JP6567305B2 - LED light source - Google Patents

LED light source Download PDF

Info

Publication number
JP6567305B2
JP6567305B2 JP2015058335A JP2015058335A JP6567305B2 JP 6567305 B2 JP6567305 B2 JP 6567305B2 JP 2015058335 A JP2015058335 A JP 2015058335A JP 2015058335 A JP2015058335 A JP 2015058335A JP 6567305 B2 JP6567305 B2 JP 6567305B2
Authority
JP
Japan
Prior art keywords
substrate
metal
pair
metal structure
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015058335A
Other languages
Japanese (ja)
Other versions
JP2016178242A (en
Inventor
雄貴 横山
雄貴 横山
勝寿 中山
勝寿 中山
幸生 西田
幸生 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Stanley Electric Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015058335A priority Critical patent/JP6567305B2/en
Publication of JP2016178242A publication Critical patent/JP2016178242A/en
Application granted granted Critical
Publication of JP6567305B2 publication Critical patent/JP6567305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、LED光源に関するものであり、詳しくは、発光源のLED素子を基板に実装してなるLED光源に関する。   The present invention relates to an LED light source, and more particularly to an LED light source formed by mounting an LED element of a light emitting source on a substrate.

従来、この種の「LED光源」としては、特許文献1に「発光装置」の名称で開示されたものがある。   Conventionally, this type of “LED light source” is disclosed in Patent Document 1 under the name of “light emitting device”.

開示され発光装置は、2層構造の積層型アルミナ基板にLEDチップが接合された構成からなるものである。   The disclosed light emitting device has a configuration in which an LED chip is bonded to a laminated alumina substrate having a two-layer structure.

具体的には図10にあるように、第1層アルミナシート80と第2層アルミナシート81が貼り合わされて2層構造の積層型アルミナ基板82が形成されると共に、第2層アルミナシート81の上面に形成された金属膜からなる一対の電極パッド83と第1層アルミナシート80の裏面に形成された金属膜からなる一対の裏面引出し電極84の夫々が、内部にAg(銀)が埋め込まれた複数のスルーホール85を介して電気的に接続されている。   Specifically, as shown in FIG. 10, the first layer alumina sheet 80 and the second layer alumina sheet 81 are bonded together to form a laminated alumina substrate 82 having a two-layer structure. Each of the pair of electrode pads 83 made of a metal film formed on the upper surface and the pair of back surface extraction electrodes 84 made of a metal film formed on the back surface of the first layer alumina sheet 80 has Ag (silver) embedded therein. The plurality of through holes 85 are electrically connected.

LEDチップ86は、LED発光層87上にp電極88及びn電極89が形成されて夫々の電極88、89の一部が絶縁保護膜(図示せず)から露出し、絶縁保護膜から露出したp電極88及びn電極89の夫々がAuバンプ90及び銀ペースト91を介して積層型アルミナ基板82の一対の電極パッド83の夫々に機械的且つ電気的に接合されている。LEDチップ86は更に、LEDチップ86と積層型アルミナ基板82との間に充填されたアンダーフィル樹脂92によって積層型アルミナ基板82上に固定されている。   In the LED chip 86, a p-electrode 88 and an n-electrode 89 are formed on the LED light emitting layer 87, and a part of each of the electrodes 88 and 89 is exposed from an insulating protective film (not shown), and is exposed from the insulating protective film. Each of the p electrode 88 and the n electrode 89 is mechanically and electrically bonded to each of the pair of electrode pads 83 of the laminated alumina substrate 82 via the Au bump 90 and the silver paste 91. The LED chip 86 is further fixed on the laminated alumina substrate 82 by an underfill resin 92 filled between the LED chip 86 and the laminated alumina substrate 82.

これにより、LEDチップ86が、該LEDチップ86と同一サイズの積層型アルミナ基板82上に実装されて発光装置100の小型化が可能となると共に、LEDチップ86のp電極88及びn電極89にAuバンプ90及び銀ペースト91を介して機械的且つ電気的に接合された、第2層アルミナシート81の上面に形成された一対の電極パッド83が、内部に銀が埋め込まれた複数のスルーホール85を介して第1層アルミナシート80の裏面に形成された一対の裏面引出し電極84に電気的に接続されることにより発光装置100の薄型化が可能となる。   As a result, the LED chip 86 is mounted on the laminated alumina substrate 82 having the same size as the LED chip 86 and the light emitting device 100 can be reduced in size, and the p-electrode 88 and the n-electrode 89 of the LED chip 86 can be reduced. A plurality of through-holes in which a pair of electrode pads 83 formed on the upper surface of the second-layer alumina sheet 81, mechanically and electrically bonded via the Au bump 90 and the silver paste 91, are embedded with silver. The light emitting device 100 can be thinned by being electrically connected to the pair of back surface extraction electrodes 84 formed on the back surface of the first layer alumina sheet 80 via 85.

また、LED発光層87で発光した光は、LED発光層87に対してp電極88及びn電極89が位置する側と反対側に位置する、透光性を有するサファイア基板93を透過して外部に出射される。そのため、発光装置100の高輝度化も可能となる、とされている。   The light emitted from the LED light emitting layer 87 passes through the sapphire substrate 93 having translucency, which is located on the opposite side of the LED light emitting layer 87 from the side where the p electrode 88 and the n electrode 89 are located. Is emitted. Therefore, the luminance of the light emitting device 100 can be increased.

更に、積層型アルミナ基板82については、第2層アルミナシート81の上面に形成された一対の電極パッド83と第1層アルミナシート80の裏面に形成された一対の裏面引出し電極84とが、内部に銀が埋め込まれた複数のスルーホール85を介して接続されているため、良好な熱伝導性及び良好な耐熱特性を有する、とされている。   Further, the laminated alumina substrate 82 includes a pair of electrode pads 83 formed on the upper surface of the second layer alumina sheet 81 and a pair of back surface extraction electrodes 84 formed on the back surface of the first layer alumina sheet 80. It is said that it has good thermal conductivity and good heat resistance because it is connected through a plurality of through holes 85 embedded with silver.

特開2012−165016号公報JP2012-165016A

ところで、上記構成からなる発光装置100は積層型アルミナ基板82が、p電極88及びn電極89が一方の面側のみに形成されたLEDチップ86を実装するための構成となっており、p電極及びn電極が互いに対向する両面側に形成されたLEDチップは実装できない。   By the way, the light emitting device 100 configured as described above has a configuration in which the laminated alumina substrate 82 is mounted with the LED chip 86 in which the p electrode 88 and the n electrode 89 are formed only on one surface side. In addition, the LED chip in which the n electrodes are formed on both sides facing each other cannot be mounted.

