JP6563829B2 - Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure - Google Patents

Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure Download PDF

Info

Publication number
JP6563829B2
JP6563829B2 JP2016014865A JP2016014865A JP6563829B2 JP 6563829 B2 JP6563829 B2 JP 6563829B2 JP 2016014865 A JP2016014865 A JP 2016014865A JP 2016014865 A JP2016014865 A JP 2016014865A JP 6563829 B2 JP6563829 B2 JP 6563829B2
Authority
JP
Japan
Prior art keywords
hollow cylinder
laser light
laminated
layer
transmission layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016014865A
Other languages
Japanese (ja)
Other versions
JP2017135895A (en
Inventor
祐介 北村
祐介 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mirai Kogyo KK
Original Assignee
Mirai Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mirai Kogyo KK filed Critical Mirai Kogyo KK
Priority to JP2016014865A priority Critical patent/JP6563829B2/en
Publication of JP2017135895A publication Critical patent/JP2017135895A/en
Application granted granted Critical
Publication of JP6563829B2 publication Critical patent/JP6563829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Electric Cable Installation (AREA)
  • Details Of Indoor Wiring (AREA)

Description

本発明は、中空筒体の内部に配線・配管材が配設された中空筒体構造の製造方法、配線・配管材を内部に配設するための中空筒体、及び、配線・配管材を中空筒体内部に配設した中空筒体構造に関する。   The present invention relates to a method of manufacturing a hollow cylinder structure in which wiring / piping materials are arranged inside a hollow cylinder, a hollow cylinder for arranging wiring / piping materials inside, and wiring / piping materials. The present invention relates to a hollow cylinder structure disposed inside a hollow cylinder.

一般的に配線・配管材の保護等を目的として、中空筒体(例えば保護管)は配線・配管材を内部に収容することに用いられている。従来、配線・配管材を中空筒体内部に収容し易くするために、中空筒体の筒壁の軸(長尺)方向に沿って連続的に延びる切り割り部を形成し、該切り割り部を開いて、該切り割り部から中空筒体内部に配線・配管材を挿入することが行われている。そして、配線・配管材を収納した後、切り割り部を接合するために種々の手段が採用されている。   Generally, for the purpose of protecting wiring / piping materials, a hollow cylindrical body (for example, a protective tube) is used to accommodate the wiring / piping material inside. Conventionally, in order to make it easier to accommodate wiring / piping materials inside the hollow cylinder, a slit part continuously extending along the axial (long) direction of the cylindrical wall of the hollow cylinder is formed, and the slit part is opened. Thus, the wiring / pipe material is inserted into the hollow cylindrical body from the split portion. And various means are employ | adopted in order to join a slit part after accommodating wiring and piping material.

例えば、特許文献1は、ケーブル用保護管の敷設方法を開示する。ケーブル用保護管(1)は、周壁部に割り部(2a)が形成された管本体(2)と、割り部(2a)のところで管本体(2)と係合する結合部材(3)とからなっている。保護管(1)の内部には、電力ケーブル、通信ケーブル、光ケーブルなどのケーブル(4)が少なくとも1本収容される。そして、割り部(2a)のところで管本体(2)の周壁部(200)を分離して開くことができるようになっている。保護管(1)内にケーブル(4)を収容する際には、先ず管本体(2)を割り部(2a)のところで拡開して、管本体(2)の内部にケーブル(4)を挿入する。次いで、電熱線(310,311,312)が埋設された結合部材(3)を、割り部(2a)のところで管本体(2)に嵌め合わせ、結合部材(3)の外側鍔板部(301)と内側鍔板部(302)との間に、割り部(2a)を介して相対する管本体(2)の周壁部の周方向端部(200a,200b)を挟み込む。そして、結合部材(3)を管本体(2)に嵌め合わせた状態で電熱線(310,311,312)に通電する。電熱線(310,311,312)に通電すると、電熱線(310)からの発熱により結合部材(3)の主板部(300)の両面が管本体(2)の割り部(2a)の内面に融着され、管本体の周壁部の周方向端部(200a,200b)が主板部(300)を介して機械的に接合される。なお、()内に特許文献1の符号を示した。   For example, Patent Document 1 discloses a method for laying a cable protection tube. The cable protection pipe (1) includes a pipe body (2) having a split part (2a) formed in the peripheral wall part, and a coupling member (3) engaged with the pipe body (2) at the split part (2a). It is made up of. At least one cable (4) such as a power cable, a communication cable, and an optical cable is accommodated in the protective tube (1). And the peripheral wall part (200) of a pipe | tube main body (2) can be isolate | separated and opened in the split part (2a). When the cable (4) is accommodated in the protective tube (1), the tube body (2) is first expanded at the split portion (2a), and the cable (4) is placed inside the tube body (2). insert. Next, the coupling member (3) in which the heating wires (310, 311, 312) are embedded is fitted to the pipe body (2) at the split portion (2a), and the outer side plate portion (301) of the coupling member (3) is fitted. ) And the inner rib plate portion (302), the circumferential end portions (200a, 200b) of the peripheral wall portion of the pipe body (2) facing each other are sandwiched through the split portion (2a). And it supplies with electricity to a heating wire (310,311,312) in the state which fitted the coupling member (3) to the pipe | tube main body (2). When the heating wires (310, 311 and 312) are energized, both surfaces of the main plate portion (300) of the coupling member (3) are brought into contact with the inner surface of the split portion (2a) of the pipe body (2) by heat generated from the heating wires (310). The circumferential end portions (200a, 200b) of the peripheral wall portion of the pipe main body are mechanically joined via the main plate portion (300). In addition, the code | symbol of patent document 1 was shown in ().

特許文献2は、分断部を有する保護材を用いて電線束を保護するワイヤーハーネスの製造方法を開示する。ワイヤーハーネスは、複数の電線(21)から成る電線束(20)と、電線束(20)を覆って保護する筒状のコルゲートチューブ(30)と、を備える。このコルゲートチューブ(30)は、このチューブ(30)を周方向に分断するように、軸方向に沿って一端から他端まで延びるように形成されたスリット(33)を有する。電線束(20)は、コルゲートチューブ(30)の軸方向に対して垂直な方向からスリット(33)を通してチューブ(30)内に挿入され得る。そして、熱可塑性樹脂吐出用設備(40)によって電線束(20)が挿入された後のコルゲートチューブ(30)のスリット(33)が封止される。具体的には、熱可塑性樹脂吐出用設備(40)の加熱部(41)で溶融されるとともにノズル(42)から吐出された熱可塑性樹脂(44)が、スリット(33)の一端から他端までの全域にわたって充填される。このように充填された熱可塑性樹脂(44)は、その後冷却して固化され、これにより、スリット(33)が封止されてワイヤーハーネスが製造される。なお、()内に特許文献2の符号を示した。   Patent document 2 discloses the manufacturing method of the wire harness which protects an electric wire bundle using the protective material which has a parting part. The wire harness includes an electric wire bundle (20) including a plurality of electric wires (21) and a cylindrical corrugated tube (30) that covers and protects the electric wire bundle (20). The corrugated tube (30) has a slit (33) formed so as to extend from one end to the other end along the axial direction so as to divide the tube (30) in the circumferential direction. The wire bundle (20) can be inserted into the tube (30) through the slit (33) from a direction perpendicular to the axial direction of the corrugated tube (30). Then, the slit (33) of the corrugated tube (30) after the wire bundle (20) is inserted is sealed by the thermoplastic resin discharge facility (40). Specifically, the thermoplastic resin (44) melted in the heating section (41) of the thermoplastic resin discharge facility (40) and discharged from the nozzle (42) is transferred from one end of the slit (33) to the other end. The whole area is filled up to. The thermoplastic resin (44) thus filled is then cooled and solidified, whereby the slit (33) is sealed and a wire harness is manufactured. In addition, the code | symbol of patent document 2 was shown in ().

特許文献3は、コルゲートチューブのワイヤハーネス外装方法を開示する。コルゲートチューブ(1)は、環状の山部(3)と谷部(4)とを長さ方向(L)に交互に設けていると共に、長さ方向の全長に1本のスリット(2)を設けている。スリット(2)を挟む分割部(5、6)には、長さ方向(L)に沿って谷部(4)の底壁部(4a)に連続して周方向に突出すると共に長さ方向(L)に延在する帯部(7、8)を設け、該帯部(7、8)の先端、即ち、前記分割端(5a、6a)に外方へ突出する平板形状の溶接板部(9、10)を突設している。スリット(2)を閉鎖するには、電気コテ(30)の側板部(30a)と(30b)の間に溶接板部(9、10)を重ねて挟み、この状態で溶接板部(9、10)を加熱する。この電気コテ(30)による溶接板部(9、10)への加熱で、溶接板部(9、10)の接合面は溶接される。電気コテ(30)からなる加熱器に加えて、超音波発生器からなる溶接機が好適に用いられる。なお、()内に特許文献3の符号を示した。   Patent Document 3 discloses a corrugated tube wire harness exterior method. The corrugated tube (1) is provided with annular crests (3) and troughs (4) alternately in the length direction (L), and one slit (2) in the total length in the length direction. Provided. The dividing portions (5, 6) sandwiching the slit (2) protrude in the circumferential direction continuously from the bottom wall portion (4a) of the valley portion (4) along the length direction (L) and in the length direction. (L) is provided with belt portions (7, 8) extending to the ends of the belt portions (7, 8), that is, flat plate-like welded plate portions projecting outward at the divided ends (5a, 6a). (9, 10) is projected. To close the slit (2), the welding plate portions (9, 10) are overlapped and sandwiched between the side plate portions (30a) and (30b) of the electric iron (30), and in this state the welding plate portions (9, 10) is heated. By heating the weld plate portions (9, 10) with the electric iron (30), the joint surfaces of the weld plate portions (9, 10) are welded. In addition to a heater composed of an electric iron (30), a welding machine composed of an ultrasonic generator is preferably used. In addition, the code | symbol of patent document 3 was shown in ().

特開2008−295146号公報JP 2008-295146 A 特開2015−84627号公報Japanese Patent Laying-Open No. 2015-84627 特開2010−200549号公報JP 2010-200549 A

上記した従来の、内部に配線・配管材が配設された中空筒体を製造する方法には、以下のような課題がある。例えば、特許文献1の方法は、電熱線が埋設された結合部材を、保護管の割り部の内面の間に介在させて熱溶融させることにより、割り部を閉塞することを特徴とする。しかしながら、特許文献1の方法では、電熱線入りの結合部材を別途準備又は製造した上で結合部材を保護管に宛がうことが必要であるので、その作業性や製造コストの点で芳しくない。さらに、割り部の内面の間に溶融した結合部材が介在するので、保護管の径が切断前よりも大きくなり、且つ、結合部材の溶融の痕が比較的大きく残るので、見栄えが良くないことが問題であった。また、保護管とは別体の材料が、保護管の割り部内面を繋ぐので、接合強度を維持するのが困難であるといった問題もある。さらに、固化した結合部材が軸方向に延びる背骨(突条)となり、波付管である保護管の屈曲容易性が低下することが問題として挙げられる。   The above-described conventional method for manufacturing a hollow cylinder having wiring and piping materials disposed therein has the following problems. For example, the method of Patent Document 1 is characterized in that the split portion is closed by interposing the connecting member in which the heating wire is embedded between the inner surfaces of the split portion of the protective tube and thermally melting it. However, in the method of Patent Document 1, it is necessary to separately prepare or manufacture a connecting member with heating wire, and then attach the connecting member to the protective tube, so that the workability and manufacturing cost are not good. . Furthermore, since the molten coupling member is interposed between the inner surfaces of the split portion, the diameter of the protective tube becomes larger than before cutting, and the melting mark of the coupling member remains relatively large, so that the appearance is not good. Was a problem. In addition, since a material separate from the protective tube connects the inner surface of the split portion of the protective tube, there is a problem that it is difficult to maintain the bonding strength. Furthermore, the solidified coupling member becomes a spine (protrusion) extending in the axial direction, and the problem is that the ease of bending of the protective tube, which is a corrugated tube, decreases.

また、特許文献2の方法では、コルゲートチューブのスリットの一端から他端までの全域に亘って熱溶融した熱可塑性樹脂を充填することにより、スリットを閉塞する。すなわち、特許文献2においても同様に、別途、溶融した熱可塑性樹脂を用意することが求められるので、その作業性や製造コストの点で芳しくない。さらに、熱可塑性樹脂がスリットを介する端面間に介在するので、コルゲートチューブの径が切断前よりも大きくなり、且つ、固化した熱可塑性樹脂が隆起して溶融痕が比較的はっきりと残るので、見栄えが良くない。また、コルゲートチューブとは別体の材料が、保護管の割り部内面を繋ぐので、接合強度を維持することが困難であるといった問題もある。さらに、熱可塑性樹脂の充填の際、熱可塑性樹脂がチューブの谷部にたまりこみ、コルゲートチューブの屈曲容易性が低下することが問題として挙げられる。   Moreover, in the method of patent document 2, a slit is obstruct | occluded by filling with the thermoplastic resin thermally melted over the whole region from the one end of a slit of a corrugated tube to the other end. That is, in Patent Document 2, similarly, since it is required to separately prepare a molten thermoplastic resin, it is not good in terms of workability and manufacturing cost. Furthermore, since the thermoplastic resin is interposed between the end faces through the slits, the corrugated tube has a larger diameter than before cutting, and the solidified thermoplastic resin rises and the melt marks remain relatively clear, so that it looks good. Is not good. In addition, since a material separate from the corrugated tube connects the inner surface of the split portion of the protective tube, there is a problem that it is difficult to maintain the bonding strength. Furthermore, when the thermoplastic resin is filled, the problem is that the thermoplastic resin accumulates in the troughs of the tube and the ease of bending of the corrugated tube decreases.

