JP6543956B2 - Deep Hole Drilling Tool - Google Patents

Deep Hole Drilling Tool Download PDF

Info

Publication number
JP6543956B2
JP6543956B2 JP2015036561A JP2015036561A JP6543956B2 JP 6543956 B2 JP6543956 B2 JP 6543956B2 JP 2015036561 A JP2015036561 A JP 2015036561A JP 2015036561 A JP2015036561 A JP 2015036561A JP 6543956 B2 JP6543956 B2 JP 6543956B2
Authority
JP
Japan
Prior art keywords
tip
deep hole
tool
degrees
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015036561A
Other languages
Japanese (ja)
Other versions
JP2016155209A (en
Inventor
中川 純一
純一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015036561A priority Critical patent/JP6543956B2/en
Publication of JP2016155209A publication Critical patent/JP2016155209A/en
Application granted granted Critical
Publication of JP6543956B2 publication Critical patent/JP6543956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

本発明は、例えば、石油などの掘削に用いるボーリングバーの先端に取り付けられ、工具本体と被加工材における加工済みの深孔との隙間から供給した切削油を切削屑と共に前記工具本体およびボーリンクバーの内部を通過して後端側に排出する深孔加工用先端工具(ボーリンクヘッド)に関する。   The present invention, for example, is attached to the tip of a boring bar used for drilling oil and the like, and the cutting oil supplied from the gap between the tool body and the processed deep hole in the workpiece together with the cutting waste is the tool body and bow link The present invention relates to a deep hole processing tip tool (borink head) which passes through the inside of a bar and is discharged to the rear end side.

前記のような深孔加工用先端工具を用いる所謂BTA方式による深孔加工を精度良く行うため、かかる工具の先端面において、該先端面に設ける刃部の切削力を受ける向きにおいて、90度置きごとに3個のガイドパットを等間隔に配置した深孔加工工具が提案されている(例えば、特許文献1参照)。
しかし、上記特許文献1に記載の深孔加工工具では、深孔加工中に該加工工具やボーリングバーが不安定な振動を生じ、その結果、被加工材の切削量が変動し、且つ刃部やガイドパッドと被加工材との接触力の変動などを来すことにより、形成される深孔の断面が三角形状ないし五角形状になる場合が多々あった。
In order to precisely perform deep hole machining by the so-called BTA method using the deep drilling tip tool as described above, the tip surface of the tool is placed 90 degrees in the direction to receive the cutting force of the blade provided on the tip surface. A deep hole machining tool has been proposed in which three guide pads are arranged at equal intervals in each case (see, for example, Patent Document 1).
However, in the deep hole processing tool described in Patent Document 1, the processing tool and the boring bar generate unstable vibration during deep hole processing, and as a result, the cutting amount of the workpiece changes, and the blade portion In some cases, the cross section of the formed deep hole becomes triangular or pentagonal due to fluctuations in contact force between the guide pad and the workpiece.

更に、特許文献1に記載の前記深孔加工工具による問題点を解決するため、前記先端工具の先端面側に配置する3個のガイド部の位置を、当該先端工具の先端面の回転中心に対する刃部の切れ刃の位置を0とした際に、係る刃部の切削力を受ける向きに90度±10度回転した位置に第1のガイド部を、180度±10度回転した位置に第2のガイド部を、181度〜220度回転した位置に第3のガイド部を配置するようにした深孔加工用先端工具のガイド部配置構造およびガイド部配置方法が提案されている(例えば、特許文献2参照)。
特許文献2に記載の前記深孔加工用先端工具のガイド部配置構造によれば、深孔加工中に該先端工具やボーリングバーによる不安定な振動を若干は低減されるが、形成される深孔の断面が三角形状ないし五角形状になり得る場合もあった。
Furthermore, in order to solve the problems caused by the deep hole processing tool described in Patent Document 1, the positions of the three guide portions disposed on the tip surface side of the tip tool with respect to the rotation center of the tip surface of the tip tool When the position of the cutting edge of the blade portion is 0, the first guide portion is rotated 180 ° ± 10 ° to a position rotated 90 ° ± 10 ° in the direction to receive the cutting force of the blade portion. A guide portion arrangement structure and a guide portion arrangement method for a deep hole processing tip tool in which the third guide portion is arranged at a position where the second guide portion is rotated 181 degrees to 220 degrees have been proposed (for example, Patent Document 2).
According to the guide portion arrangement structure of the deep hole processing tip tool described in Patent Document 2, the unstable vibration due to the tip tool and the boring bar is slightly reduced during deep hole processing, but the formed depth is formed In some cases, the cross section of the hole may be triangular or pentagonal.

実開平5−53812号公報(第1〜3頁、図1〜7)Japanese Utility Model Application Publication No. 5-53812 (pages 1 to 3, FIGS. 1 to 7) 特許第4951788号公報(第1〜24頁、図1〜13)Patent No. 4951788 (pages 1 to 24, FIGS. 1 to 13)

本発明は、背景技術で説明した問題点を解決し、深孔加工中に本先端工具やボーリングバーによる不安定な振動を格段に低減でき、且つ被加工材に形成される深孔の断面を真円形に確実に近似させられる深孔加工用先端工具を提供する、ことを課題とする。   The present invention solves the problems described in the background art, can significantly reduce the unstable vibration due to the tip tool and boring bar during deep hole processing, and the cross section of the deep hole formed in the workpiece It is an object of the present invention to provide a deep hole processing tip tool which can be approximated closely to a perfect circle.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、前記先端工具の先端面側に4個のガイドパッドをそれぞれ適正な位置に配置する、ことに着想して成されたものである。
即ち、本発明の深孔加工用先端工具(請求項1)は、ボーリングバーの先端に取り付けられ、工具本体と被加工材における加工済みの深孔との隙間から供給した切削油を切削屑と共に前記工具本体およびボーリンクバーの内部を通過して後端側に排出する深孔加工用先端工具であって、全体が円柱形状を呈する工具本体と、該工具本体の先端面に取り付けられた切刃と、前記工具本体の先端面の周辺と該工具本体の円周面との間にわたって配置された第1〜第4ガイドパッドとを含み、上記工具本体の先端面の回転中心から上記切刃の刃面を通過する仮想の径線の位置を0度とした際に、該切刃の切削力を受ける向きにおいて、90度±10度回転した位置に上記第1ガイドパッドを、180度±10度回転した位置に上記第2ガイドパッドを、220度±10度回転した位置に上記第3ガイドパッドを、270度±10度回転した位置に上記第4ガイドパッドを配置してなる、ことを特徴とする。
In order to solve the above-mentioned subject, the present invention is conceived to arrange four guide pads at appropriate positions on the tip surface side of the tip tool.
That is, the deep hole processing tip tool (claim 1) of the present invention is attached to the tip of the boring bar, and the cutting oil supplied from the gap between the tool body and the processed deep hole in the workpiece together with the cutting debris A deep hole processing tip tool which passes through the inside of the tool body and the bow link bar and discharges to the rear end side, the tool body having a cylindrical shape as a whole, and a cutting tool attached to the tip surface of the tool body The cutting edge from the center of rotation of the tip surface of the tool body, including a blade, and first to fourth guide pads disposed across the periphery of the tip surface of the tool body and the circumferential surface of the tool body When the position of the imaginary radial line passing through the blade surface is 0 degrees, the first guide pad is rotated 180 degrees ± 90 degrees at a position rotated 90 degrees ± 10 degrees in the direction to receive the cutting force of the cutting edge Position the second guide pad at the position rotated 10 degrees And the fourth guide pad is disposed at a position obtained by rotating the third guide pad at a position rotated by 220 ° ± 10 ° and a position obtained by rotating the third guide pad by 270 ° ± 10 °.