近年基板の基材はセラミック以外に、低コスト化を図るためにLTCC(低温同時焼成セラミック)を使用することが多くなっている。しかも、光取り出し向上させるために、2個の高出力(高発熱)なLED素子をできるだけ近接配置したい要求もある。図10のように2個のLED素子が十分離れていればよいが、スルーホールのサイズも大きくすることで、放熱性を確保できる。しかし、スルーホールも大きく、かつ、2個の素子を近接配置する場合、LTCCによる積層基板の1000℃前後の焼成中に積層基板は、熱膨張率が比較的高めの銀が埋まった2つのスルーホールとその間に位置する部分に、その熱膨張差で応力が集中して基板割れが発生するという問題がある。また、LEDチップ86の発光時の発熱は、LEDチップ86のp電極88及びn電極89、積層型アルミナ基板82の一対の電極パッド83、内部に銀が埋め込まれた複数のスルーホール85、及び一対の裏面引出し電極84を順次伝導されて外部に逃がされる。その場合、伝熱経路にAuバンプ90やスルーホール85等の断面積が小さい部分が存在するために熱抵抗が大きくなり、放熱効率が低下してLEDチップ86の自己発熱による温度上昇を十分に抑制することが困難である。   In recent years, in addition to ceramic, the base material of the substrate is often used LTCC (low temperature co-fired ceramic) in order to reduce the cost. Moreover, in order to improve light extraction, there is a demand to place two high-power (high heat generation) LED elements as close as possible. Although it is sufficient that the two LED elements are sufficiently separated as shown in FIG. 10, heat dissipation can be ensured by increasing the size of the through hole. However, when the through-hole is large and two elements are arranged close to each other, the multilayer substrate has two through holes filled with silver having a relatively high thermal expansion coefficient during firing of the multilayer substrate by LTCC at around 1000 ° C. There is a problem that stress is concentrated due to the difference in thermal expansion in the hole and a portion located between the holes, causing a substrate crack. The LED chip 86 generates heat when the LED chip 86 emits light. The p electrode 88 and the n electrode 89 of the LED chip 86, the pair of electrode pads 83 of the laminated alumina substrate 82, a plurality of through holes 85 embedded with silver, The pair of back surface extraction electrodes 84 are sequentially conducted to escape to the outside. In that case, since there is a portion with a small cross-sectional area such as the Au bump 90 and the through hole 85 in the heat transfer path, the thermal resistance increases, the heat dissipation efficiency is lowered, and the temperature rise due to the self-heating of the LED chip 86 is sufficient. It is difficult to suppress.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、基板焼成時の割れを防ぐ積層構造の提案と、良好な放熱効率によって高い信頼性を確保しながらLEDチップの高密度実装を可能にして発光装置の小型化を実現することにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to propose a laminated structure that prevents cracking during substrate firing, and to ensure high reliability by ensuring good heat dissipation efficiency. Therefore, it is possible to reduce the size of the light emitting device.

上記課題を解決するために、本発明の請求項1に記載された発明は、第1基板と第2基板の2枚のLTCC基板を貼り合わせてなる積層基板と、互いに対向する面に素子電極を設けた2つのLED素子と、を備え、前記第1基板は、2つのLED素子の夫々が載置された一対のダイボンディングパッドと前記各ダイボンディングパッドに繋がり厚み方向に貫通する窓孔内に金属が充填されてなる一対の第1金属構造体とを有し、前記第2基板は、一対の放熱用電極と前記各放熱用電極に繋がり厚み方向に貫通する窓孔内に金属が充填されてなる一対の第2金属構造体とを有し、前記一対のダイボンディングパッドの夫々と前記一対の放熱用電極の夫々が、前記一対の第1金属構造体の夫々と前記一対の第2金属構造体の夫々を介して繋がっており、互いに繋がる第1金属構造体と第2金属構造体同士は、前記第1金属構造体の断面積よりも前記第2金属構造体の断面積の方が大きく、且つ、前記一対の第1金属構造体間の間隔よりも前記一対の第2金属構造体間の間隔の方が広く、前記間隔の夫々は、各間隔を置いて位置する夫々の一対の金属構造体の、該一対の金属構造体の配置方向の長さが同じ場合はその長さの85%以上であり、長さが異なる場合は長い方の長さの85%以上であることを特徴とするものである。
In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention includes a laminated substrate formed by bonding two LTCC substrates of a first substrate and a second substrate, and an element electrode on a surface facing each other. The first substrate has a pair of die bonding pads on which each of the two LED elements is placed, and a window hole penetrating in the thickness direction connected to each die bonding pad. A pair of first metal structures that are filled with metal, and the second substrate is filled with metal in a pair of heat-dissipating electrodes and a window hole that passes through each of the heat-dissipating electrodes and penetrates in the thickness direction. Each of the pair of die bonding pads and each of the pair of heat radiation electrodes are each of the pair of first metal structures and the pair of second metal structures. Connected via each of the metal structures The first metal structure and the second metal structure connected to each other have a cross-sectional area of the second metal structure larger than a cross-sectional area of the first metal structure, and the pair of first metal structures. than the spacing between the metal structure rather is wide toward the spacing between the second metal structure of the pair, each of the intervals, a pair of respective located at a respective spacing of the metal structure, the pair When the length in the arrangement direction of the metal structure is the same, it is 85% or more of the length, and when the length is different, it is 85% or more of the longer length .

また、本発明の請求項2に記載された発明は、請求項1において、前記第1基板の窓孔に充填する金属及び前記第2基板の窓孔に充填する金属はいずれも銀及び銀を主体とする金属であることを特徴とするものである。
The invention described in claim 2 of the present invention is that in claim 1, the metal filling the window hole of the first substrate and the metal filling the window hole of the second substrate are both silver and silver. It is characterized by being the main metal .

本発明のLED光源によれば、第1基板と第2基板の2枚のLTCC基板による積層基板の互いに対向する面に設けられた一対のダイボンディングパッドと一対の放熱用電極を、第1基板及び第2基板の夫々に設けられた一対の第1金属構造体及び第2金属構造体を介して繋いだ。この場合、第1金属構造体の夫々の断面積よりも第2金属構造体の夫々の断面積を大きく設定すると共に、第1金属構造体間の間隔よりも第2金属構造体間の間隔を大きく設定した。   According to the LED light source of the present invention, the pair of die bonding pads and the pair of heat radiation electrodes provided on the mutually opposing surfaces of the laminated substrate of the two LTCC substrates of the first substrate and the second substrate are provided on the first substrate. And a pair of first metal structures and second metal structures provided on each of the second substrates. In this case, each cross-sectional area of the second metal structure is set larger than each cross-sectional area of the first metal structure, and an interval between the second metal structures is set larger than an interval between the first metal structures. Largely set.

これにより、LED素子からの発熱が効率よく放熱されるために、LED素子の高密度実装に対してLED素子の温度上昇の熱による影響が抑制され、高い信頼性を確保しながらLED光源の小型化が可能になる。   As a result, the heat generated from the LED element is efficiently radiated, so that the influence of the heat of the LED element on the high-density mounting of the LED element is suppressed, and the LED light source is small while ensuring high reliability. Can be realized.

