JP6540183B2 - 変形照明用アパーチャおよび露光装置 - Google Patents

変形照明用アパーチャおよび露光装置 Download PDF

Info

Publication number
JP6540183B2
JP6540183B2 JP2015083529A JP2015083529A JP6540183B2 JP 6540183 B2 JP6540183 B2 JP 6540183B2 JP 2015083529 A JP2015083529 A JP 2015083529A JP 2015083529 A JP2015083529 A JP 2015083529A JP 6540183 B2 JP6540183 B2 JP 6540183B2
Authority
JP
Japan
Prior art keywords
light
dots
pixel
pixels
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015083529A
Other languages
English (en)
Other versions
JP2016206234A (ja
Inventor
口 正 治 西
口 正 治 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2015083529A priority Critical patent/JP6540183B2/ja
Publication of JP2016206234A publication Critical patent/JP2016206234A/ja
Application granted granted Critical
Publication of JP6540183B2 publication Critical patent/JP6540183B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、変形照明用アパーチャ、およびこのような変形照明用アパーチャを備えた露光装置に関する。
半導体素子等の回路パターン形成には、一般にフォトリソグラフィ技術と呼ばれる工程が必要である。この工程には通常、フォトマスク(レチクルとも称する。以後、単にマスクと記す。)パターンを半導体ウェーハ等の被露光基板上に転写する方法が採用される。被露光基板上には感光性のフォトレジストが塗布されており、マスクパターンのパターン形状に応じて、フォトレジストに回路パターンが転写される。そして、投影露光装置では、マスク上に描画された転写すべき回路パターンの像が、投影光学系を介して被露光基板(ウェーハ)上に投影、露光される。
フォトリソグラフィ技術においては、投影露光装置で転写できる最小の寸法(解像度)は、露光に用いる光の波長に比例し、投影光学系の開口数(NA)に反比例するため、近年の半導体素子の微細化への要求に伴い、露光光の短波長化及び投影光学系の高NA化が進んでいるが、短波長化及び高NA化だけでこの要求を満足するには限界となっている。
そこで解像度を上げるために、プロセス定数k1(k1=解像線幅×投影光学系の開口数/露光光の波長)の値を小さくすることによって微細化を図る超解像技術が近年提案されている。このような超解像技術として、露光光学系の特性に応じてマスクパターンに補助パターンや線幅オフセットを与えてマスクパターンを最適化する方法、あるいは変形照明法(斜入射照明法、多重極照明法とも称する。)と呼ばれる方法等がある。変形照明法には、通常、瞳フィルタを用いた輪帯照明、二重極(二極、またはダイポールとも称する。)照明及び四重極(四極、またはクォードラポールとも称する。)照明等が用いられている。
従来の変形照明法においては、照明している箇所と遮光している箇所とのバイナリの照明を用いることが主流となっている。これに対して、より解像度を上げるためにグレートーンの照明を用いる技術の開発が進められている。例えば、グレートーンの照明を実現する手段としてマイクロミラーを用いた露光装置が知られている(例えば特許文献1参照)。
特表2010−535407号公報
しかしながら、マイクロミラーは、従来の露光装置にそのまま適用することができない。このため、新規にマイクロミラーを含む露光装置を導入する必要がある。しかしながら、このようなマイクロミラーを用いた露光装置は高価であるという問題がある。また、マイクロミラーを用いた露光装置には、機械的にマイクロミラーを動かす機構が設けられているため、故障が生じやすいという問題もある。
本発明はこのような点を考慮してなされたものであり、従来の露光装置に容易に適用することが可能な、変形照明用アパーチャおよび露光装置を提供することを目的とする。