これによれば、前記第1,第2,第4ガイドパッドが先端面の回転中心から上記切刃の刃面を通過する仮想の径線の位置を0度とした際に、該切刃の切削力を受ける向きに約90度ずつ順次離れた位置に配置し、且つ第3ガイドパッドが約220度離れた位置に配置することで、以下の効果(1)〜(4)を奏することが可能となる。
(1)深孔加工中において、第1〜第3ガイドパッドが加工済みの深孔の内壁面に接触して外側向きの力を受けても、第4ガイドパッドが回転中心向きの力を受けるため、全体としてバランスが取れ、被加工材に形成される深孔の断面が三角形状になりにくく、真円形状に近くなる。
(2)深孔加工中において、第1,第2ガイドパッドが加工済みの深孔の内壁面に接触して外側向きの力を受けても、第3,第4ガイドパッドが回転中心向きの力を受けるため、全体としてバランスが取れ、被加工材に形成される深孔の断面が五角形状になりにくく、真円形状に近くなる。
(3)上記(1)および(2)が相まって、深孔加工中における不安定な振動を格段に低減することができる。
(4)上記(1)乃至(3)によって、被加工材に断面が真円形に近似した断面となり、且つ軸方向に沿って直線状の深孔を確実に形成することが可能となる。
According to this, when the position of the imaginary radial line where the first, second and fourth guide pads pass the blade surface of the cutting blade from the rotation center of the tip surface is set to 0 degree, The following effects (1) to (4) can be achieved by arranging the third guide pads at positions separated by about 90 degrees in order to receive the cutting force and arranging the third guide pads at positions separated by about 220 degrees. It becomes possible.
(1) During deep hole processing, even if the first to third guide pads contact the inner wall surface of the processed deep hole and receive an outward force, the fourth guide pad receives a force toward the rotation center. Therefore, as a whole, the balance is maintained, and the cross section of the deep hole formed in the workpiece is unlikely to be triangular, and approximate to a perfect circle.
(2) During deep hole processing, the third and fourth guide pads face the center of rotation even if the first and second guide pads contact the inner wall surface of the processed deep hole and receive an outward force. Since the force is received, the balance as a whole is achieved, and the cross section of the deep hole formed in the workpiece is unlikely to be a pentagonal shape, and becomes close to a perfect circle shape.
(3) By combining the above (1) and (2), unstable vibration during deep hole machining can be significantly reduced.
(4) By the above (1) to (3), it becomes possible to form a cross section similar to a circular cross section to the workpiece and to form a straight deep hole along the axial direction with certainty.

尚、前記工具本体は、例えば、機械構造用鋼(SC鋼種)などからなり、前記先端面と後端面との間に切削油および切削屑を排出するための貫通孔が軸方向に沿って貫通している。
また、前記切刃は、例えば、超硬(WC)からなる単一の細長いチップからなる形態の他、前記先端面の直径および加工すべき深孔の内径が比較的大径である場合には、後述するように、上記先端面の径方向に沿った当該先端面の中心および周辺を含む位置に3個以上のチップを直線状に配置した形態としても良い。
また、前記切刃の位置は、被加工材を切削する刃面の径方向に沿った辺である。
更に、前記ガイドパッドは、例えば、超硬(WC)からなり、前記工具本体の先端面の周辺と該工具本体の円周面との間にわたり且つ軸方向に沿って形成された凹溝内に板形状の基部が挿入され、且つ円周方向の両側に隣接する上記工具本体の円周面と相似形状の湾曲面を当該円周面よりも外側に突出するように、例えば、複数のボルトなどによって固定される。
加えて、前記ボーリングバーおよび深孔加工用先端工具によって、深孔が形成される被加工材は、例えば、石油などの掘削に用いられる長尺なパイプを得るため、円周面(表面)側を温間鍛造などにより硬化処理されたオーステナイト系のステンレス鋼からなる長尺(例えば、約1000cm)な丸棒が挙げられる。
The tool body is made of, for example, steel for machine structural use (SC steel type) or the like, and a through hole for discharging cutting oil and chips between the tip end face and the rear end face penetrates along the axial direction. doing.
Further, the cutting blade may have, for example, a single elongated tip made of cemented carbide (WC), or when the diameter of the tip surface and the inner diameter of the deep hole to be processed are relatively large. As described later, three or more chips may be linearly arranged at positions including the center and the periphery of the tip surface along the radial direction of the tip surface.
Further, the position of the cutting edge is a side along a radial direction of a blade surface for cutting a workpiece.
Furthermore, the guide pad is made of, for example, cemented carbide (WC), and is provided in a recessed groove formed along the axial direction and extending between the periphery of the tip surface of the tool body and the circumferential surface of the tool body. For example, a plurality of bolts or the like are inserted so that a plate-shaped base is inserted, and a curved surface similar in shape to the circumferential surface of the tool body adjacent on both sides in the circumferential direction protrudes outward from the circumferential surface. Fixed by
In addition, a work material in which a deep hole is formed by the boring bar and the deep hole processing tip is, for example, a circumferential surface (surface) side in order to obtain a long pipe used for drilling of oil or the like. A long (for example, about 1000 cm) round bar made of austenitic stainless steel hardened by warm forging etc. may be mentioned.

また、本発明には、前記第3ガイドパッドは、前記工具本体の先端面の回転中心から前記切刃の位置を0度とした際に、該切刃の切削力を受ける向きにおいて、221〜230度回転した位置に配置されている、深孔加工用先端工具(請求項2)も含まれる。
これによれば、前述した第1〜第4ガイドパッドが受ける力全体のバランスが一層取り易くなるので、前記効果(1)〜(4)を確実に得ることが可能となる。
Further, in the present invention, when the position of the cutting edge is 0 degree from the rotation center of the tip end surface of the tool main body, the third guide pad receives the cutting force of the cutting edge 221 to 221. Also included is a deep drilling tip tool (Claim 2) disposed at a position rotated by 230 degrees.
According to this, it becomes easier to balance the overall forces received by the first to fourth guide pads described above, so that the effects (1) to (4) can be reliably obtained.

