JP4435352B2 - Welding method for heat-meltable synthetic resin - Google Patents

Welding method for heat-meltable synthetic resin Download PDF

Info

Publication number
JP4435352B2
JP4435352B2 JP2000002317A JP2000002317A JP4435352B2 JP 4435352 B2 JP4435352 B2 JP 4435352B2 JP 2000002317 A JP2000002317 A JP 2000002317A JP 2000002317 A JP2000002317 A JP 2000002317A JP 4435352 B2 JP4435352 B2 JP 4435352B2
Authority
JP
Japan
Prior art keywords
heat
light
tube
synthetic resin
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000002317A
Other languages
Japanese (ja)
Other versions
JP2001191412A (en
Inventor
英雄 三舩
倫弘 池ヶ谷
忠和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Intecc Co Ltd
Original Assignee
Asahi Intecc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Intecc Co Ltd filed Critical Asahi Intecc Co Ltd
Priority to JP2000002317A priority Critical patent/JP4435352B2/en
Publication of JP2001191412A publication Critical patent/JP2001191412A/en
Application granted granted Critical
Publication of JP4435352B2 publication Critical patent/JP4435352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1445Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface heating both sides of the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/148Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1496Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/245Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool the heat transfer being achieved contactless, e.g. by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/66Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined
    • B29C65/68Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined using auxiliary shrinkable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/63Internally supporting the article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1409Visible light radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • B29C65/1422Far-infrared radiation [FIR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1638Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/02Inflatable articles
    • B29L2022/022Balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • B29L2031/7543Balloon catheters