さらに、特許文献3では、スリットの分割端に外方へ突出する平板形状の溶接板部を形成し、該溶接板部を重ね合わせた状態で加熱器又は超音波発生器によって重合部分を挟んで加熱することにより、溶接板部を溶接してスリットを封止する。特許文献3では、別途溶着用の材料を用意することなく、コルゲートチューブの一部が互いに溶着される。しかしながら、特許文献3のような、加熱器や超音波発生器によって溶接する方法では、対象を局所的に加熱することができないので、熱がコルゲートチューブの比較的広範囲に亘って付加されたり、コルゲートチューブ全体に亘って超音波振動が付加される。それ故、コルゲートチューブの周壁に熱等による影響を及ぼさないように、溶接板部のような溶接代を幅広に形成しなければならない。そして、加熱及び冷却された溶接代全体が溶融及び固化することによって、コルゲートチューブの比較的広範囲に亘ってバリなどが発生し、見栄えが非常に悪くなる。さらに、溶接板部の重合・溶接部分は、山谷から形成された他の箇所と比べて屈曲性が低いので、スリットの溶接によってコルゲートチューブの屈曲容易性が低下することが問題として挙げられる。   Further, in Patent Document 3, a flat plate-shaped welded plate portion that protrudes outward is formed at the split end of the slit, and the overlapped portion is sandwiched by a heater or an ultrasonic generator in a state where the welded plate portions are overlapped. By heating, the welding plate portion is welded to seal the slit. In patent document 3, a part of corrugated tube is welded mutually, without preparing the material for welding separately. However, in the method of welding with a heater or an ultrasonic generator as in Patent Document 3, the object cannot be locally heated, so that heat is applied over a relatively wide range of the corrugated tube or corrugated. Ultrasonic vibration is applied throughout the tube. Therefore, the welding allowance such as the welded plate portion must be formed wide so that the peripheral wall of the corrugated tube is not affected by heat or the like. And since the whole welding allowance heated and cooled melts and solidifies, a burr | flash etc. generate | occur | produces over the comparatively wide range of a corrugated tube, and appearance looks very bad. Furthermore, since the superposition | polymerization and welding part of a welding board part have low flexibility compared with the other location formed from the mountain and valley, it is mentioned as a problem that the bendability of a corrugated tube falls by welding of a slit.

すなわち、従来の切り割り部(特許文献1の割り部、特許文献2、3のスリット)を接合する方法では、切り割り部を見栄え良く閉塞することが困難であった。さらには、従来の方法では、接着又は溶接箇所に硬化した溶融樹脂による突条が形成されたり、熱可塑性樹脂が波付管の谷部に入り込むことにより、屈曲性の低い1本の背骨が軸方向に形成され、可撓性のある配線・配管材(波付管)の屈曲性が阻害されることが問題であった。本発明は、従来にない新規な切り割り部の閉塞方法を導入して上記課題を解決するものである。すなわち、本発明の目的は、従来よりも、閉塞された切り割り部の見栄え、中空筒体の屈曲性及び切り割り部の接合強度を改善すべく、中空筒体の内部に配線・配管材が配設された中空筒体構造の製造方法、配線・配管材を内部に配設するための中空筒体、及び、配線・配管材が中空筒体内部に配設された中空筒体構造を提供することにある。   That is, in the conventional method of joining the slitting portions (the splitting portion of Patent Document 1, the slits of Patent Literatures 2 and 3), it is difficult to block the appearance of the cutting portion with good appearance. Furthermore, in the conventional method, a protrusion made of a molten resin is formed at a bonded or welded portion, or a thermoplastic resin enters a trough portion of a corrugated tube, so that one spine having low flexibility is pivoted. The problem is that the flexibility of the flexible wiring / pipe material (corrugated tube) formed in the direction is hindered. The present invention solves the above-mentioned problems by introducing a novel method for closing a slit portion that has not been conventionally used. That is, the object of the present invention is to provide wiring and piping materials inside the hollow cylinder so as to improve the appearance of the closed cut portion, the bendability of the hollow cylinder, and the joint strength of the cut portion. Provided is a method for manufacturing a hollow cylinder structure, a hollow cylinder for arranging wiring / piping materials therein, and a hollow cylinder structure in which wiring / piping materials are arranged inside the hollow cylinder. It is in.

請求項1に記載の中空筒体構造の製造方法は、中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、該中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする。
The method for producing a hollow cylinder structure according to claim 1 is a method for producing a hollow cylinder structure in which wiring and piping materials are disposed inside a hollow cylinder,
A step of preparing a hollow cylinder, wherein the hollow cylinder is located on the inner side of the laser beam transmission layer, a heat-meltable laser beam transmission layer constituting an outer layer of the hollow cylinder, and the laser A laminated portion integrally laminated with a heat-meltable laser light absorption layer having a relatively lower transmittance than the light-transmitting layer, and the laminated portion is at least a part in the circumferential direction of the hollow cylindrical body The laminated portion is formed with an openable slit portion that divides the laminated portion in the width direction and continuously extends in the axial direction of the hollow cylindrical body. , Process and
A step of accommodating the wiring / piping material from the slit portion;
After closely contacting the split end faces through the split section, the split section is irradiated with laser light from the outer surface of the hollow cylindrical body, and the split end faces are laser welded to form the split section. A blockage step;
It is characterized by including.

請求項2に記載の中空筒体構造の製造方法は、請求項1に記載の中空筒体構造の製造方法において、中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成した前記中空筒体を準備する工程と、
前記積層部を幅方向に分断するように前記中空筒体を軸方向に沿って連続的に切断することによって、前記中空筒体に開放可能な切り割り部を形成する工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする。
The method for manufacturing a hollow cylinder structure according to claim 2 is the method for manufacturing a hollow cylinder structure according to claim 1, wherein the hollow cylinder structure includes a wiring / pipe material disposed inside the hollow cylinder. A method,
A heat-meltable laser light transmission layer constituting the outer layer of the hollow cylinder, and a heat-meltable laser light transmission layer located on the inner layer side of the laser light transmission layer and having a relatively lower transmittance than the laser light transmission layer A step of preparing the hollow cylindrical body in which a laminating portion in which a laser light absorption layer is integrally laminated is continuously formed in an axial direction in at least a part of the circumferential direction of the hollow cylindrical body;
Forming a slit part that can be opened in the hollow cylinder by continuously cutting the hollow cylinder along the axial direction so as to divide the laminated part in the width direction;
A step of accommodating the wiring / piping material from the slit portion;
After contacting the cut end faces facing each other via the cut portion, the cut portion is irradiated with laser light from the outer surface of the hollow cylinder, and the cut end surface is laser welded to close the cut portion. And a process of
It is characterized by including.

請求項3に記載の中空筒体構造の製造方法は、請求項1又は2に記載の中空筒体構造の製造方法において、前記中空筒体を準備する工程は、前記中空筒体を成形する工程を含むことを特徴とする。   The method for producing a hollow cylinder structure according to claim 3 is the method for producing a hollow cylinder structure according to claim 1 or 2, wherein the step of preparing the hollow cylinder comprises a step of forming the hollow cylinder. It is characterized by including.

請求項4に記載の中空筒体構造の製造方法は、請求項1から3のいずれかに記載の中空筒体構造の製造方法において、前記切り割り部を閉塞する工程は、レーザー光の照射時に前記分断端面同士を密着方向に加圧する工程を含むことを特徴とする。   The method for producing a hollow cylinder structure according to claim 4 is the method for producing a hollow cylinder structure according to any one of claims 1 to 3, wherein the step of closing the cut portion is performed when the laser beam is irradiated. It includes a step of pressurizing the split end faces in the close contact direction.

請求項5に記載の中空筒体構造の製造方法は、請求項1から4のいずれかに記載の中空筒体構造の製造方法において、前記各分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする。   The method for manufacturing a hollow cylinder structure according to claim 5 is the method for manufacturing a hollow cylinder structure according to any one of claims 1 to 4, wherein each of the divided end surfaces is orthogonal to a cylinder wall of the hollow cylinder structure. It is characterized by being a flat surface.

請求項6に記載の中空筒体構造の製造方法は、請求項1から5のいずれかに記載の中空筒体構造の製造方法において、前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程は、レーザー光の照射時に前記波付管の山谷を軸方向にずらした状態で前記分断端面同士を密着させる工程を含むことを特徴とする。
The method for producing a hollow cylinder structure according to claim 6 is the method for producing a hollow cylinder structure according to any one of claims 1 to 5, wherein the hollow cylinder has peaks and valleys in the axial direction. A continuous corrugated tube,
The step of closing the cut portion includes a step of bringing the divided end faces into close contact with each other in a state where the peaks and valleys of the corrugated tube are shifted in the axial direction when the laser beam is irradiated.

請求項7に記載の中空筒体構造の製造方法は、請求項1から6のいずれかに記載の中空筒体構造の製造方法において、前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程において、前記波付管の軸方向の山谷の傾斜角度に対して、前記レーザー光の照射角度が小さいことを特徴とする。
The method for producing a hollow cylinder structure according to claim 7 is the method for producing a hollow cylinder structure according to any one of claims 1 to 6, wherein the hollow cylinder has peaks and valleys in the axial direction. A continuous corrugated tube,
In the step of closing the slit portion, the irradiation angle of the laser beam is smaller than the inclination angle of the peaks and valleys in the axial direction of the corrugated tube.

請求項8に記載の中空筒体構造の製造方法は、請求項1から7のいずれかに記載の中空筒体構造の製造方法において、前記レーザー光透過層は、ポリオレフィン系の熱可塑性樹脂からなり、
前記レーザー光吸収層は、ポリオレフィン系の熱可塑性樹脂からなる母材と、前記母材に添加された、レーザー光を吸収して発熱するカーボンブラックとから構成されることを特徴とする。
The method for producing a hollow cylinder structure according to claim 8 is the method for producing a hollow cylinder structure according to any one of claims 1 to 7, wherein the laser light transmission layer is made of a polyolefin-based thermoplastic resin. ,
The laser light absorbing layer is composed of a base material made of a polyolefin-based thermoplastic resin and carbon black that is added to the base material and absorbs laser light to generate heat.

請求項9に記載の中空筒体は、配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されていることを特徴とする。
The hollow cylinder according to claim 9 is a hollow cylinder for disposing wiring / piping material therein,
A heat-meltable laser light transmission layer constituting the outer layer of the hollow cylinder, and a heat-meltable laser light transmission layer located on the inner layer side of the laser light transmission layer and having a relatively lower transmittance than the laser light transmission layer Provided with a laminated part in which the laser light absorption layer is laminated integrally,
The laminated portion is characterized by being formed continuously in the axial direction at a part of the circumferential direction of the hollow cylindrical body.

請求項10に記載の中空筒体は、配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる切り割り部が形成されていることを特徴とする。
The hollow cylinder according to claim 10 is a hollow cylinder for disposing wiring / piping material therein,
A heat-meltable laser light transmission layer constituting the outer layer of the hollow cylinder, and a heat-meltable laser light transmission layer located on the inner layer side of the laser light transmission layer and having a relatively lower transmittance than the laser light transmission layer Provided with a laminated part in which the laser light absorption layer is laminated integrally,
The laminated portion is formed continuously in the axial direction at a part of the circumferential direction of the hollow cylindrical body, and the laminated portion is divided in the width direction so as to be axial in the hollow cylindrical body. A slit portion extending continuously is formed.

請求項11に記載の中空筒体は、請求項10に記載の中空筒体において、前記切り割り部を介して相対する分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする。   The hollow cylindrical body according to claim 11 is the hollow cylindrical body according to claim 10, wherein the divided end faces opposed to each other through the slit portion are planes orthogonal to the cylindrical wall of the hollow cylindrical body. And

請求項12に記載の中空筒体は、請求項9から11のいずれかに記載の中空筒体において、前記中空筒体は、軸方向に山部及び谷部が連続する波付管であることを特徴とする。   The hollow cylinder according to claim 12 is the hollow cylinder according to any of claims 9 to 11, wherein the hollow cylinder is a corrugated tube in which peaks and valleys are continuous in the axial direction. It is characterized by.

請求項13に記載の中空筒体は、請求項12に記載の中空筒体において、前記波付管の前記山部におけるレーザー光吸収層の厚みが、前記谷部におけるレーザー光吸収層の厚みよりも薄いことを特徴とする。   The hollow cylinder according to claim 13 is the hollow cylinder according to claim 12, wherein the thickness of the laser light absorption layer at the peak portion of the corrugated tube is greater than the thickness of the laser light absorption layer at the valley portion. Is also thin.

請求項14に記載の中空筒体は、請求項12又は13に記載の中空筒体において、前記積層部では、前記積層部以外の箇所と比べて、前記山部及び前記谷部の高低差が小さいことを特徴とする。   The hollow cylindrical body according to claim 14 is the hollow cylindrical body according to claim 12 or 13, wherein the height of the peak and the valley is higher in the stacked portion than in a portion other than the stacked portion. It is small.

請求項15に記載の中空筒体は、請求項9から14のいずれかに記載の中空筒体において、前記中空筒体の母材がポリエチレンであることを特徴とする。   The hollow cylinder according to claim 15 is the hollow cylinder according to any one of claims 9 to 14, wherein the base material of the hollow cylinder is polyethylene.

請求項16に記載の中空筒体構造は、配線・配管材と該配線・配管材を内部に配設している中空筒体とを備える中空筒体構造であって、
前記中空筒体は、前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる接合部が形成され、前記接合部の融着痕が前記中空筒体の外面に現れずに前記積層部の断面に形成されていることを特徴とする。
The hollow cylinder structure according to claim 16 is a hollow cylinder structure comprising a wiring / piping material and a hollow cylinder having the wiring / piping material disposed therein,
The hollow cylinder is located on the inner side of the laser beam transmitting layer and a heat-meltable laser beam transmitting layer constituting the outer layer of the hollow cylinder, and has a relatively lower transmittance than the laser beam transmitting layer. And a laminated part integrally laminated with a heat-meltable laser light absorption layer having
The laminated portion is formed continuously in the axial direction at a part of the circumferential direction of the hollow cylindrical body, and the laminated portion is divided in the width direction so as to be axial in the hollow cylindrical body. A joint portion extending continuously is formed, and a fusion mark of the joint portion is formed on a cross section of the laminated portion without appearing on the outer surface of the hollow cylindrical body.

