器を静置する。そして、一定時間経過後に、容器Aにおける沈殿物の体積と、容器Bにおける沈殿物の体積を目視により沈降汚泥界面を判読することにより測定する。そして、それぞれの容器における沈殿物の体積の割合を%で表し、両者の差を求める。例えば、容器として1Lのメスシリンダーを用いて上記のように両容器中の試料を調製した場合、容器Aにおける沈殿物の体積が350mLであれば、沈殿物の体積の割合は35%(350/1,000×100)となり、容器Bにおける沈殿物の体積が300mLであれば、沈殿物の体積の割合は30%(300/1,000×100)となり、その差は5%となる。ここで、一定時間は沈殿物の量の変化をみるために適宜決定することができ、例えば、3分〜24時間、3分〜5時間、3分〜3時間、10分〜30分の範囲等を挙げることができ、30分、60分、120分、24時間等を挙げることができる。一定時間としては、30分が好ましい。沈殿物と上澄液の界面の決定、すなわち沈殿物の体積の決定は、JISで規定された活性汚泥沈殿率(SV30)を測定する場合と同様に行えばよい。図1は、本発明の測定方法を示す模式図である。図1(a)は、測定試料の調製時を示す。容器Aには、活性汚泥混合液1と酸素溶存水2が3:7の体積割合で投入される。容器Bには、活性汚泥混合液1と脱酸素水3が3:7の体積割合で投入される。図2(b)は、容器A中の活性汚泥混合液1と酸素溶存水2を混合した後、一定時間経過したときの容器Aの状態、及び容器B中の活性汚泥混合液1と脱酸素水3を混合した後、一定時間経過したときの容器Bの状態を示す図である。容器Aでは、沈殿物4が沈殿し、その体積は上澄液5との界面6で決定され、沈殿物4の体積割合は、沈殿物4の体積/(沈殿物4の体積+上澄液5の体積)となる。また、容器Bでは、沈殿物7が沈殿し、その体積は上澄液8との界面9で決定され、沈殿物6の体積割合は、沈殿物6の体積/(沈殿物6の体積+上澄液7の体積)となる。そして、その差を求める。
本発明の試験方法では、酸素含有水を使用した結果(以下、「水SV値」という。)と脱酸素水を使用した結果(以下、「脱酸素SV値」という。)との差は、次のような状態を示している。本発明の試験方法で最終曝気槽の活性汚泥混合液を測定した場合、活性汚泥が適正状態にあるときは、負荷を消化していなければならない。したがって、活性汚泥に酸素を過剰供給した状態となる水SV値の測定では、活性汚泥はやや膨化状態となる。一方、脱酸素SV値は、通常通りの沈降を示す。そのため、水SV値の方が脱酸素SV値よりやや高い値となる。この場合、適正酸素状態(適正溶存酸素状態)にあるため、ブロワーの調整は不要である。また、水SV値の方が脱酸素SV値より高く、その差が大きい場合、膨化状態の活性汚泥に、さらに酸素を供給した状態を示しており、活性汚泥が酸素過多の状態にあることを示している。この場合、ブロワーを調整し、風量を減量する必要がある。このように、本発明の試験方法によれば、その結果により曝気槽における溶存酸素量が適正か否かを判断することができる。脱酸素SV値が水SV値より高くなった場合、この場合は水SV値が低いということであり、酸素を供給した方が沈降性が良くなる活性汚泥状態になっているということである。これは、活性汚泥が流入負荷を消化しきれていない、すなわち過負荷の状態にあることを示している。このように、本発明の試験方法によると、その結果により微生物にとって負荷量が適正か否かを判断することができる。また、水SV値を計測する容器内で活性汚泥が糸状性細菌を綿菓子のように強調して膨化し、脱酸素SV値を計測する容器内で活性汚泥がひも状の菌を強調する場合がある。この場合、本発明の試験方法によれば、長時間の観察を行わなくても、30分で糸状性細菌が優勢であることを発見することができる。