Description

【0001】
【発明の属する技術分野】
本発明は、当接部位の加熱により相互に溶着可能な合成樹脂の溶着方法に関し、例えば、医療用チューブなどの微細な溶着対象において、極限られた範囲のみを溶着させる局所溶着が必要なものにおいて、顕著な効果を奏するものである。
【0002】
【従来の技術】
医療用チューブの一つであるバルーンカテーテルなど、十分な気密性を確保し、且つ、可撓性が要求される微細な合成樹脂においては、溶着部位を極力少なくすることで、溶着部位以外での可撓性が損なわれないようにする必要がある。
【0003】
別体からなる複数の合成樹脂を接合、一体化させる方法としては、(1)接着剤を用いて接合する、(2)接合対象部分を外部から加熱して対象合成樹脂を加熱溶融させて接合(溶着)させる、(3)接合対象部分に外部から超音波を伝達して、振動摩擦抵抗により加熱溶融接合させるなどの方法がある。
【0004】
しかしながら、上記(1)の方法においては、接着部の接着剤の固化による接着剤層の硬化および接着部からの剥離が生じやすく、特に、可撓性が必要な医療用チューブなどにおいては、可撓性が性能上重要である。
また、上記(2)の方法では、溶着対象部位の近傍においても加熱溶融が生じ易く、微細な接合対象においては、局所加熱が甚だ困難である。
また、上記(3)の方法では、溶着対象部位への超音波の均一な伝達が困難であり、特に、溶着部位での気密密閉性の確保が困難である。
【0005】
このため、医療用チューブなどの溶着では、集光・合焦させたレーザービームなどを用いて合成樹脂同士を局所加熱して溶着させる方法が用いられている。
【0006】
【発明が解決しようとする課題】
しかし、集光・合焦させたレーザビーム等を用いた局所加熱では、溶着のために使用されるレーザビームの照射光の強度が大きいため溶着部以外へのレーザビームの照射を避ける必要があり、そのためには、レーザビームの集光・合焦に精度が要求される。特に、可撓性を有する医療用チューブなどの二重管を全周に亙って接合させる場合などには、二重管の接合対象部位を回転中に常にレーザビームの集光・合焦部位に精度良く配置しなければならず、二重管の回転位置とレーザビームの照射光の合焦位置との厳密な整合性が要求される。
このため、接合装置全体の精度向上のための負担が大きく、価格上昇を招き、生産性が低いという問題点がある。
【0007】
本発明は、合成樹脂の溶着工程における照射光の集光・合焦精度及び溶着対象の位置決め精度の負担を軽減し、且つ、接合部位の位置決め精度を確保でき、接合対象における接合対象部位以外への加熱及びそれによる可撓性の阻害を無くすことができる高精度の溶着方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1は、当接部位の加熱により相互に溶着可能な熱溶融性合成樹脂の溶着方法において、接合対象部位を有する接合対象合成樹脂は、内外に配置された内側管と外側管とからなり、少なくとも前記外側管が光透渦性合成樹脂からなる内外二重管であり、前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布して当接させて前記内外二重管とし、該内外二重管の外側に光透過性の筒部材を外挿して発熱用光を照射し、前記接合対象部位の発熱時に前記内側管の作成時に蓄えられた内部歪応力の開放に伴う拡張力によって前記接合対象部位を圧接し、前記外側管と前記内側管とを溶着することを特徴とする。
【0012】
接合される合成樹脂が内外二重管であって管の周全体を連続して又は間欠的に溶着させる場合には、外側管の外周全体に発熱用光を照射する必要がある。そのための照射の方法としては、例えば、固定位置から二重管へ向けて発熱用光を照射する際に、二重管や発熱用光の照射源を回転させたり、一か所の照射源から発熱用光を照射して複数の反射鏡を用いて外周全体に対して発熱用光を照射したり、二重管の外周に複数の照射源を配置して照射したり、二重管の外周全体を覆う発熱用光の照射源を用いて、均一に発熱用光を照射するなどの方法がある。
本発明では、色付塗布剤の塗布位置のみが温度上昇して溶着するため、このような照射方法において、照射光の集光・合焦を厳密に行う必要がなく、接合部分を集光・合焦点に厳密に合致させる必要がないため、光照射位置に高精度を要求されない。
従って、例えば、二重管や照射源の回転時に、照射源と接合対象部位である周面との相互の変位の影響を受けることがなく、容易に溶着作業を行うことができる。
この結果、溶着時の二重管又は照射光源等の回転速度など、接合対象部位に対する照射光の強度と照射時間に関わる管理を行うだけで正確な溶着を行うことができ、二重管における接合工程の生産性が向上する。
【0014】
外側から発熱用光を照射すると、外側管の外側の筒部材を透過した発熱用光が色付塗布剤の塗布部で合成樹脂を加熱し、合成樹脂の温度上昇によって合成樹脂の応力の解放による拡張力により、合成樹脂同士が内外から相互に圧着されることになり、確実に溶着させることができる。
【0015】
請求項2は、接合対象部位を有する接合対象合成樹脂が、内外に配置された内側管と外側管とからなり、少なくとも、前記外側管が光透渦性合成樹脂からなる内外二重管であり、前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布するとともに、前記外側管の略外周側から発熱用光を当接部位に照射して加熱し、前記外側管と前記内側管とを相互に融着する熱溶融性合成樹脂の溶着方法であって、前記接合対象部位の相当箇所を含む領域の前記外側管の外側に光透過性の筒部材を外挿し、前記発熱用光の照射時に、前記内側管に内部圧を印加、或いは前記内側管と前記外側管との間隙部又は前記内側管と前記筒部材との間隙部を減圧することにより、前記外側管と前記内側管とを溶着することを特徴とする。
色付塗布剤が塗布された内側管部分のみが圧力印加によって膨張、或いは、内側管と外側管の間隙部、又は内側管と筒部材との間隙部の減圧によって、色付塗布剤が塗布された内側管と外側管の接合部のみが接触し、内側管と外側管とが確実に接合される為、色付塗布剤を塗布した部分が相互に圧着されて、確実に接合する。
【0016】
外側管の外側の筒部材の外側から発熱用光を照射すると、筒部材を透過した発熱用光が色付塗布剤の塗布部で合成樹脂を加熱させる。合成樹脂の温度上昇によって合成樹脂が軟化した状態で内側管の内側から加えられる圧力、又は内側管の外側の減圧力によって、内側管と外側管とが相互に圧着されて確実に接合する。
内側管の内側から加える圧力としては、弾性部材などによる物理的な押圧力や、圧縮空気など、気体による圧力などを用いることができ、減圧は吸引などによって行うことができる。
【0017】
請求項3は、接合対象部位を有する接合対象合成樹脂が、内外に配置された内側管と外側管とからなり、少なくとも、前記外側管が光透渦性合成樹脂からなる内外二重管であり、前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布するとともに、前記外側管の略外周側から発熱用光を当接部位に照射して加熱し、前記外側管と前記内側管とを相互に融着する熱溶融性合成樹脂の溶着方法であって、前記内外二重管の外側に光透過性の筒部材を外挿し、変形させた芯金を前記内側管内に挿入して前記接合対象部位の当該部を前記芯金のバネ圧力により押圧し、前記発熱用光を照射し、前記接合対象部位を溶着することを特徴とする。
外側管の外側の筒部材の外側から発熱用光を照射すると、筒部材を透過した発熱用光が色付塗布剤の塗布部で合成樹脂を加熱させる。合成樹脂の温度上昇によって合成樹脂が軟化した状態で内側管の内側から加えられる芯金のバネ圧力によって、内側管と外側管とが相互に圧着されて確実に接合する。
【0018】
請求項4は、接合対象部位を有する接合対象合成樹脂が、内外に配置された内側管と外請管とからなり、少なくとも、前記外側管が光透渦性合成樹脂からなる内外二重管であり、前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布するとともに、前記外側管の略外周側から発熱用光を当接部位に照射して加熱し、前記外側管と前記内側管とを相互に融着する熱溶融性合成樹脂の溶着方法であって、前記内側管の内側に芯材を挿入するとともに、前記外側管の外側の周面に、連続するか間欠的に環状に配した光吸収発熱用の前記色付塗布剤を塗布した光透過性の熱収縮チューブを、前記色付塗布剤の塗布部位が前記接合対象部位に整合するように前記外側管の外側に外挿し、前記発熱用光を照射して、前記熱収縮チューブの収縮により前記接合対象部位を圧縮して、前記内側管と前記外側管とを溶着することを特徴とする。
【0019】
熱収縮チューブの外側から発熱用光を照射すると、熱収縮チューブは発熱用光を一部吸収して加熱されて収縮する。特に、色付塗布剤が塗布された熱収縮チューブは、色付塗布剤が塗布された部分が発熱用光の吸収が良く、急速に加熱されて収縮する。
また、熱収縮チューブの内側の内外二重管の接合対象部位には、色付塗布剤が塗布されており、光吸収により加熱されて軟化する。
内外二重管の軟化した接合対象部位は、外側の熱収縮チューブの収縮によって圧力を受け、内側の芯材との間に挟まれて圧力を受け、内外二重管は相互に溶着する。
ここで、熱収縮チューブと接合対象部位にそれぞれ塗布する色付塗布剤の色は、溶着させる合成樹脂の溶融温度及び照射する発熱用光の波長分布に応じて適切な色を選択する。
【0030】
請求項5は、図8に示す様に、当接部位の加熱により相互に溶着可能な熱溶融性合成樹脂の溶着方法において、接合対象合成樹脂の接合対象部位に光吸収発熱用の色付塗布剤を塗布し、相互に重ね合わせ、発熱用光を一方の光透過性合成樹脂の側から照射して前記接合対象合成樹脂の当接部位を加熱溶着すると同時に、前記発熱用光の照射方向と反対面側に熱拡散性部材を当接することを特徴とする
溶着部位以外の昇温を防止でき、光吸収発熱部の発熱の伝熱による溶着合成樹脂層の加熱による損傷を極力さけることができる。
【0031】
請求項は、請求項1〜請求項の何れかに記載の熱溶融性合成樹脂の溶着方法において、前記発熱用光は、照射源より前記接合対象部位へ向けて非合焦の散光として照射されることを特徴とする。
本発明は、照射する発熱用光の集光・合焦性はあまり必要がなく、照射源から非合焦の散光として接合対象部位へ発せられても、請求項1から請求項に適用することで、溶着部位の位置精度がよく、また、気密性を確保した溶着を確実に行うことができる。
【0032】
請求項は、請求項1〜請求項の何れかに記載の熱溶融性合成樹脂の溶着方法において、前記発熱用光は、赤外及び遠赤外線波長帯の割合を多く有することを特徴とする。
本発明では、合成樹脂を溶着させるに当たって、発熱用光が光透過性合成樹脂を透過することが必要である。そのために、照射する発熱用光としては、通常の可視光線でもよいが、さらに、透過性に優れて光透過性合成樹脂での発熱が少なく、色付塗布剤などで発熱が大きい赤外線又は遠赤外線を発熱用光として用いることが望ましい。
具体的には、可視光線より遠赤外線側に偏った波長を多く有するハロゲンヒータや電熱線を用いたり、可視光線その他の光源から発せられる照射光を、波長変換フィルター層を通過させることで、赤外及び遠赤外線波長帯の割合を多くすることができる。
【0033】
【発明の実施の形態】
以下、本発明の熱溶融性合成樹脂の溶着方法を、添付図面を参照しつつ説明する。
[第1の溶着方法]
図1は、本発明の第1の溶着方法を示す。図1において、10、20は、いずれも光透過性合成樹脂としての透明ナイロンで、11は、光吸収塗布剤として透明ナイロン10、20の接合対象部位の当接面に光吸収インキを塗布又は印刷した光吸収マーカーで、ここでは、透明ナイロン10、20のいずれか一方の当接面にあらかじめ塗布されている。
これら透明ナイロン10、20を、接合対象部位を整合させた状態で重ね合わせてから、透明ナイロン10、20の一方の側(ここでは透明ナイロン10側)から発熱用光Lとして、ハロゲンヒータ等による赤外・遠赤外波長領域の多い可視光線を照射する。
この場合、発熱用光Lの照射は、光吸収マーカー11のみに集光・合焦させる必要はなく、非合焦の発熱用光Lを、光吸収マーカー11を含む領域に照射するだけでよい。
【0034】
発熱用光Lが照射されると、重ね合わされた透明ナイロン10、20の当接面のうち、光吸収マーカー11が塗布された部位のみが照射された発熱用光Lを吸収して発熱し、光吸収マーカー11が塗布されていない部位では、発熱用光Lが透過してしまい、発熱しない。
【0035】
この結果、光吸収マーカー11が塗布された部位のみが溶着し、その他の部位では、透明ナイロン10、20は変化しない。従って、光吸収マーカー11が塗布された接合対象部位のみを溶着させることができる。
このように、透明ナイロン10、20に光吸収マーカー11を塗布して発熱用光Lを照射して溶着させる溶着方法では、接合対象部位にあらかじめ光吸収マーカー11を正確に塗布しておけば、発熱用光Lの照射時に集光・合焦などの必要がなく、非合焦の発熱用光Lを用いても、位置精度の高い溶着を行うことができる。従って、生産性が向上する。
尚、発熱用光Lの照射側でない側の合成樹脂として、透明ナイロン20の代わりに、光吸収性が光吸収マーカー11より低い色付きナイロンを用いても、同様に溶着させることができる。
【0036】
[第2の溶着方法]
図2は、本発明の第2の溶着方法を示す。
図2(a)において、10、20は透明ナイロンで、30は着色された光吸収発熱体で、例えば、ステンレスなどの金属などである。
透明ナイロン10、20を、接合対象部位12を整合させた状態で重ね合わせてから、光吸収発熱体30を透明ナイロン10、20の指定された接合対象部位12に当接する(ここでは、透明ナイロン20側)。
光吸収発熱体30が当接されていない側(ここでは、透明ナイロン10側)から発熱用光Lとして、赤外・遠赤外波長領域の多い可視光線を照射する。
【0037】
発熱用光Lが照射されると、重ね合わされた透明ナイロン10、20を透過した発熱用光Lが光吸収発熱体30で吸収されて発熱し、重ね合わされた透明ナイロン10、20の当接面のうち、光吸収発熱体30が当接された接合対象部位12のみが、光吸収発熱体30の発熱によって溶着するが、光吸収発熱体30が当接していない部分では、発熱用光Lの透過度が高く、発熱が少なく、溶着しない。
【0038】
この結果、透明ナイロン10、20の光吸収発熱体30が当接した接合対象部位12のみを溶着させることができる。
このように、透明ナイロン10、20に光吸収発熱体30を当接させて発熱用光Lを照射して溶着させる溶着方法では、接合対象部位12にあらかじめ光吸収発熱体30を正確に当接させておけば、発熱用光の照射時に、発熱用光Lの照射時に集光・合焦などの必要がなく、非合焦の発熱用光Lを用いても、位置精度の高い溶着を行うことができる。
従って、生産性が向上する。
【0039】
図2(b)に第2の溶着方法を発展させた溶着方法を示す。
図2(b)に示す溶着方法では、熱伝導により熱を拡散させる熱拡散性部材40(例えば、熱伝導性に優れた銅などの金属)で光吸収発熱体30と同一面を形成するようにして、透明ナイロン10、20の接合対象部位12には光吸収発熱体30を当接させ、接合対象部位12の周辺部位には熱拡散性部材40をそれぞれ当接させる。
【0040】
発熱用光Lが照射されたとき、光吸収発熱体30では光吸収により発熱して温度が上昇するが、熱拡散性部材40では発熱用光Lが照射されて吸収しても、熱拡散により熱が発熱用光Lが照射されていない部分へ速やかに伝導してしまい温度が上昇せず、温度格差を持たせることができる。
従って、接合対象部位12のみを加熱して、接合対象部位12以外の部分の透明ナイロン10、20が加熱されることがなく、物性が変化しないため、可撓性を維持できる。
【0041】
[第3の溶着方法]
図3は、本発明の第3の溶着方法を示す。
図3(a)において、10は透明ナイロン、50は着色された光吸収性合成樹脂としての色付きナイロンであり、ここでは、透明ナイロン10の指定された位置に色付きナイロン50の小片を接合させる。
色付きナイロン50を、透明ナイロン10の接合対象部位12に整合させた状態で重ね合わせて押し付け、透明ナイロン10の側から発熱用光Lを照射する。この場合、発熱用光Lの照射は、接合対象部位12のみに集光・合焦させる必要はなく、非合焦の発熱用光Lを、接合対象部位12を含む領域に照射するだけでよい。
【0042】
発熱用光Lが照射されると、色付きナイロン50と透明ナイロン10との当接面が照射された発熱用光Lを吸収して発熱し、重ね合わされた透明ナイロン10と色付きナイロン50の当接面が溶着する。
このとき、透明ナイロン10と色付きナイロン50とが当接していない部位では、発熱用光Lが透過してしまうため発熱しない。
【0043】
この結果、色付きナイロン50を透明ナイロン10への当接部位で溶着させることができ、透明ナイロン10の他の部位を変化させることがない。
このように、第3の溶着方法では、色付きナイロン50を透明ナイロン10の溶着位置に配置して当接させるだけで、発熱用光Lの照射時に集光・合焦などの必要がなく、非合焦の発熱用光Lを用いても、位置精度の高い溶着を行うことができる。
【0044】
図3(b)に、本発明の第3の溶着方法の他の溶着事例を示す。
これは、透明ナイロン10に重ね合わせた色付きナイロン50を一部のみを透明ナイロン10に溶着させる場合で、透明ナイロン10の接合対象部位12と色付きナイロン50の接合対象部位51とを整合させて重ね合わせ、接合対象部位12、51に対応した開口61を有する覆い部材60を透明ナイロン10側から被せ、透明ナイロン10側から発熱用光Lを照射する。
この場合も、発熱用光Lの照射は、接合対象部位12、51のみに集光・合焦させる必要はなく、非合焦の発熱用光Lを、接合対象部位12、51を含む領域に照射するだけでよい。
【0045】
発熱用光Lが照射されると、発熱用光Lは開口61部分だけを透過して、接合対象部位12、51の色付きナイロン50と透明ナイロン10との当接面だけが照射された発熱用光Lを吸収して発熱し、重ね合わされた透明ナイロン10と色付きナイロン50の当接面が溶着する。
このとき、覆い部材60で覆われた他の部分には発熱用光Lが照射されないため、色付きナイロン50は発熱しない。
【0046】
この結果、透明ナイロン10と色付きナイロン50とを、接合対象部位12、51のみで溶着させることができ、透明ナイロン10及び色付きナイロン50の他の部位を変化させることがない。
このように、第3の溶着方法では、色付きナイロン50と透明ナイロン10の溶着位置を整合させ、さらに、覆い部材60の開口61を接合対象部位12、51に配置させるだけで、発熱用光Lの照射時に集光・合焦などの必要がなく、非合焦の発熱用光Lを用いても、接合対象部位12、51を高い位置精度で溶着させることができる。
【0047】
尚、以上第1〜3の溶着方法では、透明ガラス板などで接合対象部位を挟み込むなどして、発熱時に合成樹脂に圧力を印加することにより、接合対象部位の溶融した合成樹脂同士を溶着させることができる。
【0048】
(発明の実施の形態2)
次に、本発明を医療用チューブとしてのバルーンカテーテル100の製造に用いた実施例を図に基づいて説明する。
図4は、製造課程にあるバルーンカテーテル100を、径方向を誇張して示した概略断面図である。
図4において、110は外管、120はバルーン、130は内管であり、内管130は外管110の差し込み開口111から挿入されている。また、1000は外管110と内管130とを点又は線状に部分溶接した接合部である。
以上の構成のバルーンカテーテル100において、外管110とバルーン120は外管環状接合部101で、内管130とバルーン120は内管環状接合部102で、外管110と内管130は差し込みによる接合部103でそれぞれ密閉状態に溶着されており、本発明の溶着方法は、各接合部101、102、103、1000に適用されている。
【0049】
以下では、外管環状接合部101及び内管環状接合部102におけるバルーンカテーテル120と外管110又は内管130との溶着方法について、各接合部101、102において外側に位置するバルーンカテーテル120を外側管200、内側に位置する外管110又は内管130を内側管300に、また、外管環状接合部101及び内管環状接合部102を単に接合対象部位400に、それぞれ置き換えて説明する。
【0050】
[第1の溶着方法による環状接合(その1)]
上記第1の溶着方法を適用した場合について、図5の(a)に基づいて説明する。
図5の(a)において、外側管200及び内側管300は、いずれも透明ナイロン製で、ここでは、内側管300の外周面の接合対象部位400にあらかじめ光吸収発熱用の色付塗布剤として、油性インキなどからなる光吸収マーカー104が環状に連続して塗布或いは印刷されている。
また、溶着工程における補助部材として、内側管300の内側には金属などの芯材が挿入され、また、外側管200の外側には熱収縮チューブ106が外挿され、熱収縮チューブ106にも、光吸収マーカー107が環状に連続して又は間欠的に塗布されて、光吸収マーカー107が光吸収マーカー104の位置に整合して配置されている。
【0051】
上記構成が一体化された状態で、芯材105を回転軸として回転させながら熱収縮チューブ106の外側から非合焦の発熱用光Lを照射すると、発熱用光Lが各光吸収マーカー104、107に吸収されて発熱し、接合対象部位400では各管200、300の温度が上昇して溶融し、熱収縮チューブ106の光吸収マーカー107の塗布部では、加熱された熱収縮チューブ106が収縮して、内側へ向かって圧力を加える。この結果、溶融した各管200、300の接合対象部位400が相互に接合する。
【0052】
[第1の溶着方法による環状接合(その2)]
上記第1の溶着方法を適用した別の溶着方法について、図5(b)に基づいて説明する。
図5(b)の溶着方法では、上記「その1」と同様の熱収縮チューブ106を外側管200の外側に外挿しているが光吸収マーカー107を塗布していない。
発熱用光Lを照射すると、熱収縮チューブ106は不透明で発熱用光Lの一部は吸収され発熱して収縮するとともに、熱収縮チューブ106を透過した発熱用光Lは光吸収マーカー104の温度を上昇する。接合対象部位400は熱収縮チューブ106及び芯材105に挟まれているため、発熱時の各管200、300を構成するナイロンは接合対象部位400で加圧されるため、溶融した各管200、300を溶着させることができる。
【0053】
[第1の溶着方法による環状接合(その3)]
上記第1の溶着方法を適用したさらに別の場合について、図5(c)に基づいて説明する。
図5(c)の溶着方法では、外側管200及び内側管300は、いずれも透明ナイロン製で、内側管300の外周面の接合対象部位400にあらかじめ光吸収マーカー104が環状に連続して塗布されている。
溶着工程における補助部材としては、外側管200の外側にはガラスガイド管108が外挿され、内側管300の内側には何も挿入しないで、圧縮空気を送り込む外部の圧縮機などと連通させてある。
【0054】
発熱用光Lを照射して、光吸収マーカー104の加熱により接合対象部位400の温度を上昇させたとき、内側管300の内側に圧縮空気を送り込んで、内側管300の内側から外側管200側へ向かって圧力を加えることによって、溶融した接合対象部位400に圧力を加えて溶着させる。この場合、ガラスガイド管108又は外側管200と内側管300との隙間を減圧することによっても同様に溶着させることができる。
【0055】
[第2の溶着方法による環状接合(その1)]
上記第2の溶着方法を適用した場合について、図6の(a)に基づいて説明する。
図6の(a)において、外側管200及び内側管300は、いずれも透明ナイロン製である。
溶着工程における補助部材として、内側管300の内側には芯材105が挿入されている。芯材105は、接合対象部位400に位置する部分には、例えばステンレス線などの熱伝導の悪い光吸収発熱体105aが、接合対象部位400以外の部分には、例えば銅線などの熱伝導のよい熱拡散性部材105bがそれぞれ位置するように、光吸収発熱体105aを熱拡散性部材105bで両側から挟み込むようにしたものである。
【0056】
芯材105を回転軸として回転させながら発熱用光Lを照射すると、光吸収発熱体105aでは光吸収により発熱して、その外側の内側管300および外側管200の接合対象部位400に伝達して加熱して溶融させるが、熱拡散性部材105bでは、発熱用光Lを吸収しても熱拡散してしまうため、発熱は少なく、各管200、300を加熱しない。
従って、接合対象部位400のみを溶着させることができる。
【0057】
[第2の溶着方法による環状接合(その2)]
上記第2の溶着方法を適用した別の場合について、図6(b)に基づいて説明する。
図6(b)の溶着方法では、芯材105として、接合対象部位400に位置する部分には、例えばステンレスなどの熱伝導の悪い光吸収発熱体105aが、接合対象部位400以外の部分には、例えば透明ガラスなどの光を透過して発熱しない光透過性部材105cがそれぞれ位置するように、光吸収発熱体105aを光透過性部材105cで両側から挟み込むように支持したものを用いている。
【0058】
上記構成が一体化された状態で、芯材105を回転軸として回転させながら外側から非合焦の発熱用光Lを照射すると、発熱用光Lが光吸収発熱体105aに吸収されて発熱し、接合対象部位400では各管200、300の温度が上昇して溶融するが、光透過性部材105cでは発熱用光Lが透過してしまって、発熱しない。
この際、接合対象部位400では、発熱時に各管200、300の少なくとも内側管300は管の製造時に蓄えられた応力が解放されて拡張し、接合対象部位400に圧力が加わり、溶融した各管200、300を溶着させることができる。溶融した各管200、300の接合対象部位400が相互に接合する。
【0059】
[第2の溶着方法による環状接合(その3)]
上記第2の溶着方法を適用した別の場合について、図7に基づいて説明する。
図7の溶着方法では、芯材105として、接合対象部位400に位置する部分には、例えばステンレス線などの熱伝導の悪い光吸収発熱体105aが、接合対象部位400以外の部分には、例えば銅線などの熱伝導のよい熱拡散性部材105bがそれぞれ位置するように、光吸収発熱体105aを熱拡散性部材105bで両側から挟み込むようにしたものを用いている。
さらに、外側管(バルーン)200の外側には熱収縮チューブ106が外挿され、熱収縮チューブ106には、光吸収マーカー107が環状に連続して又は間欠的に塗布されて、光吸収マーカー107が接合対象部位400の位置に整合して配置されている。
【0060】
芯材105を回転軸として回転させながら発熱用光Lを照射すると、光吸収発熱体105aでは光吸収により発熱して、その外側の内側管300および外側管200の接合対象部位400へ伝達し加熱して溶融させるが、熱拡散性部材105bでは、発熱用光Lを吸収しても熱拡散してしまうため、発熱は少なく、各管200、300を加熱しない。
同時に、熱収縮チューブ106の光吸収マーカー107が光を吸収して収縮し、接合対象部位400を外側から圧縮する。
従って、接合対象部位400のみを溶着させることができる。
尚、以上各溶着工程において用いられた熱収縮チューブ106は、溶着終了後、切除などによって取り除き、芯材105及びガラスガイド管108は抜き取られる。
【0061】
[発熱用光について]