実施形態に係るLED光源の平面図である。It is a top view of the LED light source which concerns on embodiment. 同じく、実施形態に係る底面図である。Similarly, it is a bottom view according to the embodiment. 図1のA−A断面矢視図である。It is an AA cross-sectional arrow view of FIG. 実施形態に係るLED光源の電気的接続を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the electrical connection of the LED light source which concerns on embodiment. LED光源を基板実装した状態の説明図である。It is explanatory drawing of the state which mounted the LED light source on the board | substrate. LED光源からLED素子及びダイパッドを取り除いた平面図である。It is the top view which removed the LED element and the die pad from the LED light source. 図1のA−A断面矢視図である。It is an AA cross-sectional arrow view of FIG. 従来のLED光源の部分構成図である。It is a partial block diagram of the conventional LED light source. LED光源の応用例の説明図である。It is explanatory drawing of the example of application of a LED light source. 従来例の説明図である。It is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図9を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 9 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明に係る実施形態のLED光源の平面図、図2は底面図、図3は図1のA−A断面矢視図、図4は電気的な接続を説明する断面模式図である。   1 is a plan view of an LED light source according to an embodiment of the present invention, FIG. 2 is a bottom view, FIG. 3 is a cross-sectional view taken along line AA in FIG. 1, and FIG. is there.

実施形態のLED光源1は、夫々がLTCCからなる2枚の基板(第1基板10及び第2基板20)の貼り合わせによって積層基板30を形成し、積層基板30の上に2つのLED素子(LEDチップ)2、3を並設実装した構成を有している。実施形態のLED光源1は、夫々がLTCCからなる2枚の基板(第1基板10及び第2基板20)を貼り合わせた後、1000℃前後の焼成によって積層基板30を形成し、積層基板30の上に2つのLED素子(LEDチップ)2、3を並設実装した構成を有している。   The LED light source 1 of the embodiment forms a laminated substrate 30 by bonding two substrates (first substrate 10 and second substrate 20) each made of LTCC, and two LED elements (on the laminated substrate 30). LED chips) 2 and 3 are mounted side by side. In the LED light source 1 according to the embodiment, two substrates (first substrate 10 and second substrate 20) each made of LTCC are bonded together, and then the multilayer substrate 30 is formed by baking at around 1000 ° C. It has a configuration in which two LED elements (LED chips) 2 and 3 are mounted side by side.

2つのLED素子2、3はいずれも、図示しないが、互いに対向する両面に一対の素子電極(アノード電極及びカソード電極)が形成されている。   Although the two LED elements 2 and 3 are not shown, a pair of element electrodes (an anode electrode and a cathode electrode) are formed on both surfaces facing each other.

2層構造の積層基板30は、積層基板30を構成する第1基板10及び第2基板20の夫々が所定の位置に所定の形状寸法で厚み方向に貫通する窓孔を有しており、各窓孔内には金属構造体(第1金属構造体12及び第2金属構造体22)が形成されている。金属構造体としては、銀及び銀を主体とする金属から構成される。具体的には、焼結を阻害しない範囲内で銀の他に白金、ロジウム、パラジウム、ルテニウムを含んでいてもよい。また、LED素子2、3が実装された側の基板(第1基板)10のLED素子2、3が実装された側の面(表面)、及び第1基板10に貼り合わされた第2基板20の両面に導体パターンが形成されている。   The multilayer substrate 30 having a two-layer structure has a window hole in which each of the first substrate 10 and the second substrate 20 constituting the multilayer substrate 30 penetrates in a thickness direction at a predetermined position in a predetermined shape dimension. Metal structures (first metal structure 12 and second metal structure 22) are formed in the window holes. As a metal structure, it is comprised from the metal which has silver and silver as a main component. Specifically, platinum, rhodium, palladium, and ruthenium may be included in addition to silver as long as sintering is not inhibited. In addition, the substrate (first substrate) 10 on the side where the LED elements 2 and 3 are mounted, the surface (front surface) on which the LED elements 2 and 3 are mounted, and the second substrate 20 bonded to the first substrate 10. Conductive patterns are formed on both sides.

積層基板30を構成する第1基板10は表面に、2つのLED素子2、3の夫々が載設(ダイボンディング)される、導体パターンからなるダイボンディングパッド(以下、「ダイパッド」と略称する)11a、11bが設けられると共に、一端部が2つのLED素子2、3の夫々の素子電極(上部電極)に接合されたボンディングワイヤの他端部が接合されるボンディングワイヤパッド(以下、「ワイヤパッド」と略称する)11c、11dが設けられている。   The first substrate 10 constituting the laminated substrate 30 has a die bonding pad (hereinafter abbreviated as “die pad”) formed of a conductor pattern on which two LED elements 2 and 3 are mounted (die bonding). 11a and 11b are provided, and a bonding wire pad (hereinafter referred to as “wire pad”) to which the other end of the bonding wire is bonded to one of the element electrodes (upper electrodes) of one of the two LED elements 2 and 3 is bonded. 11c and 11d).

この場合、ダイパッド11a、11b及びワイヤパッド11c、11dは互いに分離独立した状態で設けられている。   In this case, the die pads 11a and 11b and the wire pads 11c and 11d are provided so as to be separated and independent from each other.

そして、LED素子2、3が銀ペースト等の導電接合部材(図示せず)を介してダイパッド11a、11bの夫々に接合されてLED素子2、3の素子電極(下部電極)とダイパッド11a、11bとの電気的導通が図られている。一方、LED素子2、3の夫々の素子電極(上部電極)はボンディングワイヤ4a、4bを介してワイヤパッド11c、11dに接続されてLED素子2、3の上部電極とワイヤパッド11c、11dとの電気的導通が図られている。   Then, the LED elements 2 and 3 are bonded to the die pads 11a and 11b via conductive bonding members (not shown) such as silver paste, and the element electrodes (lower electrodes) of the LED elements 2 and 3 and the die pads 11a and 11b. And electrical continuity. On the other hand, the element electrodes (upper electrodes) of the LED elements 2 and 3 are connected to the wire pads 11c and 11d via the bonding wires 4a and 4b, and the upper electrodes of the LED elements 2 and 3 and the wire pads 11c and 11d are connected. Electrical continuity is achieved.

一方、積層基板30を構成する第2基板20は、第1基板10に対する貼り合わせ面と反対側の面(裏面)に、導体パターンからなる一対の放熱用電極23a、23bが設けられると共に、外部電源からの電力を受電する一対の受電用電極23c、23dが設けられている。   On the other hand, the second substrate 20 constituting the multilayer substrate 30 is provided with a pair of heat radiation electrodes 23a and 23b made of a conductor pattern on the surface (back surface) opposite to the bonding surface to the first substrate 10, and externally. A pair of power receiving electrodes 23c and 23d for receiving power from the power source are provided.

この場合、放熱用電極23a、23b及び受電用電極23c、23dは互いに分離独立した状態で設けられている。   In this case, the heat radiation electrodes 23a and 23b and the power reception electrodes 23c and 23d are provided in a state of being separated and independent from each other.