本発明の曝気槽の状態の診断方法は、排水処理施設の曝気槽から活性汚泥混合液を採取し、採取した前記活性汚泥混合液を使用して本発明の試験方法による試験を行い、得られた結果により前記曝気槽中の溶存酸素量の適否を判定することを特徴とする。溶存酸素量の適否の判定は、上記の段落0017記載のとおり行うことができる。また、水SV値と脱酸素SV値とを比較したとき、水SV値が脱酸素SV値の1.03〜1.05倍程度であれば、酸素量は適切であると判定でき、水SV値が脱酸素SV値の1.03〜1.05倍より大きい場合は、酸素量が最適な酸素量に比較して酸素過多の状態であり、現状の酸素量を継続すると、汚泥フロックはさらに膨化する傾向にあると判定でき、水SV値が脱酸素SV値の1.03〜1.05倍より小さい場合は、酸素量が最適な酸素量に比較して不足している状態であり、酸素量を増やせば、残存している汚濁物質を更に吸収消化分解できる状態であると判定できる。また、本発明の排水処理施設の診断方法によれば、加えて負荷量の適否の判定や活性汚泥の異常状態の発見を行うことができる。本発明の排水処理施設の運転管理方法は、排水処理施設の曝気槽から活性汚泥混合液を採取し、採取した前記活性汚泥混合液を使用して本発明の試験方法による試験を行い、得られた結果にもとづいて酸素量の維持、増量又は減量を行うことを特徴とする。本発明の試験方法により得られる結果から溶存酸素量の適否が判定できるので、溶存酸素量が適正の場合は酸素量を維持し、溶存酸素量不足の場合は酸素量を増量し、溶存酸素量過多の場合は酸素量を減少させることにより安定した状態での排水処理施設の運転ができる。また、本発明の試験方法によれば、溶存酸素量の適否に加えて負荷量の適否の判定や活性汚泥の異常状態の発見を行うことができるので、本発明の運転管理方法によれば、負荷量が適正の場合は負荷の流入量を維持し、負荷量不足の場合は負荷の流入量を増量し負荷量過多(過負荷)の場合は負荷の流入量を減少させることにより安定した状態での排水処理施設の運転ができる。また、本発明の測定方法によれば、糸状性細菌が優勢となる傾向が早期に発見できるので、本発明の運転管理方法によれば、糸状性細菌の優勢傾向が発見された場合、糸状性細菌殺菌剤を投入して糸状性細菌の発生を抑制することができる。また、曝気の方法は、送風機により空気を、曝気槽の底部に設けた散気管より送り込む標準的な方法に限らず、表面曝気法、空気の替わりに酸素を吹き込む方法等、どのような方法でもよい。大規模な排水処理設備の運転管理用には、透過光による界面測定方式のSV自動測定装置が商品化されているが、本発明の試験方法に関しても、このようなSV自動測定装置を使用することができ、これに加えて自動希釈装置等を組み合わせることにより、本発明の試験結果により得られる値、それに基づく判定結果を表示、あるいは曝気槽の運転管理用信号として出力することも可能である。
本発明の試験装置は、排水処理施設の曝気槽の状態を試験する装置であって、前記曝気槽から活性汚泥混合液を採取する自動サンプリング装置、サンプリングされた前記活性汚泥混合液と、前記活性汚泥混合液よりも溶存酸素濃度が高い水又は前記活性汚泥混合液よりも溶存酸素濃度が低い水を、試験容器に注入する自動注入装置、注入後の前記活性汚泥混合液と、前記活性汚泥混合液よりも溶存酸素濃度が高い水又は前記活性汚泥混合液よりも溶存酸素濃度が低い水とを混合する混合装置、試験容器の静置時間を設定するタイマー、沈降汚泥界面自動測定装置、試験容器内の混合液の自動排出装置、試験容器の自動洗浄装置、及び測定結果の自動表示装置から選ばれる少なくとも1つを備えることを特徴とする。本発明の試験装置は、これらを備えることにより本発明の試験方法を効率的に実施することができる。本発明の試験装置における自動サンプリング装置は、溶液又は分散液を収容する容器からのサンプリングを自動で行う公知の方法を使用することができる。例えば、曝気槽に活性汚泥混合液を吸入する吸入管を挿入し吸い上げる、曝気槽に活性汚泥混合液を曝気槽外に取り出す取出口を設ける等の方法を自動で行う機構にすることができる。自動注入装置は、容器中へ液体を自動で注入する公知の方法を使用することができる。例えば、サンプリングした活性汚泥混合液のタンク、酸素溶存水のタンク又は脱酸素水のタンクにそれぞれ連通する注入管を、試験容器中へ挿入してそれぞれの液体を試験容器中に注入する方法を自動で行う機構にすることができる。混合装置及びタイマーも公知の方法及び装置を適宜使用することができる。混合装置としては、例えば、試験容器を振動させる振動装置、蓋をした試験容器を上下逆転させる反転装置、スタラー等を挙げることができる。沈降汚泥界面自動測定装置は、沈殿物と液体の界面の位置を認識する公知の方法を使用することができ、例えば、透過光等の光を利用した装置を使用することができる。自動排出装置、自動洗浄装置及び自動表示装置も、公知の方法や装置を使用することができ、自動排出装置としては、例えば、試験容器を上下逆転させる方法や反転装置等を挙げることができ、自動洗浄装置とては、洗浄剤を容器に注入しブラシ等でこする方法や装置等を挙げることができ、自動表示装置としては、液晶等を利用した表示装置等を挙げることができる。
