JP6549019B2 - 超音波研磨装置及び超音波研磨方法 - Google Patents

超音波研磨装置及び超音波研磨方法 Download PDF

Info

Publication number
JP6549019B2
JP6549019B2 JP2015221717A JP2015221717A JP6549019B2 JP 6549019 B2 JP6549019 B2 JP 6549019B2 JP 2015221717 A JP2015221717 A JP 2015221717A JP 2015221717 A JP2015221717 A JP 2015221717A JP 6549019 B2 JP6549019 B2 JP 6549019B2
Authority
JP
Japan
Prior art keywords
amplitude
change
machining
vibration
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015221717A
Other languages
English (en)
Other versions
JP2017087363A (ja
Inventor
英寛 河鍋
英寛 河鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SONOTEC CO Ltd
Original Assignee
SONOTEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SONOTEC CO Ltd filed Critical SONOTEC CO Ltd
Priority to JP2015221717A priority Critical patent/JP6549019B2/ja
Publication of JP2017087363A publication Critical patent/JP2017087363A/ja
Application granted granted Critical
Publication of JP6549019B2 publication Critical patent/JP6549019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、研磨工具を超音波振動させることで、ワークを研磨加工する超音波研磨装置及び超音波研磨方法に関するものである。
従来、振動発生部を振動させることでこの振動発生部に接続した研磨工具を超音波振動させ、この超音波振動する研磨工具をワークに当てることでワークを研磨加工する超音波研磨装置が使用されている。
特開2014−188613号公報
しかしながら、上記従来の超音波研磨装置には、以下のような課題があった。
(1)研磨工具がワークに触れる瞬間に傷が付く恐れがあること
例えば図5、図6に示すように、平板状の研磨工具50をワーク200に当てて研磨を行う場合は、予め研磨工具50を研磨時の振幅で超音波振動させておき、この振動する研磨工具50の先端辺50aをワーク200の表面に当接する。熟練者であれば、研磨工具50の先端辺50aをワーク200の表面に当接する際、図6に示すように、先端辺50a全体を均一にワーク200の表面に当接したり、またワーク200への押圧力を適宜加減したりすることで、適切な研磨を行うことができる。しかし、熟練者で無い場合は、例えば研磨工具50の先端辺50aをワーク100の表面に当接する際、図5に示すように、先端辺50aの内の一部(エッジ)のみをワーク200の表面に当接し、しかもワーク200への押圧力を加減できずに最初から研磨時の強い力で先端辺50aのエッジをワーク200表面に押し当ててしまう。このため、ワーク200のエッジが当接した表面に大きな運動エネルギーが印加され、ワーク200表面に傷が付いてしまうという問題があった。一度ワーク200表面に傷が付くと、工程を戻したり、再度制作し直したりしなければならなくなってしまう。また熟練者であっても神経を使う作業なので、長時間にわたる作業における負担軽減が求められていた。
(2)研磨工具とこれを保持する超音波研磨装置間の摩擦による発熱の恐れがあること
