JP2008001022A - Method for connecting pipe and apparatus for connecting pipe - Google Patents

Method for connecting pipe and apparatus for connecting pipe Download PDF

Info

Publication number
JP2008001022A
JP2008001022A JP2006174230A JP2006174230A JP2008001022A JP 2008001022 A JP2008001022 A JP 2008001022A JP 2006174230 A JP2006174230 A JP 2006174230A JP 2006174230 A JP2006174230 A JP 2006174230A JP 2008001022 A JP2008001022 A JP 2008001022A
Authority
JP
Japan
Prior art keywords
pipes
energy beam
joining
pipe
butted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006174230A
Other languages
Japanese (ja)
Inventor
Koji Kono
廣司 河野
Masashi Oikawa
昌志 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWANO KK
Kawano KK
Original Assignee
KAWANO KK
Kawano KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWANO KK, Kawano KK filed Critical KAWANO KK
Priority to JP2006174230A priority Critical patent/JP2008001022A/en
Publication of JP2008001022A publication Critical patent/JP2008001022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • B29C66/12841Stepped joint cross-sections comprising at least one butt joint-segment comprising at least two butt joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/14Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical method for connecting pipes capable of instantaneously melting and solidifying connecting faces without requiring a special joint material and requiring no adhesive and seal tape, and an apparatus for connecting the pipes. <P>SOLUTION: The pipes 1 such gas pipes and sewage pipes are formed of, for example, a high density polyethylene synthetic resin material. These pipes 1 have the same inner diameters and outer diameters. At first, opening end faces of two pipes 1 and 1 are processed orthogonally to the longitudinal direction (the length direction of the pipes) and both pipes 1 and 1 are butted. Then, while a compressive stress is applied on these butted faces, the butted part of both pipes 1 and 1 are irradiated with an energy beam 2 from the outside to connect both pipes 1 and 1 together. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、2本のパイプの接合方法及び接合装置に関し、詳述すれば、熱可塑性合成樹脂材料、例えばポリエチレン合成樹脂材料で作製された2本のパイプの接合方法及びパイプの接合装置に関するものである。   The present invention relates to a joining method and joining apparatus for two pipes, and more particularly to a joining method and joining apparatus for two pipes made of a thermoplastic synthetic resin material, for example, a polyethylene synthetic resin material. It is.

従来、パイプ同士の接合は、以下のような方法により行なわれている。即ち、初めに接合すべきパイプの外径に一致する内径を持つジョイント材を使用して、嵌合部分を接着剤により接合する方法があるが、嵌合精度を確保したジョイント材が必要であり、接着剤を用いるので固着までの時間や管理を要するなどの工数が必要であり、接着強度も十分には確保できない。   Conventionally, the pipes are joined by the following method. That is, there is a method of joining the fitting part with an adhesive using a joint material having an inner diameter that matches the outer diameter of the pipe to be joined first, but a joint material that ensures fitting accuracy is required. Since an adhesive is used, man-hours such as time to fix and management are required, and sufficient adhesive strength cannot be ensured.

また、同じく接合すべきパイプの外径に一致する内径を持つジョイント材を使用して、ジョイント材と両パイプに形成したネジ孔にネジを螺合して固定し、更にパイプ内を流れる流体がこの螺合部から漏洩しないようにシールテープを用いて接合するが、ネジ加工に手間と時間を要し、シールテープも必要となる。   Also, using a joint material having an inner diameter that matches the outer diameter of the pipe to be joined, screws are fixed to the screw holes formed in the joint material and both pipes, and the fluid flowing in the pipe is further fixed. Although it joins using a sealing tape so that it may not leak from this screwing part, work and time are required for screw processing, and a sealing tape is also needed.

また、接合すべきパイプの外径に一致する内径を持ち、且つ内部に加熱用電線を予め埋め込んだジョイント材を使用して、接合すべきパイプ同士をジョイント材に嵌合させた後に、加熱用電線によってジョイント材とパイプを溶着する方法も知られている(例えば、特許文献1参照)。この場合、加熱用電線を予め埋め込んでおくなどの特殊なジョイント材を必要とし、コスト高という問題もある。
特公平8−30048号公報
In addition, using a joint material that has an inner diameter that matches the outer diameter of the pipe to be joined and in which heating wires are embedded in advance, and after fitting the pipes to be joined to the joint material, A method of welding a joint material and a pipe with an electric wire is also known (see, for example, Patent Document 1). In this case, a special joint material such as embedding a heating wire in advance is required, and there is a problem of high cost.
Japanese Patent Publication No. 8-30048

そこで本発明は、特別なジョイント材を必要とすることなく、接合面を瞬時に溶融凝固でき、接着剤やシールテープを必要としない実用的なパイプの接合方法及びパイプの接合装置を提供することを目的とする。   Therefore, the present invention provides a practical pipe joining method and pipe joining apparatus that can instantaneously melt and solidify the joining surface without requiring a special joint material and do not require an adhesive or a sealing tape. With the goal.

このため第1の発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口側端部の全部又は一部を突き合わせ、この突き合わせ部にエネルギービームを照射して両パイプを接合することを特徴とする。   For this reason, the first invention is a method for joining two pipes made of a thermoplastic synthetic resin material, but the whole or part of the opening side end portions of both pipes are butted together and an energy beam is applied to the butting portion. Irradiated to join both pipes.

第2の発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口側端部の全部又は一部を突き合わせ、この突き合わせ部に圧縮応力を加えながらエネルギービームを照射して両パイプを接合することを特徴とする。   A second invention is a method for joining two pipes made of a thermoplastic synthetic resin material, with butting all or part of the opening side end portions of both pipes and applying compressive stress to the butted portions. It is characterized in that both pipes are joined by irradiating an energy beam.

第3の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口端面を長手方向と直角に加工して両パイプを突き合わせ、この突き合わせ面に圧縮応力を加えながら突き合わせ部にエネルギービームを照射して両パイプを接合することを特徴とする。   The third invention is a method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, and processing the open end faces of both pipes at right angles to the longitudinal direction, but abutting both pipes, Both pipes are joined by irradiating the abutting portion with an energy beam while applying a compressive stress to the abutting surface.

第4の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口端面を内径側より外径側に向けて開くように開先加工して両パイプを突き合わせ、この突き合わせ部に圧縮応力を加えながら開先面にエネルギービームを照射して両パイプを接合することを特徴とする。   A fourth invention is a method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, and is opened so that the open end faces of both pipes are opened from the inner diameter side toward the outer diameter side. Both pipes are abutted with each other, and a compressive stress is applied to the abutting portion, and an energy beam is applied to the groove surface to join both pipes.

第5の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプ間に溶着するためのエネルギービームの波長に対する透過率の高いフィラーを介在させて挟み込んで圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とする。   A fifth invention is a method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, and a filler having a high transmittance with respect to the wavelength of an energy beam for welding between both pipes. It is characterized in that both pipes are joined by irradiating the energy beam to the butt portion of both pipes and the filler while interposing and applying compressive stress.

第6の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口端面の全部又は一部を内径側より外径側に向けて開くように開先加工して両パイプを突き合わせ、この両パイプの突き合わせされていない部分に溶着するためのエネルギービームの波長に対する透過率の高いフィラーを介在させて圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とする。   A sixth invention is a method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, wherein all or part of the open end faces of both pipes are directed from the inner diameter side to the outer diameter side. Both pipes are butt-processed so as to open, and both pipes are applied while applying compressive stress with a filler having a high transmittance with respect to the wavelength of the energy beam for welding to the unbutted portions of both pipes. Both the pipes are joined by irradiating the energy beam to the butt portion of the filler.

第7の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプの開口端面の全部を内径側より外径側に向けて開くように開先加工し、他方のパイプの開口端面外端部を内径側より外径側に向けて開くように開先加工すると共に開口端面内端部を外径側より内径側に向けて閉じるように開先加工して、前記他方のパイプに前記一方のパイプを嵌合させ、この両パイプの嵌合されていない部分に溶着するためのエネルギービームの波長に対する透過率の高いフィラーを介在させて圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とする。   A seventh invention is a method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, and opens the entire open end face of one pipe from the inner diameter side to the outer diameter side. The groove is processed so that the outer end of the opening end surface of the other pipe is opened from the inner diameter side toward the outer diameter side, and the inner end portion of the opening end surface is closed from the outer diameter side toward the inner diameter side. In this way, the groove is processed so that the one pipe is fitted to the other pipe, and a filler having a high transmittance with respect to the wavelength of the energy beam to be welded to the non-fitted part of both pipes is interposed. Then, both pipes are joined by irradiating the energy beam to the butted portion of both pipes and the filler while applying compressive stress.

第8の発明は、内径が異なる熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプに他方のパイプを嵌合させ、嵌合部にエネルギービームを照射して両パイプを接合することを特徴とする。   An eighth invention is a method for joining two pipes made of thermoplastic synthetic resin materials having different inner diameters, wherein one pipe is fitted with the other pipe, and the fitting portion is irradiated with an energy beam. The two pipes are joined together.