本発明の試験方法は、単独で使用しても上記のとおり活性汚泥の状態をよく判断することができるが、他の方法と組み合わせることにより更に活性汚泥の状態を的確に判断することができる。組み合わせることができる他の試験方法としては、例えば、SV30、SV24時間、pH、ORP、汚泥ORP、OD、透視度、SV外観観察等を挙げることができる。これらの試験方法は、活性汚泥を使用した排水処理施設において通常使用されている試験方法であり、通常通りの方法で実施することができる。例えば、SV比較差試験方法とORP及び/又はODを使用した場合、例えば、負荷に対して適正以上の酸素を供給している場合は、つまり通常の活性汚泥量に対して通常以上の負荷量が流入し、通常以上の酸素量を供給した場合、ORPもODも高い濃度となるため酸素は十分に供給されていると判断しがちである。しかし、SV比較差試験方法では、水SV値が脱酸素SV値より低くなり活性汚泥にとって酸素不足という状況を示す。そこで、今まで通りの負荷量が供給されるならば、活性汚泥量を増加させなければ過負荷状態が続くことになるので、酸素供給量を減少させずに今まで通りの酸素供給量を継続しなければならないことが分かる。また、SV比較差試験方法とpHを使用した場合、例えば、窒素成分を多く含む系を多く含む排水処理の場合、浄化が進むとpHが下降して中性又は酸性側に移行する。pHがこの状態にあるとき、負荷の処理が進んでいるためそのままの状態を続けがちになるが、そのままの処理(酸素供給)が進むと、活性汚泥が解体してpHがアルカリ性を示すことがある。このようなときも、SV比較差試験方法では、酸素溶存水側が脱酸素水側より膨化するので、酸素適正量を誤ることはない。また、SV比較差試験方法において外観観察を組み合わせると、酸素溶存水側に糸状性細菌があると、SV30分より汚泥が膨化し膨化形態は綿菓子状となる。脱酸素水側に糸状性細菌があると、SV30分より沈降汚泥に筋が早くはっきり見えやすい。筋の長さが長く、太いほど糸状性細菌の優先率が増加していることが分かる。
[実施例1]
1Lのメスシリンダーを2本用意し、排水処理施設の最終曝気槽から活性汚泥混合液を採取して、それぞれのメスシリンダーに活性汚泥混合液を300mLずつ入れた。一方のメスシリンダーには、水道水を700mL加え、他方のメスシリンダーには、湯冷まし水(脱酸素水)を700mL加えた。メスシリンダーに蓋をしてからメスシリンダーを上下逆さにした後、元の姿勢に戻す操作を数回繰り返すことによりメスシンリンダー内の液を混合させた後静置した。静置後30分経過後に、メスシリンダー内の沈降汚泥界面を目視することにより沈殿量を測定し、沈殿物の体積割合を算出した。沈殿量は、水道水を入れた方が高く、湯冷まし水を入れた方との差は3%であった。この測定値は適正酸素量を示しているため、ブロアーの調整を行わず現状の酸素量を維持し、安定した運転状態が継続した。
[実施例2]
排水処理施設の最終曝気槽から、活性汚泥混合液を採取して、実施例1と同様に測定を行った。測定値は、水道水を入れた方が高く、湯冷まし水を入れた方との差は10%であった。この測定値は酸素過多を示しているため、ブロアーの調整し酸素量を減少させたところ、沈殿槽界面が低くなり運転状態は安定した。
[実施例3]
排水処理施設の最終曝気槽から、活性汚泥混合液を採取して、実施例1と同様に測定を行った。測定値は、湯冷まし水を入れた方が高く、水道水を入れた方との差は10%であった。この測定値は過負荷を示しているため、酸素量を増量させたところ、処理水透視度が向上し運転状態は安定した。
[実施例4]
排水処理施設の最終曝気槽から、活性汚泥混合液を採取して、実施例1と同様に測定を行った。水道水を入れた方は、糸状性細菌が綿菓子のように発生し、湯冷まし水を入れた方は、ひも状の筋が見られた。この結果に基づき、糸状性細菌対策剤を曝気槽に投入したところ、糸状性細菌の発生は抑制された。
1 活性汚泥混合液
2 酸素溶存水
3 脱酸素水
4 沈殿物
5 上澄液
6 界面
7 沈殿物
8 上澄液
9 界面
本発明の試験方法、診断方法及び運転管理方法は、種々の排水処理施設に好適に適用でき、曝気槽の状態を活性汚泥との関係で適切に把握できるので、適切な活性汚泥の健康状態の診断や適切な運転管理を行うことができる。