請求項17に記載の中空筒体構造は、中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、熱溶融性のレーザー光透過層と、前記レーザー光透過層に隣接し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記レーザー光透過層側からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする。
The hollow cylinder structure according to claim 17 is a method of manufacturing a hollow cylinder structure in which wiring and piping materials are disposed inside the hollow cylinder,
A step of preparing a hollow cylinder, wherein the hollow cylinder is adjacent to the heat-meltable laser light transmission layer and the laser light transmission layer, and has a relatively lower transmittance than the laser light transmission layer. A laminated portion integrally laminated with a heat-meltable laser light absorption layer having, the laminated portion is formed continuously in the axial direction in at least a part of the circumferential direction of the hollow cylinder, The laminated portion is formed with an openable slit portion that divides the laminated portion in the width direction and continuously extends in the axial direction of the hollow cylinder, and
A step of accommodating the wiring / piping material from the slit portion;
After closely attaching the cut end faces facing each other through the cut portion, the laser light is irradiated from the laser light transmitting layer side to the cut portion, and the cut end portions are laser welded to form the cut portion. A blockage step;
It is characterized by including.

本発明の請求項1に記載の中空筒体構造の製造方法によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割るように形成された切り割り部を介して、配線・配管材を中空筒体の内部に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。これにより、本発明の製造方法で製造した中空筒体構造において、バリの発生や中空筒体構造の見栄えが悪くなることを極力抑えることができる。さらには、本発明の製造方法では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の製造方法は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。
そして、本発明の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体の一部(同一材料)同士を溶着するので、切り割り部の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。
According to the method for manufacturing a hollow cylinder structure according to claim 1 of the present invention, the hollow cylinder is positioned on the inner side of the laser light transmission layer and the heat-meltable laser light transmission layer constituting the outer layer. And a laminated portion in which a heat-meltable laser light absorption layer having a relatively higher absorbance than the laser light transmission layer is integrally laminated. The wiring / pipe material can be inserted into the hollow cylindrical body through the cutting portion formed so as to cut the laminated portion. Then, with the wiring / piping material inserted into the hollow cylinder, the divided end faces that divide the laminated part in the width (circumferential) direction are brought into close contact with each other, and then the laser is applied to the split part from the outer surface of the hollow cylinder. By irradiating with light, the split end faces can be laser-welded to block off the cut portion with good appearance. Thereby, in the hollow cylinder structure manufactured with the manufacturing method of this invention, it can suppress as much as possible that generation | occurrence | production of a burr | flash and the appearance of a hollow cylinder structure worsen. Furthermore, in the manufacturing method of the present invention, the split end faces are directly joined without any other material, so that the cut portion can be closed as if there was no cut portion on the cylindrical wall of the hollow cylindrical body from the beginning. . That is, the manufacturing method of the present invention can prevent the bending property (flexibility) of the hollow cylinder from being impaired by the blockage of the cut portion.
And since the manufacturing method of this invention welds a part (same material) of hollow cylinders, without preparing another material like a coupling member separately, ensuring the high joint strength of a split part, and It is also advantageous in terms of workability and cost.

より具体的には、分断端面の密着部分に対して局所的に所定強度のレーザー光を照射すると、有意な量のレーザー光が外層側のレーザー光透過層を通過し、内層側のレーザー光吸収層に吸収される。このとき、レーザー光吸収層が、レーザー光が筒壁を透過して内部に配設した配線・配管材の外面を溶融及び損傷させてしまうことを防止するように機能する。そして、分断端面が密着する切り割り部において、レーザー光吸収層が優先的に加熱される。続いて、レーザー光吸収層の加熱部分(レーザー光透過層とレーザー光吸収層との界面)から、熱が分断端面間の界面に沿って厚み方向の内外(すなわちレーザー光透過層の外面側及びレーザー光吸収層の内面側の両方)へと伝導し、分断端面全体が加熱されて溶融する。特には、積層部がレーザー光透過層及びレーザー光吸収層の2層で構成され、レーザー光透過層がレーザー光吸収層を覆うので、レーザー光吸収層の溶融方向が分断端面側に定められて効率良く溶着できる。そして、この熱溶融した分断端面同士が溶融プールを形成し、材料的に混ざり合って冷却した結果、分断端面同士が一定的に接合(融着)される。すなわち、切り割り部のレーザー溶着工程において、分断端面が優先的に溶融及び固化するので、中空筒体の外面に溶融した痕跡がほとんど現れることがない。さらに、本発明において、   More specifically, when a laser beam having a predetermined intensity is locally applied to the contact portion of the divided end face, a significant amount of laser light passes through the outer laser beam transmitting layer and is absorbed by the inner laser beam. Absorbed into the layer. At this time, the laser light absorbing layer functions to prevent the laser light from passing through the cylindrical wall and melting and damaging the outer surface of the wiring / pipe material disposed inside. Then, the laser light absorption layer is preferentially heated at the slit portion where the cut end face is in close contact. Subsequently, from the heated portion of the laser light absorption layer (interface between the laser light transmission layer and the laser light absorption layer), heat is transferred in the thickness direction along the interface between the split end faces (that is, the outer surface side of the laser light transmission layer and Conducted to both the inner surface side of the laser light absorption layer), and the entire cut end surface is heated and melted. In particular, the laminated part is composed of two layers, a laser light transmission layer and a laser light absorption layer, and the laser light transmission layer covers the laser light absorption layer, so that the melting direction of the laser light absorption layer is determined on the divided end face side. Can be welded efficiently. And as a result of this heat-melting parting end surfaces forming a fusion pool and mixing with material and cooling, the parting end faces are joined (fused) uniformly. That is, in the laser welding process of the cut portion, the split end face is preferentially melted and solidified, so that almost no trace of melting appears on the outer surface of the hollow cylinder. Furthermore, in the present invention,

本発明の請求項2に記載の中空筒体構造の製造方法によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割ることにより、切り割り部を形成し、該切り割り部を介して、配線・配管材を中空筒体の内部に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、そして、本発明の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体の一部(同一材料)同士を溶着するので、切り割り部の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。さらには、本発明の製造方法では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の製造方法は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。   According to the method for manufacturing a hollow cylindrical structure according to claim 2 of the present invention, the hollow cylindrical body is located on the inner side of the laser light transmitting layer and the heat-meltable laser light transmitting layer constituting the outer layer thereof. And a laminated portion in which a heat-meltable laser light absorption layer having a relatively higher absorbance than the laser light transmission layer is integrally laminated. By cutting the laminated portion, a cut portion can be formed, and the wiring / pipe material can be inserted into the hollow cylinder through the cut portion. Then, with the wiring / piping material inserted into the hollow cylinder, the divided end faces that divide the laminated part in the width (circumferential) direction are brought into close contact with each other, and then the laser is applied to the split part from the outer surface of the hollow cylinder. By irradiating with light, the split end faces can be laser-welded to block off the cut portion with good appearance. That is, the manufacturing method of the present invention welds a part (the same material) of the hollow cylindrical body without separately preparing another material such as a coupling member, so that a high joint strength of the cut portion is ensured. In addition, it is advantageous in terms of workability and cost. Furthermore, in the manufacturing method of the present invention, the split end faces are directly joined without any other material, so that the cut portion can be closed as if there was no cut portion on the cylindrical wall of the hollow cylindrical body from the beginning. . That is, the manufacturing method of the present invention can prevent the bending property (flexibility) of the hollow cylinder from being impaired by the blockage of the cut portion.

本発明の請求項3に記載の中空筒体構造の製造方法によれば、請求項1又2に記載の発明に加え、中空筒体を成形工程を経て容易に準備することができる。   According to the manufacturing method of the hollow cylinder structure of Claim 3 of this invention, in addition to the invention of Claim 1 or 2, a hollow cylinder can be easily prepared through a formation process.

本発明の請求項4に記載の中空筒体構造の製造方法によれば、請求項1から3のいずれかに記載の発明に加え、レーザー光の照射時に分断端面同士を密着方向に加圧することにより、切り割り部をより強固且つ確実にレーザー溶着で閉塞することができる。   According to the method for producing a hollow cylindrical structure according to claim 4 of the present invention, in addition to the invention according to any one of claims 1 to 3, the divided end faces are pressed in the close-contact direction at the time of laser light irradiation. As a result, the cut portion can be more firmly and reliably closed by laser welding.

本発明の請求項5に記載の中空筒体構造の製造方法によれば、請求項1から4のいずれかに記載の発明に加え、各分断端面が中空筒体の筒壁に直交する平面であることにより、分断端面を確実に密着させることができる。   According to the method for manufacturing a hollow cylinder structure according to claim 5 of the present invention, in addition to the invention according to any one of claims 1 to 4, each divided end face is a plane orthogonal to the cylinder wall of the hollow cylinder. By being, it can be made to adhere | attach a parting end surface reliably.

本発明の請求項6に記載の中空筒体構造の製造方法によれば、請求項1から5のいずれかに記載の発明に加え、レーザー光の照射時に波付管の山谷を軸方向にずらした状態で分断端面同士を密着させることにより、加圧時に滑って端縁が重なりすぼむことを抑えることができる。   According to the method for manufacturing a hollow cylindrical structure according to claim 6 of the present invention, in addition to the invention according to any one of claims 1 to 5, the ridges and valleys of the corrugated tube are shifted in the axial direction when the laser beam is irradiated. When the divided end surfaces are brought into close contact with each other in a state where the end edges are in contact with each other, it is possible to prevent the end edges from overlapping and squeezing.

本発明の請求項7に記載の中空筒体構造の製造方法によれば、請求項1から6のいずれかに記載の発明に加え、波付管の軸方向の山谷の傾斜角度に対してレーザー光の照射角度が小さい。これにより、波付管の山部に邪魔されることなく、谷部の外面にまでレーザー光をより確実に照射することが可能である。   According to the method for producing a hollow cylindrical structure according to claim 7 of the present invention, in addition to the invention according to any one of claims 1 to 6, the laser is applied to the inclination angle of the peaks and valleys in the axial direction of the corrugated tube The light irradiation angle is small. Thereby, it is possible to irradiate the laser beam to the outer surface of the trough more reliably without being disturbed by the crest of the corrugated tube.

本発明の請求項8に記載の中空筒体構造の製造方法によれば、請求項1から7のいずれかに記載の発明に加え、照射されたレーザー光をレーザー光透過層に透過させ、レーザー光吸収層に吸収させる。レーザー光吸収層においてカーボンブラックを採用したことにより、レーザー光を効果的にレーザー光吸収層に吸収させることができる。   According to the method for producing a hollow cylindrical structure according to claim 8 of the present invention, in addition to the invention according to any one of claims 1 to 7, the irradiated laser light is transmitted through the laser light transmitting layer, and the laser is transmitted. Absorb to light absorption layer. By adopting carbon black in the laser light absorption layer, the laser light can be effectively absorbed into the laser light absorption layer.

本発明の請求項9に記載の中空筒体によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。積層部は、中空筒体の周方向の一部で軸方向に連続して形成されている。すなわち、施工者は、軸方向に延びる積層部に沿って中空筒体を切断することで、配線・配管材を内部に挿入するための切り割り部を容易に形成可能である。該切り割り部を介して、配線・配管材を中空筒体の内部に容易に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、本発明の中空筒体を用いることにより、バリの発生や見栄えの悪化を抑えつつ、配線・配管材を中空筒体の内部に配設した中空筒体構造を構築可能である。さらには、本発明の中空筒体では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の中空筒体は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。   According to the hollow cylinder of claim 9 of the present invention, the hollow cylinder is located on the inner side of the laser beam transmitting layer, the heat-meltable laser beam transmitting layer constituting the outer layer, and the laser beam. A laminated portion in which a heat-meltable laser light absorption layer having a light absorbency relatively higher than that of the transmission layer is integrally laminated is provided. The laminated portion is formed continuously in the axial direction at a part of the circumferential direction of the hollow cylinder. That is, the installer can easily form a slit portion for inserting the wiring / pipe material into the interior by cutting the hollow cylindrical body along the laminated portion extending in the axial direction. The wiring / pipe material can be easily inserted into the hollow cylinder through the slit portion. Then, with the wiring / piping material inserted into the hollow cylinder, the divided end faces that divide the laminated part in the width (circumferential) direction are brought into close contact with each other, and then the laser is applied to the split part from the outer surface of the hollow cylinder. By irradiating with light, the split end faces can be laser-welded to block off the cut portion with good appearance. That is, by using the hollow cylinder of the present invention, it is possible to construct a hollow cylinder structure in which wiring and piping materials are arranged inside the hollow cylinder while suppressing the generation of burrs and the deterioration of appearance. Furthermore, in the hollow cylinder of the present invention, the split end faces are directly joined without any other material, so that the cutting part is blocked as if there was no cutting part on the cylindrical wall of the hollow cylinder from the beginning. obtain. That is, the hollow cylinder of the present invention can prevent the hollow cylinder from being damaged by the blockage of the cut portion.

本発明の請求項10に記載の中空筒体によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割るように予め形成された切り割り部を介して、配線・配管材を中空筒体の内部に容易に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対して中空筒体の外面からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、本発明の中空筒体を用いることにより、バリの発生や見栄えの悪化を抑えつつ、配線・配管材を中空筒体の内部に配設した中空筒体構造を構築可能である。さらには、本発明の中空筒体では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の中空筒体は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)を損なうことを防止することができる。   According to the hollow cylinder of claim 10 of the present invention, the hollow cylinder is located on the inner side of the heat-meltable laser light transmission layer constituting the outer layer and the laser light transmission layer, and is provided with laser light. A laminated portion in which a heat-meltable laser light absorption layer having a light absorbency relatively higher than that of the transmission layer is integrally laminated is provided. The wiring / pipe material can be easily inserted into the hollow cylindrical body through a cutting portion formed in advance so as to cut the laminated portion. Then, with the wiring / piping material inserted into the hollow cylinder, the divided end faces that divide the laminated part in the width (circumferential) direction are brought into close contact with each other, and then the laser is applied to the split part from the outer surface of the hollow cylinder. By irradiating with light, the split end faces can be laser-welded to block off the cut portion with good appearance. That is, by using the hollow cylinder of the present invention, it is possible to construct a hollow cylinder structure in which wiring and piping materials are arranged inside the hollow cylinder while suppressing the generation of burrs and the deterioration of appearance. Furthermore, in the hollow cylinder of the present invention, the split end faces are directly joined without any other material, so that the cutting part is blocked as if there was no cutting part on the cylindrical wall of the hollow cylinder from the beginning. obtain. That is, the hollow cylinder of the present invention can prevent the hollow cylinder from being damaged by the blockage of the cut portion.