第9の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプの接合側端部において外周部を切除して薄肉にし、他方のパイプの接合側端部において内周部を切除して薄肉にし、一方のパイプを他方のパイプに嵌合させて突き合わせ、この突き合わせ面に圧縮応力を加えながら突き合わせ部にエネルギービームを照射して両パイプを接合することを特徴とする。   A ninth invention is a method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, wherein the outer peripheral portion is cut off at the joining side end of one pipe to make it thinner. Cut the inner circumference at the joint end of the pipe to make it thin, mate one pipe with the other pipe and butt it, and irradiate the butt part with an energy beam while applying compressive stress to the butt face It is characterized by joining both pipes.

第10の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプの接合側端部において外周部を切除して薄肉にし、他方のパイプの接合側端部において内周部を切除して薄肉にし、前記一方のパイプの接合側端部の薄肉部に両パイプを溶着するためのエネルギービームの波長に対する透過率の高い円筒状のフィラーを外側から嵌合させ、このフィラーを介して一方のパイプを他方のパイプに嵌合させて突き合わせ、圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とする。   A tenth invention is a method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, wherein the outer peripheral portion is cut off at the joining side end of one pipe to make it thinner. A cylindrical shape having a high transmittance with respect to the wavelength of the energy beam for cutting and thinning the inner peripheral portion at the joint side end of the pipe, and welding both pipes to the thin part at the joint side end of the one pipe. A filler is fitted from the outside, one pipe is fitted to the other pipe via this filler, and the two pipes are irradiated with the energy beam while applying compressive stress to both pipes. It is characterized by joining.

第11の発明は、同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの接合側端部の片半部を切除して、両パイプの残された片半部同士を突き合わせ、この突き合わせ部に圧縮応力を加えながらエネルギービームを照射して両パイプを接合することを特徴とする。   An eleventh aspect of the invention is a method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, wherein half halves of the joining side end portions of both pipes are cut off, The remaining half halves are butted together, and an energy beam is applied to the butted portion while compressive stress is applied to join both pipes.

第12の発明は、第1乃至第11のいずれかのパイプの接合方法に係る発明において、前記2本のパイプは、接合する端面にエネルギービームが浸透する粗さを有することを特徴とする。   According to a twelfth aspect of the invention related to any one of the first to eleventh pipe joining methods, the two pipes have a roughness that allows an energy beam to permeate into end faces to be joined.

第13の発明は、第1乃至第11のいずれかのパイプの接合方法に係る発明において、前記両パイプと所定距離離れて円周上に複数の前記エネルギービーム発振源を配設して、前記エネルギービームを照射することを特徴とする。   A thirteenth aspect of the present invention is the invention relating to any one of the first to eleventh pipe joining methods, wherein a plurality of the energy beam oscillation sources are arranged on a circumference at a predetermined distance from the both pipes, It is characterized by irradiating an energy beam.

第14の発明は、第1乃至第11のいずれかのパイプの接合方法に係る発明において、前記両パイプと所定距離離れて円周上に複数の光学素子を配設して、エネルギービーム発振源からのエネルギービームを各光ファイバーを介して前記各光学素子に導いて前記エネルギービームを照射することを特徴とする。   A fourteenth aspect of the invention relates to an energy beam oscillation source according to the invention relating to any one of the first to eleventh pipe joining methods, wherein a plurality of optical elements are arranged on the circumference at a predetermined distance from the two pipes. The energy beam is guided to each optical element via each optical fiber and irradiated with the energy beam.

第15の発明は、第1乃至第11のいずれかのパイプの接合方法に係る発明において、前記両パイプと所定距離離れて円周上に導波路を配設し、この導波路にエネルギービーム発振源からのエネルギービームを導き、この導波路に所定間隔を存して開設された開口を介して前記エネルギービームを照射することを特徴とする。   A fifteenth aspect of the present invention is the invention relating to any one of the first to eleventh pipe joining methods, wherein a waveguide is disposed on the circumference at a predetermined distance from the two pipes, and energy beam oscillation is provided in the waveguide. An energy beam from a source is guided, and the energy beam is irradiated to the waveguide through an opening opened at a predetermined interval.

第16の発明は、第1乃至第11のいずれかのパイプの接合方法に係る発明において、前記両パイプの回りを所定距離離れた状態で所定速度で移動するエネルギービーム発振源から前記エネルギービームを照射することを特徴とする。   A sixteenth aspect of the invention relates to any one of the first to eleventh pipe joining methods, wherein the energy beam is emitted from an energy beam oscillation source that moves at a predetermined speed around the pipes at a predetermined distance. Irradiating.

第17の発明は、第1乃至第11のいずれかのパイプの接合方法に係る発明において、前記エネルギービームの照射による溶融部の酸化を防止するために前記エネルギービームの照射箇所に酸化防止気体を供給することを特徴とする。   According to a seventeenth aspect of the invention related to any one of the first to eleventh pipe joining methods, an antioxidant gas is applied to the irradiated portion of the energy beam in order to prevent oxidation of the melted portion due to the irradiation of the energy beam. It is characterized by supplying.

第18の発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部と所定距離離れて円周上に複数のエネルギービーム発振源を配設して、前記突き合わせ部にエネルギービームを照射することを特徴とする。   An eighteenth aspect of the invention is a joining device for two pipes made of a thermoplastic synthetic resin material, and is a circle separated by a predetermined distance from a butted portion where all or a part of the opening side end portions of both pipes are butted. A plurality of energy beam oscillation sources are arranged on the circumference, and the abutting portion is irradiated with an energy beam.

第19の発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部と所定距離離れて円周上に配設された複数の光学素子と、エネルギービームを発するエネルギービーム発振源と、前記光学素子に対応して設けられ前記エネルギービーム発振源からのエネルギービームを前記各光学素子に導いて前記突き合わせ部に照射するための複数本のファイバーとを設けたことを特徴とする。   A nineteenth aspect of the present invention is a joining device for two pipes made of a thermoplastic synthetic resin material, and is a circle separated by a predetermined distance from a butted portion that butts all or part of the opening side end portions of both pipes. A plurality of optical elements disposed on the circumference, an energy beam oscillation source that emits an energy beam, and an energy beam from the energy beam oscillation source that is provided corresponding to the optical element is guided to the optical elements. A plurality of fibers for irradiating the butted portion are provided.

第20の発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部と所定距離離れて円周上に配設された導波路と、エネルギービームを発するエネルギービーム発振源とを備え、前記導波路に前記エネルギービーム発振源からのエネルギービームを導き、この導波路に開設された複数の各開口を介して前記突き合わせ部に前記エネルギービームを照射することを特徴とする。   A twentieth aspect of the invention is a joining apparatus for two pipes made of a thermoplastic synthetic resin material, and is a circle separated by a predetermined distance from a butted portion that butts all or part of the opening side end portions of both pipes. A waveguide disposed on the circumference and an energy beam oscillation source that emits an energy beam, guides the energy beam from the energy beam oscillation source to the waveguide, and each of a plurality of openings provided in the waveguide The energy beam is irradiated to the abutting portion through a gap.

第21の発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部の回りを所定距離離れた状態で所定速度で移動するエネルギービーム発振源を設け、このエネルギービーム発振源からの前記エネルギービームを前記突き合わせ部に照射することを特徴とする。   A twenty-first aspect of the present invention is a joining apparatus for two pipes made of a thermoplastic synthetic resin material, and is separated by a predetermined distance around a butting portion where all or part of the opening side end portions of both pipes are butted. An energy beam oscillation source that moves at a predetermined speed is provided, and the abutting portion is irradiated with the energy beam from the energy beam oscillation source.

特別なジョイント材を必要とすることなく、接合面を瞬時に溶融凝固でき、接着剤やシールテープを必要としない実用的なパイプの接合方法及び接合装置を提供することができる。   It is possible to provide a practical pipe joining method and joining apparatus that can instantaneously melt and solidify a joining surface without requiring a special joint material and does not require an adhesive or a seal tape.

以下、本発明の実施形態について説明する。パイプの接合方法の第1の実施形態について、図1に基づき説明する。先ず、1はガス管や上下水道管等のパイプであり、熱可塑性合成樹脂、具体的にはポリオレフィン系の合成樹脂である、例えば本実施形態ではポリエチレン合成樹脂材料にて形成される。   Hereinafter, embodiments of the present invention will be described. 1st Embodiment of the joining method of a pipe is described based on FIG. First, reference numeral 1 denotes a pipe such as a gas pipe or a water and sewage pipe, which is made of a thermoplastic synthetic resin, specifically, a polyolefin-based synthetic resin, for example, a polyethylene synthetic resin material in this embodiment.

なお、前記パイプ1は塩化ビニル系樹脂、アクリル系樹脂、ポリエチレン系樹脂などの熱可塑性合成樹脂材料で作製されるが、一般にはガス管には中密度のポリエチレン合成樹脂材料が、上下水道管には高密度のポリエチレン合成樹脂材料が使用される。   The pipe 1 is made of a thermoplastic synthetic resin material such as a vinyl chloride resin, an acrylic resin, or a polyethylene resin. Generally, a medium density polyethylene synthetic resin material is used for a gas pipe and a water and sewer pipe. A high-density polyethylene synthetic resin material is used.