以上の溶着において用いられるナイロン等の合成樹脂は、一般に特定の波長の光(電磁波)をよく吸収する光吸収帯を持っており、この光吸収帯の波長の光が照射されると、光吸収によって発熱する。
本実施例で用いる合成樹脂の光吸収帯は、波長1.5μm程度迄であり、これより長い波長の光は吸収しにくい。従って、波長1.5μmより長い波長の光を用いて、光吸収による合成樹脂自体の発熱を防止する。
【0062】
上述の観点に基づいて本実施例で発熱用光Lは、遠赤外線ハロゲンヒータを用いる。一般に、その発光用封体表面には、波長変換フィルターとして特殊セラミックコーティング(ブラックコーティング)を施してある。この特殊セラミックコーティングによって、可視光線(波長0.3μm〜0.7μm)出力の70〜80%を、近・中遠赤外線(波長0.7μm〜3.0μm)、遠赤外線(波長3.0μm〜100μm)に変換する。これは、波長変換処理をしないハロゲンヒータに比べて遠赤外線の放射が2〜3倍になっており、出力ピーク波長は3μm〜4μmになっている。
これによって、上記実施例では、170℃〜180℃で溶着させることができる。
【0063】
発熱用光としては、他に、赤外線ヒータ用の赤外線電球や、電熱線によるコイルヒータを用いることができる。
これら、ハロゲンヒータ又は赤外線ヒータを用いて二重管を加熱、溶着する場合には、二重管を回転させる代わりに、各ヒータを複数個配置したり,各ヒータを二重管の周囲を回転させることによって、外周全体を加熱させたり、複数の反射鏡を用いて、単一のヒータから照射される発熱用光を、二重管の外周全体から照射させるようにしてもよい。
また、コイルヒータを用いて二重管を加熱、溶着させる場合には、二重管の溶着箇所をコイルの内側に配置して、二重管の外周側全体から均一に加熱させることができる。
【0064】
以上の構成によって溶着を行うことで、例えば、図6に示したバルーンカテーテル100においては、外管環状接合部101及び内管環状接合部102の位置を、バルーンカテーテル120の本体から確実に遠ざけた位置に正確に接合させることができる。この実施例による接合では、本体のエッジから外管環状接合部101、内管環状接合部102の各位置までの間隔を、1.0〜1.5mmに正確に位置決めができ、また、外管環状接合部101及び内管環状接合部102の接合長さも1.0mmに正確に接合させることができた。
これによって、バルーンカテーテル120の本体の可撓性が損なわれることがなく、また、バルーンカテーテル120の耐圧性も十分大きな値(30気圧)を確保できた。
【0065】
上記実施例では、第3の溶着方法をバルーンカテーテルに適用した例を示していないが、内管に色付きナイロンを用いて、筒状の覆い部材を設けること、或いは内側管の色付きナイロンよりさらに光吸収性の強い光吸収塗布剤を塗布することで、適用することができる。
上記実施例では、溶着部分に対して、熱収縮チューブや圧縮空気により圧力を加える方法を示したが、ばねなどの弾性部材で支持された金属片などによって、溶着部分に圧力を加えるようにしてもよい。
上記実施例では、二重管構造を有する医療用チューブにおける実施例を示したが、シート状の合成樹脂同士を溶着する場合にも適用できる。
上記各例では、接合対象合成樹脂としてナイロンを示したが、ポリエチレン、ポリエチレンテレフタレート、ポリエステル、ポリウレタンなど、加熱によって溶着可能な合成樹脂であれば、他の合成樹脂を用いてもよい。
【0066】
【発明の効果】
以上のとおり、本発明では、あらかじめ光吸収マーカーを塗布しておくことで、溶着時に照射する発熱用光を、集光・合焦させる必要がなく、特に、医療用チューブなどの微細な溶着対象においても、接合対象部位のみを精度良く加熱、溶着することができる。従って、生産性が向上する。
また、発熱用光を吸収しないような光透過性部材や熱伝導によって拡散する熱拡散性部材を芯材として、接合対象部位に隣接する部分に配置するため、接合対象部位以外の他の部位を加熱することがないため、溶着後の合成樹脂の可撓性が優れる。
また、溶着対象の合成樹脂に応じて、照射する発熱用光の波長、強度、照射時間を調整すれば、適切な溶着条件を容易に選定でき、汎用性に優れる。
【図面の簡単な説明】
【図1】本発明の第1の溶着方法に関わり、光透過性合成樹脂同士を溶着させる様子を説明するための説明図である。
【図2】本発明の第2の溶着方法に関わる光透過性合成樹脂同士を溶着させる様子を説明するための説明図であり、(a)は溶着対象部位に光吸収発熱体のみを当接させる様子を説明するための説明図、(b)は光吸収発熱体の周囲に熱伝導性の熱拡散部材を配置した状態を示す説明図である。
【図3】本発明の第3の溶着方法に関わり、光透過性合成樹脂と光吸収性合成樹脂とを溶着させる方法を示す説明図であり、(a)は光吸収性合成樹脂の全体を溶着させる方法を示す説明図、(b)は光吸収性合成樹脂と光透過性合成樹脂とを部分的に溶着させる方法を示す説明図である。
【図4】本発明の溶着方法を用いたバルーンカテーテルの概略断面図である。
【図5】本発明の第1の溶着方法をバルーンカテーテルに用いた場合の説明図であり、(a)は芯材と光吸収マーカーを塗布した熱収縮チューブを用いた溶着方法を示す説明図であり、(b)は芯材と熱収縮チューブを用いた溶着方法を示す説明図であり、(c)はガラスガイド管を用いた溶着方法を示す説明図である。
【図6】本発明の第2の溶着方法をバルーンカテーテルに用いた場合の説明図であり、(a)は芯材に光吸収発熱体と熱拡散性部材とを用いた方法を示す説明図であり、(b)は芯材に光吸収発熱体と光透過性部材とを用いた方法を示す説明図である。
【図7】本発明の第2の溶着方法をバルーンカテーテルに用いた図6と異なる方法場合の説明図であり、芯材に光吸収発熱体と熱拡散性部材とを用いて、外側に熱収縮チューブを用いた方法を示す説明図である。
【図8】請求項10に示す合成樹脂の溶着方法に関する説明図である。
【図9】請求項5に示す合成樹脂の溶着方法に関する説明図である。
【符号の説明】
10 透明ナイロン(光透過性合成樹脂)
11 光吸収マーカー(色付塗布剤)
12 接合対象部位
20 透明ナイロン(光透過性合成樹脂)
30 光吸収発熱体
40 熱拡散性部材
50 色付きナイロン(光吸収性合成樹脂)
60 覆い部材
101 外管環状接合部(接合対象部位)
102 内管環状接合部(接合対象部位)
103 外管内へ挿入した内管と外管とが溶着する接合部
105a 光吸収発熱体
105b 熱拡散部材
105c 光透光性部材
106 熱収縮チューブ
110 外管(内側管)
120 バルーンカテーテル(外側管)
130 内管(内側管)
200 外側管
300 内側管
400 接合対象部位
1000 外管と内管とを点又は線状に部分溶接した接合部
L 発熱用光(赤外線・遠赤外線領域波長を多く含む可視光線)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for welding synthetic resins that can be welded to each other by heating a contact portion. For example, in a fine welding target such as a medical tube, a local welding for welding only a limited range is required. It has a remarkable effect.
[0002]
[Prior art]
In a fine synthetic resin that secures sufficient airtightness, such as a balloon catheter that is one of medical tubes and requires flexibility, it is possible to reduce the number of welded parts as much as possible. It is necessary to ensure that flexibility is not impaired.
[0003]
As a method of joining and integrating a plurality of different synthetic resins, (1) joining using an adhesive, (2) joining the target synthetic resin by heating and melting the target synthetic resin from the outside There are methods such as (welding), (3) transmitting ultrasonic waves from the outside to parts to be joined, and heat-melting joining by vibration friction resistance.
[0004]
However, in the method (1), the adhesive layer is hardened and peeled off from the adhesive portion due to the solidification of the adhesive at the adhesive portion, and is particularly possible for medical tubes that require flexibility. Flexibility is important for performance.
In the method (2), heat melting is likely to occur even in the vicinity of the welding target portion, and local heating is extremely difficult for a fine bonding target.
In the method (3), it is difficult to uniformly transmit ultrasonic waves to the welding target site, and in particular, it is difficult to ensure an airtight seal at the welding site.
[0005]
For this reason, in welding of a medical tube or the like, a method is used in which synthetic resin is locally heated and welded using a focused or focused laser beam or the like.
[0006]
[Problems to be solved by the invention]
However, in local heating using a focused or focused laser beam, etc., it is necessary to avoid irradiating the laser beam to other than the welded part because the intensity of the irradiation light of the laser beam used for welding is large. For this purpose, accuracy is required for focusing and focusing of the laser beam. Especially when a double tube such as a medical tube having flexibility is to be joined over the entire circumference, the laser beam is always focused and focused while the joint target portion of the double tube is rotating. Therefore, it is necessary to precisely arrange the rotational position of the double tube and the focus position of the laser beam irradiation light.
For this reason, the burden for the precision improvement of the whole joining apparatus is large, and it raises a price, and there exists a problem that productivity is low.
[0007]
The present invention can reduce the burden of focusing and focusing accuracy of irradiation light and positioning accuracy of a welding target in a synthetic resin welding process, and can secure the positioning accuracy of a bonding site, so that the bonding target is other than the bonding target site. It is an object of the present invention to provide a high-precision welding method that can eliminate the heating and the hindrance of flexibility.
[0011]
[Means for Solving the Problems]
  Claim1 is a heat-meltable synthetic resin that can be welded to each other by heating the contact part.In the welding method,ContactHas a target siteContactSynthetic synthetic resin consists of an inner tube and an outer tube arranged inside and outside, at least,The outer tube is an inner / outer double tube made of a light-transmitting vortex synthetic resin, and is attached to the joining target site on the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tubeContinuous orIs intermittentFor light absorption heat generationColored coating agentThe inner and outer double tubes are applied and abutted in advance, and a light-transmitting cylindrical member is extrapolated to the outside of the inner and outer double tubes and irradiated with heat generation light. Pressure-welding the joint target site by the expansion force associated with the release of the internal strain stress stored during the creation ofThe outer tube and the inner tube are welded.
[0012]
When the synthetic resin to be joined is an inner / outer double pipe and the entire circumference of the pipe is welded continuously or intermittently, it is necessary to irradiate the entire outer circumference of the outer pipe with heat generating light. As a method of irradiation for that purpose, for example, when radiating heat generation light from the fixed position toward the double tube, the irradiation source of the double tube or heat generation light is rotated, or from one irradiation source Irradiate the heat generation light and irradiate the entire outer periphery with a plurality of reflecting mirrors, or place multiple irradiation sources on the outer periphery of the double tube, or irradiate the outer periphery of the double tube There is a method of uniformly irradiating heat generation light using an irradiation source of heat generation light covering the whole.
In the present invention, only the application position of the colored coating agent is heated and welded, so in such an irradiation method, it is not necessary to strictly focus and focus the irradiation light, and the joint portion is focused and focused. Since it is not necessary to exactly match the focal point, high accuracy is not required for the light irradiation position.
Therefore, for example, when the double tube or the irradiation source is rotated, the welding operation can be easily performed without being affected by the mutual displacement between the irradiation source and the peripheral surface that is the bonding target portion.
As a result, it is possible to perform accurate welding simply by performing management related to the intensity of irradiation light and irradiation time to the bonding target site, such as the rotational speed of the double tube or irradiation light source during welding, and bonding in the double tube Process productivity is improved.
[0014]
When the heat generation light is irradiated from the outside, the heat generation light transmitted through the outer cylindrical member of the outer tube heats the synthetic resin at the application portion of the colored coating agent, and the stress of the synthetic resin is released by the temperature rise of the synthetic resin. By the expansion force, the synthetic resins are mutually pressure-bonded from inside and outside, and can be surely welded.
[0015]
  According to a second aspect of the present invention, there is provided an inner / outer double tube in which the synthetic resin having the bonding target portion is composed of an inner tube and an outer tube disposed inside and outside, and at least the outer tube is composed of a light-transmitting synthetic resin. In addition, a colored coating agent for light absorption and heat generation is applied in advance continuously or intermittently to the joining target portion of the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube, and from the substantially outer peripheral side of the outer tube. A method of welding a heat-fusible synthetic resin in which heat is generated by irradiating a contact portion with heat generation light, and the outer tube and the inner tube are fused to each other,A light transmissive cylindrical member is extrapolated to the outside of the outer tube in a region including a corresponding portion of the bonding target portion, and an internal pressure is applied to the inner tube at the time of irradiation with the heat generation light, or the inner tube and the The outer tube and the inner tube are welded by depressurizing the gap between the outer tube or the inner tube and the cylindrical member.
  Only the inner tube part to which the colored coating agent is applied is expanded by applying pressure, or the colored coating agent is applied by reducing the pressure in the gap between the inner tube and the outer tube, or the gap between the inner tube and the cylindrical member. Since only the joint portion between the inner tube and the outer tube is in contact with each other and the inner tube and the outer tube are securely joined, the portions coated with the colored coating agent are pressure-bonded to each other and reliably joined.
[0016]
When heat generation light is irradiated from the outside of the cylindrical member outside the outer tube, the heat generation light transmitted through the cylindrical member heats the synthetic resin at the application portion of the colored coating agent. The inner tube and the outer tube are pressure-bonded to each other by the pressure applied from the inside of the inner tube while the synthetic resin is softened by the temperature rise of the synthetic resin, or the decompression force outside the inner tube, so that the inner tube and the outer tube are securely bonded.