超音波研磨装置は、磨く対象により使用する研磨工具の形状を変更する必要がある。そのため、工具の変更によって振動周波数が変化する。そして振動周波数によっては、振動振幅を始動当初から継続して加工時振幅にしていると、発熱が大きくなる恐れがあった。また一度発熱が大きくなってしまうと、冷めるまで作業ができなくなり、作業効率の低下を招く恐れがあった。
本発明は上述の点に鑑みてなされたものでありその目的は、研磨工具がワークに触れる瞬間にワークを傷付けることがなく、また研磨工具とこれを保持する超音波研磨装置間の摩擦による発熱を軽減することができる超音波研磨装置及び超音波研磨方法を提供することにある。
本発明は、制御手段によって制御される振動発生部と、前記振動発生部で発生した超音波振動を伝達するホーン部と、前記ホーン部の先端に取り付けられ、超音波振動させることで被加工物を研磨加工する研磨工具と、を具備する超音波研磨装置において、前記制御手段は、前記振動発生部に駆動電力を供給する駆動回路と、前記駆動回路から供給される駆動電力の電力値を検知する電力検知部と、前記振動発生部による超音波振動の振幅及び周波数をそれぞれ検知する振幅検知部及び周波数検知部と、を有し、前記制御手段は、起動当初は、前記振動発生部を、加工時振幅に比べて小さい振幅の非加工時振幅で駆動し、前記周波数検知部によって検知した周波数が所定の変化率以上の変化率で変化した場合は前記振動発生部の振幅を前記非加工時振幅から加工時振幅に変更し、一方、前記振幅検知部によって検知した加工時振幅の振幅変化率と、前記電力検知部によって検知した電力値の変化率の内の少なくとも何れか一方の変化率が、所定の変化率以下となった場合は前記振動発生部の振幅を前記加工時振幅から前記非加工時振幅に変更する制御を行うことを特徴としている。
起動直後の非加工時振幅と、加工時振幅から変更した非加工時振幅は、必ずしも同一である必要はなく、両者の振幅は異なっていても良く、要は加工時振幅よりも小さい振幅であればよい。
上述のように、研磨工具がワークに触れた瞬間は、研磨工具のワークに接触すべき部分の内の一部分のみがワークに接触してこれを傷つけたり、また強い力でワークに接触してこれを磨き過ぎたりする恐れがあるが、本発明の場合、ワークに研磨工具が触れた瞬間は、研磨工具が振幅の小さい非加工時振幅で振動しているので、ワークに大きな研磨力は印加されない。このため、たとえ研磨工具のワークに接触すべき部分の内の一部分のみがワークに接触してもワークを傷つけることはなく、また強い力でワークに接触してもこれを磨き過ぎたりする恐れもない。そして研磨工具がワークに接触してその接触状態が安定するまでの所定時間の間に、研磨工具は加工時振幅に自動的に変更されるので、スムーズにワークの加工を開始することができる。言い換えれば、作業者の熟練度の要求レベルを引き下げることができる。
またワークから研磨工具を引き離した非加工時は、自動的にこれを検知して加工時振幅よりも振幅の小さい非加工時振幅に変更されるので、研磨工具とこれを保持する超音波研磨装置間の摩擦による発熱を抑制でき、また消費電力の低減化も図ることができる。即ち、全行程トータルでの発熱量を抑制することができ、連続稼働時間を延長することができる。またワークから研磨工具を引き離した際に非加工時振幅に変更するので、再度加工のためにワークに触れた時にも、上記と同様、ワークを傷付けたり磨き過ぎたりする恐れがなくなる。
ここで、研磨工具がワークに接触したことの検知に、非加工時振幅の周波数変化を用いたのは以下の理由による。即ち、本願発明者は、振幅の小さい非加工時振幅であれば、研磨工具がワークに触れた瞬間の周波数の変化を捉えることができることを実験により確認し、この周波数の変化を検出することとしたのである。即ち本願発明者は、振幅の小さい非加工時振幅(例えば極小振幅)の場合、その振幅の変化や電力の変化では、研磨工具がワークに触れた瞬間に顕著な変化が認められないことを実験により確認した。また本願発明者は、加工時振幅では、研磨工具がワークに触れた瞬間の周波数の顕著な変化が認められないことも実験により確認した。一方上述のように、振幅の小さい非加工時振幅のときは、研磨工具がワークに触れたことを周波数によって検知できるので、この周波数の変化を上記測定に用いることとしたのである。なお、超音波研磨装置に装着する研磨工具の重量や形状等によってその周波数は異なるため、周波数の絶対値ではなく、その変化率を上記検出に用いた。