更に、本発明には、前記工具本体の先端面には、前記切刃を除いた位置に、前記切削油および切削屑を排出するための貫通孔に連通する単数あるいは複数の開口部が位置している、深孔加工用先端工具(請求項3)も含まれる。
これによれば、被加工材に形成された深孔と前記工具本体の外周面との隙間から強制的に圧送された切削油を切削屑と共に、該工具本体の先端面に開口した単数または複数の開口部から連通する前記貫通孔に送給して、前記ボーリングバーの内部からその基部側に確実に排出できる。従って、前記効果(4)における深孔の真円度を損なう事態を防止することが可能となる。
Furthermore, in the present invention, at the tip end surface of the tool main body, at a position excluding the cutting edge, one or more openings communicating with the through holes for discharging the cutting oil and cuttings are located. Also, a deep drilling tip tool (claim 3) is included.
According to this, the cutting oil forcedly fed from the gap between the deep hole formed in the workpiece and the outer peripheral surface of the tool main body together with the cutting waste, the singular or plural opened in the tip end surface of the tool main body The boring bar can be fed to the through hole communicated from the opening of the boring bar and reliably discharged from the inside of the boring bar to the base side thereof. Therefore, it is possible to prevent a situation where the roundness of the deep hole in the effect (4) is impaired.

加えて、本発明には、前記切刃は、前記工具本体の先端面の回転中心を含む中央側チップと、前記先端面の周辺から一部が外側に突出する外周側チップと、該外周側チップとは上記先端面の回転中心を挟んだ反対側の中間位置に配置され且つ上記各チップと前記径線に沿って直線状に配置された中間チップとから構成されている、深孔加工用先端工具(請求項4)も含まれる。
これによれば、前記工具本体の直径が比較的大径(例えば、約60mm)の場合であっても、該本体の先端面における回転中心から周辺に沿った半径方向において、被加工材を該先端面全体の回転により確実に深孔加工することができる。
しかも、単一のチップからなる切刃に比べて、切削抵抗を低減できると共に、前記切削油を切削屑と共に前記工具本体の後端側に通過させる貫通孔の開口部を複数(2箇所以上)の位置に開設できるので、上記切削油および切削屑の回収もスムーズに行わせることも可能となる(効果(5))。
In addition, in the present invention, the cutting blade includes a central tip including the rotation center of the tip surface of the tool body, an outer circumferential tip partially protruding outward from the periphery of the tip surface, and the outer circumferential side. The tip is formed at an intermediate position on the opposite side of the center of rotation of the tip surface and is composed of the tips and an intermediate tip disposed linearly along the diameter line. A tip tool (claim 4) is also included.
According to this, even when the diameter of the tool main body is relatively large (for example, about 60 mm), the workpiece can be processed in the radial direction along the periphery from the rotation center in the tip end face of the main body. Deep hole processing can be reliably performed by the rotation of the entire tip surface.
In addition, the cutting resistance can be reduced as compared with a cutting blade consisting of a single tip, and a plurality of (two or more) openings of through holes through which the cutting oil passes along with the cutting waste to the rear end side of the tool body As a result, the cutting oil and chips can be recovered smoothly (effect (5)).

本発明による一形態の深孔加工用先端工具を示す平面図。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of one embodiment of a deep hole drilling tip tool according to the present invention. (A)は図1中の矢印A方向に沿った側面図、(B)は図1中の矢印B方向に沿った側面図。(A) is a side view along the arrow A direction in FIG. 1, (B) is a side view along the arrow B direction in FIG. 上記深孔加工用先端工具の使用状態を示す概略図。Schematic which shows the use condition of the said tip tool for deep hole processing. 実施例および比較例の先端工具により形成される深孔の真円度を示すグラフ。The graph which shows the roundness of the deep hole formed by the tip tool of an example and a comparative example. 実施例および比較例の先端工具における振動数に対する変位量を示すグラフ。The graph which shows the displacement amount with respect to the frequency in the tip tool of an Example and a comparative example. 実施例および比較例の先端工具による加工長さに伴う変心量を示すグラフ。The graph which shows the eccentric amount accompanying the processing length by the tip tool of an Example and a comparative example. 異なる形態の深孔加工用先端工具を示す平面図。The top view which shows the tip tool for deep hole processing of a different form. (A)は図7中の矢印A方向に沿った側面図、(B)は図7中の矢印B方向に沿った側面図。(A) is a side view along the arrow A direction in FIG. 7, (B) is a side view along the arrow B direction in FIG. 7.

以下において、本発明を実施するための形態について説明する。
図1は、本発明による一形態の深孔加工用先端工具1aを示す平面図、図2(A)は、図1中の矢印A方向に沿った側面図、図2(B)は、図1中の矢印B方向に沿った側面図である。
深孔加工用先端工具1aは、図1,図2(A),(B)に示すように、全体が円柱形状を呈する工具本体2と、該工具本体2の先端面3に取り付けられた3個の切刃5a〜5cと、前記先端面3の周辺と工具本体2の円周面(側面)とにわたって配置された第1〜第4ガイドパッド6a〜6dとを備えている。
上記工具本体2は、例えば、機械構造用鋼などからなり、上記先端面3は、その回転中心(中心)Cを頂点として緩くカーブする円弧面である。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a plan view showing one embodiment of a deep hole drilling tip tool 1a according to the present invention, FIG. 2 (A) is a side view along the direction of arrow A in FIG. 1, and FIG. FIG. 5 is a side view along the arrow B direction in FIG.
As shown in FIG. 1, FIG. 2 (A) and FIG. 2 (B), the deep hole processing tip tool 1a has a tool body 2 having a cylindrical shape as a whole, and 3 attached to the tip surface 3 of the tool body 2. Each cutting blade 5 a to 5 c and first to fourth guide pads 6 a to 6 d disposed around the periphery of the tip surface 3 and the circumferential surface (side surface) of the tool body 2.
The tool main body 2 is made of, for example, steel for machine structural use, and the tip end surface 3 is an arc surface which gently curves with the rotation center (center) C as an apex.