本発明の請求項11に記載の中空筒体によれば、請求項10に記載の発明に加え、各分断端面が中空筒体の筒壁に直交する平面であることにより、分断端面を確実に密着させることができる。   According to the hollow cylinder of claim 11 of the present invention, in addition to the invention of claim 10, each divided end face is a plane perpendicular to the cylindrical wall of the hollow cylinder, so that the divided end face can be reliably secured. It can be adhered.

本発明の請求項12に記載の中空筒体によれば、請求項9から11のいずれかに記載の発明に加え、中空筒体を軸方向に山部及び谷部が連続する波付管とすることができる。   According to the hollow cylinder of the twelfth aspect of the present invention, in addition to the invention of any one of the ninth to eleventh aspects, the hollow cylinder has a corrugated tube in which peaks and valleys are continuous in the axial direction. can do.

本発明の請求項13に記載の中空筒体によれば、請求項12に記載の発明に加え、レーザー光の焦点が谷部外面に定められ、山部のレーザー光吸収層に融着に必要な熱エネルギーを与えた場合、谷部への熱エネルギーが山部への熱エネルギーよりも相対的に大きくなる。これに対し、谷部におけるレーザー光吸収層の厚みを相対的に厚くすることにより、谷部の筒壁が焼き切れる虞を軽減している。   According to the hollow cylindrical body of the thirteenth aspect of the present invention, in addition to the invention of the twelfth aspect, the focal point of the laser beam is determined on the outer surface of the valley portion, and is necessary for fusing to the laser beam absorption layer at the peak portion. When the thermal energy is given, the thermal energy to the valley becomes relatively larger than the thermal energy to the mountain. In contrast, by relatively increasing the thickness of the laser light absorption layer in the valley, the risk of burning the cylindrical wall of the valley is reduced.

本発明の請求項14に記載の中空筒体によれば、請求項12又は13に記載の発明に加え、積層部における山部及び谷部の高低差が比較的小さくなっていることにより、山部及び谷部でレーザー照射による加熱量がばらつくことが抑えられている。   According to the hollow cylinder of the fourteenth aspect of the present invention, in addition to the invention of the twelfth or thirteenth aspect, the height difference between the crest and trough in the laminated portion is relatively small. It is suppressed that the amount of heating by laser irradiation varies in the part and the valley part.

本発明の請求項15に記載の中空筒体によれば、請求項9から14のいずれかに記載の発明に加え、中空筒体の母材がポリエチレンとすることにより、容易且つ低コストに中空筒体を準備することができる。   According to the hollow cylinder of claim 15 of the present invention, in addition to the invention of any of claims 9 to 14, the hollow cylinder is made of polyethylene as a base material, so that the hollow cylinder can be easily and at low cost. A cylinder can be prepared.

本発明の請求項16に記載の中空筒体構造によれば、中空筒体は、その外層を構成する熱溶融性のレーザー光透過層と、該レーザー光透過層の内層側に位置し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。積層部には、該積層部を幅(周)方向に分断して中空筒体の軸方向に連続的に延びる接合部が設けられている。つまり、接合部は、幅方向に2つに分割されていた積層部の両片の端面を(他の結合材料を介さずに)融着している箇所である。そして、接合部は、積層部の断面内で2つの分離した端面が融着している(レーザー)融着痕からなり、該融着痕は中空筒体の外面(接合部の両縁)には及んでいない。すなわち、本実施形態の中空筒体構造は、バリの発生や見栄えが悪くなることが極力抑えられたものであり、尚且つ、中空筒体の一部(同一材料)同士が融着されているので、切り割り部の高い接合強度が確保されている。さらには、本発明の中空筒体構造では、分断端面同士が他の材料を介さずに直接に接合されているので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞されている。すなわち、本発明の中空筒体構造は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)が低下することが防止し、所定の屈曲性が維持されている。   According to the hollow cylinder structure of the sixteenth aspect of the present invention, the hollow cylinder is located on the inner side of the laser beam transmitting layer, the heat-meltable laser beam transmitting layer constituting the outer layer, and the laser beam A laminated portion in which a heat-meltable laser light absorbing layer having a relatively higher absorbance than the light transmitting layer is integrally laminated is provided. The laminated portion is provided with a joint portion that divides the laminated portion in the width (circumferential) direction and continuously extends in the axial direction of the hollow cylindrical body. That is, the joining portion is a portion where the end faces of both pieces of the laminated portion that has been divided into two in the width direction are fused (without any other bonding material). And a junction part consists of two separate end faces in the cross section of a lamination | stacking part (laser) fusion trace, and this fusion trace is on the outer surface (both edges of a junction part) of a hollow cylinder. Does not reach. That is, the hollow cylinder structure of the present embodiment is such that generation of burrs and appearance are suppressed as much as possible, and a part (the same material) of the hollow cylinder is fused. Therefore, the high joining strength of the split part is ensured. Furthermore, in the hollow cylinder structure of the present invention, the split end faces are directly joined without any other material, so that the cutting part is not as if there was no cutting part from the beginning on the cylindrical wall of the hollow cylinder. It is blocked. That is, the hollow cylinder structure of the present invention prevents the hollow tube body from being deteriorated in flexibility (flexibility) due to the blockage of the cut portion, and the predetermined flexibility is maintained.

本発明の請求項17に記載の中空筒体構造の製造方法によれば、中空筒体は、熱溶融性のレーザー光透過層と、該レーザー光透過層に隣接し、レーザー光透過層よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備える。該積層部を切り割ることにより、切り割り部を形成し、該切り割り部を介して、配線・配管材を中空筒体の内部に挿入することができる。そして、配線・配管材を中空筒体に内挿した状態で、積層部を幅(周)方向に分断する分断端面同士を密着させた上で、切り割り部に対してレーザー透過層側からレーザー光を照射することにより、分断端面同士をレーザー溶着して切り割り部を見栄え良く閉塞することができる。すなわち、そして、本発明の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体の一部(同一材料)同士を溶着するので、切り割り部の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。さらには、本発明の製造方法では、分断端面同士が他の材料を介さずに直接に接合されるので、中空筒体の筒壁に最初から切り割り部がなかったかのように切り割り部が閉塞され得る。すなわち、本発明の製造方法は、切り割り部の閉塞によって中空筒体の屈曲性(可撓性)が低下することを防止することができる。   According to the method for manufacturing a hollow cylindrical structure according to claim 17 of the present invention, the hollow cylindrical body is adjacent to the heat-meltable laser light transmission layer, the laser light transmission layer, and more than the laser light transmission layer. A laminated portion in which a heat-meltable laser light absorption layer having a relatively high absorbance is integrally laminated is provided. By cutting the laminated portion, a cut portion can be formed, and the wiring / pipe material can be inserted into the hollow cylinder through the cut portion. Then, with the wiring / pipe material inserted into the hollow cylinder, the split end faces that divide the laminated portion in the width (circumferential) direction are brought into close contact with each other, and the laser beam from the laser transmission layer side to the split portion. By irradiating, the split end faces can be laser-welded to block off the cut portion with good appearance. That is, the manufacturing method of the present invention welds a part (the same material) of the hollow cylindrical body without separately preparing another material such as a coupling member, so that a high joint strength of the cut portion is ensured. In addition, it is advantageous in terms of workability and cost. Furthermore, in the manufacturing method of the present invention, the split end faces are directly joined without any other material, so that the cut portion can be closed as if there was no cut portion on the cylindrical wall of the hollow cylindrical body from the beginning. . That is, the manufacturing method of the present invention can prevent the bendability (flexibility) of the hollow cylindrical body from being lowered due to the blockage of the cut portion.

本発明の一実施形態の中空筒体構造の概略斜視図。The schematic perspective view of the hollow cylinder structure of one Embodiment of this invention. 図1の中空筒体構造に用いられる中空筒体の(a)正面図及び(b)側面図。The (a) front view and (b) side view of the hollow cylinder used for the hollow cylinder structure of FIG. 図2の中空筒体の(a)A−A断面図及び(b)その部分拡大図。(A) AA sectional drawing and (b) the elements on larger scale of the hollow cylinder of FIG. 図2の中空筒体の(a)B−B断面図及び(b)その部分拡大図。。(A) BB sectional drawing and (b) the elements on larger scale of the hollow cylinder of FIG. . 本発明の一実施形態の中空筒体構造を製造する方法の一工程であって、(a)中空筒体内部に切り割り部を介して配線・配管材を挿入する工程、(b)配線・配管材を中空筒体内部に配置した状態で切り割り部の分断端面を密接させる工程、(c)切り割り部の分断端面を密接させた状態で切り割り部をレーザー溶接する工程を示す模式図。It is one process of the method of manufacturing the hollow cylinder structure of one Embodiment of this invention, Comprising: (a) The process of inserting wiring and piping material through a slit part inside a hollow cylinder, (b) Wiring and piping The schematic diagram which shows the process of closely welding the division | segmentation end surface of a cutting part in the state which has arrange | positioned the material inside a hollow cylinder, and the process of laser-welding a division part in the state which contact | connected the division | segmentation end surface of the division part. 図7のレーザー溶接工程を詳細に説明する模式図。The schematic diagram explaining the laser welding process of FIG. 7 in detail. 図1の中空筒体構造の(a)横断面図及び(b)部分拡大図。The (a) cross-sectional view and (b) partial enlarged view of the hollow cylinder structure of FIG. 本発明の変形例の中空筒体の部分拡大断面図。The partial expanded sectional view of the hollow cylinder of the modification of this invention. 本発明の変形例の中空筒体構造の製造方法を説明する模式図。The schematic diagram explaining the manufacturing method of the hollow cylinder structure of the modification of this invention.

以下、本発明の一実施形態について図面を参照しつつ説明する。なお、以下の説明において参照する各図の形状は、好適な形状寸法を説明する上での概念図又は概略図であり、寸法比率等は実際の寸法比率とは必ずしも一致しない。つまり、本発明は、図面における寸法比率に限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the shape of each figure referred in the following description is a conceptual diagram or a schematic diagram for explaining a suitable shape dimension, and a dimension ratio etc. do not necessarily correspond with an actual dimension ratio. That is, the present invention is not limited to the dimensional ratio in the drawings.

本発明の一実施形態の中空筒体構造10は、保護管として機能する可撓性の中空筒体100の内部に配線・配管材11を配設したものである。換言すると、中空筒体構造10は、配線・配管材11と、該配線・配管材11を内部に配設している中空筒体100とを備える。図1は、中空筒体構造10の概略斜視図である。図1に示すように、中空筒体100は、積層部102内の接合部108によって周方向全体で閉塞されている。そして、配線・配管材11が中空筒体100の径方向において外部に露出されることなく、中空筒体100内部に収容及び保護されている。本実施形態の中空筒体構造10では、配線・配管材11は一般的なケーブルであり、中空筒体100は波付管である。しかしながら、本発明の構成・用途は、本実施形態に限定されることはない。例えば、配線・配管材は、導管やワイヤであってもよく、中空筒体は、直状管や筒状の被覆材であってもよい。さらに、中空筒体構造10は、被覆付きの電線やワイヤーハーネスなどであってもよい。すなわち、本発明の技術的思想は種々の用途に適用可能である。   A hollow cylinder structure 10 according to an embodiment of the present invention has a wiring / pipe material 11 disposed inside a flexible hollow cylinder 100 that functions as a protective tube. In other words, the hollow cylinder structure 10 includes a wiring / piping material 11 and a hollow cylinder 100 in which the wiring / piping material 11 is disposed. FIG. 1 is a schematic perspective view of the hollow cylinder structure 10. As shown in FIG. 1, the hollow cylinder 100 is closed in the entire circumferential direction by a joint portion 108 in the stacked portion 102. The wiring / pipe material 11 is housed and protected inside the hollow cylinder 100 without being exposed to the outside in the radial direction of the hollow cylinder 100. In the hollow cylinder structure 10 of the present embodiment, the wiring / pipe material 11 is a general cable, and the hollow cylinder 100 is a corrugated pipe. However, the configuration and use of the present invention are not limited to this embodiment. For example, the wiring / pipe material may be a conduit or a wire, and the hollow cylinder may be a straight tube or a cylindrical covering material. Furthermore, the hollow cylinder structure 10 may be a covered electric wire, a wire harness, or the like. That is, the technical idea of the present invention can be applied to various uses.

図2乃至図4を参照して、本実施形態の中空筒体構造10に用いられる中空筒体100の構造を説明する。図2(a),(b)は、中空筒体100の正面図及び側面図である。図3(a),(b)は、該中空筒体100の縦(A−A)断面図及びその部分拡大図である。図4(a),(b)は、該中空筒体100の横(B−B)断面図及びその部分拡大図である。   With reference to FIG. 2 thru | or FIG. 4, the structure of the hollow cylinder 100 used for the hollow cylinder structure 10 of this embodiment is demonstrated. 2A and 2B are a front view and a side view of the hollow cylinder 100. FIG. 3A and 3B are a longitudinal (AA) cross-sectional view and a partially enlarged view of the hollow cylinder 100. FIG. 4A and 4B are a horizontal (BB) cross-sectional view and a partially enlarged view of the hollow cylinder 100. FIG.

中空筒体100は、軸方向に山部100a及び谷部100bが連続する可撓性の波付管である。中空筒体100の筒壁は、周方向の大部分を占める周壁部101と、その残りの一部分を占める積層部102とからなる。積層部102は、中空筒体100の周方向の一部で軸方向に連続して形成されている。この積層部102は、所定の幅で直線的に帯状に延在しており、該積層部102上に切り割り部105が形成され得る。積層部102の幅は、切り割り部105を直線的に切断形成するためのガイド(目印)として機能するように細幅であることが好ましいが、任意に定められてもよい。   The hollow cylinder 100 is a flexible corrugated tube in which a crest 100a and a trough 100b are continuous in the axial direction. The cylindrical wall of the hollow cylindrical body 100 includes a peripheral wall portion 101 that occupies most of the circumferential direction and a laminated portion 102 that occupies the remaining portion. The laminated portion 102 is continuously formed in the axial direction at a part of the circumferential direction of the hollow cylinder 100. The laminated portion 102 linearly extends in a strip shape with a predetermined width, and the cut portion 105 can be formed on the laminated portion 102. The width of the stacked portion 102 is preferably narrow so as to function as a guide (mark) for cutting the cut portion 105 linearly, but may be arbitrarily determined.