一方、ワークから研磨工具を引き離したことの検知に、加工時振幅の振幅変化と電力変化を用いたのは以下の理由による。即ち、加工時振幅の場合、研磨工具がワークから離れる前後の周波数の変化は少ないので、周波数変化をその検出に用いることは困難であることを、実験により確認した。一方、加工時振幅の場合、研磨工具がワークから離れる前後の振幅の変化と電力の変化はこれを捉えることができる程度に大きいことを実験で確認したので、これらをその検出に用いることにしたのである。言い換えれば、振幅の変化率と電力の変化率の両者が所定値以上であれば、研磨工具がワークから離れていないと判断して加工時振幅を継続することとした。なおこの発明の場合、振幅の変化率と電力値の変化率の何れか一方の変化率が所定の変化率以下になった場合に研磨工具がワークから離れていると判定することとしたが、離れたことをより正確に判断するため、両変化率が何れも所定の変化率以下となったときに離れたと判断するように構成しても良い。
即ち、前記振幅の変化率と、前記電力値の変化率の両者が、それぞれ所定の変化率以下となった場合に前記振動発生部の振幅を前記加工時振幅から前記非加工時振幅に変更する制御を行うことが、より確実な判定を行う上で好ましい。
また本発明は、振動発生部と、前記振動発生部で発生した超音波振動を伝達するホーン部と、前記ホーン部の先端に取り付けられ、超音波振動させることで被加工物を研磨加工する研磨工具と、を具備する超音波研磨装置を用いた超音波研磨方法において、起動当初に、前記振動発生部を、加工時振幅に比べて小さい振幅の非加工時振幅で駆動するステップと、前記振動発生部の周波数が、前記非加工時振幅時において所定の変化率以上の変化率で変化した場合に前記非加工時振幅から加工時振幅に変更するステップと、前記加工時振幅の振幅変化率と、前記振動発生部を駆動する電力値の変化率の内の少なくとも何れか一方の変化率が、所定の変化率以下となった場合に前記加工時振幅に比べて小さい振幅の非加工時振幅に変更するステップと、を有することを特徴としている。
本発明によれば、研磨工具がワークに触れる瞬間にワークに傷が付くことを防止でき、また研磨工具とこれを保持する超音波研磨装置間の摩擦による発熱を軽減することができる。
超音波研磨装置1を示す全体概略構成図である。 研磨工具50によってワーク200を研磨する状態の要部斜視図である。 超音波研磨装置本体10の制御方法の一例を示す制御フロー図である。 超音波研磨装置本体10駆動時の振幅と電力と周波数それぞれの実測値と、制御部109における判定内容とを、経時的に示した図である。 研磨工具50がワーク200に触れた瞬間の状態を示す要部斜視図である。 研磨工具50がワーク200に安定して触れている状態を示す要部斜視図である。
以下、本発明の実施形態を図面を参照して詳細に説明する。
図1は本発明の一実施形態にかかる超音波研磨装置1を示す全体概略構成図である。また図2は、超音波研磨装置本体10に取り付けた研磨工具50によって、ワーク(被加工物)200を研磨する状態を示す要部斜視図である。図1に示すように、超音波研磨装置1は、超音波研磨装置本体10と、これを駆動制御する制御手段100とを具備して構成されている。超音波研磨装置本体10は、制御手段100によってその駆動が制御される振動発生部20と、前記振動発生部20で発生した超音波振動を伝達するホーン部30と、前記ホーン部30の先端に取り付けられ超音波振動させることでワーク200を研磨加工する研磨工具50とを具備して構成されている。
振動発生部20は、駆動用圧電素子(ピエゾ圧電素子層等)によって構成され、下記する制御手段100の駆動回路101から供給される駆動電力によって超音波振動を行う。振動発生部20の一端にはホーン部30が連結されており、さらにホーン部30の先端に設けた工具取付部31に研磨工具50が取り付けられている。図2に示すように、ホーン部30の工具取付部31の先端面にはスリット33が設けられており、このスリット33に研磨工具50の一端を挿入し、スリット33の上下の部分を取付ネジ35によって締め付けることで、研磨工具50を挟持・固定する。この例で用いる研磨工具50は長尺矩形状で平板状である。
振動発生部20の他端にはフィードバック用振動検出部40が連結されている。フィードバック用振動検出部40は圧電素子によって構成されており、振動発生部20、即ちこの超音波研磨装置本体10の超音波振動の状態を制御手段100に送信する。