As the pressure applied from the inside of the inner tube, a physical pressing force by an elastic member or the like, a pressure by a gas such as compressed air, or the like can be used, and decompression can be performed by suction or the like.
[0017]
  According to a third aspect of the present invention, a synthetic resin having a bonding target portion is composed of an inner tube and an outer tube arranged inside and outside, and at least the outer tube is an inner / outer double tube made of a light-vortex synthetic resin. In addition, a colored coating agent for light absorption and heat generation is applied in advance continuously or intermittently to the joining target portion of the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube, and from the substantially outer peripheral side of the outer tube. A method of welding a heat-fusible synthetic resin in which heat is generated by irradiating a contact portion with heat generation light, and the outer tube and the inner tube are fused to each other,A light-transmitting cylindrical member is extrapolated to the outside of the inner / outer double tube, a deformed core metal is inserted into the inner tube, and the portion of the joining target portion is pressed by the spring pressure of the core metal, It is characterized by irradiating heat generating light and welding the joining target portions.
  When heat generation light is irradiated from the outside of the cylindrical member outside the outer tube, the heat generation light transmitted through the cylindrical member heats the synthetic resin at the application portion of the colored coating agent. The spring pressure of the metal core applied from the inside of the inner tube with the synthetic resin softened by the temperature rise of the synthetic resinByThus, the inner tube and the outer tube are pressure-bonded to each other and reliably joined.
[0018]
  According to a fourth aspect of the present invention, there is provided an inner / outer double pipe in which a synthetic resin having a site to be joined is composed of an inner pipe and an outer contracted pipe arranged inside and outside, and at least the outer pipe is made of a light-transmitting synthetic resin. Yes, a colored coating agent for light absorption and heat generation is preliminarily or intermittently applied to the joining target portion of the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube, and the outer peripheral side of the outer tube A method of welding a heat-fusible synthetic resin in which the contact portion is irradiated with heating light and heated, and the outer tube and the inner tube are fused to each other,While inserting a core material inside the inner tube, the outside of the outer tubeIs it continuous on the circumference ofFor light-absorbing heat generation intermittently arranged in a ringSaidColored coating agent appliedLight transmissiveA heat-shrinkable tube is extrapolated outside the outer tube so that the application site of the colored coating agent is aligned with the site to be joined, and the heat-shrinkable tube is shrunk so that the heat-shrinkable tube is shrunk. A target part is compressed and the said inner side pipe | tube and the said outer side pipe | tube are welded.
[0019]
When the heat generating light is irradiated from the outside of the heat shrinkable tube, the heat shrinkable tube partially absorbs the heat generating light and is heated to contract. In particular, in a heat-shrinkable tube coated with a colored coating agent, the portion coated with the colored coating agent has good absorption of heat generation light, and is rapidly heated to shrink.
Further, a colored coating agent is applied to the joint target portion of the inner and outer double tubes inside the heat shrinkable tube, and is heated and softened by light absorption.
The softened joint target portion of the inner and outer double tubes receives pressure due to contraction of the outer heat shrinkable tube, is sandwiched between the inner core member and receives pressure, and the inner and outer double tubes are welded to each other.
Here, an appropriate color is selected as the color of the colored coating agent to be applied to the heat-shrinkable tube and the bonding target site according to the melting temperature of the synthetic resin to be welded and the wavelength distribution of the heat-generating light to be irradiated.
[0030]
  As shown in FIG. 8, in the welding method of the heat-meltable synthetic resin that can be welded to each other by heating the contact part, as shown in FIG. Applying the agent, overlapping each other, irradiating heat generation light from one light-transmitting synthetic resin side to heat weld the contact portion of the synthetic resin to be joined, and at the same time, the irradiation direction of the heat generation light A heat diffusive member is brought into contact with the opposite surface side..
  It is possible to prevent a temperature rise other than the welded portion and to prevent damage due to heating of the welded synthetic resin layer due to heat transfer of the heat generated by the light absorption heat generating portion.
[0031]
  Claim6Claims 1 to5In the method for welding a heat-fusible synthetic resin according to any one of the above, the heat generation light is irradiated as unfocused diffused light from an irradiation source toward the joining target site.Be doneIt is characterized by that.
  The present invention does not require much focusing / focusing property of the heat generating light to be irradiated, and even if it is emitted from the irradiation source as unfocused diffused light to the joining target site, the present invention is based on claims 1 to 5.4By applying to the above, it is possible to perform the welding with high positional accuracy of the welding portion and ensuring airtightness.
[0032]
  Claim7Claims 1 to6In the method for welding a heat-meltable synthetic resin according to any one of the above, the heat-generating light has a large proportion of infrared and far-infrared wavelength bands.
  In the present invention, when the synthetic resin is welded, it is necessary that the heat generating light pass through the light-transmitting synthetic resin. For this purpose, the light for heat generation to irradiate may be normal visible light, but further, infrared rays or far-infrared rays having excellent transparency and little heat generation in the light-transmitting synthetic resin, and large heat generation due to the colored coating agent. Is preferably used as the heat generating light.
  Specifically, by using a halogen heater or heating wire having a wavelength that is biased to the far infrared side from visible light, or by passing irradiation light emitted from a visible light or other light source through a wavelength conversion filter layer, The ratio of the outer and far infrared wavelength bands can be increased.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method for welding a hot-melt synthetic resin of the present invention will be described with reference to the accompanying drawings.
[First welding method]
FIG. 1 shows a first welding method of the present invention. In FIG. 1, 10 and 20 are both transparent nylon as a light-transmitting synthetic resin, and 11 is a light-absorbing coating agent, or light-absorbing ink is applied to the contact surface of the transparent nylon 10 or 20 as a light-absorbing coating agent. Here, it is a printed light absorption marker, which is applied in advance to one of the contact surfaces of the transparent nylon 10 or 20.
After these transparent nylons 10 and 20 are overlapped in a state where the parts to be joined are aligned, the heat generation light L from one side of the transparent nylons 10 and 20 (here, the transparent nylon 10 side) is generated by a halogen heater or the like. Irradiates visible light with many infrared and far-infrared wavelength regions.
In this case, it is not necessary to focus and focus only the light absorption marker 11 on the irradiation of the heat generation light L, and it is only necessary to irradiate the non-focused heat generation light L to the region including the light absorption marker 11. .
[0034]
When the heat generating light L is irradiated, the heat generating light L that is irradiated only on the portion of the contact surface of the laminated transparent nylon 10 and 20 where the light absorbing marker 11 is applied is absorbed and heat is generated. In the part where the light absorption marker 11 is not applied, the heat generating light L is transmitted and does not generate heat.
[0035]
As a result, only the part to which the light absorption marker 11 is applied is welded, and the transparent nylons 10 and 20 are not changed in other parts. Therefore, it is possible to weld only the bonding target portion to which the light absorption marker 11 is applied.
As described above, in the welding method in which the light absorption marker 11 is applied to the transparent nylon 10, 20 and the heat generation light L is irradiated and welded, if the light absorption marker 11 is accurately applied in advance to the bonding target site, It is not necessary to focus or focus when irradiating the heat generating light L, and even with the non-focused heat generating light L, welding with high positional accuracy can be performed. Therefore, productivity is improved.
The synthetic resin on the side not irradiated with the heat generating light L can be welded in the same manner by using colored nylon having light absorption lower than that of the light absorption marker 11 instead of the transparent nylon 20.
[0036]
[Second welding method]
FIG. 2 shows the second welding method of the present invention.
In FIG. 2A, 10 and 20 are transparent nylons, and 30 is a colored light absorption heating element, for example, a metal such as stainless steel.
After the transparent nylons 10 and 20 are overlapped with the joining target part 12 aligned, the light-absorbing heating element 30 is brought into contact with the designated joining target part 12 of the transparent nylon 10 or 20 (here, transparent nylon). 20 side).
Visible light having a large infrared / far-infrared wavelength region is irradiated as the heat generation light L from the side where the light-absorbing heating element 30 is not in contact (here, the transparent nylon 10 side).
[0037]
When the heat generating light L is irradiated, the heat generating light L transmitted through the superimposed transparent nylons 10 and 20 is absorbed by the light absorption heating element 30 to generate heat, and the contact surfaces of the superimposed transparent nylons 10 and 20 are heated. Among them, only the bonding target portion 12 with which the light absorption heating element 30 is in contact is welded by the heat generation of the light absorption heating element 30, but in the portion where the light absorption heating element 30 is not in contact, High permeability, low heat generation and no welding.
[0038]
As a result, it is possible to weld only the bonding target portion 12 with which the light absorption heating element 30 of the transparent nylon 10, 20 is in contact.
As described above, in the welding method in which the light absorption heating element 30 is brought into contact with the transparent nylon 10 and 20 and the heat generation light L is irradiated and welded, the light absorption heating element 30 is accurately brought into contact with the bonding target portion 12 in advance. If this is done, there is no need to focus or focus when radiating the heat generation light L, and even with non-focused heat generation light L, welding with high positional accuracy is performed. be able to.
Therefore, productivity is improved.
[0039]
FIG. 2B shows a welding method developed from the second welding method.