このパイプ1は内径及び外径が同一であり、先ず2本のパイプ1、1の開口端面を長手方向(パイプの長さ方向)と直角に加工して両パイプ1、1を突き合わせる。そして、この突き合わせ面に圧縮応力を加えながら、両パイプ1、1の突き合わせ部に外方からエネルギービーム2を照射して両パイプ1、1を接合する。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   The pipe 1 has the same inner diameter and outer diameter. First, the opening end surfaces of the two pipes 1 and 1 are machined at right angles to the longitudinal direction (pipe length direction), and both pipes 1 and 1 are brought into contact with each other. Then, while applying compressive stress to the butted surfaces, the butted portions of both pipes 1 and 1 are irradiated with energy beam 2 from the outside to join both pipes 1 and 1 together. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

そして、前記エネルギービーム2はレーザビームであり、そのレーザ発振源は半導体レーザ、ファイバーレーザ、YAGレーザなどが考えられる。   The energy beam 2 is a laser beam, and the laser oscillation source may be a semiconductor laser, a fiber laser, a YAG laser, or the like.

このパイプの接合方法の第1の実施形態によれば、各パイプ1のレーザに対する吸収係数が一定であるため、深さ方向にもエネルギービーム2が伝送されると同時に吸収が行なわれ、発熱することにより開先面が加熱して溶融すると同時に、パイプ1、1同士に加わる圧縮応力により、溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、アシストガスの供給により溶融部の冷却が行なわれる。   According to the first embodiment of the pipe joining method, since the absorption coefficient of each pipe 1 with respect to the laser is constant, the energy beam 2 is transmitted also in the depth direction, and at the same time, absorption is performed and heat is generated. As a result, the groove surface is heated and melted, and at the same time, the melted synthetic resin materials are mixed by the compressive stress applied to the pipes 1 and 1. In this mixed state, the irradiation of the energy beam 2 is stopped, and the melted portion is cooled by supplying the assist gas.

このアシストガスは、酸化を防止したり還元させるために窒素ガスや、窒素及びアルゴン等の混合ガスであり、溶融部の冷却と同時に溶融部の酸化を防止し、伝送光学系やレーザ発振源の保護効果をも奏する。   This assist gas is nitrogen gas or a mixed gas such as nitrogen and argon in order to prevent or reduce oxidation, and at the same time as cooling the melted portion, prevents the melted portion from being oxidized, and the transmission optical system and laser oscillation source. There is also a protective effect.

次に、図2乃至図5に基づき、第2の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第2の実施形態は、長手方向(パイプの長さ方向)と直角に切断加工された両パイプ1、1の開口端面を内径側より外径側に向けて開くように開先加工して両パイプ1、1を突き合わせ(図2参照)、この突き合わせ部に圧縮応力を加えながら開先面1A、1Aにエネルギービーム2を照射して両パイプ1、1を接合する方法である。この照射は、開先面1A、1A全周に亘って満遍無く、略均一になされるよう、工夫される。   Next, a second embodiment will be described based on FIGS. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. In the second embodiment, a groove is formed so that the opening end surfaces of both pipes 1 and 1 cut at right angles to the longitudinal direction (pipe length direction) are opened from the inner diameter side toward the outer diameter side. In this method, both pipes 1 and 1 are butted (see FIG. 2), and the pipes 1 and 1 are joined by irradiating the groove surfaces 1A and 1A with the energy beam 2 while applying compressive stress to the butted portion. This irradiation is devised so that it is made evenly over the entire circumference of the groove surfaces 1A and 1A.

この両パイプ1、1の開口端面を内径側より外径側に向けて開くように加工した開先角度は、数度〜数十度程度であり、図3に示すように、エネルギービーム2の照射によって、溶融が開始し粘性が増すと、圧縮応力により溶融部1B、1Bが潰れながら突き合わせ部から一体化が開始して、図3から図4の状態となる。   The groove angle obtained by opening the opening end faces of the pipes 1 and 1 from the inner diameter side toward the outer diameter side is about several degrees to several tens of degrees. As shown in FIG. When the melting starts and the viscosity increases due to irradiation, the melted portions 1B and 1B are crushed by the compressive stress, and integration starts from the abutting portion, resulting in the state of FIGS.

そして、一体化は開先面外側に向かって進み、やがて図5に示すように、接合が十分となる。この状態で、エネルギービーム2の照射を停止し、アシストガスの供給により溶融部1B、1Bの冷却が行なわれる。   Then, the integration proceeds toward the outside of the groove surface, and eventually, as shown in FIG. In this state, the irradiation of the energy beam 2 is stopped, and the melted portions 1B and 1B are cooled by supplying the assist gas.

次に、図6に基づき、第3の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第3の実施形態は、両パイプ1、1間に溶着するためのエネルギービーム2の波長に対する透過率の高い円筒状のフィラー3を介在させて挟み込んで圧縮応力を加えながら両パイプ1、1と前記フィラー3の突き合わせ部に前記エネルギービーム2を照射して両パイプ1、1を接合する方法である。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   Next, a third embodiment will be described based on FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. In the third embodiment, both pipes 1, 1 are applied with compression stress applied by sandwiching a cylindrical filler 3 having a high transmittance with respect to the wavelength of the energy beam 2 for welding between the pipes 1, 1. And the abutting portion of the filler 3 is irradiated with the energy beam 2 to join the pipes 1 and 1 together. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

即ち、このパイプ1、1の開口端面は長手方向(パイプの長さ方向)と直角に加工して、両パイプ1、1間に両パイプ1、1と同径の円筒状のフィラー3を介在させて挟み込んで圧縮応力を加えながら両パイプ1、1と前記フィラー3の突き合わせ部に前記エネルギービーム2を照射する。   That is, the opening end face of the pipes 1 and 1 is processed at right angles to the longitudinal direction (pipe length direction), and a cylindrical filler 3 having the same diameter as the pipes 1 and 1 is interposed between the pipes 1 and 1. The energy beam 2 is irradiated to the butted portion of the pipes 1 and 1 and the filler 3 while applying compression stress by sandwiching them.

この場合、エネルギービーム2を開先面に照射するため、図6の矢印に示すように、斜め上方から照射する。前記フィラー3は、前記エネルギービーム2に対し十分に透過率が高く、且つパイプ1、1との溶着性に優れ、また機械的特性や化学的特性に優れた材料を材料を選択するが、前記パイプ1、1と同様に、合成樹脂、具体的にはポリオレフィン系の合成樹脂である、例えば高密度のポリエチレン合成樹脂材料にて形成される。   In this case, in order to irradiate the groove surface with the energy beam 2, irradiation is performed obliquely from above as indicated by an arrow in FIG. The filler 3 has a sufficiently high transmittance with respect to the energy beam 2 and is excellent in weldability with the pipes 1 and 1, and a material having excellent mechanical properties and chemical properties is selected. Similar to the pipes 1 and 1, it is made of a synthetic resin, specifically, a polyolefin-based synthetic resin, for example, a high-density polyethylene synthetic resin material.

また、場合によっては、吸収剤などの機能材料を前記フィラー3とパイプ1、1との間に挟み込んだり、前記フィラー3とパイプ1、1の接触面に塗布しても良い。これにより、エネルギービーム2のパイプやフィラーへの吸収が促進される。この吸収剤は、炭素粉末やニッケル粉末などの金属粉末で作製したペースト状のものを塗布ものを使用することが望ましいが、吸収率が高いならば前記フィラー3やパイプ1、1と同様な合成樹脂材料でもよい。   In some cases, a functional material such as an absorbent may be sandwiched between the filler 3 and the pipes 1 and 1 or applied to the contact surface between the filler 3 and the pipes 1 and 1. Thereby, absorption to the pipe and filler of energy beam 2 is promoted. As this absorbent, it is desirable to use a paste coated with a metal powder such as carbon powder or nickel powder, but if the absorption rate is high, the same synthesis as the filler 3 and pipes 1 and 1 is used. Resin material may be used.

そして、エネルギービーム2が照射されると同時に吸収が行なわれ、前記フィラー3とパイプ1、1の突き合わせ部が発熱することにより溶融すると同時に、圧縮応力により、前記フィラー3とパイプ1、1の溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、前述の如く、アシストガスの供給により溶融部の冷却が行なわれる。   Then, absorption is performed at the same time as the irradiation with the energy beam 2, and the butt portion between the filler 3 and the pipes 1, 1 is melted by generating heat, and at the same time, the filler 3 and the pipes 1, 1 are melted by compressive stress. The synthetic resin materials thus mixed will be mixed. In this mixed state, the irradiation of the energy beam 2 is stopped, and as described above, the melted portion is cooled by supplying the assist gas.