制御手段100は、前記振動発生部20を駆動する駆動電力を供給する駆動回路101と、前記駆動回路101内において前記駆動電力の電力値を検知する電力検知部103と、前記フィードバック用振動検出部40からの超音波振動の状態にかかる信号を受信して、その超音波振動の振幅を検知する振幅検知部105と、その超音波振動の周波数を検知する周波数検知部107と、前記電力検知部103と振幅検知部105と周波数検知部107からそれぞれ超音波研磨装置本体10の駆動電力値と超音波振動の振幅及び周波数を経時的に入力してこれらの入力信号に基づいて駆動回路101の駆動制御を行う制御部109とを具備して構成されている。
図3は、上記制御手段100において行われる超音波研磨装置本体10の制御方法の一例を示す制御フロー図である。同図に示すように、まず、超音波研磨装置本体10の図示しないオンオフスイッチがオンされると、制御部109は、駆動回路101に、超音波研磨装置本体10を、非加工時振幅で動作するように動作指令を出力する(ステップST1)。ここで非加工時振幅とは、実際にワークを加工するときの加工時振幅に比べて小さい振幅をいい、特に極小振幅とすることが望ましい。なお、周波数は加工時も非加工時も略同一とする。非加工時振幅は、具体的に、例えば0.5〜5.0μm程度とするが、本発明はこの数値に限定されない。この程度の非加工時振幅で超音波振動を行えば、研磨工具50とこれを保持する工具取付部31間の摩擦による発熱が抑制でき、また消費電力の低減化を図ることもできる。
次に、ワーク200を加工するために、研磨工具50をワーク200に接触すると、制御部109は、接触したことを、前記超音波振動の周波数の変化率を用いて検出し(ステップST2)、前記超音波振動の振幅が加工時振幅になるように、駆動回路101に、動作指令を出力する(ステップST3)。加工時振幅は、具体的に、例えば5.0〜50.0μm程度とするが、本発明はこの数値に限定されない。なお研磨工具50がワーク200に接触したと判定してから、予め定めた所定時間(例えば0.4秒から1.0秒)が経過した後に、振幅が加工時振幅になるように設定した方が、より好適である。この所定時間は、研磨工具50がワーク200に触れてから正規の接触状態になるまでの時間に近い時間が好ましい。
上述のように、本実施形態の場合、ワーク200に研磨工具50が触れた瞬間は、研磨工具50の超音波振動の振幅が小さい非加工時振幅なので、ワーク200に大きな研磨力は印加されない。このため、図5に示すように、研磨工具50のワーク200に接触すべき部分の内の一部分のみがワークに接触してもワーク200を傷つけることを防止でき、また強い力でワーク200に接触してもこれを磨き過ぎる恐れも防止できる。
次に、研磨工具50がワーク200に触れた瞬間から上記所定時間が経過すると、研磨工具50は、図6に示すように、ワーク200に対して正規の接触状態になるが、このときに合わせて(またはその後の短い時間で)、研磨工具50の超音波振動の振幅は加工時振幅になる。従って、ワーク200の研磨を行うことができる。即ち、研磨工具50がワーク200に接触してその接触状態が安定するまでの所定時間の間に、研磨工具50は非加工時振幅から加工時振幅に自動的に変更されるので、スムーズにワークの加工を開始することができる。言い換えれば、作業者の熟練度の要求レベルを引き下げることができる。
ワーク200を研磨している間は、研磨による負荷の経時的な変化に伴ってその超音波振動の振幅と電力が常時変化する。言い換えれば、ワーク200の研磨を停止、即ちワーク200から研磨工具50を引き離すと、前記超音波振動の振幅と電力の変化が生じなくなる。そこで、制御部109は、前記振幅検知部105と電力検知部103からそれぞれ入力した超音波振動の振幅と電力値から、それぞれの変化率(振幅変化率と電力変化率)を算出し、これら両変化率が何れもそれぞれ所定の変化率以下になったことを検出すると、ワーク200から研磨工具50が離れたと判断し(ステップST4)、制御部109は、駆動回路101に、加工時振幅から非加工時振幅に切り替えるように動作指令を出力する(ステップST1)。なお、振幅の変化率と電力の変化率の何れか一方のみに変化があった場合は、研磨工具50がワーク200から離れていないと判断して加工時振幅を継続する。なお、前記起動直後の非加工時振幅と、加工時振幅から変更した非加工時振幅は、必ずしも同一である必要はなく、両者の振幅は異なっていても良い。