また、積層部102では、山部100a及び谷部100bの高低差が積層部102以外の箇所(周壁部101)と比べて小さい。本実施形態では、積層部102における高低差h1が約1.5mmであり、周壁部101における高低差h2が2.5mmとなっている。このように、積層部102の高低差が相対的に小さくなることにより、積層部102に照射されるレーザーの強度が山部100aと谷部100bとで不均一になることが抑えられている。   Moreover, in the laminated part 102, the height difference of the peak part 100a and the trough part 100b is small compared with locations other than the laminated part 102 (peripheral wall part 101). In the present embodiment, the height difference h1 in the laminated portion 102 is about 1.5 mm, and the height difference h2 in the peripheral wall portion 101 is 2.5 mm. As described above, the difference in height between the stacked portions 102 is relatively reduced, so that the intensity of the laser irradiated to the stacked portions 102 is suppressed from becoming uneven between the peak portions 100a and the valley portions 100b.

図3及び図4に示すとおり、周壁部101は、単一(単層)の樹脂材料からなり、中空筒体100の周壁の大半を構成している。本実施形態において、周壁部101は、切り割り及びレーザー溶着の対象とならないので、その材料は任意に選択され得る。他方、積層部102は、該中空筒体100の外層を構成する熱可塑性樹脂(熱溶融性)のレーザー光透過層103と、該レーザー光透過層103の内層側に位置する熱可塑性樹脂(熱溶融性)のレーザー光吸収層104とから構成されている。すなわち、積層部102は、レーザー光透過層103とレーザー光吸収層104とが一体的に積層されたものである。   As shown in FIGS. 3 and 4, the peripheral wall portion 101 is made of a single (single layer) resin material and constitutes most of the peripheral wall of the hollow cylinder 100. In this embodiment, since the surrounding wall part 101 does not become an object of cutting and laser welding, the material can be selected arbitrarily. On the other hand, the laminated portion 102 is composed of a thermoplastic resin (thermomeltable) laser light transmitting layer 103 constituting the outer layer of the hollow cylinder 100 and a thermoplastic resin (thermophilic material) located on the inner layer side of the laser light transmitting layer 103. And a laser beam absorbing layer 104 having a melting property. That is, the laminated portion 102 is obtained by integrally laminating the laser light transmission layer 103 and the laser light absorption layer 104.

レーザー光透過層103は、照射されたレーザー光の少なくとも一部を透過可能に構成されている。すなわち、レーザー光透過層103は、熱可塑性を有し、透過率が好ましくは15%以上、より好ましくは30%以上となるように、その厚み及び材質が選択される。本実施形態では、レーザー光透過層103の厚みは約0.5mmであり、その材質はポリオレフィン系樹脂であるポリエチレン(PE)である。しかしながら、本発明は、本実施形態に限定されない。例えば、レーザー光透過層103を構成する熱可塑性樹脂として、ポリアミド(PA)、ポリプロプレン(PP)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、アクリロニトリル−ブタジエン−スチレン(ABS)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、アクリル(PMME)等が用いられてもよい。なお、レーザー光透過層103の樹脂材の塗料については、一般的にレーザー光を透過させ易い染料が用いられ、レーザー光の透過率を大きく低下させる顔料の添加は一部制約される。   The laser light transmission layer 103 is configured to transmit at least a part of the irradiated laser light. That is, the thickness and material of the laser light transmission layer 103 are selected so as to have thermoplasticity and a transmittance of preferably 15% or more, more preferably 30% or more. In this embodiment, the thickness of the laser light transmission layer 103 is about 0.5 mm, and the material thereof is polyethylene (PE) which is a polyolefin resin. However, the present invention is not limited to this embodiment. For example, polyamide (PA), polypropylene (PP), polycarbonate (PC), polyoxymethylene (POM), acrylonitrile-butadiene-styrene (ABS), polybutylene terephthalate can be used as the thermoplastic resin constituting the laser light transmission layer 103. (PBT), polyphenylene sulfide (PPS), acrylic (PMME), or the like may be used. In addition, about the resin coating material of the laser light transmission layer 103, dyes that easily transmit laser light are generally used, and the addition of pigments that greatly reduce the laser light transmittance is partially restricted.

さらに好ましくは、レーザー光透過層103は、レーザー光を透過させるとともに、レーザー光の一部を吸収可能であってもよい。例えば、レーザー光透過層103は、母材であるポリエチレンに対し、微量のカーボンブラック(例えば、約0.01重量%以下)やレーザー光弱吸収剤を添加することにより形成される。レーザー光弱吸収剤は、ニグロシン、アニリンブラック、フタロシアニン、ナフタロシアニン、ポルフィリン、ペリレン、クオテリレン、アゾ染料、アントラキノン、スクエア酸誘導体、インモニウム染料等から選択され得る。すなわち、レーザー光透過層103にレーザー光が照射されたとき、レーザー光透過層103のレーザー光弱吸収剤がレーザー光の一部を吸収して弱く発熱し、レーザー光吸収層104の熱溶融が補助される。なお、レーザー光吸収層104の透過率が約15%以上を維持するように、カーボンブラックやレーザー光弱吸収剤の添加量が調整されることが好ましい。   More preferably, the laser light transmission layer 103 may transmit laser light and absorb part of the laser light. For example, the laser light transmission layer 103 is formed by adding a trace amount of carbon black (for example, about 0.01% by weight or less) or a weak laser light absorber to polyethylene as a base material. The weak laser light absorber may be selected from nigrosine, aniline black, phthalocyanine, naphthalocyanine, porphyrin, perylene, quaterylene, azo dye, anthraquinone, squaric acid derivative, immonium dye and the like. That is, when the laser light transmission layer 103 is irradiated with laser light, the laser light weak absorbent in the laser light transmission layer 103 absorbs part of the laser light and generates heat weakly, and the laser light absorption layer 104 is thermally melted. Assisted. In addition, it is preferable to adjust the addition amount of carbon black or a laser beam weak absorber so that the transmittance of the laser beam absorption layer 104 is maintained at about 15% or more.

レーザー光吸収層104は、レーザー光透過層103よりも相対的に低い透過率(又は相対的に高い光吸収率)を有する層として定義される。レーザー光吸収層104は、熱可塑性を有し、レーザー光を吸収し得るものであれば、その材質において特に限定されない。本実施形態では、レーザー光吸収層104の厚みは、約0.5mm〜1.0mm(位置に応じて変化する)である。なお、中空筒体100の軸方向において、成形の都合上、山部100aから谷部100bの間の壁部が相対的に肉薄となり、樹脂たまりとなる箇所が相対的に肉厚となる(図面には詳述せず)。また、レーザー光吸収層104の材質は、母材であるポリエチレン(PE)に添加剤であるカーボンブラックを所定量(本実施形態では約2重量%、ただし添加量は限定されない)添加したものである。つまり、適量のカーボンブラックを混入することで樹脂材の光吸収性が高くなり、その結果、レーザー照射による発熱量が高くなる。レーザー光吸収層104の透過率は、10%以下であることが好ましい。そして、目的とするレーザー光吸収層104の透過率に合わせるように、カーボンブラックの添加量が調整され得る。なお、本発明のレーザー光吸収層の材料は、本実施形態に限定されず、例えば、レーザー光吸収層104を構成する熱可塑性樹脂の母材として、ポリアミド(PA)、ポリプロプレン(PP)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、アクリロニトリル−ブタジエン−スチレン(ABS)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、アクリル(PMME)等が用いられてもよい。そして、レーザー光を吸収して発熱可能であれば、カーボンブラックに変えて、他の黒色以外の顔料系吸収色素が母材に添加されてもよい。   The laser light absorption layer 104 is defined as a layer having a relatively low transmittance (or relatively high light absorption rate) than the laser light transmission layer 103. The laser light absorbing layer 104 is not particularly limited as long as it has thermoplasticity and can absorb laser light. In the present embodiment, the thickness of the laser light absorption layer 104 is about 0.5 mm to 1.0 mm (changes depending on the position). In addition, in the axial direction of the hollow cylinder 100, the wall part between the peak part 100a and the trough part 100b becomes relatively thin for convenience of molding, and the part where the resin pool becomes relatively thick (drawing) Not detailed). The material of the laser light absorbing layer 104 is obtained by adding a predetermined amount of carbon black as an additive to polyethylene (PE) as a base material (about 2 wt% in this embodiment, but the amount of addition is not limited). is there. That is, mixing a proper amount of carbon black increases the light absorption of the resin material, and as a result, the amount of heat generated by laser irradiation increases. The transmittance of the laser light absorption layer 104 is preferably 10% or less. And the addition amount of carbon black can be adjusted so that it may match the transmittance | permeability of the target laser-light absorption layer 104. FIG. The material of the laser light absorption layer of the present invention is not limited to this embodiment. For example, as a base material of a thermoplastic resin constituting the laser light absorption layer 104, polyamide (PA), polypropylene (PP), Polycarbonate (PC), polyoxymethylene (POM), acrylonitrile-butadiene-styrene (ABS), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), acrylic (PMME), and the like may be used. And if it can generate | occur | produce a heat | fever by absorbing a laser beam, it changes into carbon black and other pigment-type absorption dyes other than black may be added to a base material.

本実施形態では、図4(b)に示すように、周壁部101と、積層部102のレーザー光吸収層104とが同一材料で一体的に形成されている。そして、周壁部101の周方向の端部と、レーザー光吸収層104の外面とにレーザー光透過層103が一体的に結合している。また、図3(b)に示すように、レーザー光透過層103の厚みが山部100a及び谷部100bにおいて略一様であるのに対し、レーザー光吸収層104の厚みは、連続する山部100a及び谷部100bにおいて異なっている。すなわち、山部100aにおけるレーザー光吸収層104の厚みt1(約0.8mm)が、谷部100bにおけるレーザー光吸収層104の厚みt2(約1.0mm)よりも薄い。また、中空筒体100の軸方向の山部100a及び谷部100b間の壁部の傾斜角度α(図3(b)参照)は、レーザー光Lの照射角度θ(図6参照)よりも大きい。本実施形態の製造方法では、傾斜角度αが6°であり、レーザー光Lの照射角度θが5°に定められた。   In the present embodiment, as shown in FIG. 4B, the peripheral wall portion 101 and the laser light absorption layer 104 of the laminated portion 102 are integrally formed of the same material. The laser light transmitting layer 103 is integrally coupled to the circumferential end of the peripheral wall 101 and the outer surface of the laser light absorbing layer 104. In addition, as shown in FIG. 3B, the thickness of the laser light transmission layer 103 is substantially uniform in the peak portion 100a and the valley portion 100b, whereas the thickness of the laser light absorption layer 104 is a continuous peak portion. It differs in 100a and trough part 100b. That is, the thickness t1 (about 0.8 mm) of the laser light absorption layer 104 in the peak portion 100a is thinner than the thickness t2 (about 1.0 mm) of the laser light absorption layer 104 in the valley portion 100b. Further, the inclination angle α (see FIG. 3B) of the wall portion between the crest portion 100a and the trough portion 100b in the axial direction of the hollow cylinder 100 is larger than the irradiation angle θ of the laser light L (see FIG. 6). . In the manufacturing method of the present embodiment, the inclination angle α is 6 °, and the irradiation angle θ of the laser light L is set to 5 °.

本実施形態の中空筒体100は、コルゲート成形によって波付管として成形され、積層部102のレーザー光透過層103が二色成形によって、周壁部101及びレーザー光吸収層104に対して一体的に成形されることで製造可能である。しかしながら、本発明の中空筒体は、他の一般的な製法によっても製造可能である。   The hollow cylinder 100 of the present embodiment is formed as a corrugated tube by corrugated molding, and the laser light transmitting layer 103 of the laminated portion 102 is integrated with the peripheral wall portion 101 and the laser light absorbing layer 104 by two-color molding. It can be manufactured by molding. However, the hollow cylinder of the present invention can be manufactured by other general manufacturing methods.

次に、図5を参照して、配線・配管材11を中空筒体100の内部に配設して中空筒体構造10を製造する方法を説明する。   Next, with reference to FIG. 5, a method for manufacturing the hollow cylinder structure 10 by arranging the wiring / pipe material 11 inside the hollow cylinder 100 will be described.

まず、配線・配管材11とともに中空筒体100を準備する。該中空筒体100の積層部102を幅方向に分断するように中空筒体100を軸方向に沿って連続的に切断することによって、中空筒体100の筒壁に開放可能な切り割り部105を形成する。切り割り部105は、中空筒体100の軸方向全体に亘って形成されてもよく、あるいは、配線・配管材11を導入可能であれば中空筒体100の軸方向に部分的に形成されてもよい。本実施形態では、比較的細い幅の積層部102が軸方向に沿って直線的に延在しているので、施工者は積層部102の幅方向中央に沿ってカッターなどで中空筒体100を切断することで、簡単に切り割り部105を形成することができる。なお、切り割り部105は、予め中空筒体100の積層部102に成形されたものであってもよい。この場合、施工者が中空筒体100を切断する工程が省略される。その結果、切り割り部105の外縁部には、切り割り部105を介して相対する分断端面106が形成される。該分断端面106は、中空筒体100の筒壁に直交する平面であることが好ましい。こうすると、対向する分断端面106相互をより確実に密着させることが可能となる。   First, the hollow cylinder 100 is prepared together with the wiring / pipe material 11. By continuously cutting the hollow cylinder 100 along the axial direction so as to divide the laminated portion 102 of the hollow cylinder 100 in the width direction, a slit portion 105 that can be opened on the cylinder wall of the hollow cylinder 100 is provided. Form. The slit portion 105 may be formed over the entire axial direction of the hollow cylinder 100, or may be partially formed in the axial direction of the hollow cylinder 100 if the wiring / pipe material 11 can be introduced. Good. In the present embodiment, since the laminated portion 102 having a relatively narrow width extends linearly along the axial direction, the builder uses the cutter or the like along the center in the width direction of the laminated portion 102 to remove the hollow cylinder 100. The cutting part 105 can be easily formed by cutting. Note that the cut portion 105 may be formed in advance on the laminated portion 102 of the hollow cylinder 100. In this case, the process of cutting the hollow cylinder 100 by the installer is omitted. As a result, a split end face 106 is formed on the outer edge portion of the cut portion 105 through the cut portion 105. The dividing end face 106 is preferably a plane that is orthogonal to the cylinder wall of the hollow cylinder 100. If it carries out like this, it will become possible to contact | connect the opposing parting end surfaces 106 more reliably.