本発明は、グレートーン照明光を形成する変形照明用アパーチャであって、透光性基板と、前記透光性基板上に平面方向に配置された複数のピクセルとを備え、各ピクセルにそれぞれ遮光性をもつ所望数のドットが配置され、前記所望数のドットによって各ピクセル毎の光の透過率が定められることを特徴とする変形照明用アパーチャである。
本発明は、前記複数のピクセルは、格子状に配置されていることを特徴とする変形照明用アパーチャである。
本発明は、各ピクセルに配置される前記ドットの数は、各ピクセルの前記光の透過率と、各ピクセルに設定された階調数とに基づいて定められていることを特徴とする変形照明用アパーチャである。
本発明は、前記階調数は、全てのピクセルについて一定値となっていることを特徴とする変形照明用アパーチャである。
本発明は、各ピクセルには、ベイヤー法、渦巻き法、又は網点法に従って前記所望数のドットが配置されていることを特徴とする変形照明用アパーチャである。
本発明は、各ドットは、それぞれ前記透光性基板上に形成された第1の遮光膜と、前記第1の遮光膜上に形成された第2の遮光膜とを有することを特徴とする変形照明用アパーチャである。
本発明は、前記変形照明用アパーチャを備えたことを特徴とする露光装置である。
本発明によれば、各ピクセルにそれぞれ遮光性をもつ所望数のドットが配置され、これら所望数のドットによって各ピクセル毎の光の透過率が定められている。このため、マイクロミラー等の機構を用いることないので、グレートーン照明光を形成する変形照明用アパーチャを、従来の露光装置に対して容易に適用することができる。
図1は、本発明の一実施の形態による露光装置を示す概略図。 図2は、本発明の一実施の形態による変形照明用アパーチャを示す断面図。 図3は、ベイヤー法に従ってピクセル内に所望数のドットを配置する場合におけるドットの配置順を示す図。 図4は、渦巻き法に従ってピクセル内に所望数のドットを配置する場合におけるドットの配置順を示す図。 図5は、網点法に従ってピクセル内に所望数のドットを配置する場合におけるドットの配置順を示す図。 図6(a)〜(e)は、本発明の一実施の形態による変形照明用アパーチャの製造方法を示す断面図。
以下、本発明の一実施の形態について、図1乃至図6を参照して説明する。なお、以下の各図において、同一部分には同一の符号を付しており、一部詳細な説明を省略する場合がある。
露光装置の構成
まず、図1により、本実施の形態による露光装置の概略について説明する。図1は、本実施の形態による露光装置を示す概略図である。
図1に示すように、露光装置10は、露光光の光路に沿って順次配列された、光源11と、リレー光学系12と、フライアイレンズ13と、変形照明用アパーチャ20と、コンデンサー光学系14と、投影光学系16とを備えている。また、コンデンサー光学系14と投影光学系16との間には、フォトマスク15が配置されている。また、符号17は、投影光学系16に設けられた開口絞りである。
このうち光源11は、露光光(照明光)を供給するものである。光源11としては、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。
リレー光学系12は、フライアイレンズ13の入射面に、例えば光軸を中心とした所定形状の光強度分布を形成する。光源11から射出された光は、リレー光学系12を介して、フライアイレンズ13に入射する。
フライアイレンズ13は、リレー光学系12からの光を均一に集光して照度むらをなくすためのものである。フライアイレンズ13は、たとえば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であり、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。
フライアイレンズ13に入射した光束は、多数の微小レンズにより二次元的に分割され、その後側焦点面またはその近傍の照明瞳には、入射光束によって形成される照野とほぼ同じ光強度分布を有する二次光源が形成される。フライアイレンズ13の後側焦点面またはその近傍に形成された二次光源からの光束は、その近傍に配置された変形照明用アパーチャ(開口絞り)20に入射する。
変形照明用アパーチャ20は、グレートーン照明光を形成するものであり、後述するように平面方向に配置された複数のピクセル25を備えている。変形照明用アパーチャ20は、投影光学系16の結像瞳面(開口絞り17)と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。なお、変形照明用アパーチャ20の詳細な構成については後述する。