このようにワーク200から研磨工具50を引き離した非加工時に、自動的にこれを検知して加工時振幅よりも振幅の小さい非加工時振幅に変更するので、研磨工具50とこれを保持する工具取付部31間の摩擦による発熱を抑制でき、また消費電力の低減化を図ることもできる。即ち、全行程トータルでの発熱量を抑制することができ、連続稼働時間を延長することができる。また、再度加工のために再びワーク200に触れた時にも、上記と同様、ワーク200を傷付けたり磨き過ぎたりする恐れがなくなる。即ち、加工工程では、加工中に接触面の確認が困難なため、何度も離間してワーク加工面の確認を行いながら加工を進める。このため接触・離間を繰り返すが、各再接触への備えができる。
ところで、上記ステップST2において、研磨工具50がワーク200に接触したことの検知に、非加工時振幅の周波数変化を用いたのは以下の理由による。即ち、本願発明者は、振幅の小さい非加工時振幅であれば、研磨工具50がワーク200に触れた瞬間の周波数の変化を捉えることができることを見い出し、この周波数の変化を検出することとした。即ち本願発明者は、振幅の小さい非加工時振幅の場合、その振幅の変化や電力の変化では、研磨工具50がワーク200に触れた瞬間に顕著な変化が認められないことを実験により確認した。また本願発明者は、加工時振幅では、研磨工具50がワーク200に触れた瞬間の周波数の顕著な変化が認められないことも実験により確認した。一方上述のように、振幅の小さい非加工時振幅の時は、研磨工具50がワーク200に触れたことを周波数によって検出できるので、この周波数の変化を上記測定に用いることとしたのである。なお、超音波研磨装置本体10に装着する研磨工具50の重量や形状等によってその周波数は異なるため、周波数の絶対値ではなく、その変化率を上記検出に用いることとした。
一方、上記ステップST4において、ワーク200から研磨工具50を引き離したことの検知に、振幅変化と電力変化を用いたのは以下の理由による。即ち、加工時振幅の場合、研磨工具50がワーク200から離れる前後の周波数の変化は少ないので、周波数変化をその検出に用いることは困難であることを、実験により確認した。一方、加工時振幅の場合、研磨工具50がワーク200から離れる前後の振幅の変化と電力の変化はこれを捉えることができる程度に大きいことを実験で確認したので、これらをその検出に用いることとした。
図4は、前記超音波研磨装置本体10の図示しないオンオフスイッチがオンされてからワーク200の研磨を行い、その後ワーク200から研磨工具50を離間するまでの、振幅と電力と周波数それぞれの測定値と、制御部109における判定内容とを、経時的(十分の一秒間隔)に示した図である。同図において、振幅の測定値は、測定した振幅の電圧換算されたものをA/D変換してデジタルデータとしたビット値で示されている。即ちこの値自体は振幅そのものを示してはいないが、振幅の変化率を判定することはできる。また振幅の差分は、前回測定した(即ち、十分の一秒前に測定した)測定値と今回測定した測定値との間の差を演算して示している。振幅が変動したか否かの判定は、前記差分の値が、±3以上の場合を変動あり(即ち所定の変化率以上に変化した)「○」と判断している。電力の測定値は、測定した電力値を電圧換算されたものをA/D変換してデジタルデータとしたビット値で示されている。即ちこの値自体は電力値そのものを示してはいないが、電力値の変化率を判定することはできる。また電力の差分は、前回測定した(即ち、十分の一秒前に測定した)測定値と今回測定した測定値との間の差を演算して示している。電力が変動したか否かの判定は、前記差分の値が、±4以上の場合を変動あり(即ち所定の変化率以上に変化した)「○」と判断している。周波数の測定値は、周波数そのものであり、単位は「Hz」である。また周波数の差分は、4回前に測定した(即ち、十分の四秒前に測定した)測定値と今回測定した測定値との間の差を演算して示している。周波数が変動したか否かの判定は、前記差分の値が、±6以上の場合を変動あり(即ち所定の変化率以上に変化した)「○」と判断している。周波数において、4回前に測定した測定値と比較し、また差分を±6以上としたのは、変化率自体が小さいので、測定値のバラつきによる判定ミスを防止するためである。なお図4では、上記研磨工具50がワーク200に接触したと判定してからの所定時間の記載を便宜上省略して示している(実際は、経過時間72.3秒と72.4秒の間に所定時間が入る)。