次に、図5(a)に示すように、中空筒体100の周壁部101を撓み変形させて切り割り部105を開放し、該切り割り部105から中空筒体100の内部に配線・配管材11を収容する。切り割り部105の開放幅は、配線・配管材11の径に対して、約1.5倍以上とすることが作業利便性上で好ましい。そして、切り割り部105に対して配線・配管材11をその径方向から平行移動させるようにして内部に収容してもよく、あるいは、配線・配管材11の端部を切り割り部105に差し込んで軸方向に移動させるように内部に収容してもよい。   Next, as shown in FIG. 5 (a), the peripheral wall portion 101 of the hollow cylinder 100 is bent and deformed to open the cut portion 105, and the wiring / pipe material 11 enters the hollow cylinder 100 from the cut portion 105. To accommodate. The open width of the cut portion 105 is preferably about 1.5 times or more the diameter of the wiring / piping material 11 in terms of work convenience. Then, the wiring / piping material 11 may be accommodated in the slit portion 105 so as to be translated from the radial direction thereof, or the end of the wiring / piping material 11 may be inserted into the slit portion 105 to be pivoted. You may accommodate in an inside so that it may move to a direction.

次いで、図5(b)に示すように、配線・配管材11を中空筒体100内部に配置した状態で、撓み変形した周壁部101を原形状に(弾性)復帰させつつ、切り割り部105を介して相対する分断端面106同士を密着させる。このとき、分断端面同士を密着方向に加圧することが好ましい。さらには、加圧時に滑って端縁が重なりすぼむことを抑えるべく、中空筒体100の山谷を軸方向に僅かにずらした状態で分断端面106同士を密着させることが好ましい。   Next, as shown in FIG. 5 (b), with the wiring / pipe material 11 arranged inside the hollow cylinder 100, the slit portion 105 is formed while returning the elastically deformed peripheral wall portion 101 to its original shape (elastic). The opposing cut end faces 106 are brought into close contact with each other. At this time, it is preferable to press the divided end faces in the close contact direction. Furthermore, it is preferable that the divided end faces 106 are brought into close contact with each other in a state where the peaks and valleys of the hollow cylinder 100 are slightly shifted in the axial direction in order to prevent the end edges from being slid when the pressure is applied.

そして、図5(c)に示すように、分断端面106同士が密着及び加圧された状態の切り割り部105(分断端面106間の界面)に対して中空筒体100の外面から、レーザー光照射装置(図示せず)によってレーザー光Lを局所的に照射する。なお、レーザー光Lは、ファイバーレーザー(波長:1070nm)、YAG(イットリウム・アルミニウム・ガーネット結晶)レーザー、レーザーダイオード(波長:808、840、940nm)などから任意に選択され得る。そして、所定時間のレーザー照射により、被照射位置における両分断端面106,106が熱溶融する。溶融に必要なレーザー照射時間は、レーザー光Lの強度等に応じて適宜選択され得る。分断端面106を熱溶融させつつ、レーザー光Lを中空筒体100の軸方向に沿って切り割り部105の一端から他端まで相対移動させる。なお、中空筒体100に対してレーザー光Lを移動させてもよく、あるいは、レーザー光Lに対して中空筒体100を移動させてもよい。   And as shown in FIG.5 (c), laser beam irradiation is carried out from the outer surface of the hollow cylinder 100 with respect to the slit part 105 (interface between the parting end surfaces 106) in the state by which the parting end surfaces 106 were closely_contact | adhered and pressurized. A laser beam L is locally irradiated by an apparatus (not shown). The laser light L can be arbitrarily selected from a fiber laser (wavelength: 1070 nm), a YAG (yttrium, aluminum, garnet crystal) laser, a laser diode (wavelength: 808, 840, 940 nm), and the like. Then, due to laser irradiation for a predetermined time, both the divided end faces 106 and 106 at the irradiated position are thermally melted. The laser irradiation time required for melting can be appropriately selected according to the intensity of the laser beam L and the like. The laser beam L is relatively moved from one end to the other end of the split portion 105 along the axial direction of the hollow cylinder 100 while the divided end face 106 is melted by heat. The laser beam L may be moved with respect to the hollow cylinder 100 or the hollow cylinder 100 may be moved with respect to the laser beam L.

より詳細には、図6に示すように、分断端面106の密着部分に対して局所的にレーザー光Lを照射すると、レーザー光Lが外層側のレーザー光透過層104を通過(透過)し、レーザー光透過層103の透過率に応じた量のレーザー光Lが内層側のレーザー光吸収層104表面に吸収される。このとき、積層部102がレーザー光透過層103及びレーザー光吸収層104の少なくとも2層で構成されていることにより、該レーザー光吸収層104が、レーザー光Lが筒壁を透過して内部に配設した配線・配管材11の外面を溶融させてしまうことを防止することができる。そして、切り割り部105(分断端面106同士の界面)において、レーザー光吸収層104が優先的に加熱される。続いて、レーザー光吸収層104の加熱表面(レーザー光透過層103とレーザー光吸収層104との界面)から、熱が分断端面106間の界面に沿って厚み方向の内外(すなわちレーザー光透過層103の外面側及びレーザー光吸収層104の内面側の両方)へと伝導し、分断端面106全体が加熱されて溶融する。特には、積層部102がレーザー光透過層103及びレーザー光吸収層104の2層で構成され、レーザー光透過層103がレーザー光吸収層104を覆うので、レーザー光吸収層103の溶融方向が分断端面106側に定められて効率良く溶着できる。例えば、レーザー光Lの被照射部分(被接合部分)が1層である場合、樹脂が自由方向に溶融するので、熱伝達の効率は良くない。これに対し、本実施形態では、図6に示すように、分断端面106におけるレーザー光吸収層104表面(又は2層の界面)がレーザー光Lによって局所的に加熱されるので、その熱は、中空筒体100の周方向よりもむしろ、分断端面106側に優先的に伝達し得る。   More specifically, as shown in FIG. 6, when the laser beam L is locally applied to the contact portion of the divided end face 106, the laser beam L passes (transmits) through the laser beam transmitting layer 104 on the outer layer side, The amount of laser light L corresponding to the transmittance of the laser light transmission layer 103 is absorbed by the surface of the laser light absorption layer 104 on the inner layer side. At this time, since the laminated portion 102 is composed of at least two layers of the laser light transmission layer 103 and the laser light absorption layer 104, the laser light absorption layer 104 transmits the laser light L through the cylindrical wall to the inside. It is possible to prevent the outer surface of the disposed wiring / piping material 11 from being melted. Then, the laser light absorption layer 104 is preferentially heated at the cut portion 105 (interface between the divided end faces 106). Subsequently, heat is transferred from the heating surface of the laser light absorption layer 104 (interface between the laser light transmission layer 103 and the laser light absorption layer 104) in the thickness direction along the interface between the divided end faces 106 (that is, the laser light transmission layer). 103 both on the outer surface side of 103 and on the inner surface side of the laser light absorption layer 104), and the entire cut end face 106 is heated and melted. In particular, the laminated portion 102 is composed of two layers, a laser light transmission layer 103 and a laser light absorption layer 104, and the laser light transmission layer 103 covers the laser light absorption layer 104, so that the melting direction of the laser light absorption layer 103 is divided. It is determined on the end face 106 side and can be efficiently welded. For example, when the irradiated portion (bonded portion) of the laser light L is a single layer, the resin is melted in the free direction, so the heat transfer efficiency is not good. On the other hand, in this embodiment, as shown in FIG. 6, the surface of the laser light absorption layer 104 (or the interface between the two layers) at the divided end face 106 is locally heated by the laser light L, so that the heat is Rather than the circumferential direction of the hollow cylinder 100, it can be transmitted preferentially to the divided end face 106 side.

その結果、熱溶融した分断端面106同士が溶融プール107を形成し、材料的に混ざり合う。なお、レーザー光透過層103にレーザー光弱吸収剤が添加されている場合、レーザー光透過層103自身も(レーザー光吸収層104と比べて弱く)発熱し、レーザー光透過層103の熱溶融が補助される。つまり、中空筒体100の内部(断面)は、その外面と比べて大きく溶融する。当該被照射位置からレーザー光Lが移動した後、溶融プール107が自然冷却又は冷却処理により固化して、分断端面106同士が一体的に接合(融着)される。続いて、レーザー光Lは、軸方向に沿って山部100a及び谷部100b外面上を交互に前進していく。こうして、分断端面106同士を軸方向に沿って順にレーザー溶着して切り割り部105全体を閉塞することができる。   As a result, the heat-melted divided end faces 106 form a molten pool 107 and are mixed together in materials. When a weak laser beam absorber is added to the laser beam transmission layer 103, the laser beam transmission layer 103 itself generates heat (weaker than the laser beam absorption layer 104) and the laser beam transmission layer 103 is thermally melted. Assisted. That is, the inside (cross section) of the hollow cylinder 100 is greatly melted compared to its outer surface. After the laser beam L moves from the irradiated position, the molten pool 107 is solidified by natural cooling or a cooling process, and the divided end faces 106 are joined (fused) together. Subsequently, the laser light L advances alternately on the outer surface of the peak portion 100a and the valley portion 100b along the axial direction. In this way, it is possible to block the entire slit portion 105 by laser welding the cut end faces 106 in order along the axial direction.

なお、上記説明した配線・配管材11を中空筒体100の内部に配設する方法は、一連の工程として、以下のケーブル収容装置によって実施され得る。
ケーブル収容装置は、
中空筒体を軸方向へと送り出すコンベヤ手段と、
中空筒体に切り割り部を形成するための切断手段と、
該切り割り部を開放する開放手段と、
開放された切り割り部にケーブルを挿入する(又は押し込む)ケーブル挿入手段と、
切り割り部を介して相対する分断端面同士を密着及び押圧させる押圧手段と、
切り割り部にレーザー光を照射するレーザー照射装置と、
切り割り部を閉塞して構築した中空筒体構造を巻取る巻取り手段と、を備える。
上記各手段は、例えば、ロボットアームやカッター等の機械的な既知の手段として用意可能である。
In addition, the method of arrange | positioning the wiring and piping material 11 demonstrated above in the inside of the hollow cylinder 100 can be implemented with the following cable accommodation apparatuses as a series of processes.
Cable housing device
Conveyor means for feeding the hollow cylinder in the axial direction;
Cutting means for forming a slit in the hollow cylinder;
Opening means for opening the slit part;
A cable insertion means for inserting (or pushing) the cable into the opened slit,
A pressing means for closely contacting and pressing the split end faces facing each other via the slitting portion;
A laser irradiation device for irradiating the cutting part with laser light;
Winding means for winding up the hollow cylindrical structure constructed by closing the cut portion.
Each said means can be prepared as mechanically known means, such as a robot arm and a cutter, for example.

図7は、上記製造方法で製造した中空筒体構造10の横断面図である。図7に示すとおり、レーザー溶着により、積層部102を幅方向に分断して中空筒体100の軸方向に連続的に延びる接合部108が形成されている。接合部108は、中空筒体100の軸方向に沿った断面において分断端面106同士が溶融して材料的に融合したレーザー融着痕(又は融着痕、融着断面)108aを形成している。すなわち、レーザー融着痕108aは、同一材料からなる分断端面106同士が溶融、融合及び固化して一体的に結合した状態を示している。それ故、接合部108は、異種材料間の接合と比べて、十分な接合強度を有している。また、この接合部108のレーザー融着痕108aは、中空筒体100の外面に現れずに積層部102の実質的に断面のみに形成されているので、中空筒体構造10の見栄えを劣化させることがない。また、中空筒体構造10における(レーザー処理後の)中空筒体100の形状は、レーザー処理前の当初の中空筒体100形状とほぼ変わらない。それ故、従来のような屈曲性を低下させる背骨が接合部108に形成されることもなく、当初の中空筒体100とほぼ同等の屈曲性(可撓性)を有する。   FIG. 7 is a cross-sectional view of the hollow cylindrical structure 10 manufactured by the above manufacturing method. As shown in FIG. 7, by laser welding, the laminated portion 102 is divided in the width direction to form a joint portion 108 that continuously extends in the axial direction of the hollow cylinder 100. The joining portion 108 forms a laser fusion mark (or fusion mark, fusion cross-section) 108 a in which the cut end faces 106 are melted and fused in the cross section along the axial direction of the hollow cylinder 100. . In other words, the laser fusion mark 108a shows a state in which the divided end faces 106 made of the same material are fused, fused and solidified to be integrally joined. Therefore, the bonding portion 108 has a sufficient bonding strength compared to bonding between different materials. Further, the laser fusion mark 108a of the joining portion 108 does not appear on the outer surface of the hollow cylindrical body 100 and is formed substantially only in the cross section of the laminated portion 102, so that the appearance of the hollow cylindrical structure 10 is deteriorated. There is nothing. Further, the shape of the hollow cylinder 100 (after the laser treatment) in the hollow cylinder structure 10 is not substantially different from the original shape of the hollow cylinder 100 before the laser treatment. Therefore, the spine that lowers the bendability as in the conventional case is not formed at the joint portion 108, and the bendability (flexibility) is almost the same as that of the original hollow cylinder 100.

以下、本発明に係る一実施形態の作用効果について説明する。   Hereinafter, the operation and effect of the embodiment according to the present invention will be described.