Claims (8)

  1. 排水処理施設の曝気槽の状態を試験する方法であって、
    前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水とを同じ容器に入れて混合し一定時間が経過したときの沈殿量と、前記曝気槽から採取した活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水とを同じ容器に入れて混合し前記一定時間と同じ時間が経過したときの沈殿量との差を求める試験方法。
  2. 活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が高い水との比が体積で3:7〜4:6であり、活性汚泥混合液と前記活性汚泥混合液よりも溶存酸素濃度が低い水との比が体積で3:7〜4:6であることを特徴とする請求項1記載の試験方法。
  3. 活性汚泥混合液よりも溶存酸素濃度が高い水における溶存酸素量が7.5〜10.0mg/Lであり、活性汚泥混合液よりも溶存酸素濃度が低い水における溶存酸素量が0.0〜3.5mg/Lであることを特徴とする請求項1又は2記載の試験方法。
  4. 一定時間が30分であることを特徴とする請求項1〜3のいずれか記載の方法。
  5. 排水処理施設の曝気槽から活性汚泥混合液を採取し、採取した前記活性汚泥混合液を使用して請求項1〜4のいずれか記載の試験方法による試験を行い、得られた結果により前記曝気槽中の溶存酸素量の適否を判定する曝気槽の状態の診断方法。
  6. 排水処理施設の曝気槽から活性汚泥混合液を採取し、採取した前記活性汚泥混合液を使用して請求項1〜4のいずれか記載の試験方法による試験を行い、得られた結果にもとづいて酸素量の維持、増量又は減量を行う排水処理施設の運転管理方法。
  7. 排水処理施設の曝気槽の状態を試験する装置であって、
    前記曝気槽から活性汚泥混合液を採取する自動サンプリング装置、
    サンプリングされた前記活性汚泥混合液と、前記活性汚泥混合液よりも溶存酸素濃度が高い水又は前記活性汚泥混合液よりも溶存酸素濃度が低い水を、試験容器に注入する自動注入装置、
    注入後の前記活性汚泥混合液と、前記活性汚泥混合液よりも溶存酸素濃度が高い水又は前記活性汚泥混合液よりも溶存酸素濃度が低い水とを混合する混合装置、
    試験容器の静置時間を設定するタイマー、及び
    沈降汚泥界面自動測定装置を備えることを特徴とする試験装置。
  8. 試験容器内の混合液の自動排出装置、試験容器の自動洗浄装置、及び測定結果の自動表示装置から選ばれる少なくとも1つを更に備えることを特徴とする請求項7記載の試験装置。
JP2019532155A 2019-03-11 2019-03-11 排水処理施設の試験方法 Active JP6583876B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009727 WO2020183577A1 (ja) 2019-03-11 2019-03-11 排水処理施設の試験方法