変形照明用アパーチャ20により制限された二次光源からの光は、コンデンサー光学系14を介して、フォトマスク15を重畳的に照明する。
このフォトマスク15には転写すべきパターンが形成されている。また、ウェハ(感光性基板)Wは、図示しないウェハステージ上に保持されており、ウェハW上には、転写されるレジスト膜が形成されている。フォトマスク15のパターン領域を透過した光は、投影光学系16を介して、ウェハWに到達し、ウェハW上にマスクパターンの像を形成する。
こうして、いわゆるステップ・アンド・スキャン方式にしたがって、投影光学系16の光軸と直交する平面内において、走査方向に沿ってフォトマスク15とウェハWとを同期的に移動(走査)させることにより、所望のマスクパターンが走査露光される。
なお、上述した露光装置10において、変形照明用アパーチャ20以外の要素は、従来の露光装置10の要素をそのまま用いることができる。
変形照明用アパーチャの構成
次に、図2により、本実施の形態による変形照明用アパーチャについて説明する。図2は、本実施の形態による変形照明用アパーチャを示す断面図である。
図2に示すように、変形照明用アパーチャ20は、平板状の透光性基板21と、透光性基板21上に平面方向に沿って配置された複数のピクセル25とを備えている。
このうち透光性基板21は、例えば合成石英(SiO)等の透明な材料からなっている。透光性基板21の厚みは、例えば2.0mm〜10.0mmとしても良い。
また、各ピクセル25にそれぞれ遮光性をもつ所望数のドット22が配置され、この所望数のドット22によって各ピクセル25毎の光の透過率が定められている。各ピクセル25の光の透過率は、0%〜100%のいずれかであり、ピクセル25毎にそれぞれ独立した一の値に設定されている。
各ピクセル25には、それぞれ階調数が設定されている。階調数は、各ピクセル25に収容可能なドット22の数の上限であり、例えば16(4×4マス)〜1024(32×32マス)としても良い。具体的には、階調数が256の場合、各ピクセル25に含まれるドット22の数(上記所望数)は、0〜256のいずれかの値(自然数)となる。また、各ピクセル25に配置されるドット22の数は、各ピクセル25の光の透過率と、当該ピクセル25に設定された階調数とに基づいて定められる。例えば、あるピクセル25の階調数が256であり、当該ピクセル25に設定された光の透過率が50%である場合、このピクセル25に配置されるドット22の数は、256×50%=128個となる。
なお、階調数は、全てのピクセル25について一定値とすることが好ましい。この場合、後述するようにグレートーン照明情報を用いてピクセル25に対してドット22を配置する作業を容易に実行することができる。
このように各ピクセル25に含まれるドット22の数によって階調数が設定されている。このため、ドット22の数や大きさを適宜調整することによって階調数を増加することができ、光の透過率を0%〜100%の間で自在に設定することが可能となる。
この場合、各ピクセル25は互いに同一の平面矩形形状(正方形形状)をもち、例えば平面格子状に配置されている。すなわちピクセル25は、変形照明用アパーチャ20を面内で等形状に分割したものである。この場合、変形照明用アパーチャ20に含まれるピクセル25の数は、例えば500個〜50000個としても良い。また各ピクセル25の一辺の長さは、例えば3μm〜400μmとしても良い。一般に、フォトマスク15から得られるグレートーン照明情報(後述)は格子状のピクセルで与えられる。このため、複数のピクセル25を格子状に配置することにより、グレートーン照明情報からドット22の配置関係へ変換する作業を容易に行うことができる。なお、複数のピクセル25は、格子状の配置に限らず、極座標によって規定された区画に基づいて配置されても良い。
各ピクセル25内に配置された複数のドット22は、互いに同一の平面矩形形状をもち、各ピクセル25内で平面格子状に配置されている。なお各ドット22の一辺の長さは、例えば0.2μm〜20μmとしても良い。
図2に示すように、各ドット22は、それぞれ透光性基板21上に形成された第1の遮光膜23と、第1の遮光膜23上に形成された第2の遮光膜24とを有している。第1の遮光膜23は、例えばクロム(Cr)、タンタル(Ta)等の金属元素の薄膜からなる。また第2の遮光膜24は、反射防止用に設けられており、第1の遮光膜23とは異なる材料からなる。この第2の遮光膜24は、第1の遮光膜23より薄肉の、例えば酸化クロム、酸化タンタル等、上記金属元素の窒化物、酸化物、または酸化窒化物からなっていても良い。なお、複数のドット22の厚み(第1の遮光膜23と第2の遮光膜24との合計厚み)は全て互いに同一であり、例えば0.010μm〜0.5μmである。