本実施形態によれば、中空筒体100は、その外層を構成する熱溶融性のレーザー光透過層103と、該レーザー光透過層103の内層側に位置し、レーザー光透過層103よりも相対的に高い吸光度を有する熱溶融性のレーザー光吸収層104とが一体的に積層された積層部102を備える。該積層部102を切り割るように形成された切り割り部105を介して、配線・配管材11を中空筒体100の内部に挿入することができる。そして、配線・配管材11を中空筒体100に内挿した状態で、積層部102を幅(周)方向に分断する分断端面106同士を密着させた上で、切り割り部105に対して中空筒体100の外面からレーザー光Lを照射することにより、分断端面106同士をレーザー溶着して切り割り部105を確実且つ見栄え良く閉塞することができる。すなわち、切り割り部105のレーザー溶着工程において、中空筒体100の厚み方向の央部のレーザー光吸収層104表面から厚み方向の内外に熱が順に伝導し、分断端面106が優先的に溶融及び固化することから、中空筒体の外面に溶融した痕跡がほとんど現れることがない。よって、本実施形態の中空筒体構造10において、中空筒体100外面にバリが発生したり、その外面に溶融痕が残り中空筒体構造10の見栄えが悪くなることを極力抑えることができる。さらには、本実施形態では、分断端面106同士が他の材料を介さずに直接に接合されるので、中空筒体100の筒壁に最初から切り割り部105がなかったかのように切り割り部105が閉塞され得る。すなわち、本実施形態は、切り割り部105の閉塞によって中空筒体100の屈曲性(可撓性)を損なうことを防止し、所定の屈曲性を維持することができる。そして、本実施形態の製造方法は、結合部材のような別材料を別途用意することなく、中空筒体100の一部(同一材料)同士を溶着するので、切り割り部105の高い接合強度を確保し、尚且つ、作業性及びコストの点でも有利である。   According to the present embodiment, the hollow cylinder 100 is located on the inner side of the laser beam transmissive layer 103 and the heat-meltable laser beam transmissive layer 103 constituting the outer layer thereof. The laminated portion 102 is integrally laminated with a heat-meltable laser light absorbing layer 104 having a particularly high absorbance. The wiring / pipe material 11 can be inserted into the hollow cylindrical body 100 through the cut portion 105 formed so as to cut the laminated portion 102. Then, with the wiring / pipe material 11 inserted in the hollow cylinder 100, the divided end faces 106 that divide the laminated portion 102 in the width (circumferential) direction are brought into close contact with each other, and then the hollow cylinder is formed with respect to the cut portion 105. By irradiating the laser beam L from the outer surface of the body 100, the split end surfaces 106 can be laser-welded to block the cut portion 105 with certainty and good appearance. That is, in the laser welding process of the cut portion 105, heat is sequentially conducted from the surface of the laser light absorption layer 104 at the center in the thickness direction of the hollow cylinder 100 to the inside and outside in the thickness direction, and the divided end face 106 is preferentially melted and solidified. As a result, almost no traces of melting appear on the outer surface of the hollow cylinder. Therefore, in the hollow cylinder structure 10 of this embodiment, it can suppress as much as possible that a burr | flash generate | occur | produces on the outer surface of the hollow cylinder 100, or a fusion mark remains on the outer surface and the appearance of the hollow cylinder structure 10 deteriorates. Furthermore, in this embodiment, since the split end faces 106 are directly joined without any other material, the cut portion 105 is blocked as if the cut portion 105 had not been provided on the tube wall of the hollow cylinder 100 from the beginning. Can be done. In other words, this embodiment can prevent the hollow cylinder 100 from being damaged (flexible) by closing the cut portion 105 and maintain a predetermined flexibility. And since the manufacturing method of this embodiment welds a part (same material) of the hollow cylinder 100, without preparing another material like a coupling member separately, the high joint strength of the cut part 105 is ensured. However, it is also advantageous in terms of workability and cost.

本実施形態では、レーザー光Lの照射角度θは、中空筒体100の軸方向の山部100a及び谷部100b間の壁部の傾斜角度αよりも小さい。これにより、中空筒体100波付管の山部100aに邪魔されることなく、谷部100bの外面にまでレーザー光Lをより確実に照射することが可能である。また、本実施形態では、レーザー光Lの焦点は、中空筒体100の谷部100b側に定められたが、積層部102における山部100a及び谷部100bの高低差が比較的小さくなっている。このため、山部100a及び谷部100bでレーザー照射による加熱量がばらつくことが抑えられている。さらに、山部100aにおけるレーザー光吸収層104の厚みが、谷部100bにおけるレーザー光吸収層104の厚みよりも薄い。レーザー光の焦点が谷部100b外面に定められた場合、谷部100bへの熱エネルギーが山部100aへの熱エネルギーよりも相対的に大きくなる。それ故、山部100aのレーザー光吸収層104に融着に必要な熱エネルギーを与えた場合、谷部100bのレーザー光吸収層104に過大な熱エネルギーが与えられ、谷部100bの筒壁が焼き切れる虞があった。つまり、谷部100bにおけるレーザー光吸収層104の厚みを相対的に厚くすることにより、谷部100bの筒壁が焼き切れる虞を軽減している。   In the present embodiment, the irradiation angle θ of the laser light L is smaller than the inclination angle α of the wall portion between the peak portion 100a and the valley portion 100b in the axial direction of the hollow cylinder 100. Thereby, it is possible to irradiate the laser beam L to the outer surface of the trough part 100b more reliably without being disturbed by the crest part 100a of the hollow tube 100 corrugated tube. In the present embodiment, the focal point of the laser beam L is determined on the valley 100b side of the hollow cylinder 100, but the height difference between the peak 100a and the valley 100b in the stacked portion 102 is relatively small. . For this reason, it is suppressed that the amount of heating by laser irradiation varies in the peak portion 100a and the valley portion 100b. Furthermore, the thickness of the laser light absorption layer 104 in the peak portion 100a is thinner than the thickness of the laser light absorption layer 104 in the valley portion 100b. When the focal point of the laser beam is determined on the outer surface of the valley portion 100b, the thermal energy to the valley portion 100b is relatively larger than the thermal energy to the mountain portion 100a. Therefore, when heat energy necessary for fusion is applied to the laser light absorption layer 104 of the peak portion 100a, excessive heat energy is applied to the laser light absorption layer 104 of the valley portion 100b, and the cylindrical wall of the valley portion 100b is There was a risk of burning out. In other words, by relatively increasing the thickness of the laser light absorption layer 104 in the valley portion 100b, the possibility that the cylindrical wall of the valley portion 100b is burned out is reduced.

[変形例]
本発明は、上記実施形態に限定されず、種々の変形例を取り得る。以下、本発明の変形例を説明する。なお、各変形例において、三桁で示される構成要素において下二桁が共通する構成要素は、説明がない限り、同一又は類似の特徴を有し、その説明を一部省略する。
[Modification]
The present invention is not limited to the above embodiment, and various modifications can be made. Hereinafter, modifications of the present invention will be described. Note that, in each modified example, components having the same last two digits in the components indicated by three digits have the same or similar features unless otherwise described, and a part of the description is omitted.

(1)本発明の中空筒体は、上記実施形態に限定されない。例えば、上記実施形態では、中空筒体が波付管であるが、平滑管であってもよい。その場合、平滑管は押し出し成形で製造され、積層部は二色成形により形成され得る。平滑管を採用した場合、管自体の可撓性は劣るが、レーザー光を軸方向に沿ってより均一に照射可能となる。 (1) The hollow cylinder of the present invention is not limited to the above embodiment. For example, in the above embodiment, the hollow cylinder is a corrugated tube, but may be a smooth tube. In that case, the smooth tube can be manufactured by extrusion molding, and the laminated portion can be formed by two-color molding. When the smooth tube is employed, the flexibility of the tube itself is inferior, but the laser beam can be irradiated more uniformly along the axial direction.

(2)本発明の中空筒体は、上記実施形態に限定されない。中空筒体の積層部は、少なくともレーザー光透過層及びレーザー光吸収層を備えていれば、3層以上の構成であってもよい。例えば、図8(a)の中空筒体200のように、周壁部201及び積層部202の内面に追加層209が積層されてもよい。あるいは、図8(b)の中空筒体300のように、積層部302のレーザー光透過層303を第1透過層303a及び(該第1透過層303aとは組成及び吸光度が異なる)第2透過層303bの2層としてもよい。また、上記実施形態では、積層部は中空筒体の軸方向全体に亘って延びる1つの細幅の帯体として形成されているが、本発明はこれに限定されない。例えば、積層部は、中空筒体の軸方向の一部に形成されたものであってもよい。積層部は、中空筒体の周方向の大部分を占めてもよい。あるいは、積層部は、周方向に複数の積層部を形成してもよい。したがって、本発明の技術的思想の下で、中空筒体は種々の形態をとり得る。 (2) The hollow cylinder of the present invention is not limited to the above embodiment. The laminated portion of the hollow cylindrical body may have a configuration of three or more layers as long as it includes at least a laser light transmission layer and a laser light absorption layer. For example, the additional layer 209 may be laminated | stacked on the inner surface of the surrounding wall part 201 and the laminated part 202 like the hollow cylinder 200 of Fig.8 (a). Alternatively, as in the hollow cylindrical body 300 of FIG. 8B, the laser light transmission layer 303 of the stacked portion 302 is changed to the first transmission layer 303a and the second transmission (which differs in composition and absorbance from the first transmission layer 303a). Two layers of the layer 303b may be used. Moreover, in the said embodiment, although the laminated part is formed as one narrow strip | belt body extended over the whole axial direction of a hollow cylinder, this invention is not limited to this. For example, the laminated portion may be formed on a part of the hollow cylinder in the axial direction. The laminated part may occupy most of the circumferential direction of the hollow cylinder. Alternatively, the stacked portion may form a plurality of stacked portions in the circumferential direction. Therefore, the hollow cylinder can take various forms under the technical idea of the present invention.

(3)本発明の製造方法において、中空筒体の積層部は、その周方向の一部に形成されたものであるが、本発明は上記実施形態に限定されない。すなわち、図9の中空筒体400のように、中空筒体400の筒壁の周方向全体を積層部402としてもよい。本変形例において、切り割り部405を介して配線・配管材11を挿入し、分断端面406を密着させ、該切り割り部405にレーザー光Lを照射することにより、上記実施形態と同様に、切り割り部405をレーザー溶着して見栄え良く閉塞することができる。 (3) In the manufacturing method of the present invention, the laminated portion of the hollow cylinder is formed in a part of the circumferential direction, but the present invention is not limited to the above embodiment. That is, as in the hollow cylinder 400 of FIG. 9, the entire circumferential direction of the cylindrical wall of the hollow cylinder 400 may be the stacked portion 402. In this modification, the wiring / pipe material 11 is inserted through the cutting portion 405, the cut end surface 406 is brought into close contact, and the cutting portion 405 is irradiated with the laser light L, so that the cutting portion is formed as in the above embodiment. 405 can be laser-welded and closed with good appearance.

(4)本発明の製造方法において、積層部は、中空筒体の外面側にレーザー光透過層を有し、内面側にレーザー光吸収層を有する。しかしながら、本発明はこれに限定されない。すなわち、レーザー光吸収層を筒壁外面側に配置し、レーザー光透過層を筒壁内面側に配置してもよい。この場合、中空筒体の内部にレーザー光照射装置を照射口を配置し、中空筒体の内面側から切り割り部に対してレーザー照射することにより、上記実施形態と同様に、切り割り部をレーザー溶着して見栄え良く閉塞することができる。さらに、本変形例において、中空筒体の内部からレーザー照射すると、中空筒体内部に配設した配線・配管材がレーザー光で溶融又は損傷する虞を排除することができる。 (4) In the manufacturing method of this invention, a laminated part has a laser beam transmission layer in the outer surface side of a hollow cylinder, and has a laser beam absorption layer in an inner surface side. However, the present invention is not limited to this. That is, the laser light absorption layer may be disposed on the outer surface side of the cylinder wall, and the laser light transmission layer may be disposed on the inner surface side of the cylinder wall. In this case, the laser beam irradiation device is disposed inside the hollow cylinder, and the laser is irradiated to the slit from the inner surface side of the hollow cylinder, so that the laser is welded to the slit as in the above embodiment. And it can be closed up nicely. Furthermore, in this modification, when laser irradiation is performed from the inside of the hollow cylindrical body, the possibility that the wiring / pipe material disposed inside the hollow cylindrical body is melted or damaged by the laser light can be eliminated.

(5)上記実施形態の製造方法では、中空筒体の外面に1つの切り割り部を軸方向に沿って形成した。しかしながら、本発明は、上記方法に限定されない。例えば、2箇所の積層部を備える中空筒体に対して、各積層部に2つの切り割り部を形成することで中空筒体を2つの分割片に切り分け、配線・配管材を包囲するように分割片を合わせて、2箇所の切り割り部をレーザー溶着で閉塞してもよい。例えば、中空筒体の内径に対する配線・配管材の外径の比率が大きい場合など、このような方法が選択され得る。 (5) In the manufacturing method of the said embodiment, one slit part was formed along the axial direction on the outer surface of the hollow cylinder. However, the present invention is not limited to the above method. For example, with respect to a hollow cylindrical body having two laminated portions, the hollow cylindrical body is divided into two divided pieces by forming two slit portions in each laminated portion, and divided so as to surround the wiring / pipe material. Two pieces may be closed by laser welding together with the pieces. For example, such a method can be selected when the ratio of the outer diameter of the wiring / pipe material to the inner diameter of the hollow cylinder is large.

本発明は上述した実施形態や変形例に限定されるものではなく、本発明の技術的範囲に属する限りにおいて種々の態様で実施しうるものである。   The present invention is not limited to the above-described embodiments and modifications, and can be implemented in various modes as long as they belong to the technical scope of the present invention.