そして、2つのダイパッド11a、11bの下方には、該ダイパッド11a、11bの夫々に電気的に接続された第1金属構造体12a、12bが設けられ、一対の放熱用電極23a、23bの上方には、該放熱用電極23a、23bの夫々に電気的に接続された第2金属構造体22a、22bが設けられ、第1金属構造体12aと第2金属構造体22a、及び第1金属構造体12bと第2金属構造体22bが電気的に接続されている。   Below the two die pads 11a and 11b, there are provided first metal structures 12a and 12b electrically connected to the die pads 11a and 11b, respectively, and above the pair of heat radiation electrodes 23a and 23b. Are provided with second metal structures 22a and 22b electrically connected to the heat radiation electrodes 23a and 23b, respectively, and the first metal structure 12a, the second metal structure 22a, and the first metal structure. 12b and the second metal structure 22b are electrically connected.

また、図4の断面模式図にあるように、2つのワイヤパッド11c、11dの下方には、該ワイヤパッド11c、11dの夫々に電気的に接続された第1金属構造体12c、12dが設けられ、一対の受電用電極23c、23dの上方には、該受電用電極23c、23dの夫々に電気的に接続された第2金属構造体22c、22dが設けられており、そのうち、第1金属構造体12cと第2金属構造体22cは電気的に接続されている。   Further, as shown in the schematic cross-sectional view of FIG. 4, below the two wire pads 11c and 11d, there are provided first metal structures 12c and 12d electrically connected to the wire pads 11c and 11d, respectively. The second metal structures 22c and 22d electrically connected to the power receiving electrodes 23c and 23d are provided above the pair of power receiving electrodes 23c and 23d, respectively. The structure 12c and the second metal structure 22c are electrically connected.

第2基板20の、第1基板10に対する貼り合わせ面(内面)には導体パターンからなる配線パッド21ad、21bdが設けられている。   On the bonding surface (inner surface) of the second substrate 20 with respect to the first substrate 10, wiring pads 21ad and 21bd made of a conductor pattern are provided.

配線パッド21adは、第2基板20の第2金属構造体22aに接続されると同時に第1基板10の第1金属構造体12a、12dに電気的に接続され、配線パッド21bdは第2基板20の第2金属構造体22b、22dに接続されると同時に第1基板10の第1金属構造体12bに電気的に接続されている。   The wiring pad 21ad is electrically connected to the first metal structures 12a and 12d of the first substrate 10 at the same time as being connected to the second metal structure 22a of the second substrate 20, and the wiring pad 21bd is electrically connected to the second substrate 20. The second metal structures 22b and 22d are electrically connected to the first metal structure 12b of the first substrate 10 at the same time.

次に、上述のLED光源1の電気回路構成について図4を参照して説明する。受電用電極23cは、第2金属構造体22c、第1金属構造体12c、ワイヤパッド11c及びボンディングワイヤ4aを介してLED素子2の上部電極に繋がり、LED素子2の下部電極は、ダイパッド11a、第1金属構造体12a、配線パッド21ab、第1金属構造体12d、ワイヤパッド11d及びボンディングワイヤ4bを介してLED素子3の上部電極に繋がっている。更に、LED素子3の下部電極は、ダイパッド11b、第1金属構造体12b、配線パッド21bd及び第2金属構造体22dを介して受電用電極23dに繋がっている。   Next, the electrical circuit configuration of the LED light source 1 will be described with reference to FIG. The power receiving electrode 23c is connected to the upper electrode of the LED element 2 through the second metal structure 22c, the first metal structure 12c, the wire pad 11c, and the bonding wire 4a, and the lower electrode of the LED element 2 is connected to the die pad 11a, The first metal structure 12a, the wiring pad 21ab, the first metal structure 12d, the wire pad 11d, and the bonding wire 4b are connected to the upper electrode of the LED element 3. Further, the lower electrode of the LED element 3 is connected to the power receiving electrode 23d through the die pad 11b, the first metal structure 12b, the wiring pad 21bd, and the second metal structure 22d.

そこで、LED素子2、3の夫々の上部電極をアノード電極、下部電極をカソード電極とすると、受電用電極23cに(+)側電圧を印加し、受電用電極23dに(−)側電圧を印加することにより、2つのLED素子2、3が同時に点灯(発光)する。   Therefore, when the upper electrode of each of the LED elements 2 and 3 is an anode electrode and the lower electrode is a cathode electrode, a (+) side voltage is applied to the power receiving electrode 23c and a (−) side voltage is applied to the power receiving electrode 23d. By doing so, the two LED elements 2 and 3 are simultaneously lit (emitted).

また、受電用電極23cに(+)側電圧を印加し、放熱用電極23aに(−)側電圧を印加することによりLED素子2が点灯し、放熱用電極23aに(+)側電圧を印加し、受電用電極23dに(−)側電圧を印加することによりLED3が点灯する。これにより、2つのLED素子2、3の夫々を個別に点灯制御することが可能となる。   Further, by applying a (+) side voltage to the power receiving electrode 23c and applying a (−) side voltage to the heat radiating electrode 23a, the LED element 2 is turned on, and a (+) side voltage is applied to the heat radiating electrode 23a. Then, the LED 3 is turned on by applying a (−) side voltage to the power receiving electrode 23d. Thereby, lighting control of each of the two LED elements 2 and 3 can be performed individually.

ところで、LED素子2、3は、点灯(発光)時に発熱し、自己発熱による温度上昇によってLED素子2、3の発光効率の低下や素子寿命の低下を招く。そこで、LED光源1をLED光源実装基板40に実装するに際しては、図5(LED光源を基板実装した状態の説明図)にあるように、LED光源実装基板40にLED光源1の放熱用電極23a、23bの夫々を接合するための放熱用電極接合パッド41a、41bを設ける。なお、LED光源実装基板40には図示していないが当然、LED光源1の受電用電極23c、23dの夫々を接合する受電用電極接合パッドも設ける。   By the way, the LED elements 2 and 3 generate heat at the time of lighting (light emission), and due to a temperature rise due to self-heating, the light emission efficiency of the LED elements 2 and 3 and the element life are reduced. Therefore, when the LED light source 1 is mounted on the LED light source mounting substrate 40, as shown in FIG. 5 (an explanatory diagram of the state where the LED light source is mounted on the substrate), the heat radiation electrode 23a of the LED light source 1 is mounted on the LED light source mounting substrate 40. , 23b are provided for heat radiation electrode bonding pads 41a and 41b. Although not shown in the figure, the LED light source mounting substrate 40 is also provided with a power receiving electrode bonding pad for bonding the power receiving electrodes 23c and 23d of the LED light source 1.

すると、2つのLED素子2、3のうち一方のLED素子2による発熱は、ダイパッド11a、第1金属構造体12a及び第2金属構造体22aを介して放熱用電極23aに伝導され、放熱用電極23aが接合されたLED光源実装基板40の放熱用電極接合パッド41aに伝導されて該放熱用電極接合パッド41aを通してLED光源1外に放散される。   Then, heat generated by one of the two LED elements 2 and 3 is conducted to the heat dissipation electrode 23a via the die pad 11a, the first metal structure 12a, and the second metal structure 22a, and the heat dissipation electrode. Conductive to the heat radiation electrode bonding pad 41a of the LED light source mounting substrate 40 to which the light source 23a is bonded is diffused out of the LED light source 1 through the heat radiation electrode bonding pad 41a.