次に、図7に基づき、第4の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第4の実施形態は、両パイプ1、1の開口端面の全部を内径側より外径側に向けて開くように開先加工して両パイプ1、1を突き合わせ、この両パイプ1、1の突き合わせされていない部分に溶着するためのエネルギービーム2の波長に対する透過率の高い断面が三角形のリング状のフィラー3Aを介在させて圧縮応力を加えながら両パイプ1、1と前記フィラー3Aの突き合わせ部に前記エネルギービーム2を照射して両パイプ1、1を接合する方法である。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   Next, a fourth embodiment will be described based on FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. In the fourth embodiment, the pipes 1 and 1 are abutted to open the entire opening end surfaces of the pipes 1 and 1 from the inner diameter side toward the outer diameter side, and the pipes 1 and 1 are brought into contact with each other. The cross section having a high transmittance with respect to the wavelength of the energy beam 2 to be welded to the unmatched portion of the pipe is abutting between the pipes 1 and 1 and the filler 3A while applying a compressive stress by interposing a triangular ring-shaped filler 3A. In this method, both the pipes 1 and 1 are joined by irradiating the energy beam 2 to the part. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

前記フィラー3Aは断面が三角形状を呈したリングで、両パイプ1、1の開口端面の全部を内径側より外径側に向けて開くように開先加工されて形成された空間部を埋めるように嵌められる。   The filler 3A is a ring having a triangular cross section, and fills the space formed by groove processing so that all of the open end faces of the pipes 1 and 1 are opened from the inner diameter side toward the outer diameter side. Fitted.

そして、エネルギービーム2がフィラー3A全体(フィラー3Aとパイプ1、1との突き合わせ部を含めた)に照射されると同時に吸収が行なわれ、前記フィラー3A自体、このフィラー3Aとパイプ1、1の突き合わせ部が発熱することにより溶融すると同時に、圧縮応力により、前記フィラー3Aとパイプ1、1の溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、前述の如く、アシストガスの供給により溶融部の冷却が行なわれる。   Then, the energy beam 2 is irradiated to the entire filler 3A (including the butt portion between the filler 3A and the pipes 1 and 1) and absorption is performed at the same time, and the filler 3A itself, the filler 3A and the pipes 1 and 1 are absorbed. At the same time that the butted portion melts by generating heat, the synthetic resin material in which the filler 3A and the pipes 1 and 1 are melted is mixed by compressive stress. In this mixed state, the irradiation of the energy beam 2 is stopped, and as described above, the melted portion is cooled by supplying the assist gas.

次に、図8に基づき、第5の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第5の実施形態は、両パイプ1、1の開口端面の一部を内径側より外径側に向けて開くように開先加工して両パイプ1、1を突き合わせ、この両パイプ1、1の突き合わせされていない部分に溶着するためのエネルギービーム2の波長に対する透過率の高い断面が三角形のリング状のフィラー3Bを介在させて圧縮応力を加えながら両パイプ1、1と前記フィラー3Bの突き合わせ部に前記エネルギービーム2を照射して両パイプ1、1を接合する方法である。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   Next, a fifth embodiment will be described with reference to FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. In the fifth embodiment, the pipes 1 and 1 are butted together so as to open a part of the opening end surfaces of the pipes 1 and 1 from the inner diameter side toward the outer diameter side, and the pipes 1 and 2 are abutted. The cross section having a high transmittance with respect to the wavelength of the energy beam 2 for welding to the unmatched portion of 1 has a triangular ring-shaped filler 3B, and compresses the pipes 1, 1 and the filler 3B while applying compressive stress. In this method, both the pipes 1 and 1 are joined by irradiating the butted portion with the energy beam 2. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

前記フィラー3Bは断面が三角形状を呈したリングで、両パイプ1、1の開口端面の一部を内径側より外径側に向けて開くように開先加工されて形成された空間部を埋めるように嵌められる。   The filler 3B is a ring having a triangular cross section, and fills a space formed by groove processing so that a part of the opening end face of both pipes 1 and 1 is opened from the inner diameter side toward the outer diameter side. Is fitted.

そして、エネルギービーム2がフィラー3B全体(フィラー3Bとパイプ1、1との突き合わせ部を含めた)に照射されると同時に吸収が行なわれ、前記フィラー3B自体、このフィラー3Bとパイプ1、1の突き合わせ部が発熱することにより溶融すると同時に、圧縮応力により、前記フィラー3Bとパイプ1、1の溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、前述の如く、アシストガスの供給により溶融部の冷却が行なわれる。   Then, the energy beam 2 is irradiated to the entire filler 3B (including the butt portion between the filler 3B and the pipes 1 and 1) and is absorbed at the same time. The filler 3B itself, the filler 3B and the pipes 1 and 1 are absorbed. At the same time that the butted portion melts by generating heat, the synthetic resin material in which the filler 3B and the pipes 1 and 1 are melted is mixed by compressive stress. In this mixed state, the irradiation of the energy beam 2 is stopped, and as described above, the melted portion is cooled by supplying the assist gas.

次に、図9に基づき、第6の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第6の実施形態は、一方(右方)のパイプ1の開口端面の全部を内径側より外径側に向けて開くように開先加工し、他方(左方)のパイプ1の開口端面外端部を内径側より外径側に向けて開くように開先加工すると共に開口端面内端部を外径側より内径側に向けて閉じるように開先加工して、前記左方のパイプ1に前記右方のパイプ1の一部を嵌合させ、この両パイプ1、1の嵌合されていない部分に溶着するためのエネルギービーム2の波長に対する透過率の高い断面が三角形のリング状のフィラー3Cを介在させて圧縮応力を加えながら両パイプ1、1と前記フィラー3Cの突き合わせ部に前記エネルギービーム2を照射して両パイプ1、1を接合する方法である。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   Next, a sixth embodiment will be described based on FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. In the sixth embodiment, a groove is formed so that the entire opening end surface of one (right) pipe 1 is opened from the inner diameter side toward the outer diameter side, and the opening end surface of the other (left) pipe 1 is opened. The left pipe is grooved so that the outer end is opened from the inner diameter side toward the outer diameter side and the inner end of the opening end surface is closed from the outer diameter side toward the inner diameter side. A part of the right pipe 1 is fitted to 1 and the cross section having a high transmittance with respect to the wavelength of the energy beam 2 for welding to the unfitted part of the pipes 1 and 1 is a ring shape having a triangular shape. This is a method of joining the pipes 1 and 1 by irradiating the energy beam 2 to the butted portion of both the pipes 1 and 1 and the filler 3C while applying compressive stress with the filler 3C. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

前記フィラー3Cは断面が三角形状を呈したリングで、両パイプ1、1の開口端面の外径側に向けて開くように開先加工されて形成された空間部を埋めるように嵌められる。   The filler 3C is a ring having a triangular cross section, and is fitted so as to fill a space formed by groove processing so as to open toward the outer diameter side of the opening end faces of the pipes 1 and 1.

そして、エネルギービーム2がフィラー3C全体(フィラー3Cとパイプ1、1との突き合わせ部を含めた)に照射されると同時に吸収が行なわれ、前記フィラー3C自体、このフィラー3Cとパイプ1、1の突き合わせ部が発熱することにより溶融すると同時に、圧縮応力により、前記フィラー3Cとパイプ1、1の溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、前述の如く、アシストガスの供給により溶融部の冷却が行なわれる。   Then, the energy beam 2 is applied to the entire filler 3C (including the butt portion between the filler 3C and the pipes 1 and 1) and is absorbed at the same time. The filler 3C itself, the filler 3C and the pipes 1 and 1 are absorbed. At the same time that the butt portion melts by generating heat, the filler 3C and the synthetic resin materials in which the pipes 1 and 1 are melted are mixed with each other by compressive stress. In this mixed state, the irradiation of the energy beam 2 is stopped, and as described above, the melted portion is cooled by supplying the assist gas.

なお、以上の第4から第6の実施形態よっても、第3の実施形態で説明した吸収剤などの機能材料を前記フィラーとパイプ1、1との間に挟み込んだり、前記フィラーとパイプ1、1の接触面に塗布しても良い。これにより、エネルギービーム2のパイプやフィラーへの吸収が促進される。   In addition, according to the above fourth to sixth embodiments, the functional material such as the absorbent described in the third embodiment is sandwiched between the filler and the pipes 1 and 1, or the filler and the pipe 1 and It may be applied to one contact surface. Thereby, absorption to the pipe and filler of energy beam 2 is promoted.

次に、図10に基づき、第7の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第7の実施形態は、合成樹脂、具体的にはポリオレフィン系の合成樹脂である、例えば高密度のポリエチレン合成樹脂材料にて形成された内径が異なる2本のパイプ10、11の接合方法である。   Next, a seventh embodiment will be described based on FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. This seventh embodiment is a method of joining two pipes 10, 11 made of a synthetic resin, specifically, a polyolefin-based synthetic resin, for example, made of a high-density polyethylene synthetic resin material and having different inner diameters. is there.