10 中空筒体構造
11 配線・配管材
100 中空筒体
100a 山部
100b 谷部
101 周壁部
102 積層部
103 レーザー光透過層
104 レーザー光吸収層
105 切り割り部
106 分断端面
107 溶融プール
108 接合部
108a レーザー融着痕(又は融着痕)
L レーザー光
DESCRIPTION OF SYMBOLS 10 Hollow cylinder structure 11 Wiring and piping material 100 Hollow cylinder 100a Mountain part 100b Valley part 101 Peripheral wall part 102 Laminated part 103 Laser light transmission layer 104 Laser light absorption layer 105 Split part 106 Split end face 107 Molten pool 108 Joint part 108a Laser Fusing marks (or fusing marks)
L Laser light

Claims (17)

中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、該中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする製造方法。
A method of manufacturing a hollow cylinder structure in which wiring and piping materials are disposed inside the hollow cylinder,
A step of preparing a hollow cylinder, wherein the hollow cylinder is located on the inner side of the laser beam transmission layer, a heat-meltable laser beam transmission layer constituting an outer layer of the hollow cylinder, and the laser A laminated portion integrally laminated with a heat-meltable laser light absorption layer having a relatively lower transmittance than the light-transmitting layer, and the laminated portion is at least a part in the circumferential direction of the hollow cylindrical body The laminated portion is formed with an openable slit portion that divides the laminated portion in the width direction and continuously extends in the axial direction of the hollow cylindrical body. , Process and
A step of accommodating the wiring / piping material from the slit portion;
After closely contacting the split end faces through the split section, the split section is irradiated with laser light from the outer surface of the hollow cylindrical body, and the split end faces are laser welded to form the split section. A blockage step;
The manufacturing method characterized by including.
中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成した前記中空筒体を準備する工程と、
前記積層部を幅方向に分断するように前記中空筒体を軸方向に沿って連続的に切断することによって、前記中空筒体に開放可能な切り割り部を形成する工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記中空筒体の外面からレーザー光を照射し、前記分断端面をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする製造方法。
A method of manufacturing a hollow cylinder structure in which wiring and piping materials are disposed inside the hollow cylinder,
A heat-meltable laser light transmission layer constituting the outer layer of the hollow cylinder, and a heat-meltable laser light transmission layer located on the inner layer side of the laser light transmission layer and having a relatively lower transmittance than the laser light transmission layer A step of preparing the hollow cylindrical body in which a laminating portion in which a laser light absorption layer is integrally laminated is continuously formed in an axial direction in at least a part of the circumferential direction of the hollow cylindrical body;
Forming a slit part that can be opened in the hollow cylinder by continuously cutting the hollow cylinder along the axial direction so as to divide the laminated part in the width direction;
A step of accommodating the wiring / piping material from the slit portion;
After contacting the cut end faces facing each other via the cut portion, the cut portion is irradiated with laser light from the outer surface of the hollow cylinder, and the cut end surface is laser welded to close the cut portion. And a process of
The manufacturing method characterized by including.
前記中空筒体を準備する工程は、前記中空筒体を成形する工程を含むことを特徴とする請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1, wherein the step of preparing the hollow cylinder includes a step of forming the hollow cylinder. 前記切り割り部を閉塞する工程は、レーザー光の照射時に前記分断端面同士を密着方向に加圧する工程を含むことを特徴とする請求項1から3のいずれか一項に記載の製造方法。   4. The manufacturing method according to claim 1, wherein the step of closing the cut portion includes a step of pressurizing the divided end faces in a close-contact direction at the time of laser light irradiation. 前記各分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする請求項1から4のいずれか一項に記載の製造方法。   5. The manufacturing method according to claim 1, wherein each of the divided end surfaces is a plane orthogonal to a cylindrical wall of the hollow cylindrical body. 前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程は、レーザー光の照射時に前記波付管の山谷を軸方向にずらした状態で前記分断端面同士を密着させる工程を含むことを特徴とする請求項1から5のいずれか一項に記載の製造方法。
The hollow cylinder is a corrugated tube in which a crest and a trough are continuous in the axial direction,
6. The step of closing the slit portion includes a step of bringing the divided end faces into close contact with each other in a state in which the peaks and valleys of the corrugated tube are shifted in the axial direction when the laser beam is irradiated. The manufacturing method according to claim 1.
前記中空筒体は、軸方向に山部及び谷部が連続する波付管であり、
前記切り割り部を閉塞する工程において、前記波付管の軸方向の山谷の傾斜角度に対して、前記レーザー光の照射角度が小さいことを特徴とする請求項1から6のいずれか一項に記載の製造方法。
The hollow cylinder is a corrugated tube in which a crest and a trough are continuous in the axial direction,
7. The laser light irradiation angle is smaller than the angle of inclination of the corrugated tube in the axial direction in the step of closing the slit portion. 8. Manufacturing method.
前記レーザー光透過層は、ポリオレフィン系の熱可塑性樹脂からなり、
前記レーザー光吸収層は、ポリオレフィン系の熱可塑性樹脂からなる母材と、前記母材に添加された、レーザー光を吸収して発熱するカーボンブラックとから構成されることを特徴とする請求項1から7のいずれか一項に記載の製造方法。
The laser light transmission layer is made of a polyolefin-based thermoplastic resin,
2. The laser light absorbing layer is composed of a base material made of a polyolefin-based thermoplastic resin and carbon black which is added to the base material and absorbs laser light to generate heat. The manufacturing method as described in any one of 7 to 7.
配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されていることを特徴とする中空筒体。
A hollow cylinder for arranging wiring and piping materials inside,
A heat-meltable laser light transmission layer constituting the outer layer of the hollow cylinder, and a heat-meltable laser light transmission layer located on the inner layer side of the laser light transmission layer and having a relatively lower transmittance than the laser light transmission layer Provided with a laminated part in which the laser light absorption layer is laminated integrally,
The said laminated part is continuously formed in the axial direction in a part of circumferential direction of the said hollow cylinder, The hollow cylinder characterized by the above-mentioned.
配線・配管材を内部に配設するための中空筒体であって、
前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる切り割り部が形成されていることを特徴とする中空筒体。
A hollow cylinder for arranging wiring and piping materials inside,
A heat-meltable laser light transmission layer constituting the outer layer of the hollow cylinder, and a heat-meltable laser light transmission layer located on the inner layer side of the laser light transmission layer and having a relatively lower transmittance than the laser light transmission layer Provided with a laminated part in which the laser light absorption layer is laminated integrally,
The laminated portion is formed continuously in the axial direction at a part of the circumferential direction of the hollow cylindrical body, and the laminated portion is divided in the width direction so as to be axial in the hollow cylindrical body. A hollow cylindrical body characterized in that a slit portion extending continuously is formed.
前記切り割り部を介して相対する分断端面は、前記中空筒体の筒壁に直交する平面であることを特徴とする請求項10に記載の中空筒体。   The hollow cylinder according to claim 10, wherein the divided end faces opposed to each other through the slit portion are planes orthogonal to the cylinder wall of the hollow cylinder. 前記中空筒体は、軸方向に山部及び谷部が連続する波付管であることを特徴とする請求項9から11のいずれか一項に記載の中空筒体。   The hollow cylinder according to any one of claims 9 to 11, wherein the hollow cylinder is a corrugated tube in which a peak portion and a valley portion are continuous in an axial direction. 前記波付管の前記山部におけるレーザー光吸収層の厚みが、前記谷部におけるレーザー光吸収層の厚みよりも薄いことを特徴とする請求項12に記載の中空筒体。   The hollow cylinder according to claim 12, wherein a thickness of the laser light absorption layer in the peak portion of the corrugated tube is thinner than a thickness of the laser light absorption layer in the valley portion. 前記積層部では、前記積層部以外の箇所と比べて、前記山部及び前記谷部の高低差が小さいことを特徴とする請求項12又は13に記載の中空筒体。   The hollow cylinder according to claim 12 or 13, wherein in the laminated portion, a difference in height between the crest and the trough is small as compared with a portion other than the laminated portion. 前記中空筒体の母材がポリエチレンであることを特徴とする請求項9から14のいずれか一項に記載の中空筒体。   The hollow cylinder according to any one of claims 9 to 14, wherein a base material of the hollow cylinder is polyethylene. 配線・配管材と該配線・配管材を内部に配設している中空筒体とを備える中空筒体構造であって、
前記中空筒体は、前記中空筒体の外層を構成する熱溶融性のレーザー光透過層と、前記レーザー光透過層の内層側に位置し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、
前記積層部は、前記中空筒体の周方向の一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる接合部が形成され、前記接合部の融着痕が前記中空筒体の外面に現れずに前記積層部の断面に形成されていることを特徴とする中空筒体構造。
A hollow cylinder structure comprising a wiring / piping material and a hollow cylinder having the wiring / piping material disposed therein,
The hollow cylinder is located on the inner side of the laser beam transmitting layer and a heat-meltable laser beam transmitting layer constituting the outer layer of the hollow cylinder, and has a relatively lower transmittance than the laser beam transmitting layer. And a laminated part integrally laminated with a heat-meltable laser light absorption layer having
The laminated portion is formed continuously in the axial direction at a part of the circumferential direction of the hollow cylindrical body, and the laminated portion is divided in the width direction so as to be axial in the hollow cylindrical body. The hollow cylinder structure is characterized in that a joint part extending continuously is formed, and a fusion mark of the joint part is formed on a cross section of the laminated part without appearing on the outer surface of the hollow cylinder.
中空筒体内部に配線・配管材が配設された中空筒体構造の製造方法であって、
中空筒体を準備する工程であって、前記中空筒体は、熱溶融性のレーザー光透過層と、前記レーザー光透過層に隣接し、前記レーザー光透過層よりも相対的に低い透過率を有する熱溶融性のレーザー光吸収層とが一体的に積層された積層部を備え、前記積層部は、前記中空筒体の周方向の少なくとも一部で軸方向に連続して形成されており、前記積層部には、前記積層部を幅方向に分断して前記中空筒体の軸方向に連続的に延びる開放可能な切り割り部が形成されている、工程と、
前記切り割り部から配線・配管材を内部に収容する工程と、
前記切り割り部を介して相対する分断端面同士を密着させた上で、前記切り割り部に対して前記レーザー光透過層側からレーザー光を照射し、前記分断端面同士をレーザー溶着して前記切り割り部を閉塞する工程と、
を含むことを特徴とする製造方法。
A method of manufacturing a hollow cylinder structure in which wiring and piping materials are disposed inside the hollow cylinder,
A step of preparing a hollow cylinder, wherein the hollow cylinder is adjacent to the heat-meltable laser light transmission layer and the laser light transmission layer, and has a relatively lower transmittance than the laser light transmission layer. A laminated portion integrally laminated with a heat-meltable laser light absorption layer having, the laminated portion is formed continuously in the axial direction in at least a part of the circumferential direction of the hollow cylinder, The laminated portion is formed with an openable slit portion that divides the laminated portion in the width direction and continuously extends in the axial direction of the hollow cylinder, and
A step of accommodating the wiring / piping material from the slit portion;
After closely attaching the cut end faces facing each other through the cut portion, the laser light is irradiated from the laser light transmitting layer side to the cut portion, and the cut end portions are laser welded to form the cut portion. A blockage step;
The manufacturing method characterized by including.
JP2016014865A 2016-01-28 2016-01-28 Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure Active JP6563829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014865A JP6563829B2 (en) 2016-01-28 2016-01-28 Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014865A JP6563829B2 (en) 2016-01-28 2016-01-28 Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure

Publications (2)

Publication Number Publication Date
JP2017135895A JP2017135895A (en) 2017-08-03
JP6563829B2 true JP6563829B2 (en) 2019-08-21

Family

ID=59503971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014865A Active JP6563829B2 (en) 2016-01-28 2016-01-28 Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure

Country Status (1)

Country Link
JP (1) JP6563829B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037754B2 (en) * 2018-02-28 2022-03-17 中国電力株式会社 Insulation cover

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117620U (en) * 1984-01-14 1985-08-08 日産自動車株式会社 Corrugated tube for harness gripping
EP2407299B1 (en) * 2005-09-21 2013-04-17 Orient Chemical Industries, Ltd. Laser-welded article
JP2010200549A (en) * 2009-02-26 2010-09-09 Sumitomo Wiring Syst Ltd Corrugated tube and method of enclosing wire harness with corrugated tube
US9601909B2 (en) * 2014-04-03 2017-03-21 Yazaki North America, Inc. Protective enclosure for a wire harness
JP6669510B2 (en) * 2016-01-28 2020-03-18 未来工業株式会社 Method for housing wiring and piping material in hollow cylinder and hollow cylinder structure

Also Published As

Publication number Publication date
JP2017135895A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
KR100870812B1 (en) Method for producing welded resin material and welded resin material
ES2119415T5 (en) PLASTIC PIECE AND MANUFACTURING PROCEDURE FOR A PIECE OF THIS CLASS.
EP1785260B1 (en) Method for welding components of a multi-layer construction
JP4435352B2 (en) Welding method for heat-meltable synthetic resin
EP1105286A1 (en) Simultaneous butt and lap joints
JPH07507975A (en) How to join the body of thermoplastic material
WO2003002331A1 (en) Housing construction
JP3630298B2 (en) Bonding method of resin molded products
JP2009083406A (en) Pipe joining method
JP6563829B2 (en) Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure
JP4731040B2 (en) Laser welding method
CN107919563A (en) Connector and its manufacture method
JP4113752B2 (en) Joining device
JP6669510B2 (en) Method for housing wiring and piping material in hollow cylinder and hollow cylinder structure
KR20090037356A (en) Method for welding two opaque elements of polymer material stable at high temperatures
US20130062271A1 (en) Conductive filter element and filter device having a filter element
JP2007276305A (en) Jig for laser welding and resin molding
US9908069B2 (en) Method of manufacturing a filter element and filter element
JP2003320585A (en) Resin molding
JP5505079B2 (en) High pressure tank liner manufacturing apparatus, high pressure tank liner manufacturing method, and high pressure tank manufacturing method
US20110143069A1 (en) Method of Fabricating A Device Such As A Coupling By Laser Welding, The Device Fabricated By Such Method, And An Element Of Such Device For Implementing The Method
KR20110090767A (en) Method for laser welding resin members and laser welded body of resin members
JP2005238462A (en) Thermoplastic resin member and its manufacturing method
JP2004188802A (en) Laser welding method of resin member
JP2008001022A (en) Method for connecting pipe and apparatus for connecting pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190725

R150 Certificate of patent or registration of utility model

Ref document number: 6563829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250