同様に、2つのLED素子2、3のうち他方のLED素子3による発熱は、ダイパッド11b、第1金属構造体12b及び第2金属構造体22bを介して放熱用電極23bに伝導され、放熱用電極23bが接合されたLED光源実装基板40の放熱用電極接合パッド41bに伝導されて該放熱用電極接合パッド41bを通してLED光源1外に放散される。   Similarly, heat generated by the other LED element 3 of the two LED elements 2 and 3 is conducted to the heat dissipation electrode 23b via the die pad 11b, the first metal structure 12b, and the second metal structure 22b, and is used for heat dissipation. The light is transmitted to the heat radiation electrode bonding pad 41b of the LED light source mounting substrate 40 to which the electrode 23b is bonded, and is diffused out of the LED light source 1 through the heat radiation electrode bonding pad 41b.

これにより、LED素子2、3の夫々による発熱が効率良く放熱されてLED素子2、3自体の自己発熱による温度上昇が抑制され、温度上昇に起因するLED素子2、3の発光効率の低減による発光光量の減少が抑えられると共に、同様にLED素子2、3の温度上昇に起因するLED素子2、3の素子劣化による発光寿命の短縮を抑制することができ、その結果、高い信頼性及び適切な照射光量を確保することができる。   As a result, the heat generated by each of the LED elements 2 and 3 is efficiently radiated and the temperature increase due to the self-heating of the LED elements 2 and 3 itself is suppressed, and the light emission efficiency of the LED elements 2 and 3 due to the temperature increase is reduced. The decrease in the amount of emitted light can be suppressed, and the shortening of the light emission life due to the deterioration of the LED elements 2 and 3 due to the temperature rise of the LED elements 2 and 3 can be suppressed. A sufficient amount of irradiation light can be secured.

本発明のLED光源1においては、積層基板焼成時の割れ不良の改善と、LED素子2、3による発熱に対して放熱効率の高効率化及び積層基板30の高信頼性化を図るために、LED素子2、3が載設されたダイパッド11a、11bの下方に位置して該ダイパッド11a、11bの夫々に電気的に接続された第1金属構造体12a、12b、及び第1金属構造体12a、12bの下方に位置して該第1金属構造体12a、12bの夫々に電気的に接続された第2金属構造体22a、22bの4つの金属構造体12a、12b、22a、22bの相互の関係を特別に規定した。   In the LED light source 1 of the present invention, in order to improve the cracking failure when firing the multilayer substrate and to increase the heat dissipation efficiency and the reliability of the multilayer substrate 30 against the heat generated by the LED elements 2 and 3, First metal structures 12a and 12b, and first metal structures 12a, which are located below the die pads 11a and 11b on which the LED elements 2 and 3 are mounted and are electrically connected to the die pads 11a and 11b, respectively. Of the four metal structures 12a, 12b, 22a, and 22b of the second metal structures 22a and 22b that are located below the electric lines 12b and electrically connected to the first metal structures 12a and 12b, respectively. The relationship was specially defined.

具体的には図6(LED光源からLED素子及びダイパッドを取り除いた平面図)にあるように、第2金属構造体22aの断面積S2aを第2金属構造体22aの上方に位置する第1金属構造体12aの断面積S1aよりも大きく設定し、同様に、第2金属構造体22bの断面積S2bを第2金属構造体22bの上方に位置する第1金属構造体12bの断面積S1bよりも大きく設定する。   Specifically, as shown in FIG. 6 (a plan view in which the LED element and the die pad are removed from the LED light source), the cross section S2a of the second metal structure 22a is positioned above the second metal structure 22a. Similarly, the sectional area S2b of the second metal structure 22b is set larger than the sectional area S1b of the first metal structure 12b located above the second metal structure 22b. Set larger.

これにより、LED素子2、3の夫々から離れるにつれて伝導路の断面積が大きくなり、熱の拡散によって放熱効果を高めることができる(図5参照)。   Thereby, the cross-sectional area of a conduction path becomes large as it leaves | separates from each of the LED elements 2 and 3, and the thermal radiation effect can be heightened by diffusion of heat (refer FIG. 5).

また、図7(図1のA−A断面矢視図)に示すように、LED素子2、3の並設方向において、隣接する第1金属構造体12aの長さをa、第1金属構造体12bの長さをbとして第1金属構造体12aと第1金属構造体12bとの間の間隔をcとすると共に、隣接する第2金属構造体22aの長さをd、第2金属構造体22bの長さをeとして第2金属構造体22aと第2金属構造体22bとの間の間隔をfとすると、f>cの関係、つまり第1金属構造体12aと第1金属構造体12bとの間隔cを第2金属構造体22aと第2金属構造体22bとの間隔fよりも狭く設定する。また、第2金属構造体22a、22bの夫々の長さd、eを第1金属構造体12a、12bの夫々の長さa、bよりも長く設定する。   Moreover, as shown in FIG. 7 (AA cross-sectional arrow view of FIG. 1), in the juxtaposed direction of the LED elements 2 and 3, the length of the adjacent first metal structure 12a is a, the first metal structure The length of the body 12b is b, the distance between the first metal structure 12a and the first metal structure 12b is c, the length of the adjacent second metal structure 22a is d, and the second metal structure When the length of the body 22b is e and the distance between the second metal structure 22a and the second metal structure 22b is f, the relationship f> c, that is, the first metal structure 12a and the first metal structure The distance c between the second metal structure 22a and the second metal structure 22b is set to be narrower than the distance c between the second metal structure 22a and the second metal structure 22b. Further, the lengths d and e of the second metal structures 22a and 22b are set longer than the lengths a and b of the first metal structures 12a and 12b, respectively.

それと同時に、第1金属構造体12aの長さaと第1金属構造体12bの長さbと間隔cとの関係を、a=bの場合はc≧a×0.85=b×0.85に設定し、aとbが異なっていずれか一方(例えばa)が長い場合(a>bの場合)は、c≧a×0.85に設定する。つまり、間隔cを挟んだ左右の第1金属構造体12a、12bの長さが異なる場合は、間隔cは、長さが長い方の第1金属構造体の長さの85%以上になるように設定する。   At the same time, the relationship between the length a of the first metal structure 12a, the length b of the first metal structure 12b, and the distance c is set such that when a = b, c ≧ a × 0.85 = b × 0. If a and b are different and either one (for example, a) is long (when a> b), c ≧ a × 0.85 is set. That is, when the lengths of the first metal structures 12a and 12b on the left and right sides with the interval c are different, the interval c is 85% or more of the length of the longer first metal structure. Set to.

同様に、第2金属構造体22aの長さdと第2金属構造体22bの長さeと間隔fとの関係を、d=eの場合はf≧d×0.85=e×0.85に設定し、dとeが異なっていずれか一方(例えばd)が長い場合(d>eの場合)は、f≧d×0.85に設定する。つまり、間隔fを挟んだ左右の第2金属構造体22a、22bの長さが異なる場合は、間隔fは、長さが長い方の第2金属構造体の長さの85%以上になるように設定する。   Similarly, the relationship between the length d of the second metal structure 22a, the length e of the second metal structure 22b, and the distance f is f = d × 0.85 = e × 0. When d and e are different and either one (for example, d) is long (d> e), f ≧ d × 0.85 is set. That is, when the lengths of the left and right second metal structures 22a and 22b across the gap f are different, the gap f is 85% or more of the length of the longer second metal structure. Set to.