即ち、一方(右方)のパイプ10と、このパイプ10の内径より外径が少し小径(略同径)の他方(左方)のパイプ11とを備え、一方(右方)のパイプ10に他方(左方)のパイプ11を嵌合させ、その嵌合部にエネルギービーム2を照射して両パイプ10、11を接合する方法である。この照射は、嵌合部全周に亘って満遍無く、略均一になされるよう、工夫される。   That is, one (right) pipe 10 and the other (left) pipe 11 whose outer diameter is slightly smaller (substantially the same diameter) than the inner diameter of the pipe 10 are provided. In this method, the other (left) pipe 11 is fitted, and the fitting part is irradiated with the energy beam 2 to join the pipes 10 and 11 together. This irradiation is devised so that it is made substantially uniform over the entire circumference of the fitting portion.

そして、エネルギービーム2の照射により吸収が行なわれ、発熱することにより嵌合部Aが加熱して溶融すると同時に溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、アシストガスの供給により溶融部の冷却が行なわれる。   And absorption is performed by irradiation of the energy beam 2, and when the fitting portion A is heated and melted by generating heat, the melted synthetic resin materials are mixed together. In this mixed state, the irradiation of the energy beam 2 is stopped, and the melted portion is cooled by supplying the assist gas.

次に、図11に基づき、第8の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第8の実施形態は、内径及び外形が同一の2本のパイプ1、1の接合方法である。先ず、一方(左方)のパイプ1の接合側端部において外周部を全周に亘って切除して薄肉にして嵌合部1Cを形成し、他方(右方)のパイプ1の接合側端部において内周部を全周に亘って切除して薄肉にして被嵌合部1Dを形成する。   Next, an eighth embodiment will be described based on FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. The eighth embodiment is a method of joining two pipes 1 and 1 having the same inner diameter and outer shape. First, the outer peripheral portion is cut off over the entire circumference at the joining side end portion of one (left side) pipe 1 to form a fitting portion 1C, and the joining side end of the other (right side) pipe 1 is joined. The inner peripheral portion is cut out over the entire circumference to form a thin portion to form the fitted portion 1D.

そして、一方のパイプ1の嵌合部1Cを他方のパイプ1の被嵌合部1Dに嵌合させて突き合わせ、この突き合わせ面に圧縮応力を加えながら突き合わせ部にエネルギービーム2を照射して両パイプ1、1を接合する。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   Then, the fitting part 1C of one pipe 1 is fitted to the fitted part 1D of the other pipe 1 and abutted, and the energy beam 2 is irradiated to the abutting part while applying a compressive stress to the abutting surface. 1 and 1 are joined. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

そして、エネルギービーム2の照射により吸収が行なわれ、発熱することにより嵌合部が加熱して溶融すると同時に溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、アシストガスの供給により溶融部の冷却が行なわれる。   Then, absorption is performed by irradiation of the energy beam 2, and when the heat is generated, the fitting portion is heated and melted, and at the same time, the melted synthetic resin materials are mixed. In this mixed state, the irradiation of the energy beam 2 is stopped, and the melted portion is cooled by supplying the assist gas.

次に、図12に基づき、第9の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第9の実施形態は、内径及び外形が同一の2本のパイプ1、1の接合方法である。先ず、一方(左方)のパイプ1の接合側端部において外周部を全周に亘って切除して薄肉にして嵌合部1Cを形成し、他方(右方)のパイプ1の接合側端部において内周部を全周に亘って切除して薄肉にして被嵌合部1Eを形成する。この場合、嵌合部1Cより被嵌合部1Eの長さを短く形成する。   Next, a ninth embodiment will be described with reference to FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. The ninth embodiment is a method for joining two pipes 1 and 1 having the same inner diameter and outer shape. First, the outer peripheral portion is cut off over the entire circumference at the joining side end portion of one (left side) pipe 1 to form a fitting portion 1C, and the joining side end of the other (right side) pipe 1 is joined. The inner peripheral portion is cut out over the entire circumference to make it thinner, thereby forming the fitted portion 1E. In this case, the length of the fitted portion 1E is shorter than the fitting portion 1C.

そして、前記一方のパイプ1の接合側端部の嵌合部1Cに両パイプ1、1を溶着するためのエネルギービーム2の波長に対する透過率の高い円筒状のフィラー3Dを外側から嵌合させ、このフィラー3Dを介して一方のパイプ1の嵌合部1Cを他方のパイプ1の被嵌合部1Eに嵌合させて突き合わせ、圧縮応力を加えながらフィラー3Dを挟んだ状態で両パイプ1、1と前記フィラー3Dの突き合わせ部に前記エネルギービーム2を照射して両パイプ1、1を接合する。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   Then, a cylindrical filler 3D having a high transmittance with respect to the wavelength of the energy beam 2 for welding the pipes 1 and 1 to the fitting part 1C at the joint side end of the one pipe 1 is fitted from the outside, The fitting portion 1C of one pipe 1 is fitted to the fitting portion 1E of the other pipe 1 through this filler 3D and abutted, and both pipes 1, 1 are sandwiched with the filler 3D sandwiched while applying compressive stress. The energy beam 2 is irradiated to the butted portion of the filler 3D to join the pipes 1 and 1 together. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

そして、エネルギービーム2が照射されると同時に吸収が行なわれ、前記フィラー3Dとパイプ1、1の突き合わせ部が発熱することにより溶融すると同時に、圧縮応力により、前記フィラー3Dとパイプ1、1の溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、前述の如く、アシストガスの供給により溶融部の冷却が行なわれる。   Then, absorption is performed at the same time when the energy beam 2 is irradiated, and the butt portion between the filler 3D and the pipes 1 and 1 is melted by generating heat, and at the same time, the filler 3D and the pipes 1 and 1 are melted by compressive stress. The synthetic resin materials thus mixed will be mixed. In this mixed state, the irradiation of the energy beam 2 is stopped, and as described above, the melted portion is cooled by supplying the assist gas.

次に、図13に基づき、第10の実施形態について説明する。先ず、第1の実施形態と同一又は類似の番号は同一又は類似の機能を有するものとして、以下説明する。この第10の実施形態は、内径及び外形が同一の2本のパイプ1、1の接合方法である。   Next, a tenth embodiment will be described based on FIG. First, the same or similar numbers as those in the first embodiment will be described below assuming that they have the same or similar functions. The tenth embodiment is a method of joining two pipes 1 and 1 having the same inner diameter and outer shape.

先ず、一方(左方)のパイプ1の接合側端部において一定長さだけ片半部(上半部)を切除し、他方のパイプ(右方)1の接合側端部において一定長さだけ片半部(下半部)を切除する。そして、両パイプ1、1の残された片半部同士を突き合わせ、この突き合わせ部1F、1Fに圧縮応力を加えながらエネルギービーム2を照射して両パイプ1、1を接合する。この照射は、突き合わせ部全周に亘って満遍無く、略均一になされるよう、工夫される。   First, one half (upper half) is cut by a certain length at the joining side end of one (left) pipe 1, and only a certain length is cut at the joining side end of the other pipe (right) 1. Cut out one half (lower half). The remaining half halves of the pipes 1 and 1 are butted together, and the pipes 1 and 1 are joined by irradiating the energy beam 2 while applying compressive stress to the butted parts 1F and 1F. This irradiation is devised so that it is made substantially uniform over the entire circumference of the butted portion.

そして、エネルギービーム2が照射されると同時に吸収が行なわれ、両パイプ1、1の突き合わせ部が発熱することにより溶融すると同時に、圧縮応力により、溶融した合成樹脂材料同士が混合することとなる。この混合した状態で、エネルギービーム2の照射を停止し、前述の如く、アシストガスの供給により溶融部の冷却が行なわれる。   Then, absorption is performed at the same time as the irradiation with the energy beam 2, and the butted portions of both pipes 1, 1 are melted by generating heat, and at the same time, the melted synthetic resin materials are mixed by compressive stress. In this mixed state, the irradiation of the energy beam 2 is stopped, and as described above, the melted portion is cooled by supplying the assist gas.

次に、図14乃至図17に基づき、エネルギービーム2の照射の方法について説明する。先ず、図14に基づき、第1の照射方法を前述したパイプの接合方法の第1の実施形態に適用した例について説明する。   Next, a method for irradiating the energy beam 2 will be described with reference to FIGS. First, based on FIG. 14, the example which applied the 1st irradiation method to 1st Embodiment of the joining method of the pipe mentioned above is demonstrated.

先ず、溶接品質が均等となるように、前記両パイプ1、1(その突き合わせ部)と所定距離離れて円周上に略等間隔を存してエネルギービーム発振源5を配設する。   First, the energy beam oscillation source 5 is disposed at a substantially equal interval on the circumference at a predetermined distance from both the pipes 1 and 1 (its abutting portion) so that the welding quality is uniform.

この方法は、エネルギービーム発振源5からのエネルギービーム2が満遍無く、均一に前記両パイプ1、1(その突き合わせ部)に照射できるように、前記両パイプ1、1(その突き合わせ部)と所定距離離れて円周上に略等間隔を存して複数のエネルギービーム発振源5を配設するものである。   In this method, the energy beams 2 from the energy beam oscillation source 5 are uniformly distributed to the both pipes 1 and 1 (its abutting portion) so that the both pipes 1 and 1 (its abutting portion) can be uniformly irradiated. A plurality of energy beam oscillation sources 5 are arranged at substantially equal intervals on the circumference at a predetermined distance.