また、前記切刃5a〜5cは、例えば、超硬(WC)からなり、前記先端面3の回転中心Cを刃面に含む中央側チップ5bと、先端面3の周辺から一部が外側に突出する外周側チップ5aと、該外周側チップ5aとは先端面3の回転中心Cを挟んだ反対側の中間位置に配置され且つ上記チップ5a,5bと直線状に配置された中間チップ5cとから構成されている。即ち、かかるチップ5a〜5cは、前記先端面3において、その回転中心Cを通過する共通の直線上に被加工材を切削するそれぞれの刃面が配置され、且つこれら3個の合計で上記先端面3の半径よりも若干長くなる切刃を構成している。そのため、中間チップ5cの刃面は、外周側チップ5aおよび中央側チップ5bの刃面とは逆向きに配置されている。
以上のような3個のチップ5a〜5cからなる切刃5a〜5cを用いることで、前記工具本体2の直径および被加工材に穿設する深孔の内径が、例えば、50〜60mm以上の大径であっても、切削抵抗を効果的に低減できると共に、前記先端面3のほぼ全体で均一な切削が容易に行える。
尚、前記チップ5a〜5cには、取り替えが容易なスローアウェイチップが好適に用いられる。
Further, the cutting edges 5a to 5c are made of cemented carbide (WC), for example, and the center side tip 5b including the rotation center C of the tip surface 3 in the blade surface, and a part from the periphery of the tip surface 3 A protruding outer peripheral side chip 5a and an intermediate chip 5c arranged at an intermediate position opposite to the outer peripheral side chip 5a across the rotation center C of the front end surface 3 and arranged linearly with the chips 5a and 5b It consists of That is, such tips 5a to 5c have respective blade surfaces for cutting the workpiece on a common straight line passing through the rotation center C in the tip surface 3, and the total of the three tips is the tip. It constitutes a cutting edge slightly longer than the radius of the surface 3. Therefore, the blade surface of the intermediate chip 5c is disposed in the opposite direction to the blade surfaces of the outer peripheral chip 5a and the central chip 5b.
The diameter of the tool body 2 and the inner diameter of the deep hole to be drilled in the workpiece are, for example, 50 to 60 mm or more by using the cutting blades 5a to 5c consisting of the three tips 5a to 5c as described above. Even if the diameter is large, cutting resistance can be effectively reduced, and uniform cutting can be easily performed on substantially the entire tip surface 3.
For the tips 5a to 5c, indexable tips that are easy to replace are preferably used.

更に、前記第1〜第4ガイドパッド6a〜6dは、前記同様の超硬からなり、全体が扁平な直方体形状を呈し、且つ外周面が前記工具本体2の円周面と同様に外向きに凸となる湾曲面を有している。かかる第1〜第4ガイドパッド6a〜6dは、工具本体2の円周面にその軸方向に沿って形成された凹溝内に、上記湾曲面側を除いた大半の部分が嵌め込まれ、図示しない複数のボルトで固定される。
図1に示すように、前記工具本体2の先端面3において、回転中心Cから前記切刃5a〜5cの刃面を通過する仮想の径線の位置を0度とした際に、該切刃5a〜5cの切削力を受ける向き(方向)において、90度±10度回転した位置(角度θ1)に第1ガイドパッド6aを、180度±10度回転した位置(角度θ2)に第2ガイドパッド6bを、220度±10度回転した位置(角度θ3)に第3ガイドパッド6cを、270度±10度回転した位置(角度θ4)に第4ガイドパッド6dを配置している。
因みに、図1では、第1ガイドパッド6aの位置θ1は90度、第2ガイドパッド6bの位置θ2は180度、第3ガイドパッド6cの位置θ3は225度、第4ガイドパッド6dの位置θ4は270度であるが、これらに限られない。
Furthermore, the first to fourth guide pads 6a to 6d are made of the same cemented carbide as described above, and have a flat rectangular parallelepiped shape as a whole, and the outer peripheral surface is outward like the circumferential surface of the tool main body 2 It has a convex curved surface. Most of the first to fourth guide pads 6a to 6d are inserted in the grooves formed along the axial direction on the circumferential surface of the tool main body 2 except for the curved surface side, Not fixed with multiple bolts.
As shown in FIG. 1, when the position of an imaginary radial line passing from the center of rotation C to the blade surfaces of the cutting blades 5a to 5c is 0 degree on the front end surface 3 of the tool body 2, the cutting blade The first guide pad 6a is rotated 180 degrees ± 10 degrees to a position (angle θ1) rotated 90 degrees ± 10 degrees in the direction (direction) to receive the cutting force 5a to 5c, and the second guide to a position (angle θ2) The fourth guide pad 6d is disposed at a position (angle θ4) at which the third guide pad 6c is rotated by 270 ° ± 10 degrees at a position (angle θ3) at which the pad 6b is rotated at 220 ° ± 10 °.
Incidentally, in FIG. 1, the position θ1 of the first guide pad 6a is 90 degrees, the position θ2 of the second guide pad 6b is 180 degrees, the position θ3 of the third guide pad 6c is 225 degrees, and the position θ4 of the fourth guide pad 6d. Although it is 270 degrees, it is not restricted to these.

本発明の深孔加工用先端工具1aにおいて、前記第1〜第4ガイドパッド6a〜6dを前記のような各位置ごとに配置したのは、次のような理由による。
従来から周知(前記特許文献1)であった前記θ1,θ2,θ4の位置ごとに3個のガイドパッドを配置した深孔加工用先端工具では、被加工材に深孔加工した際に、径方向に沿って振動し且つ軸方向に沿って変位するため、形成される深孔の断面がほぼ三角形状ないしほぼ五角形状になる場合が多々あった。
また、前記特許文献2のように、3個のガイドパッドを配置する際に、第1,第2ガイドパッドを前記θ1,θ2ごとに配置すると共に、第3ガイドパッドを181度〜220度の範囲内位置に配置することにより、真円性の向上を図った先端工具を提案されているが、3個であることよる限界が残っていた。
The reason why the first to fourth guide pads 6a to 6d are disposed at each position as described above in the deep hole drilling tip tool 1a of the present invention is as follows.
In the case of a deep hole processing tip tool in which three guide pads are disposed at each of the positions θ1, θ2 and θ4 as conventionally known (the above-mentioned Patent Document 1), the diameter when processing a deep hole in a workpiece Because of the vibration along the direction and the displacement along the axial direction, the cross section of the formed deep hole often has a substantially triangular or nearly pentagonal shape.
Further, as in the case of Patent Document 2, when arranging three guide pads, the first and second guide pads are arranged every θ1 and θ2, and the third guide pad is arranged at 181 degrees to 220 degrees. Although the tip tool which aimed at the roundness improvement by having been arranged in the range position is proposed, the limit by being three remained.