これにより、間隔cの領域の大きさを、間隔cを挟む第1金属構造体12a、12bから伝導される熱容量に対応する大きさとし、同様に、間隔fの領域の大きさを、間隔fを挟む第2金属構造体22a、22bから伝導される熱容量に対応する大きさとした。その結果、LED素子2、3で発熱して積層基板30の、4つの金属構造体12a、12b、22a、22bで囲まれた領域Aに集まる熱の加熱密度を低減することになり、熱応力により領域Aの部分に発生する割れ及び破損を防止することができる。特に、間隔cを第1金属構造体12a、12bの85%以上とすることで、焼成時に両側の第1金属構造体12a、12bから間隔cの領域に位置するLTCCへ掛かる応力が緩和され、基板割れを防ぐことができる。   Accordingly, the size of the region of the interval c is set to a size corresponding to the heat capacity conducted from the first metal structures 12a and 12b sandwiching the interval c, and similarly, the size of the region of the interval f is set to the interval f. The size corresponds to the heat capacity conducted from the sandwiched second metal structures 22a and 22b. As a result, the heat density of the heat generated in the LED elements 2 and 3 and gathered in the region A surrounded by the four metal structures 12a, 12b, 22a and 22b of the multilayer substrate 30 is reduced. Therefore, it is possible to prevent cracking and breakage occurring in the region A. In particular, by setting the interval c to 85% or more of the first metal structures 12a and 12b, the stress applied to the LTCC located in the region of the interval c from the first metal structures 12a and 12b on both sides during firing is relieved, Substrate cracking can be prevented.

発明者たちは、第1金属構造体12aと第1金属構造体12bとの間の間隔cの距離を変えて焼成後の基板割れの評価を行った。評価サンプルは3種類とし、いずれのサンプルも第1金属構造体12aの長さa及び第1金属構造体12bの長さbをいずれも0.7mmとし、第2金属構造体22aの長さd及び第2金属構造体22bの長さeをいずれも0.93mmとし、LED素子の大きさを1mm□とすると共に、第1金属構造体12aの長さaと、第1金属構造体12aと第1金属構造体12bとの間隔cとの関係(c/a)を夫々、(c/a)=1、0.85、0.7とした。   Inventors evaluated the crack of the board | substrate after baking by changing the distance of the space | interval c between the 1st metal structure 12a and the 1st metal structure 12b. There are three types of evaluation samples. In each sample, the length a of the first metal structure 12a and the length b of the first metal structure 12b are both 0.7 mm, and the length d of the second metal structure 22a. And the length e of the second metal structure 22b is 0.93 mm, the size of the LED element is 1 mm □, the length a of the first metal structure 12a, the first metal structure 12a, The relationship (c / a) with the distance c from the first metal structure 12b was set to (c / a) = 1, 0.85, and 0.7, respectively.

その結果、(c/a)=0.7のサンプルは基板に割れが発生し(評価結果:×)、(c/a)=0.85のサンプルは基板にほぼ割れが発生せず(評価結果:△)、歩留まりも向上した。さらに、(c/a)=1のサンプルは基板にまったく割れが発生しなかった(評価結果:○)。以上のことより、(c/a)≧0.85とすることで焼成時の基板割れをほぼ防止することができ、さらに好ましくは(c/a)≧1とすることで割れを完全に防止できることがわかった。   As a result, the sample with (c / a) = 0.7 is cracked on the substrate (evaluation result: x), and the sample with (c / a) = 0.85 is hardly cracked on the substrate (evaluation) Results: Δ), yield improved. Furthermore, the sample of (c / a) = 1 did not crack at all on the substrate (evaluation result: ◯). From the above, it is possible to substantially prevent substrate cracking during firing by setting (c / a) ≧ 0.85, and more preferably to prevent cracking completely by setting (c / a) ≧ 1. I knew it was possible.

上記評価結果から、第2金属構造体22aと第2金属構造体22bとの間隔fも、第2金属構造体22aの長さdと第2金属構造体22bの長さeの夫々の85%以上とすれば基板割れを防ぐことができるのは言うまでもない。すなわち、2層積層構造の場合、c、fを夫々の両側に位置する金属構造体の長さの85%以上にすれば、焼成時の基板割れを防止することができる。   From the evaluation results, the distance f between the second metal structure 22a and the second metal structure 22b is also 85% of the length d of the second metal structure 22a and the length e of the second metal structure 22b. Needless to say, the substrate can be prevented from cracking as described above. That is, in the case of a two-layer laminated structure, if c and f are set to 85% or more of the length of the metal structure located on both sides, substrate cracking during firing can be prevented.

つまり、例えば、4つの金属構造体12a、12b、22a、22bの大きさに関わらず間隔cと間隔fを同じ大きさとする従来の構成(図8(従来のLED光源の部分構成図)参照)において、LED素子2、3の発熱による熱応力により領域Aに発生していた割れや破損の問題を解決することができる。   That is, for example, a conventional configuration in which the interval c and the interval f are the same regardless of the size of the four metal structures 12a, 12b, 22a, and 22b (see FIG. 8 (partial configuration diagram of a conventional LED light source)). The problem of cracks and breakage occurring in the region A due to the thermal stress due to the heat generated by the LED elements 2 and 3 can be solved.

ところで、上述の実施形態では、LED素子の外側の端面を第1金属構造体の外側の端面の近くに配置したり、第1金属構造体の長さをLED素子の長さの7割程度にしているが、金属構造体のサイズは、なるべく大きくなるよう調整したほうがよく、さらには、なるべくLED素子の中央に金属構造体がくるように位置を調整したほうがよい。つまり、2つのLED素子の近接配置、間隔c、fの配置は維持する必要があるが、第1金属構造体のサイズや位置は、LED素子のサイズや出力やスルーホールの熱抵抗の仕様などに応じて調整するので、実施形態の位置関係は一例にすぎない。   By the way, in the above-described embodiment, the outer end face of the LED element is arranged near the outer end face of the first metal structure, or the length of the first metal structure is set to about 70% of the length of the LED element. However, the size of the metal structure should be adjusted to be as large as possible, and further, the position should be adjusted so that the metal structure is at the center of the LED element as much as possible. That is, it is necessary to maintain the close arrangement of the two LED elements and the arrangement of the intervals c and f, but the size and position of the first metal structure are the specifications of the size of the LED element, the output, the thermal resistance of the through hole, etc. Therefore, the positional relationship of the embodiment is merely an example.