なお、前記エネルギービーム発振源5は、半導体レーザ、ファイバーレーザ、YAGレーザなどが考えられる。   The energy beam oscillation source 5 may be a semiconductor laser, a fiber laser, a YAG laser, or the like.

次に、図15に基づき、第2の照射方法を前述したパイプの接合方法の第1の実施形態に適用した例について説明する。   Next, an example in which the second irradiation method is applied to the first embodiment of the pipe joining method described above will be described with reference to FIG.

先ず、前記両パイプ1、1と所定距離離れて円周上に略等間隔を存して光学素子であるレンズ15を配設する。そして、エネルギービーム発振源(図示せず)からのエネルギービーム2を各光ファイバー16を介して前記各レンズ15に導いて前記エネルギービーム2を照射する。   First, a lens 15 that is an optical element is disposed on the circumference at a predetermined distance from the pipes 1 and 1 at a substantially equal interval. Then, the energy beam 2 from an energy beam oscillation source (not shown) is guided to each lens 15 through each optical fiber 16 to irradiate the energy beam 2.

この方法は、エネルギービーム発振源からのエネルギービーム2が満遍無く、均一に前記両パイプ1、1(その突き合わせ部)に照射できるように、前記両パイプ1、1(その突き合わせ部)と所定距離離れて円周上に略等間隔を存してレンズ15を配設すると共にエネルギービーム発振源からのエネルギービーム2を各光ファイバー16を介して前記各レンズ15に導くようにしたものである。   In this method, the energy beams 2 from the energy beam oscillation source are uniformly distributed to both the pipes 1 and 1 (its butt portion) so that they can be uniformly irradiated to the both pipes 1 and 1 (its butt portion). The lenses 15 are arranged at substantially equal intervals on the circumference at a distance, and the energy beam 2 from the energy beam oscillation source is guided to the lenses 15 via the optical fibers 16.

次に、図16に基づき、第3の照射方法を前述したパイプの接合方法の第1の実施形態に適用した例について説明する。先ず、前記両パイプ1、1と所定距離離れて円周上に光学素子である導波路20を配設し、この導波路20にエネルギービーム発振源5からのエネルギービーム2を導き、この導波路20に所定間隔を存して開設された開口21を介してエネルギービーム2を照射する方法である。   Next, an example in which the third irradiation method is applied to the first embodiment of the pipe joining method described above will be described with reference to FIG. First, a waveguide 20 which is an optical element is arranged on the circumference at a predetermined distance from both the pipes 1 and 1, and an energy beam 2 from an energy beam oscillation source 5 is guided to the waveguide 20. This is a method of irradiating the energy beam 2 through an opening 21 opened at a predetermined interval 20.

前記導波路20は、円筒状を呈し、その内面がエネルギービーム2を反射する金属材料のコーティングを施した光学ガラス等の光学材料で構成する。   The waveguide 20 is formed of an optical material such as optical glass having a cylindrical shape and an inner surface coated with a metal material that reflects the energy beam 2.

従って、エネルギービーム発振源5からのエネルギービーム2を導波路20に導き、各開口21を介して、満遍無く、均一に前記両パイプ1、1(その突き合わせ部)に照射できる。   Therefore, the energy beam 2 from the energy beam oscillation source 5 is guided to the waveguide 20 and can be uniformly and uniformly irradiated to the pipes 1 and 1 (its abutting portion) through the openings 21.

次に、図17に基づき、第4の照射方法を前述したパイプの接合方法の第1の実施形態に適用した例について説明する。先ず、前記両パイプ1、1(その突き合わせ部)と所定距離離れて円周上に略等間隔を存して複数のエネルギービーム発振源5を配設する。   Next, an example in which the fourth irradiation method is applied to the first embodiment of the pipe joining method described above will be described with reference to FIG. First, a plurality of energy beam oscillation sources 5 are arranged on the circumference at a predetermined distance from the pipes 1 and 1 (its abutting portion) at a substantially equal interval.

そして、前記両パイプ1、1の回りを所定距離離れた状態で各エネルギービーム発振源5を所定速度で移動させながら、エネルギービーム2を照射させる。これにより、満遍無く、均一に前記両パイプ1、1(その突き合わせ部)に照射できる。   Then, the energy beam 2 is irradiated while moving each energy beam oscillation source 5 at a predetermined speed with the pipes 1 and 1 being separated by a predetermined distance. Thereby, the said both pipes 1 and 1 (its butt | matching part) can be irradiated uniformly evenly.

なお、なお、以上説明した第1乃至第4の照射方法は、第1の実施形態に限らず、第2乃至第7の実施形態についても適用できる。   In addition, the 1st thru | or 4th irradiation method demonstrated above is applicable not only to 1st Embodiment but 2nd thru | or 7th Embodiment.

また、以上の実施形態において、前記パイプ1、10、11の接合する端面には、エネルギービーム2が浸透する粗さ(Rough averageが直径10〜100μm程度の粗さ)が形成されているものとする。これにより、エネルギービーム2が照射される面積を多くすることができると共に、溶融混合が促進され易く、接合をより強固なものとすることができる。   Further, in the above embodiment, the end surfaces where the pipes 1, 10, 11 are joined are formed with a roughness that allows the energy beam 2 to penetrate (rough average having a roughness of about 10 to 100 μm in diameter). To do. As a result, the area irradiated with the energy beam 2 can be increased, melt mixing can be facilitated, and the bonding can be made stronger.

なお、第1乃至第6の実施形態において、パイプ1の外径は50mmで、内径が40mmであって、突き合わせ端部から3mm程度軟化させて溶着させると、接合が十分なものとなる。   In the first to sixth embodiments, the outer diameter of the pipe 1 is 50 mm and the inner diameter is 40 mm. When the pipe 1 is softened and welded by about 3 mm from the butt end portion, the joining becomes sufficient.

この場合、ポリエチレン合成樹脂材料製のパイプ1の融点は165℃、比重が0.91、比熱は0.41であり、溶融させる体積は(2.5×2.5×π×0.3)から(2×2×π×0.3)を差引いた値であり、約2.12cmとなる。溶融に必要なエネルギ−は、2.12(体積)×165(上昇させる温度)×0.41(比熱)÷4.2(1cal=4.2ジュール)であり、34.15ジュールとなる。 In this case, the melting point of the pipe 1 made of polyethylene synthetic resin material is 165 ° C., the specific gravity is 0.91, the specific heat is 0.41, and the volume to be melted is (2.5 × 2.5 × π × 0.3). Is a value obtained by subtracting (2 × 2 × π × 0.3) from approximately 2.12 cm 3 . The energy required for melting is 2.12 (volume) × 165 (temperature to be raised) × 0.41 (specific heat) ÷ 4.2 (1 cal = 4.2 joules), which is 34.15 joules.

均一な加熱が可能で、パイプに対するエネルギーの吸収率が100%であると仮定すると、約40wのレーザ発振源を使用すると、1秒間で溶融可能となる。但し、内部への熱拡散を考慮していないため、更に吸収率や熱源の不均一性を考慮すると、80〜1000W程度のものが必要と考えられる。   Assuming that uniform heating is possible and that the absorption rate of energy into the pipe is 100%, use of a laser oscillation source of about 40 w enables melting in one second. However, since heat diffusion into the interior is not taken into consideration, it is considered that a power of about 80 to 1000 W is necessary in consideration of the absorption rate and the non-uniformity of the heat source.

以上のように本発明は、熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口側端部の全部又は一部を突き合わせ、この突き合わせ部に圧縮応力を加えながらエネルギービームを照射して両パイプを接合するようにしたが、この場合、突き合わせの構造・方法によっては必ずしも、前記突き合わせ部に圧縮応力を加えない状態でエネルギービームを照射してもよい。   As described above, the present invention is a method for joining two pipes made of a thermoplastic synthetic resin material, but a part or both of the opening side end parts of both pipes are butted together, and compressive stress is applied to the butted parts. While both pipes are joined by irradiating the energy beam while being added, in this case, depending on the structure and method of butt, the energy beam may be radiated without applying compressive stress to the butt.

以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明はその趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the present invention is not limited to the various alternatives described above without departing from the spirit of the present invention. It includes modifications or variations.