発明者は、被加工材に深孔加工した際に、径方向に沿った振動および軸方向に沿った変位を確実に低減するため、4個のガイドパッドを用い、且つ第1〜第4ガイドパッド6a〜6dの配置すべき位置を前記θ1〜θ4に個別に規定した。
そのため、深孔加工中に第1〜第3ガイドパッド6a〜6cが加工済みの深孔の内壁面に接触して外側向きの力を受けても、第4ガイドパッド6dが回転中心C向きの力を受けるため、全体としてバランスが取れ、被加工材に形成される深孔の断面が三角形状になりにくく、真円形状になる(効果(1))、ものと考えられる。
更に、深孔加工中に第1,第2ガイドパッド6a,6bが加工済みの深孔の内壁面に接触して外側向きの力を受けても、第3,第4ガイドパッド6c,6dが回転中心C向きの力を受けるため、全体としてバランスが取れ、被加工材に形成される深孔の断面が五角形状になりにくく、真円形状になる(効果(2))、ものと考えられる。
以上のような観点の理由は、追って実施例によって具体的に説明する。
The inventor uses four guide pads to reliably reduce vibration along the radial direction and displacement along the axial direction when deep-piercing a workpiece, and uses the first to fourth guides. The positions at which the pads 6a to 6d are to be arranged are individually defined as the θ1 to θ4.
Therefore, even if the first to third guide pads 6a to 6c contact the inner wall surface of the processed deep hole during deep hole processing and receive an outward force, the fourth guide pad 6d is directed to the rotation center C. It is considered that since the force is received as a whole, balance is achieved as a whole, and the cross section of the deep hole formed in the material to be processed does not easily become triangular, and becomes a perfect circular shape (effect (1)).
Furthermore, even if the first and second guide pads 6a and 6b contact the inner wall surface of the processed deep hole during deep hole processing and receive an outward force, the third and fourth guide pads 6c and 6d Because the force in the direction of the center of rotation C is received, the balance as a whole is well balanced, and the cross section of the deep hole formed in the workpiece is unlikely to be a pentagonal shape and becomes a perfect circle shape (effect (2)). .
The reasons for the above viewpoints will be specifically described later by examples.

加えて、図1,図2(A),(B)に示すように、前記工具本体2の先端面3において、前記切刃5a〜5cおよび第1〜第4ガイドパッド6a〜6dの挿入用凹部ごとを除いた位置に、2つ(複数)の開口部8,9が開設され、かかる開口部8,9は、工具本体2の後端4側を軸方向の中心に沿って貫通している貫通孔7に連通するように集束している。
即ち、図3の概略図で示すように、大型の旋盤(図示せず)に両端部を拘束されて高速回転する丸棒の被加工材Wに対し、その一端面から長尺なボーリングヘッド10の先端に前記深孔加工用先端工具1aを取り付け、これらを被加工材Wにおける中心部の軸方向に沿って順次押し込むことで、深孔加工が行われる。
上記ボーリングヘッド10の中心部には、長尺な貫通孔11が位置し、該貫通孔11と上記先端工具1a側の貫通孔7とが連通している。上記先端工具1aの工具本体2およびボーリングヘッド10と被加工材Wに形成される深孔の内周面との隙間には、図3で右側から切削油が上記先端工具1aの先端面3側に高圧によって供給される。かかる切削油は、前記切刃(チップ)5a〜5cにおいて切削された切削屑と共に、先端面3の前記開口部8,9から貫通孔7,11を経て図3の右側(外部)に排出される。
尚、排出された上記切削油は、篩いおよび磁気フイルタを通過することによって、切削屑を除去された後、再利用される。
In addition, as shown in FIG. 1, FIG. 2 (A), (B), in the front end surface 3 of the said tool main body 2, for insertion of said cutting blade 5a-5c and 1st-4th guide pad 6a-6d Two (multiple) openings 8 and 9 are opened at positions excluding each recess, and the openings 8 and 9 pass through the rear end 4 side of the tool body 2 along the axial center. It is focused to communicate with the through hole 7.
That is, as shown in the schematic view of FIG. 3, the boring head 10 which is elongated from one end face to the workpiece W of a round bar which is rotated at high speed with both ends restrained by a large lathe (not shown) The deep hole machining is performed by attaching the deep hole machining tip tool 1a to the front end of the workpiece and sequentially pressing these along the axial direction of the central portion of the workpiece W.
A long through hole 11 is located at the center of the boring head 10, and the through hole 11 communicates with the through hole 7 on the tip tool 1a side. In the gap between the tool body 2 of the tip tool 1a and the boring head 10 and the inner peripheral surface of the deep hole formed in the workpiece W, the cutting oil is on the tip surface 3 side of the tip tool 1a from the right in FIG. Supplied by high pressure. Such cutting oil is discharged to the right side (outside) of FIG. 3 through the through holes 7 and 11 from the openings 8 and 9 of the tip surface 3 together with cutting chips cut in the cutting edges (tips) 5a to 5c. Ru.
The discharged cutting oil is recycled after the chips are removed by passing through a sieve and a magnetic filter.

以下において、本発明の実施例について、比較例と共に説明する。
予め、オーステナイト系ステンレス鋼(JIS:SUS304相当)からなり、表面を温間鍛造により硬化処理した直径12cmで長さが1000cmの丸棒の被加工材Wを2本用意し、順次これらの両端部を大型旋盤に回転可能に拘束した。
上記の被加工材Wの軸方向において、直径56mmで長さが1000cmのボーリングバー10の先端に、予め、3個のスローアウェイチップからなる前記切刃5a〜5cを配置した、直径67ミリの工具本体2およびを取り付け、第1〜第4ガイドパッド6a〜6dを以下の位置に配置した実施例の深孔加工用先端工具1aを用意した。
実施例の第1ガイドパッド6aの位置θ1は90度、第2ガイドパッド6bの位置θ2は180度、第3ガイドパッド6cの位置θ3は221度、第4ガイドパッド6dの位置θ4は270度とした。
一方、上記と同じボーリングバー10の先端に、前記同様の切刃5a〜5cを含む直径67ミリの工具本体2を取り付け、且つ第1,第2,第4ガイドパッド6a,6b,6dを以下の位置配置した比較例の深孔加工用先端工具を用意した。
比較例の第1ガイドパッド6aの位置θ1は90度、第2ガイドパッド6bの位置θ2は180度、第4ガイドパッド6dの位置θ4は270度である(前記第3ガイドパッド6cを除いた形態で且つ前記特許文献1に記載のものと同じ)。
In the following, examples of the present invention will be described together with comparative examples.
Prepare two round rod workpieces W with a diameter of 12 cm and a length of 1000 cm, made of austenitic stainless steel (JIS: equivalent to SUS 304) and hardened by warm forging in advance. Was rotatably constrained to a large lathe.
In the axial direction of the workpiece W described above, the cutting blades 5a to 5c consisting of three throwaway tips are arranged in advance at the tip of the boring bar 10 having a diameter of 56 mm and a length of 1000 cm, and having a diameter of 67 mm The tool body 2 and the first to fourth guide pads 6a to 6d were disposed at the following positions, and the deep hole processing tip tool 1a of the embodiment was prepared.
In the embodiment, the position θ1 of the first guide pad 6a is 90 degrees, the position θ2 of the second guide pad 6b is 180 degrees, the position θ3 of the third guide pad 6c is 221 degrees, and the position θ4 of the fourth guide pad 6d is 270 degrees And
On the other hand, the tool body 2 with a diameter of 67 mm including the cutting blades 5a to 5c is attached to the same tip of the boring bar 10 as above, and the first, second and fourth guide pads 6a, 6b and 6d are The tip tool for deep hole processing of the comparative example which carried out the position arrangement of was prepared.
The position θ1 of the first guide pad 6a in the comparative example is 90 degrees, the position θ2 of the second guide pad 6b is 180 degrees, and the position θ4 of the fourth guide pad 6d is 270 degrees (except for the third guide pad 6c). And the same as those described in Patent Document 1).