また、LED素子同士の接触はリーク不良の原因となるため不可だが、実施形態の2つのLED素子は近接配置しており、接触しない程度に狭ければ狭いほどよい。しかし、LED素子のサイズや公差、もしくは、実装装置の位置精度次第で決定されるので、実施形態の素子間距離は一例にすぎないのは言うまでもない。   Further, the contact between the LED elements is not possible because it causes a leak failure, but the two LED elements of the embodiment are arranged close to each other, and the narrower the better as they do not contact. However, since it is determined depending on the size and tolerance of the LED elements or the positional accuracy of the mounting apparatus, it goes without saying that the inter-element distance of the embodiment is merely an example.

上述のLED光源1は、実用に際しては例えば図9(LED光源の応用例の説明図)にあるように、積層基板30のLED素子2、3の実装面上の周縁部に環状の側壁42を設け、側壁42内に透光性樹脂からなる封止樹脂43を充填してLED素子2、3及びボンディングワイヤ4a、4bを樹脂封止することがある。   In practical use, for example, the LED light source 1 described above has an annular side wall 42 at the periphery on the mounting surface of the LED elements 2 and 3 of the multilayer substrate 30 as shown in FIG. 9 (an explanatory diagram of an application example of the LED light source). The LED element 2, 3 and the bonding wires 4 a, 4 b may be resin-sealed by providing a sealing resin 43 made of a translucent resin in the side wall 42.

これにより、LED素子2、3を水分、塵埃及びガス等の外部環境から保護し、且つボンディングワイヤ4a、4bを振動及び衝撃等の機械的応力から保護する。また、封止樹脂43はLED素子2、3の光出射面とで界面を形成しており、LED素子2、3の発光光をLED素子2、3の光出射面から封止樹脂43内に効率良く出射させる機能も有している。   Thereby, the LED elements 2 and 3 are protected from the external environment such as moisture, dust and gas, and the bonding wires 4a and 4b are protected from mechanical stresses such as vibration and impact. In addition, the sealing resin 43 forms an interface with the light emitting surfaces of the LED elements 2 and 3, and the emitted light of the LED elements 2 and 3 enters the sealing resin 43 from the light emitting surfaces of the LED elements 2 and 3. It also has a function of emitting light efficiently.

また、封止樹脂43に、蛍光体を分散させた透明樹脂を用いることにより、LED素子2、3の発光色とは異なる色相の光を得ることができる。   Further, by using a transparent resin in which a phosphor is dispersed in the sealing resin 43, light having a hue different from the emission color of the LED elements 2 and 3 can be obtained.

以上説明したように、本発明のLED光源は、2枚のLTCC基板を積層してなる積層基板に、互いに対向する両面に素子電極を有する2つのLED素子を実装し、LED素子が載設されたダイパッドと外部への放熱を行う放熱用電極を、積層基板を構成する第1基板に形成された第1金属構造体及び第2基板に形成された第2金属構造体で繋いで第1金属構造体及び第2金属構造体による伝熱経路を形成した。   As described above, in the LED light source of the present invention, two LED elements having element electrodes on both sides facing each other are mounted on a laminated substrate formed by laminating two LTCC substrates, and the LED elements are mounted. The first metal structure formed on the first substrate and the second metal structure formed on the second substrate by connecting the heat dissipation electrode for radiating heat to the outside to the die pad and the second metal structure formed on the second substrate. A heat transfer path was formed by the structure and the second metal structure.

そして、放熱用電極に繋がる第2金属構造体の断面積をダイパッドに繋がる第1金属構造体の断面積よりも大きく設定した。これにより、LED素子から離れるにつれて伝導路の断面積が大きくなり、熱の拡散による良好な放熱効果によってLED素子自体の自己発熱による温度上昇が抑制され、温度上昇に起因するLED素子の発光効率の低減による発光光量の減少が抑えられると共に、同様にLED素子の温度上昇に起因するLED素子の素子劣化による発光寿命の短縮を抑制することができ、その結果、高い信頼性及び適切な照射光量を確保することができる。   And the cross-sectional area of the 2nd metal structure connected to the electrode for thermal radiation was set larger than the cross-sectional area of the 1st metal structure connected to a die pad. As a result, the cross-sectional area of the conduction path increases as the distance from the LED element increases, and the temperature increase due to the self-heating of the LED element itself is suppressed by the good heat dissipation effect due to the diffusion of heat, and the luminous efficiency of the LED element due to the temperature increase is reduced. The reduction of the amount of emitted light due to the reduction can be suppressed, and similarly the shortening of the light emitting life due to the deterioration of the LED element due to the temperature rise of the LED element can be suppressed, and as a result, high reliability and an appropriate amount of irradiation light can be achieved. Can be secured.

また、2つのLED素子の夫々が載設された2つのダイパッドの夫々に繋がる2つの第1金属構造体間の間隔よりも、2つの第1金属構造体の夫々に繋がる2つの第2金属構造体間の間隔を広く設定すると共に、夫々の間隔を該間隔を挟んで両側に位置する金属構造体のうち長さが長い方の金属構造体の長さの85%以上になるように設定した。   Also, two second metal structures connected to each of the two first metal structures rather than the distance between the two first metal structures connected to each of the two die pads on which the two LED elements are mounted. The interval between the bodies was set wide, and each interval was set to be 85% or more of the length of the longer metal structure among the metal structures located on both sides of the interval. .

これにより、夫々の間隔の領域の大きさを、間隔を挟む金属構造体から伝導される熱容量に対応する大きさとした。その結果、基板焼成時に両側の第1金属構造体12a、12bから間隔cの領域に位置するLTCCへ掛かる熱応力が緩和され、間隔cの領域に位置するLTCCの領域の部分に発生する割れ及び破損を防止することができる。   As a result, the size of each interval region is set to a size corresponding to the heat capacity conducted from the metal structure sandwiching the interval. As a result, thermal stress applied to the LTCC located in the region of the distance c from the first metal structures 12a and 12b on both sides during substrate firing is relieved, and cracks generated in the portion of the LTCC region located in the region of the distance c and Breakage can be prevented.

以上のことより、LED素子の高密度実装に対しても放熱効率が良好なためにLED素子の発熱による熱の影響が抑制され、高い信頼性を確保しながらLED光源の小型化が可能になる。   From the above, since the heat dissipation efficiency is good even for high-density mounting of LED elements, the influence of heat due to heat generation of the LED elements is suppressed, and the LED light source can be miniaturized while ensuring high reliability. .