パイプの接合方法の第1の実施形態を説明するための一部破断せる両パイプの正面図である。It is a front view of both pipes which can be partially broken for explaining a 1st embodiment of a joining method of pipes. パイプの接合方法の第2の実施形態を説明するための両パイプの縦断正面図である。It is a vertical front view of both pipes for demonstrating 2nd Embodiment of the joining method of a pipe. エネルギービームの照射による変化を示すための図2の部分拡大図である。It is the elements on larger scale of FIG. 2 for demonstrating the change by irradiation of an energy beam. 同じくエネルギービームの照射による変化を示すための図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2 for showing a change caused by irradiation with an energy beam. 同じくエネルギービームの照射による変化を示すための図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2 for showing a change caused by irradiation with an energy beam. パイプの接合方法の第3の実施形態を説明するための一部破断せる両パイプの正面図である。It is a front view of both the pipes which can be partially broken for demonstrating 3rd Embodiment of the joining method of a pipe. パイプの接合方法の第4の実施形態を説明するための一部破断せる両パイプの正面図である。It is a front view of both the pipes which can be partially broken for demonstrating 4th Embodiment of the joining method of a pipe. パイプの接合方法の第5の実施形態を説明するための一部破断せる両パイプの正面図である。It is a front view of both the pipes which can be partly broken for demonstrating 5th Embodiment of the joining method of a pipe. パイプの接合方法の第6の実施形態を説明するための一部破断せる両パイプの正面図である。It is a front view of both the pipes which can be partly broken for demonstrating 6th Embodiment of the joining method of a pipe. パイプの接合方法の第7の実施形態を説明するための一部破断せる両パイプの正面図である。It is a front view of both pipes which can be partly broken for explaining a 7th embodiment of a joining method of pipes. パイプの接合方法の第8の実施形態を説明するための両パイプの縦断正面図である。It is a vertical front view of both pipes for demonstrating 8th Embodiment of the joining method of a pipe. パイプの接合方法の第9の実施形態を説明するための両パイプの縦断正面図である。It is a vertical front view of both pipes for demonstrating 9th Embodiment of the joining method of a pipe. パイプの接合方法の第10の実施形態を説明するための両パイプの斜視図である。It is a perspective view of both the pipes for demonstrating 10th Embodiment of the joining method of a pipe. 第1の照射方法を説明するための図である。It is a figure for demonstrating the 1st irradiation method. 第2の照射方法を説明するための図である。It is a figure for demonstrating the 2nd irradiation method. 第3の照射方法を説明するための図である。It is a figure for demonstrating the 3rd irradiation method. 第4の照射方法を説明するための図である。It is a figure for demonstrating the 4th irradiation method.

符号の説明Explanation of symbols

1 パイプ
1A 開先面
1B 溶融部
2 エネルギービーム
3 フィラー
3A フィラー
3B フィラー
3C フィラー
5 エネルギービーム発振源
10、11 パイプ
15 レンズ
16 光ファイバー
20 導波路
21 開口
DESCRIPTION OF SYMBOLS 1 Pipe 1A Groove 1B Melting part 2 Energy beam 3 Filler 3A Filler 3B Filler 3C Filler 5 Energy beam oscillation source 10, 11 Pipe 15 Lens 16 Optical fiber 20 Waveguide 21 Opening

Claims (21)

熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口側端部の全部又は一部を突き合わせ、この突き合わせ部にエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of a thermoplastic synthetic resin material, where all or part of the opening side end portions of both pipes are butted together and an energy beam is irradiated to this butted portion to join both pipes A pipe joining method characterized by the above. 熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口側端部の全部又は一部を突き合わせ、この突き合わせ部に圧縮応力を加えながらエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of a thermoplastic synthetic resin material, where all or part of the opening side end portions of both pipes are butted and irradiated with an energy beam while applying compressive stress to the butting portions. A pipe joining method characterized by joining both pipes. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口端面を長手方向と直角に加工して両パイプを突き合わせ、この突き合わせ面に圧縮応力を加えながら突き合わせ部にエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, processing the open end faces of both pipes at right angles to the longitudinal direction, butting both pipes, and compressing stress on the butting faces A method of joining pipes, characterized in that both pipes are joined by irradiating an energy beam to the butted portion while applying a pressure. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口端面を内径側より外径側に向けて開くように開先加工して両パイプを突き合わせ、この突き合わせ部に圧縮応力を加えながら開先面にエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter part, and both pipes are processed by beveling so that the opening end faces of both pipes open from the inner diameter side toward the outer diameter side. And joining both pipes by irradiating the groove surface with an energy beam while applying compressive stress to the butted portion. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプ間に溶着するためのエネルギービームの波長に対する透過率の高いフィラーを介在させて挟み込んで圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter, and is compressed by inserting a filler having a high transmittance with respect to the wavelength of the energy beam for welding between the two pipes. A method for joining pipes, wherein the pipes are joined by irradiating the energy beam to a butted portion between both pipes and the filler while applying stress. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの開口端面の全部又は一部を内径側より外径側に向けて開くように開先加工して両パイプを突き合わせ、この両パイプの突き合わせされていない部分に溶着するためのエネルギービームの波長に対する透過率の高いフィラーを介在させて圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, and a groove that opens all or part of the open end faces of both pipes from the inner diameter side to the outer diameter side. Both pipes are processed to butt, and a filler having a high transmittance with respect to the wavelength of the energy beam for welding to the non-butted portions of both pipes is interposed between the two pipes and the butt portion of the filler while applying compressive stress. A method of joining pipes, wherein both pipes are joined by irradiating the energy beam. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプの開口端面の全部を内径側より外径側に向けて開くように開先加工し、他方のパイプの開口端面外端部を内径側より外径側に向けて開くように開先加工すると共に開口端面内端部を外径側より内径側に向けて閉じるように開先加工して、前記他方のパイプに前記一方のパイプを嵌合させ、この両パイプの嵌合されていない部分に溶着するためのエネルギービームの波長に対する透過率の高いフィラーを介在させて圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, with a groove working so that the entire open end face of one pipe is opened from the inner diameter side toward the outer diameter side. The groove is processed so that the outer end of the opening end face of the other pipe is opened from the inner diameter side toward the outer diameter side, and the inner end of the opening end face is closed from the outer diameter side toward the inner diameter side. The one pipe is fitted to the other pipe, and a compressive stress is applied by interposing a filler having a high transmittance with respect to the wavelength of the energy beam for welding to a portion where both the pipes are not fitted. A joining method of pipes characterized in that both pipes are joined by irradiating the energy beam to a butted portion between both pipes and the filler. 内径が異なる熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプに他方のパイプを嵌合させ、嵌合部にエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of thermoplastic synthetic resin materials having different inner diameters, in which one pipe is fitted into the other pipe and the fitting part is irradiated with an energy beam to join the two pipes. A pipe joining method characterized by the above. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプの接合側端部において外周部を切除して薄肉にし、他方のパイプの接合側端部において内周部を切除して薄肉にし、一方のパイプを他方のパイプに嵌合させて突き合わせ、この突き合わせ面に圧縮応力を加えながら突き合わせ部にエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, wherein the outer peripheral portion is cut off at the joining side end of one pipe, and the joining side end of the other pipe is made. Cut the inner peripheral part of the part to make it thin, and fit one pipe into the other pipe and butt it together, irradiate the butt part with an energy beam while applying compressive stress to join both pipes A method of joining pipes characterized by the above. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、一方のパイプの接合側端部において外周部を切除して薄肉にし、他方のパイプの接合側端部において内周部を切除して薄肉にし、前記一方のパイプの接合側端部の薄肉部に両パイプを溶着するためのエネルギービームの波長に対する透過率の高い円筒状のフィラーを外側から嵌合させ、このフィラーを介して一方のパイプを他方のパイプに嵌合させて突き合わせ、圧縮応力を加えながら両パイプと前記フィラーの突き合わせ部に前記エネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method for joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, wherein the outer peripheral portion is cut off at the joining side end of one pipe, and the joining side end of the other pipe is made. Cut the inner peripheral part of the pipe to make it thin, and fit a cylindrical filler from the outside with high transmittance to the wavelength of the energy beam to weld both pipes to the thin part at the joint end of the one pipe Then, one pipe is fitted to the other pipe through the filler and butted together, and both pipes are joined by irradiating the energy beam to the butt portion of the two pipes and the filler while applying compressive stress. Pipe joining method. 同径部分を持つ熱可塑性合成樹脂材料で作製された2本のパイプの接合方法であって、両パイプの接合側端部の片半部を切除して、両パイプの残された片半部同士を突き合わせ、この突き合わせ部に圧縮応力を加えながらエネルギービームを照射して両パイプを接合することを特徴とするパイプの接合方法。   A method of joining two pipes made of a thermoplastic synthetic resin material having the same diameter portion, by cutting off half of the joint ends of both pipes and leaving the remaining half of both pipes A method of joining pipes characterized in that the pipes are joined to each other and irradiated with an energy beam while applying compressive stress to the butt part. 前記2本のパイプは、接合する端面にエネルギービームが浸透する粗さを有することを特徴とする請求項1乃至請求項11のいずれかに記載のパイプの接合方法。   The pipe joining method according to any one of claims 1 to 11, wherein the two pipes have a roughness that allows an energy beam to permeate into end faces to be joined. 前記両パイプと所定距離離れて円周上に複数の前記エネルギービーム発振源を配設して、前記エネルギービームを照射することを特徴とする請求項1乃至請求項11のいずれかに記載のパイプの接合方法。   The pipe according to any one of claims 1 to 11, wherein a plurality of the energy beam oscillation sources are arranged on a circumference at a predetermined distance from the both pipes, and the energy beam is irradiated. Joining method. 前記両パイプと所定距離離れて円周上に複数の光学素子を配設して、エネルギービーム発振源からのエネルギービームを各光ファイバーを介して前記各光学素子に導いて前記エネルギービームを照射することを特徴とする請求項1乃至請求項11のいずれかに記載のパイプの接合方法。   A plurality of optical elements are arranged on the circumference at a predetermined distance from both pipes, and an energy beam from an energy beam oscillation source is guided to each optical element via each optical fiber to irradiate the energy beam. The method for joining pipes according to any one of claims 1 to 11, wherein: 前記両パイプと所定距離離れて円周上に導波路を配設し、この導波路にエネルギービーム発振源からのエネルギービームを導き、この導波路に所定間隔を存して開設された開口を介して前記エネルギービームを照射することを特徴とする請求項1乃至請求項11のいずれかに記載のパイプの接合方法。   A waveguide is arranged on the circumference at a predetermined distance from both the pipes, an energy beam from an energy beam oscillation source is guided to the waveguide, and an opening is provided in the waveguide at a predetermined interval. 12. The pipe joining method according to claim 1, wherein the energy beam is irradiated. 前記両パイプの回りを所定距離離れた状態で所定速度で移動するエネルギービーム発振源から前記エネルギービームを照射することを特徴とする請求項1乃至請求項11のいずれかに記載のパイプの接合方法。   The pipe joining method according to any one of claims 1 to 11, wherein the energy beam is irradiated from an energy beam oscillation source that moves at a predetermined speed around the pipes at a predetermined distance. . 前記エネルギービームの照射による溶融部の酸化を防止するために前記エネルギービームの照射箇所に酸化防止気体を供給することを特徴とする請求項1乃至請求項11のいずれかに記載のパイプの接合方法。   The pipe joining method according to any one of claims 1 to 11, wherein an antioxidant gas is supplied to the irradiated portion of the energy beam in order to prevent oxidation of the melted portion due to the irradiation of the energy beam. . 熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部と所定距離離れて円周上に複数のエネルギービーム発振源を配設して、前記突き合わせ部にエネルギービームを照射することを特徴とするパイプの接合装置。   A joining device for two pipes made of a thermoplastic synthetic resin material, wherein a plurality of energies are arranged on the circumference at a predetermined distance from a butted portion where all or part of the opening side end portions of both pipes are butted. An apparatus for joining pipes, characterized in that a beam oscillation source is provided and an energy beam is irradiated to the butted portion. 熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部と所定距離離れて円周上に配設された複数の光学素子と、エネルギービームを発するエネルギービーム発振源と、前記光学素子に対応して設けられ前記エネルギービーム発振源からのエネルギービームを前記各光学素子に導いて前記突き合わせ部に照射するための複数本のファイバーとを設けたことを特徴とするパイプの接合装置。   An apparatus for joining two pipes made of a thermoplastic synthetic resin material, which is disposed on the circumference at a predetermined distance from a butted portion where all or part of the opening-side end portions of both pipes are butted. A plurality of optical elements, an energy beam oscillation source that emits an energy beam, and an energy beam from the energy beam oscillation source that is provided corresponding to the optical element and irradiates the abutting portion A pipe joining apparatus characterized by comprising a plurality of fibers. 熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部と所定距離離れて円周上に配設された導波路と、エネルギービームを発するエネルギービーム発振源とを備え、前記導波路に前記エネルギービーム発振源からのエネルギービームを導き、この導波路に開設された複数の各開口を介して前記突き合わせ部に前記エネルギービームを照射することを特徴とするパイプの接合装置。   An apparatus for joining two pipes made of a thermoplastic synthetic resin material, which is disposed on the circumference at a predetermined distance from a butted portion where all or part of the opening-side end portions of both pipes are butted. A waveguide and an energy beam oscillation source for emitting an energy beam, the energy beam from the energy beam oscillation source is guided to the waveguide, and the butt portion is formed through a plurality of openings provided in the waveguide. A pipe joining apparatus, wherein the energy beam is irradiated on the pipe. 熱可塑性合成樹脂材料で作製された2本のパイプの接合装置であって、前記両パイプの開口側端部の全部又は一部を突き合わせた突き合わせ部の回りを所定距離離れた状態で所定速度で移動するエネルギービーム発振源を設け、このエネルギービーム発振源からの前記エネルギービームを前記突き合わせ部に照射することを特徴とするパイプの接合装置。   An apparatus for joining two pipes made of a thermoplastic synthetic resin material, at a predetermined speed with a predetermined distance around the butted portion where all or part of the opening side ends of both pipes are butted An apparatus for joining pipes, wherein a moving energy beam oscillation source is provided, and the energy beam from the energy beam oscillation source is irradiated to the butting portion.
JP2006174230A 2006-06-23 2006-06-23 Method for connecting pipe and apparatus for connecting pipe Pending JP2008001022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174230A JP2008001022A (en) 2006-06-23 2006-06-23 Method for connecting pipe and apparatus for connecting pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174230A JP2008001022A (en) 2006-06-23 2006-06-23 Method for connecting pipe and apparatus for connecting pipe