Publications (2)

Publication Number Publication Date
JP6583876B1 true JP6583876B1 (ja) 2019-10-02
JPWO2020183577A1 JPWO2020183577A1 (ja) 2021-03-25

Family

ID=68095302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532155A Active JP6583876B1 (ja) 2019-03-11 2019-03-11 排水処理施設の試験方法

Country Status (5)

Country Link
US (1) US11945739B2 (ja)
EP (1) EP3939942A4 (ja)
JP (1) JP6583876B1 (ja)
CN (1) CN113518764B (ja)
WO (1) WO2020183577A1 (ja)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113394A (en) * 1980-02-10 1981-09-07 Toshiba Corp Defoaming type sv meter
JPS5778991A (en) * 1980-11-05 1982-05-17 Meidensha Electric Mfg Co Ltd Apparatus for monitoring and controlling water quality
JPS5843290A (ja) * 1981-09-10 1983-03-12 Hitachi Plant Eng & Constr Co Ltd 活性汚泥法による汚水処理装置の自動制御方法
JPH0683833B2 (ja) * 1988-06-01 1994-10-26 三菱電機株式会社 エアレーションタンクの風量制御方法
JPH06126293A (ja) 1992-10-13 1994-05-10 Daioo Eng Kk 曝気槽溶存酸素制御方法
JP3865164B2 (ja) 1997-09-24 2007-01-10 株式会社日立プラントテクノロジー 曝気装置の運転制御方法
JPH1194824A (ja) * 1997-09-25 1999-04-09 Matsushita Electric Works Ltd 活性汚泥浮遊物質濃度の測定方法
JP3082034B2 (ja) 1997-11-27 2000-08-28 株式会社 小川環境研究所 好気性微生物を利用する廃水処理の試験方法及び装置
JPH11183365A (ja) * 1997-12-24 1999-07-09 Hiyoshi:Kk 汚泥容量測定装置
JP2888238B1 (ja) * 1998-02-16 1999-05-10 日本電気株式会社 活性汚泥処理装置及び返送汚泥のコントロール方法
AUPP860899A0 (en) * 1999-02-11 1999-03-04 Zeolite Australia Limited Process for the removal of suspended and other material from waste water
JP3301428B2 (ja) * 2000-03-09 2002-07-15 株式会社 小川環境研究所 廃水処理試験方法
JP2010271090A (ja) * 2009-05-20 2010-12-02 Hiyoshi:Kk 活性汚泥特性測定装置及び活性汚泥特性測定方法
JP2012020225A (ja) * 2010-07-14 2012-02-02 Ogawa Kankyo Kenkyusho:Kk 汚泥の脱窒反応強度の評価方法
FI20105813A0 (fi) * 2010-07-20 2010-07-20 Kemira Oyj Menetelmä ja järjestelmä vesipitoisen virran ominaisuuksien monitoroimiseksi
JP2015013225A (ja) * 2013-07-03 2015-01-22 株式会社 小川環境研究所 活性汚泥混合液のサンプリング装置及びサンプリング方法
JP6191404B2 (ja) * 2013-11-07 2017-09-06 新日鐵住金株式会社 汚泥活性度測定装置および汚泥活性度の測定方法
CL2015001499A1 (es) * 2015-06-03 2015-11-27 Tailpro Consulting Spa Aparato y método para pruebas de sedimentación estática que comprende una pluralidad de probetas de sedimentación, las cuales se someten a las mismas condiciones de mezcla.