図4において、経過時間70.1秒のところでオンオフスイッチをオンすると、上述のように、超音波研磨装置本体10は非加工時振幅で超音波振動を開始する。このときの振幅及び駆動電力は小さいので正確に測定できず、振幅の測定値は「0」、電力も「0」となる。一方周波数は、「23020(Hz)」程度となる。この表の場合、経過時間「72.0」において、研磨工具50がワーク200に接触するが、非加工時振幅の場合、その接触前後の振幅と電力には顕著な変化が見られないことが分かる。つまり上述のように、非加工時振幅の場合、その振幅と電力では前記接触は検知できない。一方、非加工時振幅の場合、周波数には、測定可能な変化が生じる。そこでこの周波数の変化を測定することで、研磨工具50がワーク200に接触したことを測定する。この例では、実際に接触してから十分の三秒後に接触と判定し、上記所定時間経過後に制御部109は振幅を非加工時振幅から加工時振幅に変更する指令を出力する。これによって、接触した直後ではなく、所定時間をおいてから加工時振幅に移行するので、その間にワーク200に対して研磨工具50を安定した接触状態に移行でき、スムーズにワーク200の加工を開始することができる。
振幅が加工時振幅になり、ワーク200の加工が開始されると、その直後から振幅と電力の絶対値が大きくなり、またその後のワーク加工中は、振幅と電力の値に常時変化が生じる。そしてこの表の場合、経過時間「77.2」において、研磨工具50がワーク200から離間するが、加工時振幅の場合、その離間前後の周波数に顕著な変化が見られないことが分かる。つまり上述のように、加工時振幅の場合、その周波数では前記離間は検知できない。一方、加工時振幅の場合、研磨工具50が離間した際の振幅と電力には、測定可能な変化が生じる(明らかに変化がなくなる)。そこでこの振幅と電力の両者の変化を測定することで、制御部109は研磨工具50がワーク200から離れたと判定し、同時に振幅を非加工時振幅に変更する指令を出力する。振幅と電力の両者を測定することとしたのは、何れか一方のみを測定すると、判定ミスを生じる恐れがあるからである。さらにこの例では、判定ミスを防止するため、振幅と電力の両者が所定の変化率以下となった状態が十分の五秒間継続したとき(経過時間「77.7」)に離間と判定している。但し、本発明においては、振幅と電力の何れか一方のみの測定値を用いて離間を判定しても良い。
上述のように、ワーク200の研磨を終了または中断した際は、その超音波振動の振幅を加工時よりも小さい非加工時振幅に変更するので、研磨工具50とこれを保持する工具取付部31間の摩擦による発熱を抑制でき、また消費電力の低減化を図ることもできる。再度研磨工具50をワーク200に接触させれば、ステップST1からステップST2に移行して、再び加工時振幅に変更される。
以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば上記例では、フィードバック用振動検出部を用いて超音波振動の振幅と周波数を検知したが、これを用いず、駆動時のインピーダンスを測定しながら自動追尾するシステム(例えばブリッジ回路)等の他の検出手段(方法)を用いて超音波振動の振幅と周波数を検知しても良い。また、上記記載及び各図で示した実施形態は、その目的及び構成等に矛盾がない限り、互いの記載内容を組み合わせることが可能である。また、上記記載及び各図の記載内容は、その一部であっても、それぞれ独立した実施形態になり得るものであり、本発明の実施形態は上記記載及び各図を組み合わせた一つの実施形態に限定されるものではない。
1 超音波研磨装置
10 超音波研磨装置本体
20 振動発生部
30 ホーン部
31 工具取付部
33 スリット
35 取付ネジ
40 フィードバック用振動検出部
50 研磨工具
100 制御手段
101 駆動回路
103 電力検知部
105 振幅検知部
107 周波数検知部
109 制御部
200 ワーク(被加工物)

Claims (3)