1本の前記被加工材Wを円周方向に240rpmの回転数で回転させると共に、前記ボーリングバー10および実施例の深孔加工用先端工具1aを被加工材Wの軸方向に沿って毎分38mmの送り速度で該被加工材Wの中心軸に沿って進入させることによって、内径が68mmの深孔を得る深孔加工を行った(実施例)。
更に、残りの前記被加工材Wを上記と同じ回転数で回転させると共に、前記ボーリングバー10および比較例の深孔加工用先端工具を被加工材Wの軸方向に沿って上記と同じ送り速度で該被加工材Wの中心軸に沿って進入させることによって、内径が68mmの深孔を得る深孔加工を行った(比較例)。
One of the workpieces W is rotated in the circumferential direction at a rotational speed of 240 rpm, and the boring bar 10 and the deep hole processing tip tool 1a of the embodiment are arranged along the axial direction of the workpiece W every minute Deep penetration was performed to obtain a deep hole having an inner diameter of 68 mm by advancing along the central axis of the workpiece W at a feed speed of 38 mm (Example).
Furthermore, while rotating the remaining workpiece W at the same rotational speed as above, the same boring speed as the above for the boring bar 10 and the deep hole processing tip tool of the comparative example along the axial direction of the workpiece W The deep hole processing for obtaining a deep hole having an inner diameter of 68 mm was performed by advancing along the central axis of the workpiece W (comparative example).

実施例の深孔加工用先端工具1aおよび比較例の深孔加工用先端工具を用いた深孔加工された2本の被加工材Wについて、それぞれ切削が開始された端面から100mmの位置で切断し、かかる切断面ごとに現れる深孔の内周面に対し、接触式センサーを有する真円測定機を用いて、真円度を個別に測定し、それらの結果を、図4の円グラフ中に示した。
図4に示すように、実線で示す実施例の接触軌跡(真円度)は、一点鎖線で示す架空の真円形に対し、全周においてほぼ近似していた。一方、図4中で破線で示す比較例の接触軌跡(真円度)は、ほぼ三角形状で且つ一点鎖線の真円形に対し、大きく逸脱していた。かかる結果よれば、実施例による深孔加工は、比較例による深孔加工よりも真円性において優れていることが判明した。
The two deep-pierced workpieces W using the deep-hole processing tip tool 1a of the embodiment and the deep-hole processing tip tool of the comparative example are cut at a position of 100 mm from the end surface where the cutting is started. The circularity of the inner surface of the deep hole appearing for each cut surface is individually measured using a circle measuring machine having a contact type sensor, and the results are shown in the circle graph of FIG. It was shown to.
As shown in FIG. 4, the contact locus (roundness) of the embodiment shown by the solid line is substantially similar to the imaginary circular shape shown by the one-dot chain line all around. On the other hand, the contact locus (roundness) of the comparative example indicated by the broken line in FIG. 4 is largely deviated from the substantially circular shape and the perfect circle indicated by the alternate long and short dash line. According to this result, it was revealed that the deep hole machining according to the example is superior in roundness to the deep hole machining according to the comparative example.

また、前記深孔加工中において、実施例の深孔加工用先端工具1aおよび比較例の深孔加工用先端工具を用いた深孔加工している2本の被加工材Wの周面における垂直方向および水平方向の振動による径方向の変位を、被加工材Wごとの軸方向のほぼ全長に沿って測定し、上記2方向の変位と被加工材Wにおける軸方向の距離(長さ)とからなる2つの基グラフを得た。
上記2つの基グラフを公知のFFT解析(フーリエ解析)することで、振動の周波数別(周波数スペクトル)の変位を示すグラフ(周波数−変位)を、実施例と比較例とについて得た。それらの結果を図5のグラフに示した。尚、図5のグラフ中で、破線の比較例は、低い変位量では実線の実施例とほぼ重なっていた。
図5に示すように、実線で示す実施例では、振動が約16Hzの周波数において変位のピーク7.76μmが現れたのに対し、破線で示す比較例では、振動が約35Hzの周波数において変位のピーク11.92μmが現れた。従って、図5中の白抜き矢印で示すように、実施例による深孔加工は、振動の周波数および変位量の双方において、比較例による深孔加工よりも優れていることが判明した。
Further, during the deep hole drilling, the vertical surfaces of the circumferential surfaces of the two workpieces W being deep hole drilled using the deep hole drilling tip tool 1a of the embodiment and the deep hole drilling tip tool of the comparative example The displacement in the radial direction due to vibration in the direction and horizontal direction is measured along substantially the entire length in the axial direction for each workpiece W, and the displacement in the two directions and the axial distance (length) in the workpiece W Two basic graphs were obtained.
By subjecting the two basic graphs to known FFT analysis (Fourier analysis), graphs (frequency-displacement) showing displacement of each vibration frequency (frequency spectrum) were obtained for the example and the comparative example. The results are shown in the graph of FIG. In the graph of FIG. 5, the comparative example of the broken line almost overlapped with the example of the solid line at a low displacement amount.
As shown in FIG. 5, in the embodiment shown by the solid line, the displacement peak of 7.76 μm appeared at the frequency of about 16 Hz, while in the comparative example shown by the broken line, the vibration was at the displacement of about 35 Hz. A peak of 11.92 μm appeared. Therefore, as shown by the open arrow in FIG. 5, it was found that deep hole machining according to the example is superior to deep hole machining according to the comparative example in both the frequency of vibration and the displacement amount.

更に、実施例の深孔加工用先端工具1aおよび比較例の深孔加工用先端工具を用いた深孔加工した2本の前記被加工材Wを、それぞれ切削が開始された端面から50cmごとに順次切断し、加工長さ別における変位量を測定した。それらの結果を、図6のグラフに示した。
図6に示すように、実施例による深孔加工では、加工長さが700cmに達した際に約4.5mmの変位量であったの対し、比較例による深孔加工では、加工長さが250cmに達した際に既に約4.2mmの変位量となっていた。かかる結果から、実施例による深孔加工によれば、直進性に優れていることが判明した。
前記図4〜図6に示した実施例の深孔加工によって、前記深孔加工用先端工具1aによる前記効果(1)〜(4)が裏付けられたことが容易に理解されよう。
Furthermore, the two deep-pierced two workpieces W using the deep hole drilling tip tool 1a of the embodiment and the deep hole drilling tip tool of the comparative example are placed every 50 cm from the end face where the cutting is started. It cut | disconnected one by one and measured the displacement amount in processing length distinction. The results are shown in the graph of FIG.
As shown in FIG. 6, in the deep hole machining according to the example, the displacement amount was about 4.5 mm when the machining length reached 700 cm, whereas in the deep hole machining according to the comparative example, the machining length was When it reached 250 cm, the displacement amount was about 4.2 mm. From these results, it was found that the deep hole processing according to the example is excellent in straightness.
It will be easily understood that the effects (1) to (4) by the deep hole processing tip tool 1a are supported by the deep hole processing of the embodiment shown in FIGS.

図7は、異なる形態の深孔加工用先端工具1bを示す平面図、図8(A),(B)は、図7中の矢印A方向または矢印B方向に沿った側面図である。
上記深孔加工用先端工具1bは、図7,図8(A),(B)に示すように、前記同様の先端面3を含む工具本体2と、前記同様の位置θ1〜θ4に個別に配置された第1〜第4ガイドパッド6a〜6dとを備え、先端面3の回転中心Cから半径方向に沿って単一の切刃5が取り付けられている。かかる切刃5を除いた上記先端面3には、単一の開口部8が開口し、該開口部8は、後端4側の貫通孔7に連通している。かかる深孔加工用先端工具1bは、工具本体2の直径が、例えば、40〜30cm以下の比較的小径のものに好適である。
以上のような深孔加工用先端工具1bによっても、前記効果(1)〜(4)と同様の効果を奏することが可能である。
FIG. 7 is a plan view showing a deep hole processing tip tool 1b of a different form, and FIGS. 8A and 8B are side views along the arrow A direction or the arrow B direction in FIG.
As shown in FIGS. 7, 8A and 8B, the deep hole processing tip tool 1b individually has the tool main body 2 including the tip surface 3 similar to the above, and the positions θ1 to θ4 similar to the above. The single cutting blade 5 is attached along the radial direction from the rotation center C of the tip surface 3 with the first to fourth guide pads 6a to 6d arranged. A single opening 8 is opened in the tip end surface 3 excluding the cutting blade 5, and the opening 8 communicates with the through hole 7 on the rear end 4 side. The deep hole processing tip tool 1b is suitable for a relatively small diameter tool having a diameter of, for example, 40 to 30 cm or less.
Also by the deep hole processing tip tool 1b as described above, it is possible to obtain the same effects as the effects (1) to (4).

本発明は、以上において説明した各形態や実施例に限定されるものではない。
例えば、前記切刃は、5個のチップからなるものとし、前記先端面3の中心C付近の中央側チップ、周辺側の外周側チップ、およびこれらの間に位置する中間チップと、前記外周側チップの径方向の反対側に位置し且つ半径方向で上記3つのチップ間ごとにほぼ位置する2つの中間チップとからなる形態としても良い。
また、前記切刃5,5a〜5cと第1〜第4ガイドパッド6a〜6dは、前記超硬に限らず、サーメットからなるものや、部分安定化ジルコニアのようなファインセラミックからなるものとしても良い
更に、第1〜第4ガイドパッド6a〜6dの底部側を受け入れる前記工具本体2の凹部は、底面の幅が開口部の幅よりも広い底広凹溝としても良い。
加えて、前記工具本体2の先端面3に開口し且つ前記貫通孔7に連通する開口部は、3箇所以上としても良い。
The present invention is not limited to the embodiments and examples described above.
For example, the cutting blade is composed of five tips, and the central tip near the center C of the tip surface 3, the outer peripheral tip on the peripheral side, the intermediate tip located between them, and the outer peripheral side It may be configured such that it is composed of two intermediate tips which are located on the opposite side in the radial direction of the tips and approximately in the radial direction between the three tips.
Further, the cutting blades 5, 5a-5c and the first to fourth guide pads 6a-6d are not limited to the above-mentioned cemented carbide but may be made of cermet or fine ceramic such as partially stabilized zirconia. Furthermore, the recess of the tool body 2 for receiving the bottom side of the first to fourth guide pads 6a to 6d may be a wide bottom recessed groove having a bottom surface wider than the opening.
In addition, three or more openings may be provided in the distal end surface 3 of the tool body 2 and in communication with the through hole 7.

本発明によれば、深孔加工中に本先端工具やボーリングバーによる不安定な振動を格段に低減でき、且つ被加工材に形成される深孔の断面を真円形に確実に近似させられる深孔加工用先端工具を確実に提供できる。   According to the present invention, it is possible to remarkably reduce unstable vibration due to the tip tool and the boring bar during deep hole machining, and to make it possible to reliably approximate the cross section of the deep hole formed in the workpiece to a perfect circle. The tip tool for hole processing can be provided reliably.

1a,1b………深孔加工用先端工具
2…………………工具本体
3…………………先端面
5,5a〜5c…切刃
6a〜6d………ガイドパッド
7…………………貫通孔
8,9……………開口部
10………………ボーリングバー
C…………………回転中心
W…………………被加工材
θ1〜θ4………角度(位置)
1a, 1b ......... deep hole machining tool bit 2 ..................... tool body 3 ..................... tip surface 5,5A~5c ... cutting edge 6a~6d ......... guide pad 7 ... ............ Through hole 8, 9 開口 Opening 10 ボ ー リ ン グ Boring bar C ............... Center of rotation W ............... Workpiece θ1 θ4 ..... Angle (position)

Claims (4)