このように本実施の形態によれば、変形照明用アパーチャ20は、透光性基板21と、透光性基板21上に平面方向に配置された複数のピクセル25とを備え、各ピクセル25に配置されたドット22によってグレートーン照明を実現している。すなわちドット22が全く設けられていないピクセル25は光を透過させる透過部となり、ドット22によって完全に覆われているピクセル25は光を遮光する遮光部となる。さらに、ドット22によって一部が覆われているピクセル25は、光の一部を低減させて透過させるグレートーン部となる。
変形照明用アパーチャの作製方法
次に、このような変形照明用アパーチャ20を作製する方法について説明する。
まず、グレートーン照明情報を得る。このグレートーン照明情報は、各変形照明用アパーチャ20に対して要求される透過光の分布に関する情報である。具体的には、グレートーン照明情報は、フォトマスク15の形状に基づいて、計算によって算出することができる。すなわち、グレートーン照明情報は、フォトマスク15毎に固有の情報となる。
次に、グレートーン照明情報に基づき、各ピクセル25のドット22の数をピクセル25毎に設定する。グレートーン照明情報には、各ピクセル25に求められる透過率(0%〜100%)の情報が含まれている。また、各ピクセル25の階調数は、ピクセル25およびドット22の大きさや数等に基づいて、適宜設定することができる。なお、上述したように、階調数は全てのピクセル25について一定値とすることが好ましい。この場合、各ピクセル25に含まれるドット22の数は、例えば各ピクセル25の光の透過率と、各ピクセル25の階調数とを乗じることによって求められる。
なお、グレートーン照明情報に基づいて計算によって算出したピクセル25の透過率が、実際に作製される変形照明用アパーチャ20のピクセル25の透過率と若干相違することも考えられる。例えば実際のピクセル25の透過率は、当該ピクセル25の周辺のピクセル25の透過率(明暗)によって影響を受けることも考えられる。このため、予め経験則に基づいて作成しておいた補正式に基づき、周辺ピクセル25の透過率(明暗)に応じて当該ピクセル25の透過率を補正するようにしても良い。
このようにして、各ピクセル25に配置するドット22の数を決定した後、それぞれのピクセル25について、所定の規則に従ってドット22を配置する。この場合、以下に説明するように、例えばベイヤー法、渦巻き法、又は網点法等のディザリング法に基づいて各ピクセル25にドット22を配置しても良い。
図3は、各ピクセル25の階調数が16(4×4マス)である場合に、ベイヤー法に従って、ピクセル25内に所望数のドット22を配置する方法を示している。ここでベイヤー法とは、たすき型の順序に従ってピクセル25内でドット22を配置する手法である(ドット分散型)。図3において、ドット22は、ピクセル25に含まれる16マス内で1番のマス(透過率0%)から16番のマス(透過率100%)まで順番に配置される。例えば、ピクセル25の光の透過率が50%である場合、ドット22は、1番のマスから8番のマスまで配置される(図3の斜線部参照)。これにより、当該ピクセル25の50%の領域が遮光される。なお、上記と逆に、16番のマス(透過率0%)から1番のマス(透過率100%)まで順番にドット22が配置されるようにしても良い。このようにベイヤー法を用いることにより、各ピクセル25内にドット22を均一に配置することができ、光の透過率を各ピクセル25の内部で略均一にすることができる。
図4は、図3と同様に、渦巻き法に従って、各ピクセル25内に所望数のドット22を配置する方法を示している。ここで渦巻き法は、ピクセル25の中心部分から渦巻き状になるように、ドット22を手法である(ドット集中型)。例えば、ピクセル25の光の透過率が50%である場合、ドット22は、1番のマスから8番のマスまで配置される(図4の斜線部参照)。このように渦巻き法を用いることにより、各ピクセル25の中心部分(又は周縁部分)に集中的にドット22を配置することができ、各ピクセル25の中心部分(又は周縁部分)における光の透過率を高めることができる。
図5は、図3と同様に、網点法に従って、各ピクセル25内に所望数のドット22を配置する方法を示している。網点法は、ベイヤー法と類似するが、ドット22同士が隣接する箇所が多くなるため、ベイヤー法と比較してドット22が固まって存在する部分が多くなる(ドット分散型とドット集中型の中間)。例えば、ピクセル25の光の透過率が50%である場合、ドット22は、1番のマスから8番のマスまで配置される(図5の斜線部参照)。このように網点法を用いることにより、各ピクセル25の中心部分(又は周縁部分)における光の透過率を高めることができる一方、渦巻き法を用いる場合と比較して、光の透過率は各ピクセル25の内部で相対的に均一にすることができる。
このような作業を全てのピクセル25に対して行うことにより、全てのピクセル25におけるドット22の配置パターンが決定する。続いて、このようにして決定された全てのピクセル25内のドット22のパターンに基づき、変形照明用アパーチャ20を作製する。
続いて、図6(a)〜(e)を参照して変形照明用アパーチャ20の製造方法について説明する。
この場合、まず透光性基板21を準備し、透光性基板21上に、第1の遮光膜23を構成する第1の金属層(例えばクロム層)23aと、第2の遮光膜24を構成する第2の金属層(例えば酸化クロム層)24aとを順次成膜する(図6(a))。
次に、透光性基板21の第2の金属層24a上にレジスト31を塗布する(図6(b))。次いで、例えば電子線描画法によりマスク描画を行う。このとき、レジスト31のうち、ドット22が不要な領域に対応する部分が除去される(図6(c))。
次に、レジスト31を耐腐蝕膜として第1の金属層23aおよび第2の金属層24aに対してドライエッチングを行う。これにより、ドット22が不要な領域に対応する第1の金属層23aおよび第2の金属層24aの一部分がそれぞれ除去される。このようにして、それぞれ第1の遮光膜23と第2の遮光膜24とを有する複数のドット22が形成される(図6(d))。
その後、ドット22上のレジストを除去することにより、上述した変形照明用アパーチャ20が得られる(図6(e))。
このように本実施の形態においては、変形照明用アパーチャ20を製造する際、複数のドットで多階調の透過率を実現でき、例えば、遮光膜や半透明膜の材料の厚みを変えて多階調の透過率を実現することにより、格段に製造プロセスが容易となる。これにより、変形照明用アパーチャ20の製造コストを低減でき、実現できる階層数も格段に多くすることができる。
本実施の形態の作用
次に、このような構成からなる本実施の形態の作用について説明する。
まず図1に示すように、露光装置10の光源11から露光光が照射される。この露光光はリレー光学系12を通過してフライアイレンズ13に入射する。続いて、フライアイレンズ13を通過した光は、変形照明用アパーチャ20により絞りが入れられ、コンデンサー光学系14で集光される。この間、フライアイレンズ13からの光は、変形照明用アパーチャ20によって強度分布が所望の形状に整えられる。
その後、コンデンサー光学系14を通過した光は、所望の転写パターンが形成されたフォトマスク15および投影光学系16を順次通過して、フォトマスク15の転写パターンをウェハWに投影される。
本実施の形態において、変形照明用アパーチャ20の各ピクセル25の光の透過率は、フォトマスク15の転写パターンに応じて適切に調整されている。このため、変形照明用アパーチャ20を通過した光の強度分布は、フォトマスク15に対して最適化されている。これにより、フォトマスク15を介してウェハWを露光した際、ウェハW上で良好な解像特性を得ることができる。
とりわけ、本実施の形態による変形照明用アパーチャ20によれば、透光性基板21上に平面方向に配置された複数のピクセル25のそれぞれに遮光性をもつ所望数のドット22が配置され、これら所望数のドット22によって各ピクセル25毎の光の透過率が定められている。すなわち、印刷の網点技術を利用して、ドット22の数によってピクセル25に濃淡を付与し、グレートーン照明を実現している。このため、例えば階層マスク(複数の階層を有し、階層数によって光透過率を異ならせたマスク)と比較して、変形照明用アパーチャ20の設計や製作を容易なものとすることができる。
また、本実施の形態による変形照明用アパーチャ20は、従来の露光装置10内でそのまま用いることができる。このため、新規に露光装置を導入する必要がなく、露光装置を準備するコストを抑えることができる。また、本実施の形態による露光装置10によれば、マイクロミラーを含む露光装置と比較して、グレートーン照明光を形成するためにマイクロミラーを動かす機構等、機械動作部を設ける必要がない。このため、露光装置10の故障リスクを低減することができる。
なお、上記において、変形照明用アパーチャ20は、露光装置10において用いられる場合を例にとって説明した。しかしながら、これに限らず、変形照明用アパーチャ20は、例えば転写シミュレーション装置において用いられても良い。
10 露光装置
11 光源
12 リレー光学系
13 フライアイレンズ
14 コンデンサー光学系
15 フォトマスク
16 投影光学系
20 変形照明用アパーチャ
21 透光性基板
22 ドット
23 第1の遮光膜
24 第2の遮光膜
25 ピクセル