1… LED光源
2… LED素子
3… LED素子
4… ボンディングワイヤ
4a… ボンディングワイヤ
4b… ボンディングワイヤ
10… 第1基板
11… 電極パッド
11a、11b… ダイパッド
11c、11d… ワイヤパッド
12… 第1金属構造体
12a、12b、12c、12d… 第1金属構造体
20… 第2基板
21… 配線パッド
21ad… 配線パッド
21bd… 配線パッド
22… 第2金属構造体
22a、22b、22c、22d… 第2金属構造体
23… 電極
23a、23b… 放熱用電極
23c、23d… 受電用電極
30… 積層基板
40… LED光源実装基板
41… 放熱用電極接合バッド
41a… 放熱用電極接合バッド
41b… 放熱用電極接合バッド
42… 側壁
43… 封止樹脂
DESCRIPTION OF SYMBOLS 1 ... LED light source 2 ... LED element
DESCRIPTION OF SYMBOLS 3 ... LED element 4 ... Bonding wire 4a ... Bonding wire 4b ... Bonding wire 10 ... 1st board | substrate 11 ... Electrode pad 11a, 11b ... Die pad 11c, 11d ... Wire pad 12 ... 1st metal structure 12a, 12b, 12c, 12d ... 1st metal structure 20 ... 2nd board | substrate 21 ... Wiring pad 21ad ... Wiring pad 21bd ... Wiring pad 22 ... 2nd metal structure 22a, 22b, 22c, 22d ... 2nd metal structure 23 ... Electrode 23a, 23b ... Radiation electrode 23c, 23d ... Receiving electrode 30 ... Laminated substrate 40 ... LED light source mounting substrate 41 ... Radiation electrode joint pad 41a ... Radiation electrode joint pad 41b ... Radiation electrode joint pad 42 ... Side wall 43 ... Sealing resin

Claims (2)

第1基板と第2基板の2枚のLTCC基板を貼り合わせてなる積層基板と、
互いに対向する面に素子電極を設けた2つのLED素子と、を備え、
前記第1基板は、2つのLED素子の夫々が載置された一対のダイボンディングパッドと前記各ダイボンディングパッドに繋がり厚み方向に貫通する窓孔内に金属が充填されてなる一対の第1金属構造体とを有し、
前記第2基板は、一対の放熱用電極と前記各放熱用電極に繋がり厚み方向に貫通する窓孔内に金属が充填されてなる一対の第2金属構造体とを有し、
前記一対のダイボンディングパッドの夫々と前記一対の放熱用電極の夫々が、前記一対の第1金属構造体の夫々と前記一対の第2金属構造体の夫々を介して繋がっており、
互いに繋がる第1金属構造体と第2金属構造体同士は、前記第1金属構造体の断面積よりも前記第2金属構造体の断面積の方が大きく、且つ、前記一対の第1金属構造体間の間隔よりも前記一対の第2金属構造体間の間隔の方が広く、
前記間隔の夫々は、各間隔を置いて位置する夫々の一対の金属構造体の、該一対の金属構造体の配置方向の長さが同じ場合はその長さの85%以上であり、長さが異なる場合は長い方の長さの85%以上であることを特徴とするLED光源。
A laminated substrate formed by bonding two LTCC substrates, a first substrate and a second substrate;
Two LED elements provided with element electrodes on opposite surfaces, and
The first substrate includes a pair of die bonding pads on which each of the two LED elements is mounted and a pair of first metals formed by filling a metal in a window hole connected to each die bonding pad and penetrating in the thickness direction. Having a structure,
The second substrate includes a pair of heat radiation electrodes and a pair of second metal structures that are connected to the heat radiation electrodes and filled with metal in a window hole that penetrates in the thickness direction,
Each of the pair of die bonding pads and each of the pair of heat radiation electrodes are connected via each of the pair of first metal structures and each of the pair of second metal structures,
The first metal structure and the second metal structure connected to each other have a cross-sectional area of the second metal structure larger than a cross-sectional area of the first metal structure, and the pair of first metal structures than the spacing between the body rather is wide toward the spacing between the second metal structure of the pair,
Each of the distances is not less than 85% of the length of each pair of metal structures positioned at each distance when the length in the arrangement direction of the pair of metal structures is the same. LED light source characterized by being 85% or more of the length of the longer one when they are different .
前記第1基板の窓孔に充填する金属及び前記第2基板の窓孔に充填する金属はいずれも銀及び銀を主体とする金属であることを特徴とする請求項に記載のLED光源。 2. The LED light source according to claim 1 , wherein the metal filling the window hole of the first substrate and the metal filling the window hole of the second substrate are both silver and a metal mainly composed of silver.
JP2015058335A 2015-03-20 2015-03-20 LED light source Active JP6567305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015058335A JP6567305B2 (en) 2015-03-20 2015-03-20 LED light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058335A JP6567305B2 (en) 2015-03-20 2015-03-20 LED light source

Publications (2)

Publication Number Publication Date
JP2016178242A JP2016178242A (en) 2016-10-06
JP6567305B2 true JP6567305B2 (en) 2019-08-28

Family

ID=57071326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058335A Active JP6567305B2 (en) 2015-03-20 2015-03-20 LED light source

Country Status (1)

Country Link
JP (1) JP6567305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861766B1 (en) * 2019-09-18 2020-12-08 Delta Electronics, Inc. Package structures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671457B2 (en) * 1995-06-07 2005-07-13 株式会社デンソー Multilayer board
JP3377928B2 (en) * 1997-05-28 2003-02-17 京セラ株式会社 Circuit board
JP4780939B2 (en) * 2004-07-28 2011-09-28 京セラ株式会社 Light emitting device
JP5640632B2 (en) * 2010-03-12 2014-12-17 旭硝子株式会社 Light emitting device
JP5499960B2 (en) * 2010-07-06 2014-05-21 旭硝子株式会社 Element substrate, light emitting device
US8704433B2 (en) * 2011-08-22 2014-04-22 Lg Innotek Co., Ltd. Light emitting device package and light unit
JP2013065793A (en) * 2011-09-20 2013-04-11 Ngk Spark Plug Co Ltd Wiring board
US8895998B2 (en) * 2012-03-30 2014-11-25 Cree, Inc. Ceramic-based light emitting diode (LED) devices, components and methods
JP2012165016A (en) * 2012-04-27 2012-08-30 Sanyo Electric Co Ltd Light-emitting device

Also Published As

Publication number Publication date
JP2016178242A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5886584B2 (en) Semiconductor light emitting device
JP5487396B2 (en) Light emitting device and lighting device
JP5788149B2 (en) Light emitting device and lighting device
EP2346307A2 (en) Lighting Apparatus
JP6738785B2 (en) Light emitting device and manufacturing method thereof
JP5693194B2 (en) Light emitting diode
JP5693800B1 (en) LED device
JP2009048915A (en) Led lamp, and led lamp module
JP2015225917A (en) Led module, and packaging structure of led module
JP2016178270A (en) LED package
US9899357B2 (en) LED module
JP7212753B2 (en) semiconductor light emitting device
JP2015115432A (en) Semiconductor device
JP5227693B2 (en) Semiconductor light emitting device
JP2016532306A (en) Optoelectronic component, optoelectronic device, and manufacturing method of optoelectronic device
JP2011044612A (en) Light emitting device
JP6567305B2 (en) LED light source
JP4250171B2 (en) Ceramic package for light emitting device
JP2014116411A (en) Substrate for mounting light emitting element and light emitting device
JPWO2008139981A1 (en) Light emitting device and package assembly for light emitting device
JP2012094661A (en) Light-emitting device and lighting device
JP2009021303A (en) Light-emitting device
KR20110035189A (en) Light emitting apparatus
JP2007214183A (en) Ceramic package for mounting light emitting device
JP2012015226A (en) Light emitting device and illumination device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R150 Certificate of patent or registration of utility model

Ref document number: 6567305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250