ボーリングバーの先端に取り付けられ、工具本体と被加工材における加工済みの深孔との隙間から供給した切削油を切削屑と共に前記工具本体およびボーリンクバーの内部を通過して後端側に排出する深孔加工用先端工具であって、
全体が円柱形状を呈する工具本体と、
上記工具本体の先端面に取り付けられた切刃と、
上記工具本体の先端面の周辺と該工具本体の円周面との間にわたって配置された第1〜第4ガイドパッドとを含み、
上記工具本体の先端面の回転中心から上記切刃の刃面を通過する仮想の径線の位置を0度とした際に、該切刃の切削力を受ける向きにおいて、90度±10度回転した位置に上記第1ガイドパッドを、180度±10度回転した位置に上記第2ガイドパッドを、220度±10度回転した位置に上記第3ガイドパッドを、270度±10度回転した位置に上記第4ガイドパッドを配置してなる、
ことを特徴とする深孔加工用先端工具。
The cutting oil attached to the tip of the boring bar and supplied from the gap between the tool body and the processed deep hole in the workpiece is discharged together with the chips through the inside of the tool body and bow link bar to the rear end side Tool for deep hole processing,
A tool body that exhibits a cylindrical shape as a whole;
A cutting blade attached to the end face of the tool body,
First to fourth guide pads disposed between the periphery of the tip surface of the tool body and the circumferential surface of the tool body,
When the position of an imaginary radial line passing through the blade surface of the cutting blade from the center of rotation of the tip surface of the tool body is 0 degree, the direction of receiving the cutting force of the cutting blade is rotated 90 degrees ± 10 degrees A position where the first guide pad is rotated 180 degrees ± 10 degrees, a second guide pad is rotated 220 degrees ± 10 degrees, a third guide pad is rotated 270 degrees ± 10 degrees The fourth guide pad is disposed on the
Tool for deep hole machining characterized by
前記第3ガイドパッドは、前記工具本体の先端面の回転中心から前記切刃の位置を0度とした際に、該切刃の切削力を受ける向きにおいて、221〜230度回転した位置に配置されている、
ことを特徴とする請求項1に記載の深孔加工用先端工具。
The third guide pad is disposed at a position rotated 221 to 230 degrees in a direction to receive the cutting force of the cutting edge when the position of the cutting edge is 0 degree from the rotation center of the tip surface of the tool main body Being
The deep hole processing tip tool according to claim 1, characterized in that:
前記工具本体の先端面には、前記切刃を除いた位置に、前記切削油および切削屑を排出するための貫通孔に連通する単数あるいは複数の開口部が位置している、
ことを特徴とする請求項1または2に記載の深孔加工用先端工具。
At the tip end face of the tool body, at a position excluding the cutting edge, one or more openings communicating with the through holes for discharging the cutting oil and cutting debris are located.
The deep hole processing tip tool according to claim 1 or 2, characterized in that
前記切刃は、前記工具本体の先端面の回転中心を含む中央側チップと、前記先端面の周辺から一部が外側に突出する外周側チップと、該外周側チップとは上記先端面の回転中心を挟んだ反対側の中間位置に配置され且つ上記各チップと前記径線に沿って直線状に配置された中間チップとから構成されている、
ことを特徴とする請求項1乃至3の何れか一項に記載の深孔加工用先端工具。
The cutting blade includes a central tip including the rotation center of the tip surface of the tool body, an outer circumferential tip partially protruding outward from the periphery of the tip surface, and the outer circumferential tip rotates the tip surface. It is arranged at the opposite middle position across the center, and is composed of the respective chips and the middle chips arranged linearly along the diameter line,
The deep hole processing tip tool according to any one of claims 1 to 3, characterized in that:
JP2015036561A 2015-02-26 2015-02-26 Deep Hole Drilling Tool Active JP6543956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036561A JP6543956B2 (en) 2015-02-26 2015-02-26 Deep Hole Drilling Tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036561A JP6543956B2 (en) 2015-02-26 2015-02-26 Deep Hole Drilling Tool

Publications (2)

Publication Number Publication Date
JP2016155209A JP2016155209A (en) 2016-09-01
JP6543956B2 true JP6543956B2 (en) 2019-07-17

Family

ID=56824678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036561A Active JP6543956B2 (en) 2015-02-26 2015-02-26 Deep Hole Drilling Tool

Country Status (1)

Country Link
JP (1) JP6543956B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835194B1 (en) * 2019-12-12 2021-02-24 株式会社タンガロイ Drilling tool
CN112743117A (en) * 2020-12-29 2021-05-04 西安现代深孔技术有限公司 Positioning push boring cutter used before deep hole machining
CN112743128B (en) * 2020-12-30 2022-01-18 浙江欣兴工具股份有限公司 Welded BTA deep hole bores

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553812U (en) * 1991-12-09 1993-07-20 日立精機株式会社 Deep hole processing tool
JPH08168911A (en) * 1994-12-16 1996-07-02 Sanyo Special Steel Co Ltd Balling throw-away head
JP3475895B2 (en) * 2000-03-09 2003-12-10 住友電気工業株式会社 Boring tools
JP2006224197A (en) * 2005-02-15 2006-08-31 Mitsubishi Materials Corp Cutting tool
JP4733435B2 (en) * 2005-06-06 2011-07-27 ユニタック株式会社 Deep hole drill head
JP5078731B2 (en) * 2008-04-25 2012-11-21 ユニタック株式会社 Throw away insert for deep hole cutting and drill head for deep hole cutting
JP5359066B2 (en) * 2008-07-01 2013-12-04 株式会社タンガロイ Drilling tool
JP4951788B2 (en) * 2008-12-26 2012-06-13 国立大学法人九州大学 Guide part arrangement structure and guide part arrangement method for tip tool for deep hole machining
JP5722194B2 (en) * 2011-11-11 2015-05-20 Dmg森精機株式会社 Chip suction tool

Also Published As

Publication number Publication date
JP2016155209A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5491505B2 (en) Milling and cutting tips therefor
WO2012157063A1 (en) Drill head for deep hole cutting
JP3299264B2 (en) Drilling tool
JP5078731B2 (en) Throw away insert for deep hole cutting and drill head for deep hole cutting
JP4965667B2 (en) drill
CN106687239A (en) Double-sided cutting insert and milling tool
JP4996698B2 (en) Drill insert
EP0841115A1 (en) Elongated drill with replaceable cutting inserts
JP6543956B2 (en) Deep Hole Drilling Tool
JP2012508654A (en) Cutting tool for drill
US11717894B2 (en) Indexable drill insert
JP5652540B2 (en) Guide pad, cutting tool body and cutting tool
JPWO2007097474A1 (en) Non-axisymmetric blade drill
JP2009255202A (en) Drill head for cutting deep hole
JP2005205593A (en) Ball nose end mill
JP2019063977A (en) Reamer
KR101959189B1 (en) Cutting inserts and cutting blades
WO2018123937A1 (en) Drill and method for producing machined workpiece using same
JP2007136563A (en) Insert type drill
JP6462364B2 (en) THROW-AWAY TYPE DRILL AND METHOD FOR MANUFACTURING CUTTING PRODUCT USING THE SAME
US7540696B1 (en) Spot drilling insert
JP2011194479A (en) Drill head for cutting deep hole
JP7242997B2 (en) End mill body of indexable end mill
JP5564958B2 (en) Replaceable cutting edge grooving tool and end face grooving method
JP2007130739A (en) Boring tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6543956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150