  1. 制御手段によって制御される振動発生部と、
    前記振動発生部で発生した超音波振動を伝達するホーン部と、
    前記ホーン部の先端に取り付けられ、超音波振動させることで被加工物を研磨加工する研磨工具と、を具備する超音波研磨装置において、
    前記制御手段は、前記振動発生部に駆動電力を供給する駆動回路と、
    前記駆動回路から供給される駆動電力の電力値を検知する電力検知部と、
    前記振動発生部による超音波振動の振幅及び周波数をそれぞれ検知する振幅検知部及び周波数検知部と、を有し、
    前記制御手段は、
    起動当初は、前記振動発生部を、加工時振幅に比べて小さい振幅の非加工時振幅で駆動し、
    前記周波数検知部によって検知した周波数が所定の変化率以上の変化率で変化した場合は前記振動発生部の振幅を前記非加工時振幅から加工時振幅に変更し、
    一方、前記振幅検知部によって検知した加工時振幅の振幅変化率と、前記電力検知部によって検知した電力値の変化率の内の少なくとも何れか一方の変化率が、所定の変化率以下となった場合は前記振動発生部の振幅を前記加工時振幅から前記非加工時振幅に変更する制御を行うことを特徴とする超音波研磨装置。
  2. 請求項1に記載の超音波研磨装置であって、
    前記振幅の変化率と、前記電力値の変化率の両者が、それぞれ所定の変化率以下となった場合に前記振動発生部の振幅を前記加工時振幅から前記非加工時振幅に変更する制御を行うことを特徴とする超音波研磨装置。
  3. 振動発生部と、
    前記振動発生部で発生した超音波振動を伝達するホーン部と、
    前記ホーン部の先端に取り付けられ、超音波振動させることで被加工物を研磨加工する研磨工具と、を具備する超音波研磨装置を用いた超音波研磨方法において、
    起動当初に、前記振動発生部を、加工時振幅に比べて小さい振幅の非加工時振幅で駆動するステップと、
    前記振動発生部の周波数が、前記非加工時振幅時において所定の変化率以上の変化率で変化した場合に前記非加工時振幅から加工時振幅に変更するステップと、
    前記加工時振幅の振幅変化率と、前記振動発生部を駆動する電力値の変化率の内の少なくとも何れか一方の変化率が、所定の変化率以下となった場合に前記加工時振幅に比べて小さい振幅の非加工時振幅に変更するステップと、を有することを特徴とする超音波研磨方法。
JP2015221717A 2015-11-12 2015-11-12 超音波研磨装置及び超音波研磨方法 Active JP6549019B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015221717A JP6549019B2 (ja) 2015-11-12 2015-11-12 超音波研磨装置及び超音波研磨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015221717A JP6549019B2 (ja) 2015-11-12 2015-11-12 超音波研磨装置及び超音波研磨方法

Publications (2)

Publication Number Publication Date
JP2017087363A JP2017087363A (ja) 2017-05-25
JP6549019B2 true JP6549019B2 (ja) 2019-07-24

Family

ID=58770001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221717A Active JP6549019B2 (ja) 2015-11-12 2015-11-12 超音波研磨装置及び超音波研磨方法

Country Status (1)

Country Link
JP (1) JP6549019B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021186944A (ja) * 2020-06-01 2021-12-13 株式会社ソノテック 超音波加工装置