Publications (1)

Publication Number Publication Date
JP2008001022A true JP2008001022A (en) 2008-01-10

Family

ID=39005784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174230A Pending JP2008001022A (en) 2006-06-23 2006-06-23 Method for connecting pipe and apparatus for connecting pipe

Country Status (1)

Country Link
JP (1) JP2008001022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286109A (en) * 2008-05-01 2009-12-10 Sekisui Chem Co Ltd Polyolefin based resin crosslink object and its fusion joining object
EP2159037A1 (en) 2008-08-28 2010-03-03 Leister Process Technologies Connection or branching element for connecting with a tube end section using the laser radiation method and laser head and connection method
KR101856958B1 (en) 2012-12-28 2018-05-14 재단법인 포항산업과학연구원 Pipe connector by metal casting
KR20220066935A (en) * 2019-09-24 2022-05-24 다이킨 고교 가부시키가이샤 weld body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286109A (en) * 2008-05-01 2009-12-10 Sekisui Chem Co Ltd Polyolefin based resin crosslink object and its fusion joining object
EP2159037A1 (en) 2008-08-28 2010-03-03 Leister Process Technologies Connection or branching element for connecting with a tube end section using the laser radiation method and laser head and connection method
WO2010022886A1 (en) * 2008-08-28 2010-03-04 Leister Process Technologies Laser head and method of connecting tubular parts by the laser transmission method
US8505604B2 (en) 2008-08-28 2013-08-13 Leister Technologies Ag Laser head and method of connecting tubular parts by the laser transmission method
KR101856958B1 (en) 2012-12-28 2018-05-14 재단법인 포항산업과학연구원 Pipe connector by metal casting
KR20220066935A (en) * 2019-09-24 2022-05-24 다이킨 고교 가부시키가이샤 weld body
KR102620420B1 (en) * 2019-09-24 2024-01-03 다이킨 고교 가부시키가이샤 weld body

Similar Documents

Publication Publication Date Title
Mingareev et al. Welding of polymers using a 2 μm thulium fiber laser
US20020100540A1 (en) Simultaneous butt and lap joints
US20120181250A1 (en) Infrared laser welding of plastic parts with one or more of the parts having a modified surface providing increased absorbtivity to infrared laser light
JP2009083406A (en) Pipe joining method
EP1048439A3 (en) Welding process and apparatus
JP2012500120A (en) Laser head and method for joining tubular parts by laser irradiation
CN101352921A (en) Method and apparatus for laser welding thermoplastic resin members
JP2008001022A (en) Method for connecting pipe and apparatus for connecting pipe
JP2005246692A (en) Laser welding method of resin material
JP4766589B2 (en) Coating apparatus and coating method for connecting part of resin-coated steel pipe
US8100161B2 (en) Infrared plastic welding with recirculation of unabsorbed infrared laser light to increase absorption of infrared laser light
JP2015163412A (en) welding method
JP5479758B2 (en) Laser welding method and housing
EP2087989B1 (en) Method for welding thermoplastic resin articles
JP2010113938A (en) Method of assembling housing of photoelectric sensor, and the photoelectric sensor
JP2004114456A (en) Method and apparatus for bonding tube material
EP3552795A1 (en) Sealing method
JP5505079B2 (en) High pressure tank liner manufacturing apparatus, high pressure tank liner manufacturing method, and high pressure tank manufacturing method
JP2014180843A (en) Resin member deposition method
JP2005246913A (en) Laser welding method for resin material
Howse et al. The evolution of Yb fibre laser/MAG hybrid processing for welding of pipelines
JP2005161620A (en) Laser welding method
JP4492784B2 (en) Laser welding member manufacturing method
KR20200049077A (en) Electric Fusion Welding Pipe of Pipe
CN105817763A (en) Plastic optical fiber laser-welding technique and application thereof