In the welding method shown in FIG. 2B, the same surface as the light-absorbing heating element 30 is formed with a heat-diffusing member 40 that diffuses heat by heat conduction (for example, a metal such as copper having excellent heat conductivity). Thus, the light absorption heating element 30 is brought into contact with the joining target portion 12 of the transparent nylon 10 and 20, and the heat diffusing member 40 is brought into contact with the peripheral portion of the joining target portion 12, respectively.
[0040]
When the heat generation light L is irradiated, the light absorption heating element 30 generates heat due to light absorption and the temperature rises. The heat is quickly conducted to the portion where the heat generating light L is not irradiated, the temperature does not rise, and a temperature difference can be provided.
Therefore, only the joining target part 12 is heated, and the transparent nylons 10 and 20 other than the joining target part 12 are not heated and the physical properties do not change, so that the flexibility can be maintained.
[0041]
[Third welding method]
FIG. 3 shows a third welding method of the present invention.
In FIG. 3A, 10 is transparent nylon, and 50 is colored nylon as a colored light-absorbing synthetic resin. Here, a small piece of colored nylon 50 is joined to a designated position of the transparent nylon 10.
The colored nylon 50 is overlapped and pressed in a state where it is aligned with the joining target portion 12 of the transparent nylon 10, and the heat generation light L is irradiated from the transparent nylon 10 side. In this case, it is not necessary to focus and focus only the joining target part 12 on the irradiation with the heat generating light L, and it is only necessary to irradiate the region including the joining target part 12 with the non-focused heating light L. .
[0042]
When the heat generating light L is irradiated, the contact surface between the colored nylon 50 and the transparent nylon 10 absorbs the heat generating light L and generates heat, and the superimposed transparent nylon 10 and the colored nylon 50 contact each other. The surface is welded.
At this time, in the part where the transparent nylon 10 and the colored nylon 50 are not in contact with each other, the heat generation light L is transmitted, so that no heat is generated.
[0043]
As a result, the colored nylon 50 can be welded at the contact portion with the transparent nylon 10, and other portions of the transparent nylon 10 are not changed.
As described above, in the third welding method, the colored nylon 50 is simply disposed at the welding position of the transparent nylon 10 and brought into contact therewith. Even when the in-focus heat generation light L is used, welding with high positional accuracy can be performed.
[0044]
FIG. 3B shows another welding example of the third welding method of the present invention.
This is a case where only a part of the colored nylon 50 superimposed on the transparent nylon 10 is welded to the transparent nylon 10, and the joining target part 12 of the transparent nylon 10 and the joining target part 51 of the colored nylon 50 are aligned and overlapped. In addition, a covering member 60 having an opening 61 corresponding to the bonding target portions 12 and 51 is covered from the transparent nylon 10 side, and the heat generation light L is irradiated from the transparent nylon 10 side.
Also in this case, it is not necessary to focus and focus only the joining target parts 12 and 51 on the irradiation of the heat generating light L, and the non-focused heat generating light L is applied to the region including the joining target parts 12 and 51. Just irradiate.
[0045]
When the heat generation light L is irradiated, the heat generation light L is transmitted through only the opening 61 portion, and only the contact surface between the colored nylon 50 and the transparent nylon 10 of the bonding target portions 12 and 51 is irradiated. The light L is absorbed to generate heat, and the contact surfaces of the laminated transparent nylon 10 and the colored nylon 50 are welded.
At this time, the other portions covered with the covering member 60 are not irradiated with the heat generating light L, so that the colored nylon 50 does not generate heat.
[0046]
As a result, the transparent nylon 10 and the colored nylon 50 can be welded only at the joining target portions 12 and 51, and the other portions of the transparent nylon 10 and the colored nylon 50 are not changed.
As described above, in the third welding method, the welding position of the colored nylon 50 and the transparent nylon 10 is aligned, and the opening 61 of the covering member 60 is disposed at the joining target portions 12 and 51, and the heating light L There is no need for focusing / focusing at the time of irradiation, and it is possible to weld the bonding target portions 12 and 51 with high positional accuracy even when the non-focused heat generation light L is used.
[0047]
In the first to third welding methods, the synthetic resin melted in the bonding target portions is welded by applying pressure to the synthetic resin during heat generation, for example, by sandwiching the bonding target portions with a transparent glass plate or the like. be able to.
[0048]
(Embodiment 2 of the invention)
Next, the Example which used this invention for manufacture of the balloon catheter 100 as a medical tube is described based on figures.
FIG. 4 is a schematic cross-sectional view showing the balloon catheter 100 in the manufacturing process exaggerated in the radial direction.
In FIG. 4, 110 is an outer tube, 120 is a balloon, 130 is an inner tube, and the inner tube 130 is inserted from an insertion opening 111 of the outer tube 110. Reference numeral 1000 denotes a joint where the outer tube 110 and the inner tube 130 are partially welded in a dot or line shape.
In the balloon catheter 100 having the above configuration, the outer tube 110 and the balloon 120 are the outer tube annular joint portion 101, the inner tube 130 and the balloon 120 are the inner tube annular joint portion 102, and the outer tube 110 and the inner tube 130 are joined by insertion. Each of the portions 103 is welded in a sealed state, and the welding method of the present invention is applied to each of the joint portions 101, 102, 103, and 1000.
[0049]
Hereinafter, regarding the method of welding the balloon catheter 120 and the outer tube 110 or the inner tube 130 in the outer tube annular joint portion 101 and the inner tube annular joint portion 102, the balloon catheter 120 positioned outside in each joint portion 101, 102 is outside. The tube 200, the outer tube 110 or the inner tube 130 positioned inside, will be described as the inner tube 300, and the outer tube annular joint 101 and the inner tube annular joint 102 will be simply replaced with the joint target portion 400, respectively.
[0050]
[Annular joining by the first welding method (part 1)]
The case where the said 1st welding method is applied is demonstrated based on (a) of FIG.
In FIG. 5A, the outer tube 200 and the inner tube 300 are both made of transparent nylon, and here, as a colored coating agent for light absorption and heat generation in advance on the joining target portion 400 on the outer peripheral surface of the inner tube 300. A light absorption marker 104 made of oil-based ink or the like is continuously applied or printed in a ring shape.
Further, as an auxiliary member in the welding process, a core material such as metal is inserted inside the inner tube 300, and a heat shrinkable tube 106 is extrapolated outside the outer tube 200. The light absorption marker 107 is applied continuously or intermittently in a ring shape, and the light absorption marker 107 is arranged in alignment with the position of the light absorption marker 104.
[0051]
When the above-described configuration is integrated, when the non-focused heat generation light L is irradiated from the outside of the heat shrinkable tube 106 while rotating the core member 105 as the rotation axis, the heat generation light L is converted into the light absorption markers 104, 107, heat is generated, and the temperature of each tube 200, 300 rises and melts at the bonding target portion 400, and the heated heat-shrinkable tube 106 contracts at the application portion of the light-absorbing marker 107 of the heat-shrinkable tube 106. Then, apply pressure toward the inside. As a result, the melted joint portions 400 of the tubes 200 and 300 are joined to each other.
[0052]
[Annular joining by the first welding method (part 2)]
Another welding method to which the first welding method is applied will be described with reference to FIG.
In the welding method of FIG. 5B, the heat shrinkable tube 106 similar to “No. 1” is extrapolated outside the outer tube 200, but the light absorption marker 107 is not applied.
When the heat generating light L is irradiated, the heat shrinkable tube 106 is opaque, a part of the heat generating light L is absorbed and heat is generated and contracted, and the heat generating light L transmitted through the heat shrinkable tube 106 is the temperature of the light absorption marker 104. To rise. Since the joining target part 400 is sandwiched between the heat-shrinkable tube 106 and the core material 105, the nylon constituting each pipe 200, 300 at the time of heat generation is pressurized at the joining target part 400. 300 can be welded.
[0053]
[Annular joining by the first welding method (part 3)]
Still another case where the first welding method is applied will be described with reference to FIG.
In the welding method of FIG. 5C, the outer tube 200 and the inner tube 300 are both made of transparent nylon, and the light absorption marker 104 is continuously applied in an annular shape to the joining target portion 400 on the outer peripheral surface of the inner tube 300 in advance. Has been.
As an auxiliary member in the welding process, a glass guide tube 108 is extrapolated outside the outer tube 200, and nothing is inserted inside the inner tube 300, and is communicated with an external compressor or the like that feeds compressed air. is there.
[0054]
When the heating light L is irradiated and the temperature of the joining target portion 400 is increased by heating the light absorption marker 104, compressed air is sent into the inner tube 300, and from the inner tube 300 to the outer tube 200 side. By applying pressure toward the surface, pressure is applied to the melted bonding target portion 400 to be welded. In this case, the glass guide tube 108 or the gap between the outer tube 200 and the inner tube 300 can be similarly welded by reducing the pressure.
[0055]
[Annular Joining by Second Welding Method (Part 1)]
The case where the said 2nd welding method is applied is demonstrated based on (a) of FIG.
In FIG. 6A, the outer tube 200 and the inner tube 300 are both made of transparent nylon.
A core member 105 is inserted inside the inner tube 300 as an auxiliary member in the welding process. The core material 105 has a light-absorbing heating element 105a with poor heat conduction, such as a stainless steel wire, at a portion located in the bonding target portion 400, and a heat conduction member, for example, with a copper wire, at a portion other than the bonding target portion 400. The light-absorbing heating element 105a is sandwiched from both sides by the heat-diffusing member 105b so that the good heat-diffusing members 105b are located respectively.
[0056]
When the heating light L is irradiated while rotating the core member 105 around the rotation axis, the light absorption heating element 105a generates heat by light absorption and is transmitted to the joining target portion 400 of the inner tube 300 and the outer tube 200 on the outer side. Although it is heated and melted, the heat-diffusing member 105b diffuses even if it absorbs the heat-generating light L, so that it generates little heat and does not heat the tubes 200 and 300.
Therefore, only the joining target part 400 can be welded.
[0057]
[Annular Joining by Second Welding Method (Part 2)]
Another case in which the second welding method is applied will be described with reference to FIG.