CN113909577A (zh) * 2021-10-12 2022-01-11 科益展智能装备有限公司 超声波加工装置及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152756A (ja) * 1988-12-02 1990-06-12 Brother Ind Ltd 超音波加工機の工具接触検出装置
JPH0659604B2 (ja) * 1989-05-25 1994-08-10 株式会社ソノテック 超音波加工装置
DE567426T1 (de) * 1992-04-21 1994-02-03 Emerson Electric Co Verfahren und Gerät zur Werkstückbearbeitung mit Ultraschallenergie.
JPH0691496A (ja) * 1992-09-07 1994-04-05 Nippon Electric Ind Co Ltd 超音波研磨装置の作動装置
JPH1128421A (ja) * 1997-07-09 1999-02-02 Taga Electric Co Ltd 超音波発生装置の制御方法
JP2008068364A (ja) * 2006-09-14 2008-03-27 Ricoh Co Ltd 振動切削加工装置及び振動切削加工方法
JP2010207971A (ja) * 2009-03-11 2010-09-24 Masahiko Jin 接触検知方法、スピンドル装置システム、スピンドル装置および工作機械システム

Also Published As

Publication number Publication date
JP2017087363A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6549019B2 (ja) 超音波研磨装置及び超音波研磨方法
EP2128734A1 (en) Controlling method of electric tool and electric tool carrying out the controlling method
WO2010001500A1 (ja) ボンディング装置
JP6911456B2 (ja) 研削加工装置及び研削加工方法
JP2007237256A (ja) 超音波接合装置および超音波接合方法
US10960488B2 (en) Operating method for an ultrasonic wire bonder with active and passive vibration damping
JP6474381B2 (ja) 電極を研磨するチップドレッサーを備えるスポット溶接システム
TWI566062B (zh) Numerical control processing machine and ultrasonic knife to the combination of control devices
JP6721103B2 (ja) 線形摩擦接合装置及び線形摩擦接合方法
JP4595020B2 (ja) ボンディング装置及びボンディングツール振巾測定方法ならびにボンディングツール振巾較正方法
WO2020067191A1 (ja) 超音波接合方法
JP3351303B2 (ja) バンプ付電子部品のボンディング方法
JP6334775B2 (ja) 加工装置、その制御方法、及びプログラム
JP6049255B2 (ja) 加工装置
CN104858727A (zh) 一种基于超声波振荡器的抛光机
JP3446458B2 (ja) 超音波接合方法
JP2020066042A (ja) 接合装置
JP2001269867A (ja) 電解ドレッシング用電源制御方法と装置
JP2018051723A (ja) 研削装置
JP6253382B2 (ja) 研磨方法
WO2021246126A1 (ja) 超音波加工装置
JP2023105494A (ja) 超音波接合装置
TWI716699B (zh) 用於超音波加工器具之超音波頻率調整裝置
JP3167744B2 (ja) 超音波モータの駆動回路
KR101231439B1 (ko) 초음파 진동테이블 제어장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6549019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250