Claims (5)

  1. 露光光の光路に沿って順次配列された、光源と、リレー光学系と、フライアイレンズと、グレートーン照明光を形成する変形照明用アパーチャと、コンデンサー光学系と、転写すべきパターンが形成されたフォトマスクと、投影光学系とを備え、
    前記変形照明用アパーチャは、
    透光性基板と、
    前記透光性基板上に平面方向に配置された複数のピクセルとを備え、
    前記複数のピクセルにそれぞれ遮光性をもつ所望数のドットが配置され、前記所望数のドットによって前記ピクセル毎の光の透過率がそれぞれ定められ
    前記複数のピクセルにはそれぞれ、ベイヤー法、渦巻き法、又は網点法に従って前記所望数のドットが配置されていることを特徴とする露光装置
  2. 前記複数のピクセルは、格子状に配置されていることを特徴とする請求項1記載の露光装置
  3. 前記複数のピクセルにそれぞれ配置される前記ドットの数は、前記複数のピクセルそれぞれの前記光の透過率と、前記複数のピクセルにそれぞれ設定された階調数とに基づいて定められていることを特徴とする請求項1又は2記載の露光装置
  4. 前記階調数は、前記複数のピクセルの全てについて一定値となっていることを特徴とする請求項3記載の露光装置
  5. 前記所望数のドットは、それぞれ前記透光性基板上に形成された第1の遮光膜と、前記第1の遮光膜上に形成された第2の遮光膜とを有することを特徴とする請求項1乃至のいずれか一項記載の露光装置
JP2015083529A 2015-04-15 2015-04-15 変形照明用アパーチャおよび露光装置 Active JP6540183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015083529A JP6540183B2 (ja) 2015-04-15 2015-04-15 変形照明用アパーチャおよび露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015083529A JP6540183B2 (ja) 2015-04-15 2015-04-15 変形照明用アパーチャおよび露光装置