In the welding method of FIG. 6B, as the core material 105, the light absorption heating element 105 a having a poor thermal conductivity, such as stainless steel, is provided on the part other than the joining target part 400, for example, on the part located on the joining target part 400. For example, a light-absorbing heating element 105a supported by being sandwiched from both sides by a light-transmitting member 105c is used such that a light-transmitting member 105c that transmits light and does not generate heat is positioned.
[0058]
When the non-focused heat generating light L is irradiated from the outside while the core member 105 is rotated about the rotation axis in the state where the above configuration is integrated, the heat generating light L is absorbed by the light absorbing heat generating element 105a and generates heat. In the joining target portion 400, the temperature of each of the tubes 200 and 300 rises and melts, but the light transmitting member 105c transmits the heat generating light L and does not generate heat.
At this time, in the joining target part 400, at least the inner pipe 300 of each of the pipes 200 and 300 is expanded when heat is generated, and the stress accumulated during the manufacture of the pipe is released and pressure is applied to the joining target part 400 to melt each pipe. 200, 300 can be welded. The melted target joint portions 400 of the tubes 200 and 300 are joined to each other.
[0059]
[Annular Joining by Second Welding Method (Part 3)]
Another case in which the second welding method is applied will be described with reference to FIG.
In the welding method of FIG. 7, as the core material 105, the light absorption heating element 105 a with poor heat conduction, such as a stainless steel wire, is provided at a portion located in the bonding target portion 400, and the portion other than the bonding target portion 400 is, for example, The light absorption heating element 105a is sandwiched from both sides so that the heat diffusive members 105b having good heat conductivity such as copper wires are located respectively.
Further, a heat shrinkable tube 106 is extrapolated outside the outer tube (balloon) 200, and a light absorption marker 107 is applied to the heat shrinkable tube 106 continuously or intermittently in a ring shape. Is arranged in alignment with the position of the joining target portion 400.
[0060]
When the heating light L is irradiated while rotating the core member 105 around the rotation axis, the light absorption heating element 105a generates heat due to light absorption and is transmitted to the joining target portion 400 of the inner tube 300 and the outer tube 200 on the outer side and heated. However, since the heat diffusing member 105b diffuses even if it absorbs the heat generation light L, it generates little heat and does not heat the tubes 200 and 300.
At the same time, the light absorption marker 107 of the heat shrinkable tube 106 absorbs light and contracts, and compresses the joining target portion 400 from the outside.
Therefore, only the joining target part 400 can be welded.
The heat-shrinkable tube 106 used in each welding step is removed by excision or the like after the completion of welding, and the core material 105 and the glass guide tube 108 are removed.
[0061]
[About heat generation light]
Synthetic resins such as nylon used in the above welding generally have a light absorption band that absorbs light (electromagnetic waves) of a specific wavelength well, and light absorption occurs when irradiated with light of this wavelength. Generates heat.
The light absorption band of the synthetic resin used in this example is up to about 1.5 μm, and it is difficult to absorb light having a longer wavelength. Therefore, heat of the synthetic resin itself due to light absorption is prevented by using light having a wavelength longer than 1.5 μm.
[0062]
Based on the above viewpoint, the far-infrared halogen heater is used as the heating light L in this embodiment. Generally, a special ceramic coating (black coating) is applied to the surface of the light emitting envelope as a wavelength conversion filter. With this special ceramic coating, 70 to 80% of visible light (wavelength 0.3 μm to 0.7 μm) output is reduced to near / medium far infrared (wavelength 0.7 μm to 3.0 μm), far infrared (wavelength 3.0 μm to 100 μm). ). This means that far-infrared radiation is two to three times that of a halogen heater that does not perform wavelength conversion processing, and the output peak wavelength is 3 μm to 4 μm.
Thereby, in the said Example, it can be made to weld at 170 to 180 degreeC.
[0063]
As the heat generation light, an infrared bulb for an infrared heater or a coil heater using a heating wire can be used.
When heating and welding a double pipe using these halogen heaters or infrared heaters, instead of rotating the double pipe, a plurality of heaters are arranged or the heaters are rotated around the double pipe. Thus, the entire outer periphery may be heated, or a plurality of reflecting mirrors may be used to irradiate the heating light emitted from a single heater from the entire outer periphery of the double tube.
Moreover, when heating and welding a double pipe using a coil heater, the welding location of a double pipe can be arrange | positioned inside a coil, and it can heat uniformly from the whole outer peripheral side of a double pipe.
[0064]
By performing welding with the above configuration, for example, in the balloon catheter 100 illustrated in FIG. 6, the positions of the outer tube annular joint portion 101 and the inner tube annular joint portion 102 are reliably moved away from the main body of the balloon catheter 120. It can be accurately joined to the position. In the joining according to this embodiment, the distance from the edge of the main body to each position of the outer pipe annular joint 101 and the inner pipe annular joint 102 can be accurately positioned at 1.0 to 1.5 mm, and the outer pipe The joining lengths of the annular joint portion 101 and the inner tube annular joint portion 102 could be accurately joined to 1.0 mm.
Thereby, the flexibility of the main body of the balloon catheter 120 was not impaired, and the pressure resistance of the balloon catheter 120 was able to ensure a sufficiently large value (30 atm).
[0065]
In the above embodiment, an example in which the third welding method is applied to the balloon catheter is not shown. However, the inner tube is colored with nylon, and a cylindrical covering member is provided, or the inner tube is colored more than the colored nylon. It can be applied by applying a light-absorbing coating agent with strong absorption.
In the above embodiment, the method of applying pressure to the welded portion by a heat-shrinkable tube or compressed air is shown. However, the pressure is applied to the welded portion by a metal piece supported by an elastic member such as a spring. Also good.
In the said Example, although the Example in the medical tube which has a double tube structure was shown, it is applicable also when welding a sheet-like synthetic resin.
In each of the above examples, nylon is shown as the synthetic resin to be joined, but other synthetic resins may be used as long as they are synthetic resins that can be welded by heating, such as polyethylene, polyethylene terephthalate, polyester, and polyurethane.
[0066]
【The invention's effect】
As described above, in the present invention, by applying a light absorption marker in advance, it is not necessary to focus and focus the heat generating light irradiated at the time of welding, in particular, a fine welding target such as a medical tube. In this case, it is possible to heat and weld only the parts to be joined with high accuracy. Therefore, productivity is improved.
In addition, in order to arrange a light transmissive member that does not absorb heat generation light or a heat diffusive member that diffuses by heat conduction as a core material in a portion adjacent to the bonding target portion, other portions other than the bonding target portion Since it is not heated, the flexibility of the synthetic resin after welding is excellent.
Further, if the wavelength, intensity, and irradiation time of the heat generating light to be irradiated are adjusted according to the synthetic resin to be welded, appropriate welding conditions can be easily selected, and the versatility is excellent.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining a state in which light-transmitting synthetic resins are welded to each other in the first welding method of the present invention.
FIG. 2 is an explanatory diagram for explaining a state in which light-transmitting synthetic resins related to the second welding method of the present invention are welded to each other, and FIG. Explanatory drawing for demonstrating a mode to perform, (b) is explanatory drawing which shows the state which has arrange | positioned the heat conductive thermal diffusion member around the light absorption heat generating body.
FIG. 3 is an explanatory view showing a method of welding a light-transmitting synthetic resin and a light-absorbing synthetic resin in relation to the third welding method of the present invention, and (a) shows the entire light-absorbing synthetic resin. Explanatory drawing which shows the method to weld, (b) is explanatory drawing which shows the method of welding light-absorbing synthetic resin and light-transmitting synthetic resin partially.
FIG. 4 is a schematic cross-sectional view of a balloon catheter using the welding method of the present invention.
FIG. 5 is an explanatory view when the first welding method of the present invention is used for a balloon catheter, and (a) is an explanatory view showing a welding method using a heat shrinkable tube coated with a core material and a light absorption marker. (B) is explanatory drawing which shows the welding method using a core material and a heat contraction tube, (c) is explanatory drawing which shows the welding method using a glass guide tube.
FIG. 6 is an explanatory view when the second welding method of the present invention is used for a balloon catheter, and (a) is an explanatory view showing a method using a light-absorbing heating element and a heat-diffusing member as a core material. (B) is explanatory drawing which shows the method using the light absorption heat generating body and the light transmissive member for the core material.
7 is an explanatory view of a case where the second welding method of the present invention is a method different from FIG. 6 in which a balloon catheter is used, and a heat absorbing heat generating member and a heat diffusing member are used as a core material, and heat is applied to the outside. It is explanatory drawing which shows the method using a shrinkable tube.
FIG. 8 is an explanatory diagram relating to a synthetic resin welding method according to claim 10;
FIG. 9 is an explanatory diagram relating to a synthetic resin welding method according to claim 5;
[Explanation of symbols]
10 Transparent nylon (light-transmitting synthetic resin)
11 Light absorption marker (colored coating agent)
12 parts to be joined
20 Transparent nylon (light-transmitting synthetic resin)
30 Light absorption heating element
40 Thermal diffusion member
50 Colored nylon (light-absorbing synthetic resin)
60 Covering member
101 Outer tube annular joint (joining target part)
102 Inner pipe annular joint (joining target part)
103 Joint where the inner tube and the outer tube inserted into the outer tube are welded
105a Light absorption heating element
105b Thermal diffusion member
105c Light transmissive member
106 Heat shrinkable tube
110 Outer tube (inner tube)
120 balloon catheter (outer tube)
130 Inner pipe (inner pipe)
200 Outer tube
300 Inner tube
400 Sites to be joined
1000 Joint where the outer tube and inner tube are partially welded in a dot or line shape
L Heat generation light (visible light including many wavelengths in the infrared and far infrared regions)