Also Published As

Publication number Publication date
EP3939942A4 (en) 2022-10-26
JPWO2020183577A1 (ja) 2021-03-25
CN113518764B (zh) 2023-04-28
US11945739B2 (en) 2024-04-02
US20220177337A1 (en) 2022-06-09
WO2020183577A1 (ja) 2020-09-17
CN113518764A (zh) 2021-10-19
EP3939942A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
Alattabi et al. Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor
Ruiz et al. The anaerobic SBR process: basic principles for design and automation
CN110188945B (zh) 一种生产中的污水预测系统及污水预测方法
JP4900556B2 (ja) 排水処理プラントの運転管理方法
JP6583876B1 (ja) 排水処理施設の試験方法
RU2192474C2 (ru) Способ мониторинга микробиологического процесса в потоке жидкости (варианты)
Salama et al. Study of dysfunction into activated sludge basins in sewage treatment plant of the City of Khouribga (Morocco)
Gasmi et al. Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N
JP6702656B2 (ja) グラニュールの形成方法及びグラニュールの形成装置
EP0537210A4 (ja)
Anderson et al. Influence of pre-treatments and recycled flows on the COD fractions of a wastewater: a case study
Al-Attabi Treatment of Petroleum Refinery Wastewater in an Innovative Sequencing Batch Reactor
Delahaye et al. Use of fixed micro-algae as a direct, simple and quickly measurable indicator of biofilm density in biofilters in order to improve washing operations
Paulsrud et al. Full Scale Experiences with Thermophilic Aerobic Digestion of Primary-Chemical Sewage Sludge
Zamouche-Zerdazi et al. Impact of clear waters parasites on the biological wastewater treatment
Pankivskyi et al. Innovative Wastewater Treatment Using Activated Sludge and Flotation Clarifications Under Cold Weather Conditions
Yun et al. New Technical Approaches for the Co-processing of Pharmaceutical Wastewater in Municipal Wastewater Treatment Plants in the Shenyang Region
Stensel et al. Evaluation of denitrification kinetics at wastewater treatment facilities
Luque Exocellular polymeric substances, bioflocculation and sludge settling properties in a combined anaerobic/activated sludge process
Llugaxhiu et al. Determination of physical and chemical parameters of wastewater before and after treatment in the dairy industry using SBR reactor
PM et al. Evaluation of Dairy Effluent Treatment Efficiency in Aerated Sequential Batch Reactor-A Numerical Approach
Shiskowski Biological nitrification and denitrification of high ammonia landfill leachate using pre denitrification and pre/post denitrification processes
Ahmed Treatment of Slaughterhouse Effluent Using Sequencing Batch Reactor
Amatya Study on Process Performance and Evaluation of Dala Vatten’s Two Municipal Wastewater Treatment Plants.
Theuri Sequencing Batch Reactor In Treatment Of Slaughterhouse Effluent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190614

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190827

R150 Certificate of patent or registration of utility model

Ref document number: 6583876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250