Publications (2)

Publication Number Publication Date
JP2016206234A JP2016206234A (ja) 2016-12-08
JP6540183B2 true JP6540183B2 (ja) 2019-07-10

Family

ID=57487616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015083529A Active JP6540183B2 (ja) 2015-04-15 2015-04-15 変形照明用アパーチャおよび露光装置

Country Status (1)

Country Link
JP (1) JP6540183B2 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499592B2 (ja) * 1994-01-31 2004-02-23 株式会社ルネサステクノロジ 投影露光装置及びパターン転写方法
JPH11218899A (ja) * 1998-01-29 1999-08-10 Sony Corp マスクパターンの補正方法およびその装置
US6480263B1 (en) * 1998-10-22 2002-11-12 Asml Netherlands B.V. Apparatus and method for phase shift photomasking
JP2002141268A (ja) * 2000-11-01 2002-05-17 Hitachi Ltd 電子デバイス及び半導体集積回路装置の製造方法
JP2003322952A (ja) * 2002-04-30 2003-11-14 Mitsubishi Electric Corp 高透過率型ハーフトーン位相シフトマスクおよび半導体装置の製造方法
US20040197672A1 (en) * 2003-04-01 2004-10-07 Numerical Technologies, Inc. Programmable aperture for lithographic imaging systems
JP2008185970A (ja) * 2007-01-31 2008-08-14 Renesas Technology Corp パターンの形成方法、電子デバイスの製造方法および電子デバイス
US8399177B2 (en) * 2008-12-08 2013-03-19 Eastman Kodak Company Enhanced relief printing plate
JP5402316B2 (ja) * 2009-06-26 2014-01-29 富士ゼロックス株式会社 フォトマスク、及び光学素子の製造方法
JP2012003152A (ja) * 2010-06-18 2012-01-05 Hoya Corp 多階調フォトマスク、多階調フォトマスク用ブランク及びパターン転写方法
JP2014071249A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 遮光マスクの製造方法および遮光マスク、減光フィルタの製造方法および減光フィルタ、並びにその遮光マスクの製造方法において実施される描画方法

Also Published As

Publication number Publication date
JP2016206234A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
US6791667B2 (en) Illumination device for projection system and method for fabricating
US6004699A (en) Photomask used for projection exposure with phase shifted auxiliary pattern
US20010036604A1 (en) Multiple exposure method
CN107783367B (zh) 相位移光掩模
US20090053622A1 (en) Fine mask and method of forming mask pattern using the same
KR20120038801A (ko) 위상 시프터 패턴이 형성된 공간 필터를 구비하는 마스크리스 노광장치 및 노광방법
JP3987246B2 (ja) 露光用マスク及び半導体装置の製造方法
JP4535260B2 (ja) 照明光学装置、露光装置、および露光方法
US7242457B2 (en) Exposure apparatus and exposure method, and device manufacturing method using the same
JP5541604B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
US20070148558A1 (en) Double metal collimated photo masks, diffraction gratings, optics system, and method related thereto
US20050175907A1 (en) Photo mask including scattering bars and method of manufacturing the same
JP2004055856A (ja) 照明装置、それを用いた露光装置及びデバイス製造方法
JP6540183B2 (ja) 変形照明用アパーチャおよび露光装置
JP2014102292A (ja) フォトマスク、分割露光方法、および半導体デバイスの製造方法
JP5182588B2 (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
US5733687A (en) Photomask, exposing method using photomask, and manufacturing method of photomask
JPH10275769A (ja) 露光方法
JP5201061B2 (ja) 補正フィルター、照明光学系、露光装置、およびデバイス製造方法
KR100434954B1 (ko) 반도체 소자의 노광 방법
JP2000021763A (ja) 露光方法及び露光装置
JP2010040617A (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP2010067943A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2003322952A (ja) 高透過率型ハーフトーン位相シフトマスクおよび半導体装置の製造方法
JP5187636B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150