Claims (7)

当接部位の加熱により相互に溶着可能な熱溶融性合成樹脂の溶着方法において、
接合対象部位を有する接合対象合成樹脂は、内外に配置された内側管と外側管とからなり、少なくとも、前記外側管が光透渦性合成樹脂からなる内外二重管であり、
前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布して当接させて前記内外二重管とし、該内外二重管の外側に光透過性の筒部材を外挿して発熱用光を照射し、
前記接合対象部位の発熱時に前記内側管の作成時に蓄えられた内部歪応力の開放に伴う拡張力によって前記接合対象部位を圧接し、前記外側管と前記内側管とを溶着することを特徴とする熱溶融性合成樹脂の溶着方法。
In the welding method of heat-meltable synthetic resin that can be welded to each other by heating the contact part,
The target synthetic resin having the target site is composed of an inner tube and an outer tube arranged inside and outside, and at least the outer tube is an inner / outer double tube made of a light-vortex synthetic resin,
The inner and outer double tubes are formed by applying a color coating agent for light absorption and heating in advance or in contact with the joining target portion of the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube. , Irradiate the heat generating light by extrapolating a light transmissive cylindrical member to the outside of the inner and outer double tubes,
The joining target part is pressure-welded by an expansion force accompanying release of internal strain stress stored when the inner pipe is created when the joining target part generates heat, and the outer pipe and the inner pipe are welded. Welding method for hot-melt synthetic resin.
合対象部位を有する接合対象合成樹脂、内外に配置された内側管と外側管とからなり、少なくとも前記外側管が光透渦性合成樹脂からなる内外二重管であり、
前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に続又は間欠的に光吸収発熱用の色付塗布剤をめ塗布するとともに、
前記外側管の略外周側から発熱用光を当接部位に照射して加熱し、前記外側管と前記内側管とを相互に融着する熱溶融性合成樹脂の溶着方法であって、
前記接合対象部位の相当箇所を含む領域の前記外側管の外側に光透過性の筒部材を外挿し、前記発熱用光の照射時に、前記内側管に内部圧を印加、或いは前記内側管と前記外側管との間隙部又は前記内側管と前記筒部材との間隙部を減圧することにより、前記外側管と前記内側管とを溶着することを特徴とする熱溶融性合成樹脂の溶着方法。
That having a junction target site junction subject synthetic resin consists inner tube disposed inside and outside the outer tube, at least, the outer tube is out double pipe consisting HikariToruuzu synthetic resin,
The bonding target portion of the outer circumferential surface or inner circumferential surface of the outer tube of the inner tube, a continuous or intermittent color with the coating agent for light absorption heating while applying Me pre,
A method of welding a heat-fusible synthetic resin in which heat is generated by irradiating a heat-generating light from a substantially outer peripheral side of the outer tube, and the outer tube and the inner tube are fused to each other.
A light transmissive cylindrical member is extrapolated to the outside of the outer tube in a region including a corresponding portion of the bonding target portion, and an internal pressure is applied to the inner tube at the time of irradiation with the heat generation light, or the inner tube and the by depressurizing the gap between the cylindrical member and the gap portion or said inner tube and outer tube, welding method of heat-fusible synthetic resin you characterized by welding the said inner tube and said outer tube.
接合対象部位を有する接合対象合成樹脂が、内外に配置された内側管と外側管とからなり、少なくとも、前記外側管が光透渦性合成樹脂からなる内外二重管であり、
前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布するとともに、
前記外側管の略外周側から発熱用光を当接部位に照射して加熱し、前記外側管と前記内側管とを相互に融着する熱溶融性合成樹脂の溶着方法であって、
前記内外二重管の外側に光透過性の筒部材を外挿し、変形させた芯金を前記内側管内に挿入して前記接合対象部位の当該部を前記芯金のバネ圧力により押圧し、前記発熱用光を照射し、前記接合対象部位を溶着することを特徴とする熱溶融性合成樹脂の溶着方法。
A synthetic resin having a bonding target portion is composed of an inner tube and an outer tube arranged inside and outside, and at least the outer tube is an inner / outer double tube made of a light-vortex synthetic resin,
While preliminarily applying a colored coating agent for light absorption heat generation to the joining target site of the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube,
A method of welding a heat-fusible synthetic resin in which heat is generated by irradiating a heat-generating light from a substantially outer peripheral side of the outer tube, and the outer tube and the inner tube are fused to each other.
A light-transmitting cylindrical member is extrapolated to the outside of the inner / outer double tube, a deformed core metal is inserted into the inner tube, and the portion of the joining target portion is pressed by the spring pressure of the core metal, the heat generating light irradiated, welding method of heat-fusible synthetic resin you characterized by welding the bonding target portion.
接合対象部位を有する接合対象合成樹脂が、内外に配置された内側管と外側管とからなり、少なくとも、前記外側管が光透渦性合成樹脂からなる内外二重管であり、
前記内側管の外周面又は前記外側管の内周面の前記接合対象部位に、連続又は間欠的に光吸収発熱用の色付塗布剤を予め塗布するとともに、
前記外側管の略外周側から発熱用光を当接部位に照射して加熱し、前記外側管と前記内側管とを相互に融着する熱溶融性合成樹脂の溶着方法であって、
前記内側管の内側に芯材を挿入するとともに、前記外側管の外側の周面に、連続するか間欠的に環状に配した光吸収発熱用の前記色付塗布剤を塗布した光透過性の熱収縮チューブを、前記色付塗布剤の塗布部位が前記接合対象部位に整合するように前記外側管の外側に外挿し、
前記発熱用光を照射して、前記熱収縮チューブの収縮により前記接合対象部位を圧縮して、前記内側管と前記外側管とを溶着することを特徴とする熱溶融性合成樹脂の溶着方法。
A synthetic resin having a bonding target portion is composed of an inner tube and an outer tube arranged inside and outside, and at least the outer tube is an inner / outer double tube made of a light-vortex synthetic resin,
While preliminarily applying a colored coating agent for light absorption heat generation to the joining target site of the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube,
A method of welding a heat-fusible synthetic resin in which heat is generated by irradiating a heat-generating light from a substantially outer peripheral side of the outer tube, and the outer tube and the inner tube are fused to each other.
A core material is inserted inside the inner tube, and the outer peripheral surface of the outer tube is coated with the colored coating agent for light-absorbing heat generation continuously or intermittently arranged in an annular shape. Extrapolating the heat-shrinkable tube to the outside of the outer tube so that the application site of the colored application agent matches the site to be joined,
And irradiating the heat generating light, and compressing the bonding target site by contraction of the heat shrinkable tube, welding method of heat-fusible synthetic resin you characterized by welding the said outer tube and said inner tube .
当接部位の加熱により相互に溶着可能な熱溶融性合成樹脂の溶着方法において、
前記接合対象合成樹脂の接合対象部位に光吸収発熱用の前記色付塗布剤を塗布し、相互に重ね合わせ、前記発熱用光を一方の光透過性合成樹脂の側から照射して前記接合対象合成樹脂の当接部位を加熱溶着すると同時に、前記発熱用光の照射方向と反対面側に熱拡散性部材を当接することを特徴とする請求項1乃至請求項4の何れかに記載の熱溶融性合成樹脂の溶着方法。
In the welding method of heat-meltable synthetic resin that can be welded to each other by heating the contact part,
The colored coating agent for light absorption and heat generation is applied to the bonding target portion of the bonding target synthetic resin, and is superposed on each other, and the heating light is irradiated from the side of one light-transmitting synthetic resin. The heat according to any one of claims 1 to 4, wherein the heat diffusion member is brought into contact with the surface opposite to the irradiation direction of the heat generating light at the same time as the contact portion of the synthetic resin is heated and welded. Method for welding meltable synthetic resin.
前記発熱用光は、照射源より前記接合対象部位へ向けて非合焦の散光として照射されることを特徴とする請求項1乃至請求項5の何れかに記載の熱溶融性合成樹脂の溶着方法。 6. The heat-meltable synthetic resin weld according to claim 1, wherein the heat generating light is irradiated as an unfocused diffused light from an irradiation source toward the joining target portion. Method. 前記発熱用光は、赤外及び遠赤外線波長帯の割合を多く有することを特徴とする請求項1乃至請求項6の何れかに記載の熱溶融性合成樹脂の溶着方法。 The method for welding a heat-fusible synthetic resin according to any one of claims 1 to 6, wherein the heat generating light has a large proportion of infrared and far-infrared wavelength bands .
JP2000002317A 2000-01-11 2000-01-11 Welding method for heat-meltable synthetic resin Expired - Fee Related JP4435352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002317A JP4435352B2 (en) 2000-01-11 2000-01-11 Welding method for heat-meltable synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002317A JP4435352B2 (en) 2000-01-11 2000-01-11 Welding method for heat-meltable synthetic resin

Publications (2)

Publication Number Publication Date
JP2001191412A JP2001191412A (en) 2001-07-17
JP4435352B2 true JP4435352B2 (en) 2010-03-17

Family

ID=18531441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002317A Expired - Fee Related JP4435352B2 (en) 2000-01-11 2000-01-11 Welding method for heat-meltable synthetic resin

Country Status (1)

Country Link
JP (1) JP4435352B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847517B2 (en) * 2000-03-30 2006-11-22 スタンレー電気株式会社 Method of welding plastic parts by light energy
US6949154B2 (en) 2001-07-28 2005-09-27 Boehringer Ingelheim Pharma Kg Method and apparatus for sealing medicinal capsules
DE10137054A1 (en) * 2001-07-28 2003-02-13 Boehringer Ingelheim Pharma Sealing plastic capsules containing inhalable drug, by welding telescopically fitting capsule parts by applying jet of hot gas or a laser beam to overlapping regions during relative movement
DE10256254B4 (en) * 2002-12-03 2021-07-01 Robert Bosch Gmbh Method of welding
JP4415612B2 (en) * 2003-08-29 2010-02-17 住友ベークライト株式会社 Bonding method and bonding substrate for plastic substrate
JP4367055B2 (en) * 2003-08-29 2009-11-18 住友ベークライト株式会社 Microchip substrate bonding method and microchip
US20050186377A1 (en) * 2004-02-19 2005-08-25 Hurst William S. Solventless plastic bonding of medical devices and container components through infrared heating
CN1926025A (en) * 2004-03-03 2007-03-07 麒麟麦酒株式会社 Sealed vessel and method of producing the same
US20070158316A1 (en) * 2006-01-10 2007-07-12 Honeywell International Inc. System and method for blind laser brazing
JP4948033B2 (en) * 2006-05-16 2012-06-06 ローム株式会社 Microfluidic circuit manufacturing method and microfluidic circuit manufactured by the method
JP4805049B2 (en) * 2006-07-24 2011-11-02 浜松ホトニクス株式会社 Transparent resin welding method
JP2008155519A (en) * 2006-12-25 2008-07-10 Hamamatsu Photonics Kk Method and apparatus for laser welding, method and apparatus for laser packaging, and method of manufacturing resin film package product
JP2009119807A (en) * 2007-11-19 2009-06-04 Dainippon Printing Co Ltd Laser fusible laminated material, laser fusing method, and packaging body
JP5548593B2 (en) * 2010-01-13 2014-07-16 日東電工株式会社 Manufacturing method of sheet joined body, sheet joined body, roll body, optical film, and polarizing film
US9795769B2 (en) 2010-04-01 2017-10-24 Seidensha Electronics Co., Ltd. Balloon catheter, balloon catheter manufacturing device, balloon catheter manufacturing method, catheter connection device, catheter connection method, and connected catheter
JP5772152B2 (en) * 2011-03-31 2015-09-02 株式会社ジェイ・エム・エス Medical connecting member and manufacturing method thereof
JP5668242B2 (en) * 2011-09-30 2015-02-12 精電舎電子工業株式会社 Balloon catheter manufacturing apparatus, balloon catheter manufacturing method, catheter connecting apparatus, and catheter connecting method
JP5912687B2 (en) * 2012-03-09 2016-04-27 株式会社キャンパスクリエイト Welding apparatus and welding method for thermoplastic resin tube
JP5296253B2 (en) * 2012-10-22 2013-09-25 浜松ホトニクス株式会社 Laser packaging method and resin film packaging product manufacturing method
WO2017057390A1 (en) * 2015-09-29 2017-04-06 テルモ株式会社 Balloon catheter, and method of producing long member for balloon catheter
JP6047693B1 (en) * 2016-02-23 2016-12-21 精電舎電子工業株式会社 Laser welding apparatus and laser welding method
JP6879027B2 (en) * 2017-04-13 2021-06-02 トヨタ自動車株式会社 Welding method of thermoplastic resin
EP3626299A4 (en) 2017-05-15 2021-02-24 Terumo Kabushiki Kaisha Balloon catheter and method for manufacturing balloon catheter
CN117549546B (en) * 2024-01-09 2024-04-02 无等电子(盐城)有限公司 Improved generation PVC heat shrinkage bush evenly expands mould

Also Published As

Publication number Publication date
JP2001191412A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
JP4435352B2 (en) Welding method for heat-meltable synthetic resin
US5888331A (en) Joining bodies of thermoplastic material
JP5306463B2 (en) Laser head and method for joining tubular parts by laser irradiation
US6596122B1 (en) Simultaneous butt and lap joints
EP1534187B1 (en) Method for forming a sealed prosthesis
US20050167407A1 (en) Process and apparatus for joining components using laser radiation
JP5127171B2 (en) OPTICAL DEVICE AND OPTICAL DEVICE MANUFACTURING METHOD
JP2001243811A (en) Lighting fixture for vehicle and manufacturing method of the same
JP4766589B2 (en) Coating apparatus and coating method for connecting part of resin-coated steel pipe
US7285744B2 (en) Method and apparatus for simultaneously heating materials
JP4113752B2 (en) Joining device
JP2010139627A (en) Member connecting mechanism and imaging apparatus
JPS6363773A (en) Bonding method
JP2001232687A (en) Forming process for thermoplastic resin member by laser
JP2004074734A (en) Plastic welding method
JP2005292441A (en) Combination lens and manufacturing method thereof
JPH10166452A (en) Fusion-bonding of plastics by infrared rays and infrared absorber
JPH10166451A (en) Fusion-bonding of plastics and fusion-bonding device
JPH10166453A (en) Plastics fusion-bonding device
CN210390151U (en) Thermoplastic welding equipment
JP4185405B2 (en) Bonding method between resin materials
JP4089440B2 (en) Method of joining thermoplastic resin by laser
JP6669510B2 (en) Method for housing wiring and piping material in hollow cylinder and hollow cylinder structure
JP2006346935A (en) Laser joining method
JP4615935B2 (en) Endoscope flexible tube and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees