JP6538379B2 - Piezoelectric device and method of manufacturing the same - Google Patents
Piezoelectric device and method of manufacturing the same Download PDFInfo
- Publication number
- JP6538379B2 JP6538379B2 JP2015050253A JP2015050253A JP6538379B2 JP 6538379 B2 JP6538379 B2 JP 6538379B2 JP 2015050253 A JP2015050253 A JP 2015050253A JP 2015050253 A JP2015050253 A JP 2015050253A JP 6538379 B2 JP6538379 B2 JP 6538379B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ceiling plate
- piezoelectric substrate
- wall layer
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 42
- 239000000758 substrate Substances 0.000 claims description 149
- 229910000679 solder Inorganic materials 0.000 claims description 111
- 239000002184 metal Substances 0.000 claims description 103
- 229910052751 metal Inorganic materials 0.000 claims description 103
- 238000007747 plating Methods 0.000 claims description 76
- 238000000034 method Methods 0.000 claims description 58
- 230000002265 prevention Effects 0.000 claims description 47
- 230000004888 barrier function Effects 0.000 claims description 28
- 229920006015 heat resistant resin Polymers 0.000 claims description 22
- 244000126211 Hericium coralloides Species 0.000 claims description 16
- 238000007789 sealing Methods 0.000 claims description 14
- 239000011256 inorganic filler Substances 0.000 claims description 12
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 12
- 238000000059 patterning Methods 0.000 claims description 10
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 134
- 230000008569 process Effects 0.000 description 39
- 229920005989 resin Polymers 0.000 description 37
- 239000011347 resin Substances 0.000 description 37
- 239000010949 copper Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 18
- 239000000945 filler Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- 235000012431 wafers Nutrition 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- 239000010931 gold Substances 0.000 description 15
- 229920001721 polyimide Polymers 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010445 mica Substances 0.000 description 9
- 229910052618 mica group Inorganic materials 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 238000005476 soldering Methods 0.000 description 7
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 239000009719 polyimide resin Substances 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005422 blasting Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/058—Holders; Supports for surface acoustic wave devices
- H03H9/059—Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02992—Details of bus bars, contact pads or other electrical connections for finger electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/10—Mounting in enclosures
- H03H9/1064—Mounting in enclosures for surface acoustic wave [SAW] devices
- H03H9/1071—Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
- H10N30/067—Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/875—Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
本発明は、圧電デバイスに係り、特に携帯電話機等の高密度実装機器に好適なSAW(弾性表面波)デバイスや発振器などの圧電デバイスとその製造方法に関する。 The present invention relates to a piezoelectric device, and more particularly to a piezoelectric device such as a surface acoustic wave (SAW) device or an oscillator suitable for high-density mounting equipment such as a cellular phone and a method of manufacturing the same.
この種の圧電デバイスの構造についてSAWデバイスを例として説明する。SAWデバイスでは、そのパッケージに圧電効果により電極が振動する作動空間(中空部、あるいはキャビティとも称する)を確保する必要がある。SAWデバイスでは、その櫛歯電極部(IDT電極部)の周囲に所定のキャビティを確保することが不可欠である。なお、水晶片等を用いた振動子や発振器などの圧電デバイスも同様に、その水晶片の作動空間を確保する必要がある。以下では、SAWデバイスを例として説明するが、水晶振動子やMEMS共振器等の他の圧電デバイスにも本発明は適用できるものである。 The structure of this type of piezoelectric device will be described by taking a SAW device as an example. In the SAW device, it is necessary to secure in the package an operation space (also referred to as a hollow portion or a cavity) in which the electrode vibrates by the piezoelectric effect. In the SAW device, it is essential to secure a predetermined cavity around the comb electrode portion (IDT electrode portion). In addition, it is necessary to secure the working space of the crystal piece similarly for a piezoelectric device such as a vibrator or an oscillator using the crystal piece or the like. In the following, although a SAW device is described as an example, the present invention can be applied to other piezoelectric devices such as a quartz oscillator and a MEMS resonator.
従来のSAWデバイスでは、その小型化・低背化を図るため、SAW素子チップを金(Au)バンプあるいは半田バンプを用いて配線基板にフリップチップ・ボンディング(フェースダウン・ボンディング)し、樹脂等でSAW素子チップ全体を封止して、SAWデバイスの小型パッケージ・デバイスを構成している。 Conventional SAW devices are flip chip bonded (face-down bonding) to the wiring substrate using gold (Au) bumps or solder bumps to make the size and height of the SAW device smaller, and resin, etc. The entire SAW element chip is sealed to constitute a small package device of the SAW device.
さらに、SAWデバイスでは、主作動部である櫛歯電極部の周囲に所定の中空部を形成し、この中空部を保持したまま、櫛歯電極側の集合圧電基板(複数のチップを形成したウェハ)全体を樹脂で封止し、外部接続電極を形成した後、ダイシングにより個々のSAWデバイスに分割してなる超小型化されたチップサイズ・パッケージ SAWデバイスが提案されている。 Furthermore, in the SAW device, a predetermined hollow portion is formed around the comb-tooth electrode portion which is a main operation portion, and while holding the hollow portion, a collective piezoelectric substrate on the comb-tooth electrode side (a wafer on which a plurality of chips are formed) A microminiaturized chip-sized package SAW device is proposed in which the whole is sealed with a resin and an external connection electrode is formed and then divided into individual SAW devices by dicing.
例えば、特許文献1に記載されているSAWデバイスでは、櫛歯電極が形成されているSAWチップ(圧電基板)の上面に感光性樹脂からなる空隙(中空部)形 成層(外囲壁)を形成し、この空隙形成層の上に封止層(天井部)を積層して封止し、櫛歯電極の周囲に空隙(中空部)を形成している。 For example, in the SAW device described in Patent Document 1, a void (hollow portion) forming layer (outer wall) made of photosensitive resin is formed on the upper surface of a SAW chip (piezoelectric substrate) on which a comb electrode is formed. A sealing layer (ceiling part) is laminated and sealed on the void forming layer, and a void (hollow part) is formed around the comb electrode.
また、特許文献2に記載されているSAWデバイスでは、櫛歯電極が形成されているSAWチップ(圧電基板)に対面して貫通電極を有するカバーを、金属接合部を介して接合して封止し、SAWチップとカバーの間に櫛歯電極を収容する中空部を形成している。 Further, in the SAW device described in Patent Document 2, a cover having a through electrode facing the SAW chip (piezoelectric substrate) on which a comb electrode is formed is joined and sealed via a metal bonding portion. And a hollow portion for accommodating the comb electrode between the SAW chip and the cover.
さらに、特許文献3に記載されているSAWデバイスでは、圧電基板の表面に設けた主作動層部であるSAW素子と、このSAW素子上に中空部を有する第1樹脂部と、この第1樹脂部の上に第2樹脂部を設け、この第2樹脂部にシリカフィラーを添加して、第2樹脂部(天井部)の弾性率を大きくして、撓み難く機械的強度を向上させている。また、特許文献4では、SAW素子を収納した中空部を封止する天井層にフィラーとして無機材料であるマイカを混入した樹脂板を用いている。 Furthermore, in the SAW device described in Patent Document 3, a SAW element which is a main operation layer portion provided on the surface of a piezoelectric substrate, a first resin portion having a hollow portion on the SAW element, and the first resin A second resin part is provided on the second part, and a silica filler is added to the second resin part to increase the elastic modulus of the second resin part (ceiling part), thereby making it difficult to bend and improve the mechanical strength. . Moreover, in patent document 4, the resin board which mixed mica which is an inorganic material as a filler is used for the ceiling layer which seals the hollow part which accommodated the SAW element.
図35は、ウエハレベルチップスケール(サイズ)パッケージ型のSAWデバイスの構造例を説明する断面図である。また、図36は、図35に示すSAWデバイスを実装基板に表面実装した状態の説明図である。圧電基板1の主面に櫛歯電極2が形成され、この櫛歯電極2のまわりを樹脂からなる外囲壁層6が包囲して中空部(チャンバー)を形成している。中空部の開口は天井板7で覆って封止されている。 FIG. 35 is a cross-sectional view for explaining a structural example of a wafer level chip scale (size) package type SAW device. FIG. 36 is an explanatory view of a state in which the SAW device shown in FIG. 35 is surface mounted on a mounting substrate. A comb electrode 2 is formed on the main surface of the piezoelectric substrate 1, and an outer wall layer 6 made of a resin is surrounded around the comb electrode 2 to form a hollow portion (chamber). The opening of the hollow portion is covered and sealed by a ceiling plate 7.
外囲壁層6には複数の開口が設けられ、この開口にメッキ処理で電極柱4が形成されている。この電極柱4の根元は櫛歯電極2の引き出し配線3と電気的に接続している。電極柱4の頂部には実装端子(半田ボール、または半田バンプ等)5が形成されている。実装端子5はその頂部が中空部を形成する天井板7よりも高くなるように設けられている。 The outer wall layer 6 is provided with a plurality of openings, and electrode posts 4 are formed in the openings by plating. The roots of the electrode columns 4 are electrically connected to the lead wires 3 of the comb electrode 2. A mounting terminal (solder ball or solder bump or the like) 5 is formed on the top of the electrode column 4. The mounting terminals 5 are provided such that the tops thereof are higher than the ceiling plate 7 forming the hollow portion.
実装端子5は、Cuの電解メッキと、Au/Niの無電解メッキを施すことで形成した電極柱4の上にハンダバンプを印刷して形成される。図35に示したSAWデバイスの実装基板への実装は、図36に示したように、実装端子5を用いて行われる。実装基板8に設けられている配線パターンの端子パッドに実装端子5を接続して実装が行われる。このように、実装端子5の形成には複数の工程を必要とする。 The mounting terminals 5 are formed by printing solder bumps on the electrode columns 4 formed by electrolytic plating of Cu and electroless plating of Au / Ni. The mounting of the SAW device on the mounting substrate shown in FIG. 35 is carried out using the mounting terminals 5 as shown in FIG. The mounting terminal 5 is connected to the terminal pad of the wiring pattern provided on the mounting substrate 8 for mounting. Thus, formation of the mounting terminal 5 requires a plurality of steps.
図37は、櫛歯電極を収納する中空部を封止する天井板の問題点を説明する要部平面図である。図37の(a)は複数のSAWデバイスを形成した水晶ウェハを覆って耐熱性樹脂板材7’を貼り付けた状態を示す。符号26は最終工程で個片に分離するための切断線(カットライン)を示す。図37の(b)は図37の(a)の一個のSAWデバイス相当分の拡大図である。耐熱性樹脂板材7’には感光性結着剤が混入されている。耐熱性樹脂板材7’としては、低発ガス性であるポリイミド系の熱硬化性樹脂板材が好適であるが、他の同様の特性を有する耐熱性樹脂材を用いることもできる。 FIG. 37 is a plan view of relevant parts for explaining problems in the ceiling plate for sealing the hollow portion for housing the comb-tooth electrode. FIG. 37 (a) shows a state in which a heat resistant resin plate 7 'is attached to cover a quartz wafer on which a plurality of SAW devices are formed. Reference numeral 26 denotes a cut line for separating into pieces in the final step. FIG. 37 (b) is an enlarged view of one SAW device corresponding to FIG. 37 (a). A photosensitive binder is mixed in the heat resistant resin plate 7 '. As the heat-resistant resin plate 7 ', a polyimide-based thermosetting resin plate having low gas property is suitable, but a heat-resistant resin material having other similar characteristics can also be used.
図37の(a)の耐熱性樹脂板材7’には、撓みが少なく、櫛歯を収容する中空部を保持するための機械的強度を向上させるために、フィラーとして光透過性のマイカを適宜の量混入してある。ウェハを覆って貼り付けた耐熱性樹脂板材7’の上部に露光マスクを設置し、紫外線を好適とする化学線を照射し、現像するホトリソ工程を用いた技法で、図37の(b)に示したように、電極柱4(図36参照)を設けるための開口4’を形成する。 In the heat-resistant resin plate material 7 'of FIG. 37 (a), light-transmissive mica is suitably used as a filler in order to improve the mechanical strength for holding the hollow portion accommodating the comb teeth with little deflection. The amount of is mixed. An exposure mask is placed on the top of the heat-resistant resin plate material 7 ′ attached to cover the wafer, and a technique using a photolithographic process of irradiating with actinic radiation suitable for ultraviolet light and developing is performed, as shown in FIG. As shown, an opening 4 'for providing an electrode post 4 (see FIG. 36) is formed.
しかし、上記のホトリソ工程では、樹脂板に混入したフィラーの不均な形状や一様でない分布によって光透過量にムラが生じ、露光マスクの開口パターンが正確に転写されず、また開口壁からフィラーの残渣が突出して、図24の(b)のような不定形なエッジを持つ開口となる場合がある。そのような場合、電極柱やメッキパターンが正確に形成されなくなる。 However, in the photolithography process described above, unevenness in the light transmission amount occurs due to the uneven shape and uneven distribution of the filler mixed in the resin plate, the opening pattern of the exposure mask is not accurately transferred, and the filler from the opening wall The residue of H may protrude to form an opening having an irregular edge as shown in FIG. 24 (b). In such a case, the electrode pillars and the plating pattern can not be formed correctly.
図38は、電子部品を基板内に実装する基板内蔵部品の製造プロセスの一例を説明する工程図である。携帯端末などの電子機器の小型化・薄型化の要求に対し、実装基板の内部に電子部品を埋め込んで一体化する手法が開発されている。図38において、電子部品を埋設して実装する部品埋蔵基板20には埋蔵するための凹部を形成してある(a)。この凹部に部品端子22を凹部の開放端に向けた姿勢で電子部品21を収容する(図b)。そして、凹部に樹脂23を流し込んで電子部品21を埋め込む(c)。部品端子22の位置に、当該部品端子22に達する開口24を開ける(d)。開口24に電気Cuメッキを施こすことで電極柱25とする(e)。 FIG. 38 is a process diagram for explaining an example of a manufacturing process of a substrate built-in component for mounting an electronic component in a substrate. In response to the demand for downsizing and thinning of electronic devices such as portable terminals, a method has been developed in which electronic components are embedded and integrated in a mounting substrate. In FIG. 38, a recessed portion for embedding is formed in the component embedded substrate 20 in which the electronic component is embedded and mounted (a). The electronic component 21 is accommodated in the recess with the component terminal 22 directed to the open end of the recess (FIG. B). Then, the resin 23 is poured into the recess to embed the electronic component 21 (c). An opening 24 reaching the component terminal 22 is opened at the position of the component terminal 22 (d). Electrodes 25 are formed by applying electric Cu plating to the openings 24 (e).
この方式では、電気Cuメッキで部品の実装端子との接続をとるが、ハンダとの相性が悪いため、ハンダバンプを用いることができない。また、現状の構造では実装端子の配置を変更することは困難であるので、部品内蔵部品として用いるには適しない。 In this method, the connection with the mounting terminal of the component is made by Cu electroplating, but since the compatibility with the solder is poor, the solder bump can not be used. In addition, since it is difficult to change the arrangement of the mounting terminals in the current structure, it is not suitable for use as a component built-in component.
前記したように、図35で説明した構造の実装端子は、その形成工程数が多く、コスト高となる。また、図37で説明したように、天井板としてフィラーを混入した樹脂板を用い、ホトリソ工程で部品端子用の開口を形成するものでは、その開口のパターニングが正確に行なわれず、図38に示したような端子構造では、その部品端子の位置変更が困難である。そのため、顧客の希望に添えない場合も生じる。 As described above, the mounting terminal having the structure described with reference to FIG. Further, as described in FIG. 37, in the case of using the resin plate containing the filler mixed as the ceiling plate and forming the opening for the component terminal in the photolithography process, the opening is not accurately patterned, as shown in FIG. In such a terminal structure, it is difficult to change the position of the component terminal. Therefore, it may not meet the customer's request.
この種の圧電部品を客先においてトランスファーモールド等で実装用基板等に実装してモジュール等に使用する際には、通常、5MPaから15MPaの圧力が当該圧電部品に付与されるため、特許文献1に記載されているSAWデバイスの空隙(中空部)形成層及び封止層を有機材料のみで構成した場合には、天井板を構成する樹脂層を厚くするか、あるいは硬い材料で構成しなければ、トランスファーモールド等で樹脂封止する際、櫛歯電極を収容する中空部が潰れてしまい、櫛歯電極の電気的特性を損なってしまうおそれがあった。そのため、図37で説明したように、樹脂中にマイカなどの無機質のフィラー(無機フィラー)を混入して機械的強度を大きくしている。 When a piezoelectric component of this type is mounted on a mounting substrate or the like by a transfer mold or the like at a customer and used in a module or the like, a pressure of 5 MPa to 15 MPa is usually applied to the piezoelectric component. When the void (hollow portion) forming layer and the sealing layer of the SAW device described in the above are made of only an organic material, the resin layer constituting the ceiling plate must be thickened or made of a hard material When resin sealing is performed by transfer molding or the like, there is a possibility that the hollow portion for housing the comb-like electrode is crushed and the electrical characteristics of the comb-like electrode are impaired. Therefore, as described in FIG. 37, the resin is mixed with an inorganic filler (inorganic filler) such as mica to increase the mechanical strength.
特許文献2に記載されているようなSAWデバイスでは、カバーに対する貫通電極の形成、及びSAWチップ(櫛歯電極を形成した圧電基板)とカバー(端子側圧電基板、天井板)の接合・貼り合せのために別途電極が必要であるとともに、基板同志の貼り合せの際に、基板に“反り”が発生して、櫛歯電極を収容する中空部(チャンバ)の気密が低下するおそれがある。さらに、同一素材(圧電基板)からなる基板(ウェハ)同士を貼り合せるので、圧電部品の製造コストが高くなるおそれがある。さらに、圧電部品の低背化を実現するためには、基板(ウェハ)の薄片化が不可欠であるが、その実現化は、極めて困難であった。 In the SAW device as described in Patent Document 2, the formation of the through electrode on the cover, and the bonding and bonding of the SAW chip (piezoelectric substrate on which the comb electrode is formed) and the cover (terminal side piezoelectric substrate, ceiling plate) For this purpose, an electrode is separately required, and at the time of bonding of the substrates, "warpage" occurs in the substrate, and the airtightness of the hollow portion (chamber) accommodating the comb electrode may be reduced. Furthermore, since substrates (wafers) made of the same material (piezoelectric substrate) are bonded to each other, the manufacturing cost of the piezoelectric component may be increased. Furthermore, although thinning of the substrate (wafer) is indispensable in order to realize a reduction in height of the piezoelectric component, its realization has been extremely difficult.
さらに、特許文献3に記載されているSAWデバイスでは、第2樹脂部(天井部)を構成する感光性樹脂にシリカのフィラーを添加して弾性率の向上を図っている。しかし、添加するフィラーの平均サイズが0.01μmから8μmと大きいため十分な耐モールド圧力効果が得られない。フィラーとしてマイカを用いた特許文献4に開示のSAWデバイスでは、ホトリソ工程を用いた場合に、混入したマイカのフィラーによる露光むらに起因してパターニングが不正確になる可能性があった。 Furthermore, in the SAW device described in Patent Document 3, the filler of silica is added to the photosensitive resin constituting the second resin portion (the ceiling portion) to improve the elastic modulus. However, since the average size of the filler to be added is as large as 0.01 μm to 8 μm, a sufficient mold pressure resistance effect can not be obtained. In the SAW device disclosed in Patent Document 4 using mica as the filler, when the photolithography process is used, there is a possibility that patterning may be inaccurate due to uneven exposure due to the filler of mica mixed .
本発明は、前記した課題を含む諸課題を解決するための圧電デバイスの新規な構造とその製造方法を提供することにある。その代表的な構成を記述すると次のとおりである。なお、発明の理解を容易にするために、対応する実施例の符号を付記する。 The present invention is to provide a novel structure of a piezoelectric device and a method of manufacturing the same for solving various problems including the problems described above. The representative configuration is described as follows. In order to facilitate understanding of the invention, reference numerals of corresponding embodiments are appended.
(1)本発明に係る圧電デバイスは、圧電基板1と、前記圧電基板の主面に形成された櫛歯電極2と、前記櫛歯電極に接続して前記圧電基板1の外縁に延設された引出し配線3と、前記引出し配線を含んだ前記圧電基板の外周を周回して設置されて前記櫛歯電極の作動空間となる中空部を形成する外囲壁層6と、前記外囲壁層に橋絡して前記中空部を封止する天井板7とを有し、
前記天井板7は、無機材料のフィラーを混入して機械的強度を向上させた耐熱性樹脂からなり、
前記引出し配線3は、前記外囲壁層の対向する一対の側面側にそれぞれ形成されており、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に絶縁された金属メッキ層10’が形成されており、
前記金属メッキ層10’は、前記圧電基板1の前記外縁で前記引出し配線3と電気的に接続され、
前記金属メッキ層の前記天井板の上面を実装端子11とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線10とし、
前記外囲壁層6の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する側面に、前記天井板から前記外囲壁層6にかけて漸次なだらかに湾曲する傾斜面を有せしめたことを特徴とする。
(1) The piezoelectric device according to the present invention is connected to the piezoelectric substrate 1, the comb electrode 2 formed on the main surface of the piezoelectric substrate, and the comb electrode and extended to the outer edge of the piezoelectric substrate 1 An outer wall layer 6 disposed around the outer periphery of the piezoelectric substrate including the lead wire 3 and the lead wire to form a hollow portion serving as an operation space of the comb electrode; and a bridge to the outer wall layer And a ceiling plate 7 which is entangled to seal the hollow portion,
The ceiling plate 7 is made of a heat-resistant resin whose mechanical strength is improved by mixing a filler of an inorganic material,
The lead-out wires 3 are respectively formed on a pair of opposing side surfaces of the outer wall layer,
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate A metal plating layer 10 'insulated in a plurality of sections across the outer edge of the
The metal plating layer 10 ′ is electrically connected to the lead-out wiring 3 at the outer edge of the piezoelectric substrate 1;
The upper surface of the ceiling plate of the metal plating layer is a mounting terminal 11, and the side surface of the outer wall layer of the metal plating layer is a side wiring 10 connecting the lead wiring and the mounting terminal ,
An inclined surface which curves gradually gradually from the ceiling plate to the outer wall layer 6 on the side surfaces connected to the pair of opposite side surfaces of the outer wall layer 6 and the pair of opposite side surfaces of the outer wall layer of the ceiling plate wherein the chromatic allowed.
(2)また、本発明に係る圧電デバイスは、圧電基板1と、前記圧電基板の主面に形成された櫛歯電極2と、前記櫛歯電極に接続して前記圧電基板1の外縁に延設された引出し配線3と、前記引出し配線を含んだ前記圧電基板の外周を周回して設置されて前記櫛歯電極の作動空間となる中空部を形成する外囲壁層6と、前記外囲壁層に橋絡して前記中空部を封止する天井板7とを有し、
前記天井板7は、無機材料のフィラーを混入して機械的強度を向上させた耐熱性樹脂からなり、
前記引出し配線3は、前記外囲壁層の対向する一対の側面側にそれぞれ形成されており、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に絶縁された金属メッキ層10’が形成されており、
前記金属メッキ層10’は、前記圧電基板1の前記外縁で前記引出し配線3と電気的に接続され、
前記金属メッキ層の前記天井板の上面を実装端子11とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線10とし、
前記天井板7に設ける実装端子11の周囲を含み、前記圧電基板1の前記外縁に有する前記金属メッキ層10’に至る前記側面に半田流れ防止層31を有せしめたことを特徴とする。
(2) Further, the piezoelectric device according to the present invention is connected to the piezoelectric substrate 1, the comb electrode 2 formed on the main surface of the piezoelectric substrate, and the comb electrode and extends to the outer edge of the piezoelectric substrate 1. An outer wall layer 6 provided around the outer periphery of the piezoelectric substrate including the lead wire 3 and including the lead wire to form a hollow portion serving as an operation space of the comb electrode; and the outer wall layer And a ceiling plate 7 for sealing the hollow portion by bridging the
The ceiling plate 7 is made of a heat-resistant resin whose mechanical strength is improved by mixing a filler of an inorganic material,
The lead-out wires 3 are respectively formed on a pair of opposing side surfaces of the outer wall layer,
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate A metal plating layer 10 'insulated in a plurality of sections across the outer edge of the
The metal plating layer 10 ′ is electrically connected to the lead-out wiring 3 at the outer edge of the piezoelectric substrate 1;
The upper surface of the ceiling plate of the metal plating layer is a mounting terminal 11, and the side surface of the outer wall layer of the metal plating layer is a side wiring 10 connecting the lead wiring and the mounting terminal ,
A solder flow prevention layer 31 is provided on the side surface extending to the metal plating layer 10 ′ provided on the outer edge of the piezoelectric substrate 1 including the periphery of the mounting terminal 11 provided on the ceiling plate 7 .
(3)また、本発明は、前記(2)に記載の前記半田流れ防止層31を前記実装端子11の一部であるバリアメタルもしくは端子窓を除く前記天井板7および前記側面の全面に設けたことを特徴とする。 ( 3 ) Further, in the present invention, the solder flow preventing layer 31 described in the above (2) is provided on the entire surface of the ceiling plate 7 and the side surface except the barrier metal which is a part of the mounting terminal 11 or the terminal window. It is characterized by
(4)また、本発明は、前記(2)に記載の前記半田流れ防止層31を前記実装端子11のそれぞれに対して独立に設けたことを特徴とする。 ( 4 ) Further, the present invention is characterized in that the solder flow prevention layer 31 described in the above ( 2 ) is provided independently for each of the mounting terminals 11.
(5)また、本発明は、前記(2)に記載の前記実装端子11の上にバリアメタル層を有せしめたことを特徴とする。 (5) Further, the present invention is characterized in that allowed have a barrier metal layer on the mounting terminal 11 according to (2).
(6)本発明に係る圧電デバイスの製造方法は、圧電基板1を構成する圧電ウェハの主面に櫛歯電極2、および前記櫛歯電極に接続して前記圧電基板の外縁に延設する引出し配線3を前記圧電基板1の対向する一対の側面側にそれぞれ形成する電極形成工程と、
前記引出し配線を含んだ前記圧電基板の外周を周回して、前記櫛歯電極の作動空間となる中空部を形成するための外囲壁層6を設置する作動空間形成工程と、
無機フィラーを混入した耐熱樹脂板からなる天井板を前記外囲壁層6に周縁を橋絡して前記中空部を封止する天井板設置工程と、
前記天井板7を個片のSAWデバイス毎のパターンに分離する天井板パターニング工程と、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に金属メッキ層10’を形成する金属メッキ層形成工程と、
前記した各工程を経た後に、貼り合わせた前記圧電ウェハと前記天井板を個々のSAWデバイスに分割する個片化工程と、
を含み、
前記金属メッキ層10’で前記圧電基板1の前記外縁で前記引出し配線3と電気的に接続されて、前記金属メッキ層の前記天井板の上面を実装端子11とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線10とし、
前記天井板パターニング工程として、テーパー角の付いたダイシングブレードによるカッテイング法を用いたことを特徴とする。
( 6 ) In the method of manufacturing a piezoelectric device according to the present invention, the main surface of the piezoelectric wafer constituting the piezoelectric substrate 1 is connected to the comb electrode 2 and the comb electrode and extended to the outer edge of the piezoelectric substrate. An electrode forming step of forming the wiring 3 on a pair of opposing side surfaces of the piezoelectric substrate 1;
An operation space forming step of setting an outer wall layer 6 for forming a hollow portion to be an operation space of the comb electrode, around the outer periphery of the piezoelectric substrate including the lead-out wiring;
A ceiling plate setting step of sealing the hollow portion by bridging the periphery of a ceiling plate made of a heat-resistant resin plate mixed with an inorganic filler to the outer wall layer 6;
A ceiling plate patterning step of separating the ceiling plate 7 into patterns of individual SAW devices;
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate Forming a metal plating layer 10 'in a plurality of sections across the outer edge of
A singulation step of dividing the bonded piezoelectric wafer and the ceiling plate into individual SAW devices after each of the above steps;
Including
The upper surface of the ceiling plate of the metal plating layer is used as the mounting terminal 11, and the outer surface of the metal plating layer is electrically connected to the lead wiring 3 at the outer edge of the piezoelectric substrate 1 by the metal plating layer 10 '. The side surface of the enclosure layer is a side wiring 10 connecting the lead wiring and the mounting terminal ,
As the ceiling plate patterning process, a cutting method using a dicing blade with a tapered angle is used .
(7)また、本発明に係る圧電デバイスの製造方法は、圧電基板1を構成する圧電ウェハの主面に櫛歯電極2、および前記櫛歯電極に接続して前記圧電基板の外縁に延設する引出し配線3を前記圧電基板1の対向する一対の側面側にそれぞれ形成する電極形成工程と、
前記引出し配線を含んだ前記圧電基板の外周を周回して、前記櫛歯電極の作動空間となる中空部を形成するための外囲壁層6を設置する作動空間形成工程と、
無機フィラーを混入した耐熱樹脂板からなる天井板を前記外囲壁層6に周縁を橋絡して前記中空部を封止する天井板設置工程と、
前記天井板7を個片のSAWデバイス毎のパターンに分離する天井板パターニング工程と、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に金属メッキ層10’を形成する金属メッキ層形成工程と、
前記した各工程を経た後に、貼り合わせた前記圧電ウェハと前記天井板を個々のSAWデバイスに分割する個片化工程と、
を含み、
前記金属メッキ層10’で前記圧電基板1の前記外縁で前記引出し配線3と電気的に接続されて、前記金属メッキ層の前記天井板の上面を実装端子11とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線10とし、
前記金属メッキ層10’を形成する金属メッキ層形成工程の後に、前記実装端子11の一部であるバリアメタルもしくは端子窓を避けた前記天井板7の上面と前記圧電基板1の前記外縁に有する前記金属メッキ層10’に至る前記側面に半田流れ防止層31を形成する半田流れ防止層形成工程を有することを特徴とする。
( 7 ) Further , in the method of manufacturing a piezoelectric device according to the present invention, the comb electrode 2 and the comb electrode are connected to the main surface of the piezoelectric wafer constituting the piezoelectric substrate 1 and extended to the outer edge of the piezoelectric substrate. An electrode forming step of forming a lead wire 3 to be formed on a pair of opposing side surfaces of the piezoelectric substrate 1;
An operation space forming step of setting an outer wall layer 6 for forming a hollow portion to be an operation space of the comb electrode, around the outer periphery of the piezoelectric substrate including the lead-out wiring;
A ceiling plate setting step of sealing the hollow portion by bridging the periphery of a ceiling plate made of a heat-resistant resin plate mixed with an inorganic filler to the outer wall layer 6;
A ceiling plate patterning step of separating the ceiling plate 7 into patterns of individual SAW devices;
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate Forming a metal plating layer 10 'in a plurality of sections across the outer edge of
A singulation step of dividing the bonded piezoelectric wafer and the ceiling plate into individual SAW devices after each of the above steps;
Including
The upper surface of the ceiling plate of the metal plating layer is used as the mounting terminal 11, and the outer surface of the metal plating layer is electrically connected to the lead wiring 3 at the outer edge of the piezoelectric substrate 1 by the metal plating layer 10 '. The side surface of the enclosure layer is a side wiring 10 connecting the lead wiring and the mounting terminal ,
After the metal plating layer forming step of forming the metal plating layer 10 ′, it is provided on the upper surface of the ceiling plate 7 avoiding the barrier metal or terminal window which is a part of the mounting terminal 11 and the outer edge of the piezoelectric substrate 1 A solder flow preventing layer forming step of forming a solder flow preventing layer 31 on the side surface leading to the metal plating layer 10 ′ is characterized.
(8)また、本発明に係る圧電デバイスの製造方法は、前記(7)に記載の前記半田流れ防止層31を前記実装端子11の一部であるバリアメタルもしくは端子窓を除く前記天井板7および前記側面の全面に設けたことを特徴とする。 ( 8 ) Further, in the method of manufacturing a piezoelectric device according to the present invention, the ceiling plate 7 excluding the solder metal or the terminal window which is a part of the mounting terminal 11 is the solder flow prevention layer 31 described in the above ( 7 ). And it provided in the whole surface of the said side, It is characterized by the above-mentioned.
(9)また、本発明に係る圧電デバイスの製造方法は、前記(7)に記載の前記半田流れ防止層31を前記実装端子11のそれぞれに対して独立に設けたことを特徴とする。 ( 9 ) Further, the method of manufacturing a piezoelectric device according to the present invention is characterized in that the solder flow prevention layer 31 described in the above ( 7 ) is provided independently for each of the mounting terminals 11.
(10)また、本発明に係る圧電デバイスの製造方法は、前記(7)に記載の前記実装端子11の上にバリアメタル層を形成するバリアメタル層形成工程を有することを特徴とする。 ( 10 ) Further, the method of manufacturing a piezoelectric device according to the present invention is characterized by including a barrier metal layer forming step of forming a barrier metal layer on the mounting terminal 11 described in ( 7 ).
(11)なお、本発明は、上記の構成に限定されるものではなく、本発明の技術思想を逸脱することなく、種々の変更が可能である。 ( 11 ) The present invention is not limited to the above configuration, and various modifications can be made without departing from the technical concept of the present invention.
上記した本発明に係る圧電デバイスおよびその製造方法によれば、簡略な工程で実装端子(本デバイスの部品端子)を所望の位置に形成でき、従来のような電極柱やハンダボールあるいはバンプで基板面高さを設定する必要がないので、低コストで圧電デバイスを得ることができる。 According to the above-described piezoelectric device and the method of manufacturing the same of the present invention, mounting terminals (component terminals of the present device) can be formed at desired positions in a simple process, and a substrate with electrode columns, solder balls or bumps as in the prior art. Since there is no need to set the surface height, the piezoelectric device can be obtained at low cost.
また、前記図38で説明したような基板内蔵部品として使用する際には、実装端子にハンダボールやハンダバンプを必要としないので、Cuメッキによる接続が可能となる。 Further, when using as a component with a built-in substrate as described in FIG. 38, since the mounting terminal does not require a solder ball or a solder bump, connection by Cu plating becomes possible.
さらに、面積が大きい天井層を構成する樹脂部に実装端子を形成するので、実装端子の位置を任意に選定できるため、顧客が希望する箇所に実装端子を配置することができる。 Furthermore, since the mounting terminals are formed on the resin portion that constitutes the ceiling layer having a large area, the positions of the mounting terminals can be arbitrarily selected, so the mounting terminals can be arranged at the places desired by the customer.
さらにまた、圧電デバイスの側壁部に櫛歯電極部と実装端子を接続する配線(側面配線)を形成することで、外囲壁層と天井層の接合部分の密封構造が確実に強化される。したがって、中空部の気密が向上する。 Furthermore, by forming a wire (side wire) connecting the comb electrode portion and the mounting terminal to the side wall portion of the piezoelectric device, the sealing structure of the joint portion between the outer wall layer and the ceiling layer is surely strengthened. Therefore, the airtightness of the hollow portion is improved.
そして、天井層に実装電極形成のための開口を形成するパターニング工程を要しないため、製造工程の大幅な簡略化が可能となる。また、天井層の加工にダイシングブレードなどによる機械的加工も用いることができる。機械的加工を採用することにより、前記図24で説明したようなフィラー残渣に起因する不定型な開口形状の発生を回避できる。 And since the patterning process which forms the opening for mounting electrode formation in a ceiling layer is not required, the manufacturing process can be greatly simplified. In addition, mechanical processing using a dicing blade or the like can also be used to process the ceiling layer. By employing mechanical processing, it is possible to avoid the occurrence of an irregular opening shape due to the filler residue as described in FIG.
そして、半田流れ防止層を設けたことで、半田ボールなどを用いて実装基板の表面に有する端子パッドにフェースダウン実装する際の側面配線部分への半田の回り込みに起因する実装端子と端子パッドの間に介在する半田量の減少を回避し、半田付不良や実装基板との間の隙間の不安定化が防止される。 Then, by providing a solder flow prevention layer, the mounting terminals and terminal pads are caused by the wraparound of the solder to the side wiring portion when mounting faces down on the terminal pads provided on the surface of the mounting substrate using solder balls or the like. It is possible to prevent a reduction in the amount of solder interposed therebetween, and to prevent defective soldering and destabilization of the gap with the mounting substrate.
そして又、天井板の上面に潰れ防止層を設けたことで、圧電デバイスの製造工程における加圧や基板への実装工程での加圧で櫛型電極を収容する中空部の潰れが防止される。さらに、圧電デバイスをモジュール化する際の耐モールド性の向上も期待できる。 Further, by providing a crushing prevention layer on the upper surface of the ceiling plate, crushing of the hollow portion accommodating the comb-shaped electrode is prevented by pressurization in the manufacturing process of the piezoelectric device and pressurization in the mounting process on the substrate. . Furthermore, the improvement of mold resistance at the time of modularizing a piezoelectric device can also be expected.
このように、本発明によれば、耐モールド圧力性に極めて優れ、かつ、低背化・小型化された圧電デバイスを、部品の厚みを増大することなく、また、実装端子の配置に自由度を持つ圧電デバイスを低コストで製造できる。なお、前記したように、本発明は、SAWデバイスに限らず、水晶発振器などの圧電デバイス、MEMS共振器などの同様の圧電デバイスにも適用できる。 As described above, according to the present invention, a piezoelectric device extremely excellent in mold pressure resistance, reduced in height and reduced in size can be freely arranged in mounting terminals without increasing the thickness of parts. Can be manufactured at low cost. As described above, the present invention is not limited to the SAW device, and can be applied to a piezoelectric device such as a quartz oscillator, and a similar piezoelectric device such as a MEMS resonator.
以下、本発明の実施例について、貼付の図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the attached drawings.
図1は、本発明に係る圧電デバイスをSAWデバイスに適用した実施例1の構造を説明する断面図である。また、図2は、図1の断面図で示した本発明に係る圧電デバイスをSAWデバイスに適用した実施例1の上面図である。実施例1に係るSAWデバイスは、圧電基板1としてタンタル酸リチウムを用い、この圧電基板1の主面に櫛歯電極(IDT)2と、この櫛歯電極2に接続して前記圧電基板の外縁に延設した引出し配線3を有する。なお、圧電基板1には水晶板やニオブ酸リチウムなども使用できるが、ここではタンタル酸リチウムを用いるものとして説明する。前記引出し配線3を含んだ前記圧電基板の外周を周回して、櫛歯電極2の作動空間となる中空部を形成する外囲壁層6が形成されている。この外囲壁層6に端部周縁を橋絡して天井板7が固着されて、櫛歯電極2の作動空間となる中空部(チャンバー)を封止している。天井板7は、無機材料のフィラーを混入して機械的強度を向上させた耐熱性樹脂からなる。この実施例では、フィラーとしてホワイトマイカを用いた。 FIG. 1 is a cross-sectional view for explaining the structure of Example 1 in which a piezoelectric device according to the present invention is applied to a SAW device. FIG. 2 is a top view of Example 1 in which the piezoelectric device according to the present invention shown in the cross-sectional view of FIG. 1 is applied to a SAW device. The SAW device according to the first embodiment uses lithium tantalate as the piezoelectric substrate 1 and is connected to the comb electrode (IDT) 2 and the comb electrode 2 on the main surface of the piezoelectric substrate 1 and the outer edge of the piezoelectric substrate And an extension wire 3 extended to the Although a quartz plate or lithium niobate can also be used for the piezoelectric substrate 1, it will be described here that lithium tantalate is used. An outer wall layer 6 is formed around the outer periphery of the piezoelectric substrate including the lead-out wiring 3 to form a hollow portion to be an operation space of the comb electrode 2. The ceiling plate 7 is fixed by bridging the end periphery to the outer wall layer 6 to seal the hollow portion (chamber) which is to be the operation space of the comb electrode 2. The ceiling plate 7 is made of a heat-resistant resin in which a mechanical strength is improved by mixing a filler of an inorganic material. In this example, white mica was used as a filler.
図1、図2に示されたように、本実施例のSAWデバイスでは、櫛歯電極2の引出し配線3は、外囲壁層6の対向する一対の側面側(図2の紙面に向かって左右側)にそれぞれ3個宛形成されている。図1に示されたとおり、本実施例のSAWデバイスは、外囲壁層6の対向する一対の側面と天井板7の外囲壁層6の対向する一対の側面に連接する側面に、天井板7の側面から外囲壁層6にかけて漸次なだらかに湾曲する傾斜面を有している。そして、外囲壁層6の上記左右に対向する一対の側面と天井板7の前記外囲壁層6の対向する一対の側面に連接する上面と圧電基板1の外囲壁層6の対向する一対の側面に連接する圧電基板1の外縁にわたって複数の区画に絶縁されて形成された金属メッキ層が形成されている。 As shown in FIGS. 1 and 2, in the SAW device of this embodiment, the lead-out wiring 3 of the comb-tooth electrode 2 is a pair of opposing side surfaces of the outer wall layer 6 (right and left in FIG. 3) are formed on each side. As shown in FIG. 1, in the SAW device of the present embodiment, the ceiling plate 7 is provided on the side surface connected to the pair of opposite side surfaces of the outer wall layer 6 and the pair of opposite side surfaces of the outer wall layer 6 of the ceiling plate 7. And the outer wall layer 6 gradually slopes. Then, an upper surface connected to the pair of side surfaces facing the left and right of the outer wall layer 6 and a pair of opposite side surfaces of the outer wall layer 6 of the ceiling plate 7 and a pair of opposite side surfaces facing the outer wall layer 6 of the piezoelectric substrate 1 A metal plating layer formed to be insulated in a plurality of sections is formed over the outer edge of the piezoelectric substrate 1 connected to.
金属メッキ層は、圧電基板1の外縁で引出し配線3と電気的に接続され、金属メッキ層の前記天井板7の上面を実装端子11とし、金属メッキ層の外囲壁層の側面を引出し配線3と実装端子11を接続する側面配線10としている。この構造としたことで、実装端子11に図35に示したような電極柱やハンダボールあるいはハンダバンプで基板面に対する高さを設定する必要がないので、低コストでSAWデバイスを得ることができる。また、実装端子にハンダボールやハンダバンプを使用しないので、図38で説明したような基板内蔵部品として使用する際にCuメッキによる接続が可能となる。 The metal plating layer is electrically connected to the lead wiring 3 at the outer edge of the piezoelectric substrate 1, the upper surface of the ceiling plate 7 of the metal plating layer is the mounting terminal 11, and the side surface of the outer wall layer of the metal plating layer is lead wiring 3 And the side terminals 10 for connecting the mounting terminals 11. With this structure, it is not necessary to set the height with respect to the substrate surface with the electrode column, the solder ball or the solder bump as shown in FIG. 35 for the mounting terminal 11, so that the SAW device can be obtained at low cost. Further, since solder balls and solder bumps are not used for the mounting terminals, connection by Cu plating becomes possible when used as a component with a built-in substrate as described in FIG.
また、本実施例によれば、面積が大きい天井層7を構成する樹脂部に実装端子を形成するので、実装端子の位置を任意に選定できるため、顧客が希望する箇所に実装端子を配置することができる。 Further, according to the present embodiment, since the mounting terminals are formed on the resin portion constituting the ceiling layer 7 having a large area, the positions of the mounting terminals can be arbitrarily selected. Therefore, the mounting terminals are arranged at the places desired by the customers. be able to.
また、本実施例によれば、SAWデバイスの側壁部に櫛歯電極部と実装端子を接続する配線(側面配線)10を形成することで、外囲壁層6と天井層7の接合部分の密封構造が確実となり、中空部の気密を向上することができる。 Further, according to the present embodiment, by forming the wiring (side wiring) 10 connecting the comb electrode portion and the mounting terminal to the side wall portion of the SAW device, sealing of the joint portion of the outer wall layer 6 and the ceiling layer 7 The structure is reliable, and the airtightness of the hollow portion can be improved.
以上のように、本実施例によれば、耐モールド圧力性に極めて優れ、かつ、低背化・小型化されたSAWデバイスを、部品の厚みを増大することなく、また、実装端子の配置に自由度を持つSAWデバイスを低コストで製造できる。 As described above, according to the present embodiment, the SAW device extremely excellent in mold pressure resistance and reduced in height and size can be used for arranging the mounting terminals without increasing the thickness of parts. SAW devices with a degree of freedom can be manufactured at low cost.
次に、図3乃至図10を参照して実施例1のSAWデバイスの製造方法を説明する。圧電基板であるタンタル酸リチウムのウェハ(圧電ウェハ)1の主面に櫛歯電極(IDT電極)2、および櫛歯電極2に接続して前記圧電ウェハの外縁に延設する一対の引出し配線3を外囲壁層6の対向する一対の側面側にそれぞれ形成する。この櫛歯電極2と引出し配線3は、Al、Cu、Au、Cr、Ru、Ni、Mg、Ti、W、V、Ta、Mo、Ag、In、Snのうちのいずれか一つを主成分とする材料、またはこれらの材料と酸素、窒素、珪素との化合物、あるいはこれらの材料の合金、または金属間化合物、これらを多層に積層した薄膜のパターニングで形成する。 Next, a method of manufacturing the SAW device of the first embodiment will be described with reference to FIGS. 3 to 10. A comb electrode (IDT electrode) 2 on the main surface of a lithium tantalate wafer (piezoelectric wafer) 1 which is a piezoelectric substrate, and a pair of lead wires 3 connected to the comb electrode 2 and extended to the outer edge of the piezoelectric wafer Are formed on the opposite side surfaces of the envelope layer 6 respectively. The comb-tooth electrode 2 and the lead-out wiring 3 contain any one of Al, Cu, Au, Cr, Ru, Ni, Mg, Ti, W, V, Ta, Mo, Ag, In, and Sn as a main component. These materials, or compounds of these materials with oxygen, nitrogen, silicon, or alloys of these materials, or intermetallic compounds, are formed by patterning of thin films formed by laminating these in multiple layers.
次に、引出し配線3の延在部分を含んだ圧電基板1の外周を周回して、当該櫛歯電極2の作動空間となる中空部を形成する外囲壁層6を設置する。外囲壁層6はポリイミドやエポキシ樹脂を好適とする感光性の耐熱性樹脂の塗布と露光マスクを用いたホトリソ工程により形成する。この外囲壁層6を構成する樹脂にはホワイトマイカを好適とする無機フィラーを混入し、弾性率を向上させて機械的強度を大きくするのが望ましい。 Next, the outer wall layer 6 is formed around the outer periphery of the piezoelectric substrate 1 including the extended portion of the lead-out wiring 3 to form a hollow portion to be an operation space of the comb electrode 2. The outer wall layer 6 is formed by application of a photosensitive heat-resistant resin, which is preferably made of polyimide or epoxy resin, and a photolithographic process using an exposure mask. It is desirable to mix an inorganic filler suitable for white mica into the resin constituting the outer wall layer 6 to improve the elastic modulus and to increase the mechanical strength.
外囲壁層6を覆って上記と同様の無機フィラーを混入したポリイミドやエポキシ樹脂を好適とする耐熱性樹脂板を固着し、天井板7の構成材とする。天井板7の構成材は、各櫛歯電極2を囲む外囲壁層6に周縁を橋絡して櫛歯電極2の作動空間を確保する中空部を封止する。・・・図3 A heat-resistant resin plate suitable for covering the outer wall layer 6 and using a polyimide or an epoxy resin mixed with the same inorganic filler as described above is fixed to be a component of the ceiling plate 7. The constituent material of the ceiling plate 7 seals the hollow portion that bridges the periphery to the outer wall layer 6 surrounding each of the comb-like electrodes 2 to secure the working space of the comb-like electrodes 2. ... Figure 3
次に、天井板7の構成材を個片対応のSAWデバイス毎のパターンに分離する。本実施例では、この個片分離のために、図4に示したような曲面のテーパー角が付いたダイシングブレード12によるカッテイング法を用いる。このようなテーパー角の付いたダイシングブレード12を用いることで、個片対応で個々の天井板7に分離された状態では、外囲壁層6の対向する一対の側面と天井板7の前記外囲壁層6の対向する一対の側面に連接する側面に、天井板7から外囲壁層6にかけて漸次なだらかに湾曲する傾斜面が形成される。・・・図4 Next, the components of the ceiling plate 7 are separated into patterns for each individual SAW device. In this embodiment, a cutting method using a dicing blade 12 with a tapered angle of curved surface as shown in FIG. 4 is used to separate the pieces. By using the dicing blade 12 having such a taper angle, in the state of being separated into individual ceiling boards 7 in a piece-by-piece manner, the outer enclosure walls of the pair of opposing side walls of the enclosure wall layer 6 and the ceiling board 7 On the side surface connected to the pair of opposing side surfaces of the layer 6, a gradually curved inclined surface is formed from the ceiling plate 7 to the outer wall layer 6. ... Figure 4
天井板7の構成材を個片のSAWデバイス毎のパターンに分離した後、天井板7から外囲壁層6にかけて漸次なだらかに湾曲する傾斜面と隣接する個片のSAWデバイスとの間にある引き出し線3を覆って金属膜を成膜する。この金属膜は後工程の電解メッキを用いた側面配線や実装端子の形成のためのシード層15となる。 After separating the components of the ceiling plate 7 into patterns of individual SAW devices, a drawing between the gradually curved inclined surface from the ceiling plate 7 to the outer wall layer 6 and the adjacent SAW devices A metal film is deposited to cover the line 3. This metal film becomes a seed layer 15 for formation of side wiring and mounting terminals using electrolytic plating in a later step.
シード層15はCuやAuなど、メッキが付着する金属なら、種別を特に問わない。本実施例では、Tiを200Å製膜した上に、Cuを4000Åの厚さに形成した。天井層7としてポリイミドなどの樹脂を用いた場合、金属との密着性が悪いため、前処理として樹脂面にプラズマ処理やブラスト処理を施すことにより、表面粗化処理を行なうことで、密着性を改善することができる。実験によれば、ポリイミド系の樹脂をブラスト処理で表面粗さRaを0.3〜0.5μmに粗化した場合、密着性の良好な金属膜が得られることが確認されている。・・・図5 The type of the seed layer 15 is not particularly limited as long as it is a metal to which plating is attached, such as Cu or Au. In this example, Cu was formed to a thickness of 4000 Å on a 200 Å-thick film of Ti. When a resin such as polyimide is used as the ceiling layer 7, adhesion to metal is poor. Therefore, by performing plasma treatment or blasting on the resin surface as pretreatment, adhesion is improved by performing surface roughening treatment. It can be improved. According to experiments, it has been confirmed that when a polyimide resin is roughened to a surface roughness Ra of 0.3 to 0.5 μm by blasting, a metal film with good adhesion can be obtained. ... Figure 5
なお、図5以降は隣接する二個のSAWデバイスの部分のみを拡大して表示する、図の左右部分は簡略して示す。図5に示したシード層15の上に、感光性レジストを塗布し、露光マスクを用いたホトリソ工程で上記側面配線や実装端子をメッキする部分のシード層15を露出させる。メッキが不要な部分にはレジスト16を残す。・・・図6 Note that in FIG. 5 and thereafter, only the portions of two adjacent SAW devices are enlarged and displayed, and the left and right portions of the figure are simplified. A photosensitive resist is applied on the seed layer 15 shown in FIG. 5, and the seed layer 15 in the portion to be plated with the side wiring and the mounting terminal is exposed in a photolithography process using an exposure mask. A resist 16 is left in the portion where plating is unnecessary. ... Figure 6
レジストのパターンを用い、外囲壁層6の対向する一対の側面と天井板7の前記外囲壁層6の対向する面に連接する前記圧電基板1の外縁にわたって複数の区画(図2参照)に露出したシード層15の上に金属メッキ層10’を成長させる。メッキする金属としては、Ni、Au、Cuなどを用いる。本実施例では、硫酸銅メッキでCuを10μm程度の厚さに形成した。なお、必要に応じて、このメッキ層10’の実装端子となる部分の上に印刷などの手段を用いてハンダバンプを形成してもよい。・・・図7 Exposed in a plurality of sections (see FIG. 2) across the outer edge of the piezoelectric substrate 1 connected to the pair of opposing side surfaces of the outer wall layer 6 and the opposite surface of the outer wall layer 6 of the ceiling plate 7 using a resist pattern. On the seed layer 15, the metal plating layer 10 'is grown. As the metal to be plated, Ni, Au, Cu or the like is used. In this embodiment, Cu was formed to a thickness of about 10 μm by copper sulfate plating. If necessary, a solder bump may be formed on the portion to be the mounting terminal of the plated layer 10 ′ using a method such as printing. ... FIG. 7
なお、図5乃至図7で説明した工程は、電解メッキを用いて実装端子11や側面配線10となるメッキ層10’を形成する方法であるが、無電解メッキでメッキ層10’を形成することもできる。無電解メッキを採用する場合は、例えばスパッタによるシード層の成膜時にメタルマスクを用いてメッキ層10’が形成される箇所に選択的にスパッタ成膜を行なってもよい。 Although the process described in FIGS. 5 to 7 is a method of forming the plated layer 10 'to be the mounting terminals 11 and the side wiring 10 using electrolytic plating, the plated layer 10' is formed by electroless plating. It can also be done. In the case of employing the electroless plating, for example, at the time of film formation of the seed layer by sputtering, sputtering film formation may be selectively performed on a portion where the plating layer 10 'is formed using a metal mask.
メッキ層10’を形成した後、レジスト16をアセトンなどの溶液で溶解して除去する。レジストが除去された部分にはシード層15が露出する。・・・図8 After the plating layer 10 'is formed, the resist 16 is dissolved and removed with a solution such as acetone. The seed layer 15 is exposed in the portion where the resist is removed. ... Figure 8
エッチング液を用いて、天上板7の表面と外囲壁層6及び圧電基板1の表面に露出したシード層15をエッチング処理して除去する。・・・図9 The etching solution is used to etch and remove the seed layer 15 exposed on the surface of the top plate 7, the envelope layer 6, and the surface of the piezoelectric substrate 1. ... Figure 9
前記した各工程を経た後、個々のSAWデバイスの境界で圧電基板1をダイシング加工で切断し、個片のSAWデバイスに分離する。分離した個片のSAWデバイスは前記図1、図2に示したものとなる。・・・図10 After each process described above, the piezoelectric substrate 1 is cut by dicing at the boundaries of the individual SAW devices to be separated into individual SAW devices. The separated individual SAW devices are as shown in FIG. 1 and FIG. ... FIG. 10
そして、金属メッキ層10’で圧電基板1の外縁にある引出し配線3と電気的に接続された金属メッキ層の天井板7の上面を実装端子(部品端子)11とする。引出し配線3と実装端子11とを外囲壁層6の側面を経由する側面配線10で接続する構成であるため、従来技術で説明したような外囲壁層の開口加工や天井板の開口加工を必要としないため、低コストでSAWデバイスを製造できる。 Then, the upper surface of the ceiling plate 7 of the metal plating layer electrically connected to the lead wiring 3 at the outer edge of the piezoelectric substrate 1 by the metal plating layer 10 ′ is taken as a mounting terminal (component terminal) 11. Since the lead-out wiring 3 and the mounting terminal 11 are connected by the side wiring 10 passing through the side surface of the outer wall layer 6, opening processing of the outer wall layer and opening processing of the ceiling plate are required as described in the prior art. Therefore, the SAW device can be manufactured at low cost.
このように、本実施例に係る製造方法で製造したSAWデバイスは、面積が大きい天井層を構成する樹脂部に実装端子を形成するので、実装端子の位置を任意に選定でき、顧客は希望する箇所に実装端子を配置することができる。また、SAWデバイスの側壁部に櫛歯電極部と実装端子を接続する配線(側面配線)が形成されることで、外囲壁層と天井層の接合部分の密封構造が確実となり、中空部の気密が向上する。 As described above, in the SAW device manufactured by the manufacturing method according to the present embodiment, since the mounting terminal is formed on the resin portion forming the ceiling layer having a large area, the position of the mounting terminal can be arbitrarily selected, and the customer desires The mounting terminals can be arranged in places. In addition, by forming a wire (side wire) connecting the comb electrode portion and the mounting terminal on the side wall portion of the SAW device, the sealing structure of the bonding portion between the outer wall layer and the ceiling layer becomes reliable, and the hollow portion is airtight. Improve.
図11は、本発明に係る圧電デバイスをSAWデバイスに適用した実施例2の構造を説明する断面図である。また、図12は、図11の断面図で示した本発明に係る圧電デバイスをSAWデバイスに適用した実施例2の上面図である。図11は図12のX−X線に沿った断面に相当する。実施例2に係るSAWデバイスは、実施例1と同様に、圧電基板1としてタンタル酸リチウムを用い、この圧電基板1の主面に櫛歯電極2と、この櫛歯電極2に接続して前記圧電基板の外縁に延設した引出し配線3を有する。なお、圧電基板1には水晶板やニオブ酸リチウムなども使用できるが、ここではタンタル酸リチウムを用いるものとして説明する。前記引出し配線3を含んだ前記圧電基板の外周を周回して、櫛歯電極2の作動空間となる中空部を形成する外囲壁層6が形成されている。この外囲壁層6に端部周縁を橋絡して天井板7が固着されて、櫛歯電極2の作動空間となる中空部を封止している。天井板7は、無機材料のフィラーを混入して機械的強度を向上させた耐熱性樹脂からなる。この実施例では、フィラーとしてホワイトマイカを用いた。 FIG. 11 is a cross-sectional view for explaining the structure of Example 2 in which the piezoelectric device according to the present invention is applied to a SAW device. FIG. 12 is a top view of Example 2 in which the piezoelectric device according to the present invention shown in the cross-sectional view of FIG. 11 is applied to a SAW device. FIG. 11 corresponds to a cross section taken along line X-X of FIG. In the SAW device according to the second embodiment, as in the first embodiment, lithium tantalate is used as the piezoelectric substrate 1, and the comb electrode 2 and the comb electrode 2 are connected to the main surface of the piezoelectric substrate 1. It has a lead wire 3 extended to the outer edge of the piezoelectric substrate. Although a quartz plate or lithium niobate can also be used for the piezoelectric substrate 1, it will be described here that lithium tantalate is used. An outer wall layer 6 is formed around the outer periphery of the piezoelectric substrate including the lead-out wiring 3 to form a hollow portion to be an operation space of the comb electrode 2. The ceiling plate 7 is fixed by bridging the end periphery to the outer wall layer 6 to seal the hollow portion serving as the working space of the comb electrode 2. The ceiling plate 7 is made of a heat-resistant resin in which a mechanical strength is improved by mixing a filler of an inorganic material. In this example, white mica was used as a filler.
図11、図12に示されたように、本実施例のSAWデバイスでは、櫛歯電極の引出し配線3は、外囲壁層6の対向する一対の側面側(図12の紙面に向かって左右側)にそれぞれ3個宛形成されている。図11に示されたとおり、本実施例のSAWデバイスは、外囲壁層6の対向する一対の側面と天井板7の外囲壁層6の対向する一対の側面に連接する側面に、天井板7の側面から外囲壁層6にかけて階段となる段差面を有している。そして、外囲壁層6の上記左右に対向する一対の側面と天井板7の前記外囲壁層6の対向する一対の側面に連接する上面と圧電基板1の外囲壁層6の対向する一対の側面に連接する圧電基板1の外縁にわたって複数の区画に絶縁されて形成された金属メッキ層が形成されている。 As shown in FIGS. 11 and 12, in the SAW device of the present embodiment, the lead-out wiring 3 of the comb-tooth electrode is a pair of opposing side surfaces of the outer wall layer 6 (left and right sides in FIG. 3) are formed in each. As shown in FIG. 11, in the SAW device of the present embodiment, the ceiling plate 7 is provided on the side surface connected to the pair of opposite side surfaces of the outer wall layer 6 and the pair of opposite side surfaces of the outer wall layer 6 of the ceiling plate 7. The step surface which becomes a step from the side surface of the outer wall layer 6 to the outer wall layer 6 is provided. Then, an upper surface connected to the pair of side surfaces facing the left and right of the outer wall layer 6 and a pair of opposite side surfaces of the outer wall layer 6 of the ceiling plate 7 and a pair of opposite side surfaces facing the outer wall layer 6 of the piezoelectric substrate 1 A metal plating layer formed to be insulated in a plurality of sections is formed over the outer edge of the piezoelectric substrate 1 connected to.
金属メッキ層は、圧電基板1の外縁で引出し配線3と電気的に接続され、金属メッキ層の前記天井板7の上面を実装端子11とし、金属メッキ層の外囲壁層の側面を引出し配線3と実装端子11を接続する側面配線10としている。この構造としたことで、実装端子11に図35に示したような電極柱やハンダボールあるいはハンダバンプで基板面に対する高さを設定する必要がないので、低コストでSAWデバイスを得ることができる。また、実装端子にハンダボールやハンダバンプを使用しないので、図38で説明したような基板内蔵部品として使用する際にCuメッキによる接続が可能となる。 The metal plating layer is electrically connected to the lead wiring 3 at the outer edge of the piezoelectric substrate 1, the upper surface of the ceiling plate 7 of the metal plating layer is the mounting terminal 11, and the side surface of the outer wall layer of the metal plating layer is lead wiring 3 And the side terminals 10 for connecting the mounting terminals 11. With this structure, it is not necessary to set the height with respect to the substrate surface with the electrode column, the solder ball or the solder bump as shown in FIG. 35 for the mounting terminal 11, so that the SAW device can be obtained at low cost. Further, since solder balls and solder bumps are not used for the mounting terminals, connection by Cu plating becomes possible when used as a component with a built-in substrate as described in FIG.
また、本実施例によれば、面積が大きい天井層を構成する樹脂部に実装端子を形成するので、実装端子の位置を任意に選定できるため、顧客が希望する箇所に実装端子を配置することができる。 Further, according to the present embodiment, since the mounting terminals are formed on the resin portion constituting the ceiling layer having a large area, the positions of the mounting terminals can be arbitrarily selected. Therefore, the mounting terminals should be arranged at the places desired by the customer. Can.
また、本実施例によれば、SAWデバイスの側壁部に櫛歯電極部と実装端子を接続する配線(側面配線)を形成することで、外囲壁層と天井層の接合部分の密封構造が確実となり、中空部の気密を向上することができる。 Further, according to the present embodiment, by forming the wiring (side wiring) connecting the comb electrode portion and the mounting terminal to the side wall portion of the SAW device, the sealing structure of the joint portion of the outer wall layer and the ceiling layer is assured. Thus, the airtightness of the hollow portion can be improved.
以上のように、本実施例によれば、耐モールド圧力性に極めて優れ、かつ、低背化・小型化されたSAWデバイスを、部品の厚みを増大することなく、また、実装端子の配置に自由度を持つSAWデバイスを低コストで製造できる。 As described above, according to the present embodiment, the SAW device extremely excellent in mold pressure resistance and reduced in height and size can be used for arranging the mounting terminals without increasing the thickness of parts. SAW devices with a degree of freedom can be manufactured at low cost.
次に、図13乃至図21を参照して実施例1のSAWデバイスの製造方法を説明する。実施例1と同様に、圧電基板であるタンタル酸リチウムのウェハ(圧電ウェハ)1の主面に櫛歯電極(IDT電極)2、および櫛歯電極2に接続して前記圧電ウェハの外縁に延設する一対の引出し配線3を外囲壁層6の対向する一対の側面側にそれぞれ形成する。この櫛歯電極2と引出し配線3は、Al、Cu、Au、Cr、Ru、Ni、Mg、Ti、W、V、Ta、Mo、Ag、In、Snのうちのいずれか一つを主成分とする材料、またはこれらの材料と酸素、窒素、珪素との化合物、あるいはこれらの材料の合金、または金属間化合物、これらを多層に積層した薄膜のパターニングで形成する。 Next, a method of manufacturing the SAW device of Example 1 will be described with reference to FIGS. 13 to 21. FIG. As in the first embodiment, the comb electrode (IDT electrode) 2 and the comb electrode 2 are connected to the main surface of a lithium tantalate wafer (piezoelectric wafer) 1 which is a piezoelectric substrate and extended to the outer edge of the piezoelectric wafer. A pair of lead wires 3 to be provided is formed on each of the facing side surfaces of the outer wall layer 6. The comb-tooth electrode 2 and the lead-out wiring 3 contain any one of Al, Cu, Au, Cr, Ru, Ni, Mg, Ti, W, V, Ta, Mo, Ag, In, and Sn as a main component. These materials, or compounds of these materials with oxygen, nitrogen, silicon, or alloys of these materials, or intermetallic compounds, are formed by patterning of thin films formed by laminating these in multiple layers.
次に、引出し配線3の延在部分を含んだ圧電基板1の外周を周回して、当該櫛歯電極2の作動空間となる中空部を形成する外囲壁層6を設置する。外囲壁層6はポリイミドやエポキシ樹脂を好適とする感光性の耐熱性樹脂の塗布と露光マスクを用いたホトリソ工程により形成する。この外囲壁層6を構成する樹脂にはホワイトマイカを好適とする無機フィラーを混入し、弾性率を向上させて機械的強度を大きくするのが望ましい。 Next, the outer wall layer 6 is formed around the outer periphery of the piezoelectric substrate 1 including the extended portion of the lead-out wiring 3 to form a hollow portion to be an operation space of the comb electrode 2. The outer wall layer 6 is formed by application of a photosensitive heat-resistant resin, which is preferably made of polyimide or epoxy resin, and a photolithographic process using an exposure mask. It is desirable to mix an inorganic filler suitable for white mica into the resin constituting the outer wall layer 6 to improve the elastic modulus and to increase the mechanical strength.
外囲壁層6を覆って上記と同様の無機フィラーを混入したポリイミドやエポキシ樹脂を好適とする感光性で耐熱性の樹脂板材を固着し、天井板7の構成材とする。天井板7の樹脂板材は、各櫛歯電極2を囲む外囲壁層6に周縁を橋絡して櫛歯電極2の作動空間を確保する中空部を封止する。・・・図13 A photosensitive and heat-resistant resin plate material is suitably fixed which covers the outer wall layer 6 and is preferably made of polyimide or epoxy resin mixed with the same inorganic filler as described above, and is used as a component of the ceiling plate 7. The resin plate material of the ceiling plate 7 seals a hollow portion which bridges the periphery to the outer wall layer 6 surrounding each of the comb-like electrodes 2 to secure an operation space of the comb-like electrodes 2. ... FIG.
次に、天井板7の構成材を個片対応のSAWデバイス毎のパターンに分離する。この個片分離には、天井板7となる感光性の耐熱性樹脂板材に露光マスク13を用い、紫外線露光と現像を行なうホトリソ工程で個片分離部分の耐熱性樹脂板材を除去する。・・・図14 Next, the components of the ceiling plate 7 are separated into patterns for each individual SAW device. In the individual piece separation, the photosensitive mask material is used for the photosensitive heat-resistant resin plate material to be the ceiling plate 7, and the heat-resistant resin plate material in the individual piece separation part is removed in a photolithographic process of exposing to ultraviolet light and developing. ... FIG.
このホトリソ工程を用いた加工により、個片対応で個々の天井板7に分離された状態では、外囲壁層6の対向する一対の側面と天井板7の前記外囲壁層6の対向する一対の側面に連接する側面に、天井板7から外囲壁層6にかけて階段状の段差面が形成される。・・・図15 In a state in which the individual ceiling plates 7 are separated in a piece-by-piece manner by processing using the photolithography process, the pair of opposing side surfaces of the outer wall layer 6 and the pair of opposing outer wall layers 6 of the ceiling plate 7 are separated. A step-like stepped surface is formed on the side surface connected to the side surface from the ceiling plate 7 to the outer wall layer 6. ... FIG.
天井板7の構成材を個片のSAWデバイス毎のパターンに分離した後、天井板7から外囲壁層6にかけて階段状となった段差面と隣接する個片のSAWデバイスとの間にある引き出し線3を覆って金属膜を成膜する。この金属膜は後工程の電解メッキを用いた側面配線や実装端子の形成のためのシード層15となる。・・・図16 After the components of the ceiling plate 7 are separated into patterns of individual SAW devices, a drawing is performed between the stepped surface which is stepped from the ceiling plate 7 to the outer wall layer 6 and the adjacent SAW devices. A metal film is deposited to cover the line 3. This metal film becomes a seed layer 15 for formation of side wiring and mounting terminals using electrolytic plating in a later step. ... FIG.
シード層15はCuやAuなど、メッキが付着する金属なら、種別を特に問わない。本実施例では、Tiを200Å製膜した上に、Cuを4000Åの厚さに形成した。天井層としてポリイミドなどの樹脂を用いた場合、金属との密着性が悪いため、前処理として樹脂面にプラズマ処理やブラスト処理を施すことにより、表面粗化処理を行なうことで、密着性を改善することができる。実験によれば、ポリイミド系の樹脂をブラスト処理で表面粗さRaを0.3〜0.5μmに粗化した場合、密着性の良好な金属膜が得られることを確認している。 The type of the seed layer 15 is not particularly limited as long as it is a metal to which plating is attached, such as Cu or Au. In this example, Cu was formed to a thickness of 4000 Å on a 200 Å-thick film of Ti. When a resin such as polyimide is used as the ceiling layer, adhesion to metal is poor. Therefore, by performing plasma treatment or blasting on the resin surface as pretreatment, adhesion is improved by performing surface roughening treatment. can do. According to experiments, it has been confirmed that when a polyimide resin is roughened to a surface roughness Ra of 0.3 to 0.5 μm by blasting, a metal film having good adhesion can be obtained.
なお、図15以降は隣接する二個のSAWデバイスの部分のみを拡大して表示する、図の左右部分は簡略して示す。図16に示したシード層15の上に、感光性レジストを塗布し、露光マスクを用いたホトリソ工程で上記側面配線や実装端子をメッキする部分のシード層15を露出させる。メッキが不要な部分にはレジスト16を残す。・・・図17 Note that, in FIG. 15 and thereafter, only the portions of two adjacent SAW devices are enlarged and displayed, and the left and right portions of the figure are simplified and shown. A photosensitive resist is applied on the seed layer 15 shown in FIG. 16, and the seed layer 15 in the portion to be plated with the side wiring and the mounting terminal is exposed in a photolithography process using an exposure mask. A resist 16 is left in the portion where plating is unnecessary. ... FIG.
レジストのパターンを用い、外囲壁層6の対向する一対の側面と天井板7の前記外囲壁層6の対向する面に連接する前記圧電基板1の外縁にわたって複数の区画(図12参照)に露出したシード層15の上に金属メッキ層10’を成長させる。メッキする金属としては、Ni、Au、Cuなどを用いる。本実施例では、硫酸銅メッキでCuを10μm程度の厚さに形成した。なお、必要に応じて、このメッキ層10’の実装端子となる部分の上に印刷などの手段を用いてハンダバンプを形成してもよい。・・・図18 Exposed in a plurality of sections (see FIG. 12) across the outer edge of the piezoelectric substrate 1 connected to the pair of opposite side surfaces of the outer wall layer 6 and the opposite surface of the outer wall layer 6 of the ceiling plate 7 using a resist pattern. On the seed layer 15, the metal plating layer 10 'is grown. As the metal to be plated, Ni, Au, Cu or the like is used. In this embodiment, Cu was formed to a thickness of about 10 μm by copper sulfate plating. If necessary, a solder bump may be formed on the portion to be the mounting terminal of the plated layer 10 ′ using a method such as printing. ... FIG. 18
なお、図16乃至図18で説明した工程は、電解メッキを用いて実装端子11や側面配線10となるメッキ層10’を形成する方法であるが、無電解メッキでメッキ層10’を形成することもできる。無電解メッキを採用する場合は、例えばスパッタによるシード層の成膜時にメタルマスクを用いてメッキ層10’が形成される箇所に選択的にスパッタ成膜を行なってもよい。 The process described in FIGS. 16 to 18 is a method of forming a plated layer 10 'to be the mounting terminals 11 and the side wiring 10 using electrolytic plating, but forming the plated layer 10' by electroless plating. It can also be done. In the case of employing the electroless plating, for example, at the time of film formation of the seed layer by sputtering, sputtering film formation may be selectively performed on a portion where the plating layer 10 'is formed using a metal mask.
メッキ層10’を形成した後、レジスト16を剥離剤で剥離し、あるいはアセトンなどの溶液で溶解して除去する。レジストが除去された部分にはシード層15が露出する。・・・図19 After the plating layer 10 'is formed, the resist 16 is peeled off with a peeling agent, or dissolved and removed with a solution such as acetone. The seed layer 15 is exposed in the portion where the resist is removed. ... FIG.
エチング液を用いて、天上板7の表面と外囲壁層6及び圧電基板1の表面に露出したシード層15をエッチング処理して除去する。・・・図20 The etching solution is used to etch away the seed layer 15 exposed on the surface of the top plate 7, the envelope layer 6, and the surface of the piezoelectric substrate 1 by etching. ... FIG. 20
前記した各工程を経た後、個々のSAWデバイスの境界で圧電基板1をダイシング加工で切断し、個片のSAWデバイスに分離する。分離した個片のSAWデバイスは前記図1、図2に示したものとなる。・・・図21 After each process described above, the piezoelectric substrate 1 is cut by dicing at the boundaries of the individual SAW devices to be separated into individual SAW devices. The separated individual SAW devices are as shown in FIG. 1 and FIG. ... Fig. 21
そして、金属メッキ層10’で圧電基板1の外縁にある引出し配線3と電気的に接続された金属メッキ層の天井板7の上面を実装端子11とする。引出し配線3と実装端子11とを外囲壁層6の側面を経由する側面配線10で接続する構成であるため、従来技術で説明したような外囲壁層の開口加工や天井板の開口加工を必要としないため、低コストでSAWデバイスを製造できる。 Then, the upper surface of the ceiling plate 7 of the metal plating layer electrically connected to the lead wiring 3 at the outer edge of the piezoelectric substrate 1 by the metal plating layer 10 ′ is used as the mounting terminal 11. Since the lead-out wiring 3 and the mounting terminal 11 are connected by the side wiring 10 passing through the side surface of the outer wall layer 6, opening processing of the outer wall layer and opening processing of the ceiling plate are required as described in the prior art. Therefore, the SAW device can be manufactured at low cost.
このように、本実施例に係る製造方法で製造したSAWデバイスは、面積が大きい天井層を構成する樹脂部に実装端子を形成するので、実装端子の位置を任意に選定でき、顧客が希望する箇所に実装端子を配置することができる。また、SAWデバイスの側壁部に櫛歯電極部と実装端子を接続する配線(側面配線)が形成されることで、外囲壁層と天井層の接合部分の密封構造が確実となり、中空部の気密が向上する。 As described above, in the SAW device manufactured by the manufacturing method according to the present embodiment, since the mounting terminals are formed on the resin portion constituting the ceiling layer having a large area, the positions of the mounting terminals can be arbitrarily selected, and the customer desires The mounting terminals can be arranged in places. In addition, by forming a wire (side wire) connecting the comb electrode portion and the mounting terminal on the side wall portion of the SAW device, the sealing structure of the bonding portion between the outer wall layer and the ceiling layer becomes reliable, and the hollow portion is airtight. Improve.
以上説明した各実施例では、天井板7の側面から外囲壁層6の側面を経て圧電基板1の周縁に引き出された引き出し線3を電気的に接続する側面配線10と天井板7の上面において実装端子(部品端子)11を形成するためのメッキ層を、実施例1では「漸次なだらかに湾曲する傾斜面」とし、実施例2では「階段状に屈曲する段差面」としているが、本発明はこれに限るものではなく、「天井板7の側面と外囲壁層6の側面を面一な垂直にして、この垂直な側面に側面配線10を形成してもよい。 In each of the embodiments described above, on the upper surface of the side wiring 10 and the ceiling plate 7 which electrically connect the lead wire 3 drawn to the peripheral edge of the piezoelectric substrate 1 from the side surface of the ceiling plate 7 through the side surface of the outer wall layer 6 The plated layer for forming the mounting terminals (component terminals) 11 is referred to as "gradiently curved inclined surface" in the first embodiment, and is referred to as "step surface curved in a step-like manner" in the second embodiment. The present invention is not limited to this. “The side surface of the ceiling plate 7 may be flush with the side surface of the outer wall layer 6, and the side wiring 10 may be formed on the vertical side surface.
なお、上記の面一な垂直とする加工は、前記実施例1で説明したダイシングブレードの刃形状の選択により、あるいは前記実施例2で説明したホトリソ工程で天井板7から外囲壁層6をパターニングすることで形成できる。 The above-mentioned processing to make the same vertical vertical pattern the outer wall layer 6 from the ceiling plate 7 by the selection of the blade shape of the dicing blade described in the first embodiment or by the photolithography process described in the second embodiment. It can form by doing.
ところで、例えば、前記図11に示した本発明の実施例2に係るSAWデバイスを実装基板に搭載する場合に、デバイスの端子(部品端子)に半田ボールを設けて実装基板の端子パッドに半田溶着する場合を考える。図11に示したSAWデバイスでは、実装端子(部品端子)11をメッキピラーや半田バンプを用いることなく天井板7上の金属層で構成された実装端子11に配置できるようにしている。すなわち、天井板7上には、固定した位置にメッキピラーや半田バンプは形成されていない。 By the way, for example, when mounting the SAW device according to the second embodiment of the present invention shown in FIG. 11 on a mounting substrate, solder balls are provided on the terminals (component terminals) of the device to solder weld on the terminal pads of the mounting substrate. Think about the case. In the SAW device shown in FIG. 11, the mounting terminals (component terminals) 11 can be arranged on the mounting terminals 11 formed of a metal layer on the ceiling plate 7 without using plated pillars or solder bumps. That is, on the ceiling plate 7, the plating pillars and the solder bumps are not formed at the fixed positions.
図22は、図11に示したSAWデバイスを実装基板の端子パッドに半田付けで搭載する状態の説明図である。先ず、SAWデバイスの実装端子11に半田ボール5を取り付ける。半田ボール5は半田ボール分配装置を用いて実装端子11上に配置することができる。 FIG. 22 is an explanatory view of the state where the SAW device shown in FIG. 11 is mounted on the terminal pads of the mounting substrate by soldering. First, the solder ball 5 is attached to the mounting terminal 11 of the SAW device. The solder balls 5 can be disposed on the mounting terminals 11 using a solder ball distribution device.
半田ボール5を取り付けたSAWデバイスを実装基板8に搭載する場合、実装機を用いて図22に示したように半田ボール5が実装端子11に形成されている端子パッド9に位置づけし、リフロー炉に通す。リフロー炉を通る間に、半田ボール5が溶融して実装端子11を端子パッド9に溶着する。しかし、このとき、溶融した半田が側面配線10を濡れ上る半田流れが生じて、実装端子11と端子パッド9の間に必要とする半田量を確保できなくなる現象が生じることがある。図23は、半田流れによって実装端子11と端子パッド9の間の半田が側面配線に濡れ上がった状態の説明図である。実装端子11と端子パッド9の間の半田量が減少した結果、両者間の導通不良や間隔の不均一が発生する可能性が出てくる。本実施例は、このような半田流れの発生を防止する構成としたものである。 When mounting the SAW device to which the solder ball 5 is mounted on the mounting substrate 8, as shown in FIG. 22, the solder ball 5 is positioned on the terminal pad 9 formed on the mounting terminal 11 using a mounting machine Pass through. While passing through the reflow furnace, the solder balls 5 melt and weld the mounting terminals 11 to the terminal pads 9. However, at this time, a molten solder may cause the solder flow to wet the side wiring 10 and a phenomenon may occur in which the required amount of solder can not be secured between the mounting terminal 11 and the terminal pad 9. FIG. 23 is an explanatory view of a state in which the solder between the mounting terminal 11 and the terminal pad 9 gets wet to the side wiring due to the solder flow. As a result of the reduction in the amount of solder between the mounting terminal 11 and the terminal pad 9, there is a possibility that a conduction failure or an uneven interval between the two will occur. The present embodiment is configured to prevent the occurrence of such solder flow.
図24は、半田流れ防止層を設けた本発明の圧電デバイスの実施例3を適用したSAWデバイスを説明する図25のX−X線に沿った断面図である。そして、図25は、半田流れ防止層を設けた本発明の圧電デバイスの実施例3を適用したSAWデバイスの平面図である。図24と図25において、前記各実施例の図面と同一機能部分には同一符号を付してある。また、符号31は半田流れ防止層、32はバリアメタルを示す。 FIG. 24 is a cross-sectional view taken along the line XX in FIG. 25 for explaining a SAW device to which the third embodiment of the piezoelectric device of the present invention provided with a solder flow prevention layer is applied. FIG. 25 is a plan view of a SAW device to which the third embodiment of the piezoelectric device of the present invention provided with a solder flow prevention layer is applied. In FIG. 24 and FIG. 25, the same functional parts as in the drawings of each of the embodiments are given the same reference numerals. Reference numeral 31 denotes a solder flow prevention layer, and 32 denotes a barrier metal.
なお、半田流れ防止層31は、バリアメタル32を形成する部分を除く天井板7とその側面および外囲壁層6を経て圧電基板1の上面外周にいたる領域に形成されているが、図25では、天井板の上に半田流れ防止層31が位置することを示すため、半田流れ防止層31の周縁位置を天井板7の端縁から後退させて図示してある。以下の同様な図面においても同じように図示してある。 The solder flow prevention layer 31 is formed in a region extending to the outer periphery of the upper surface of the piezoelectric substrate 1 through the ceiling plate 7 and the side surface and the outer wall layer 6 except for the portion forming the barrier metal 32. In order to indicate that the solder flow prevention layer 31 is positioned on the ceiling plate, the peripheral position of the solder flow prevention layer 31 is illustrated as being retracted from the edge of the ceiling plate 7. It is illustrated similarly in the following similar drawings.
実施例3に係るSAWデバイスでは、天井板7に設ける実装端子11の周囲を含み、圧電基板1の外縁(圧電基板1の上面外周)に有する金属メッキ層10’に至る側面を含むディスクの上部全面に半田流れ防止層31を設けている。半田流れ防止層31は、ポリイミドなどの熱硬化樹脂の溶液や液体ガラスをスプレー塗布あるいはスピンコートで塗布し、焼成して形成する。あるいは、シリカ(SiO2)をスパッタすることで形成することができる。 The SAW device according to the third embodiment includes the periphery of the mounting terminal 11 provided on the ceiling plate 7 and includes the side surface extending to the metal plating layer 10 ′ on the outer edge of the piezoelectric substrate 1 (the outer periphery of the upper surface of the piezoelectric substrate 1). A solder flow prevention layer 31 is provided on the entire surface. The solder flow prevention layer 31 is formed by applying a solution of thermosetting resin such as polyimide or liquid glass by spray coating or spin coating and baking it. Alternatively, it can be formed by sputtering silica (SiO 2 ).
図24に示した実装端子11の部分にある半田流れ防止層31を、ホトリソ法を用いて除去し、図25に示したように開口させる。この開口に露呈した実装端子11を構成する部分に対し、実装端子11が銅(Cu)メッキである場合はニッケル(Ni)メッキをし、さらに酸化防止膜として金(Au)メッキを施してバリアメタル32の層を形成する。金(Au)メッキは必須ではない。このバリアメタル32の上に半田ボールを設けて実装基板の端子パッドに溶着して搭載する。なお、バリアメタル32を形成しないで、端子窓33に直接半田ボールあるいは半田バンプを設けることもできる。バリアメタル32は必須構成ではないが、半田を用いて実装基板端子に搭載することを考えると、これを設けておくのが望ましい。 The solder flow prevention layer 31 in the portion of the mounting terminal 11 shown in FIG. 24 is removed using a photolithographic method, and is opened as shown in FIG. If the mounting terminal 11 is plated with copper (Cu), nickel (Ni) plating is applied to the portion constituting the mounting terminal 11 exposed to the opening, and then gold (Au) plating is applied as an anti-oxidation film to form a barrier. Form a layer of metal 32. Gold (Au) plating is not essential. Solder balls are provided on the barrier metal 32 and are welded and mounted on the terminal pads of the mounting substrate. Alternatively, solder balls or solder bumps may be provided directly on the terminal window 33 without forming the barrier metal 32. Although the barrier metal 32 is not an essential component, it is desirable to provide it in consideration of mounting on the mounting substrate terminal using solder.
図26は、半田流れ防止層を設けた本発明の圧電デバイスの実施例3を適用したSAWデバイスの実装端子(部品端子)に半田ボールを設けた状態を説明する図27のX−X線に沿った断面図である。図27は、半田流れ防止層を設けた本発明の圧電デバイスの実施例3を適用したSAWデバイスの平面図である。 FIG. 26 illustrates a state in which solder balls are provided on the mounting terminals (component terminals) of the SAW device to which the piezoelectric device according to the third embodiment of the present invention provided with the solder flow prevention layer is applied FIG. FIG. 27 is a plan view of a SAW device to which Example 3 of the piezoelectric device of the present invention provided with a solder flow prevention layer is applied.
図26と図27において、天井板7の上に有する実装端子11に形成したバイリアメタル32に半田ボール5を設ける。半田ボール5は半田ボール分配装置を用いて配置する。このように、半田ボール5を設けたSAWデバイスを前記22で説明したように実装基板8に搭載する場合、実装基板8の端子パッド9の半田ボール5を乗せ、リフロー炉を通すことで、端子パッド9に半田溶着する。 In FIG. 26 and FIG. 27, the solder balls 5 are provided on the byria metal 32 formed on the mounting terminals 11 provided on the ceiling plate 7. The solder balls 5 are arranged using a solder ball distribution device. As described above, when the SAW device provided with the solder balls 5 is mounted on the mounting substrate 8 as described in 22 above, the solder balls 5 of the terminal pads 9 of the mounting substrate 8 are placed and the terminals are passed through a reflow furnace. Solder weld on the pad 9.
本実施例によれば、半田流れ防止層31を設けたことで、半田ボールなどを用いて実装基板8の表面に有する端子パッド9にフェースダウン実装する際の側面配線部分への半田の回り込みに起因する実装端子11(バリアメタル32)と端子パッド9の間に介在する半田量の減少が回避され、半田付不良や実装基板との間の隙間の不安定化が防止される。 According to the present embodiment, the solder flow prevention layer 31 is provided, so that solder wraps around the side wiring portion when mounting facedown on the terminal pad 9 provided on the surface of the mounting substrate 8 using solder balls or the like. The reduction of the amount of solder interposed between the mounting terminal 11 (barrier metal 32) and the terminal pad 9 is avoided, and the defective soldering and the instability of the gap between the mounting substrate and the mounting substrate are prevented.
図28は、本発明の圧電デバイスの実施例4を適用したSAWデバイスを説明する図29のX−X線に沿った断面図である。図29は、本発明の圧電デバイスの実施例4を適用したSAWデバイスの平面図で、図28は図29のX−X船に沿った断面に相当する。本実施例では、半田流れ防止層31を実装端子11(バリアメタル32)のそれぞれに対して独立に設けたものである。図28、図29に示されたように、本実施例の半田流れ防止層31は側面配線10と実装端子11の周囲に個別に形成してあり、天井板7、外囲壁層6などの部分には形成されていない。バリアメタル32やその他の構成は実施例3と同様である。 FIG. 28 is a cross-sectional view taken along the line XX in FIG. 29 for explaining a SAW device to which Example 4 of the piezoelectric device of the present invention is applied. FIG. 29 is a plan view of a SAW device to which Example 4 of the piezoelectric device of the present invention is applied, and FIG. 28 corresponds to a cross section taken along the line XX of FIG. In the present embodiment, the solder flow prevention layer 31 is provided independently for each of the mounting terminals 11 (barrier metal 32). As shown in FIGS. 28 and 29, the solder flow prevention layer 31 of the present embodiment is formed separately around the side wiring 10 and the mounting terminal 11, and portions such as the ceiling plate 7 and the outer wall layer 6 etc. Not formed. The barrier metal 32 and other configurations are the same as in the third embodiment.
本実施例によっても、半田流れ防止層31を設けたことで、半田ボールなどを用いて実装基板8の表面に有する端子パッド9にフェースダウン実装する際の側面配線部分への半田の回り込みに起因する実装端子11(バリアメタル32)と端子パッド9の間に介在する半田量の減少が回避され、半田付不良や実装基板との間の隙間の不安定化が防止される。 Also according to the present embodiment, the solder flow prevention layer 31 is provided, which results from wraparound of the solder in the side wiring portion when mounting facedown to the terminal pad 9 provided on the surface of the mounting substrate 8 using solder balls or the like. Thus, the reduction of the amount of solder interposed between the mounting terminals 11 (barrier metal 32) and the terminal pads 9 is avoided, and the defective soldering and the instability of the gap between the mounting substrate and the mounting substrate are prevented.
図30は、半田流れ防止層を設けた本発明の実施例3で説明したSAWデバイスの製造方法の要部を説明する工程図である。前記図13乃至図20で説明した工程を経た状態のSAWデバイスを図30(a)に示す。天井板7から引き出し配線に至る実装端子11と側面配線10を構成するメッキ層10’は銅(Cu)又はニッケル(Ni)あるいはそれらの合金からなる。 FIG. 30 is a process diagram for explaining the main parts of the method for manufacturing the SAW device described in the third embodiment of the present invention provided with a solder flow prevention layer. FIG. 30A shows a SAW device in a state where the steps described in FIGS. 13 to 20 have been performed. The plated terminals 10 'constituting the mounting terminals 11 from the ceiling plate 7 to the lead wiring and the side wiring 10 are made of copper (Cu) or nickel (Ni) or their alloys.
図30(b)はポリイミド溶液をスプレー塗布し、これを焼成し硬化して半田流れ防止層31とした状態を示す。なお、ポリイミド溶液の塗布にはスプレー塗布の外、スピン塗布、あるいは印刷法を用いることができる。また、ポリイミド溶液に限らず、その他の熱硬化樹脂、あるいはガラスの塗布膜、シリカ(SiO2)のスパッタ膜とすることもできる。 FIG. 30 (b) shows a state in which a polyimide solution is spray applied, which is fired and cured to form a solder flow prevention layer 31. In addition to spin coating, spin coating or printing may be used to apply the polyimide solution. Further, not limited to the polyimide solution, other thermosetting resin, or a coated film of glass, or a sputtered film of silica (SiO 2 ) can also be used.
図30(c)は実装端子形成部分に窓(端子窓33)を形成した状態を示す。ポリイミドの半田流れ防止層31にホトレジストを塗布し、所定の開口を備えた露光マスクを介しての紫外光による露光と現像工程を経るホトリソ工程で端子窓33を形成する。 FIG. 30C shows a state in which a window (terminal window 33) is formed in the mounting terminal formation portion. A photoresist is applied to the solder flow prevention layer 31 of polyimide, and the terminal window 33 is formed by a photolithographic process including exposure to ultraviolet light through an exposure mask provided with a predetermined opening and a development process.
図30(d)は実装端子形成部分に設けた端子窓33にニッケル(Ni)メッキをし、その後に金(Au)メッキを施してバリアメタル32とする。このバリアメタル32の上に図26での説明と同様に、半田ボールを設けて実装基板の端子パッドに溶着して搭載する。なお、バリアメタルを形成しないで、端子窓33に直接半田ボールあるいは半田バンプを設けることもできる。 In FIG. 30D, nickel (Ni) is plated on the terminal window 33 provided in the mounting terminal formation portion, and then gold (Au) is plated to form a barrier metal 32. Solder balls are provided on the barrier metal 32 in the same manner as described with reference to FIG. 26, and welded and mounted on the terminal pads of the mounting substrate. Alternatively, solder balls or solder bumps may be provided directly on the terminal window 33 without forming a barrier metal.
本実施例によっても、実施例3と同様、半田流れ防止層31を設けたことで、半田ボールなどを用いて実装基板8の表面に有する端子パッド9にフェースダウン実装する際の側面配線部分への半田の回り込みに起因する実装端子11(バリアメタル32)と端子パッド9の間に介在する半田量の減少が回避され、半田付不良や実装基板との間の隙間の不安定化が防止される。 Also according to the present embodiment, as in the third embodiment, by providing the solder flow prevention layer 31, the side surface wiring portion in the case of face-down mounting on the terminal pad 9 provided on the surface of the mounting substrate 8 using solder balls etc. Reduction of the amount of solder interposed between the mounting terminal 11 (barrier metal 32) and the terminal pad 9 due to the wraparound of solder is prevented, and defective soldering and instability of the gap between the mounting substrate are prevented. Ru.
図31は、本発明の圧電デバイスの実施例5を適用したSAWデバイスの要部を説明する図32のX−X線に沿った断面図である。また、図32は、本発明の圧電デバイスの実施例5を適用したSAWデバイスの要部を説明する平面図である。実施例5は、デバイスを構成する天井板とデバイスに潰れ防止層を設けたものである。前記の図3あるいは図13で説明した天井板材7の貼り合せ工程や、実装基板への搭載工程における圧力印加に対して作動空間(IDT部を収容するチャンバー、中空部)に潰れが発生するのをさらに防止できるようにしたものである。さらに、圧電デバイスをモジュール化する際の耐モールド性の向上も期待できる。 31 is a cross-sectional view taken along the line X-X in FIG. 32 for explaining the main part of a SAW device to which the fifth embodiment of the piezoelectric device of the present invention is applied. FIG. 32 is a plan view for explaining the main part of a SAW device to which the fifth embodiment of the piezoelectric device of the present invention is applied. In the fifth embodiment, the ceiling plate constituting the device and the device are provided with a crushing prevention layer. Crushing occurs in the working space (the chamber accommodating the IDT portion, the hollow portion) in response to pressure application in the step of bonding the ceiling plate 7 described in FIG. 3 or FIG. 13 and the step of mounting on the mounting substrate. Can be further prevented. Furthermore, the improvement of mold resistance at the time of modularizing a piezoelectric device can also be expected.
本実施例のSAWデバイスは、前記したデバイスの側面と天井板7の上面に渡って、電気的に分離された複数の側面配線10や実装端子(部品端子)11を形成すると共に、上記側面配線10や実装端子(部品端子)11を避けた部分に潰れ防止層34を設けた。この潰れ防止層34は、金属あるいは樹脂を用いて形成する。金属の場合は、例えば銅(Cu),ニッケル(Ni)等のメッキ、あるいは蒸着やスパッタで形成する。潰れ防止層34は側面配線10や実装端子(部品端子)11と同時に形成することもできる。 In the SAW device of this embodiment, a plurality of electrically separated side wirings 10 and mounting terminals (component terminals) 11 are formed across the side surface of the device and the upper surface of the ceiling plate 7 and the above-mentioned side wiring A crushing prevention layer 34 is provided in a portion other than the mounting terminals 10 and the mounting terminals (component terminals) 11. The anti-crush layer 34 is formed using metal or resin. In the case of metal, it is formed, for example, by plating with copper (Cu), nickel (Ni) or the like, or by vapor deposition or sputtering. The crushing prevention layer 34 can be formed simultaneously with the side wiring 10 and the mounting terminal (component terminal) 11.
また、潰れ防止層34としてポリイミド樹脂、ポリエステル樹脂、エポキシ樹脂などの熱硬化性樹脂の層を用いることもできる。これらの樹脂溶液をスプレーやスピンで塗布し、ホトリソ工程で図32に示したような領域に潰れ防止層34を形成する。 Further, a layer of thermosetting resin such as polyimide resin, polyester resin, epoxy resin can be used as the crushing prevention layer 34. These resin solutions are applied by spray or spin, and a collapse prevention layer 34 is formed in a region as shown in FIG.
本実施例では、上記した潰れ防止層34の上に半田流れ防止層31を設け、その後に図24で説明した実施例3と同様の半田流れ防止層31を形成する。図33は、潰れ防止層34の上に半田流れ防止層31を設けたSAWデバイスを説明する図34のX−X線に沿った断面図である。図34は、潰れ防止層の上に半田流れ防止層を設けたSAWデバイスの平面図である。図33、図34に示したように、半田流れ防止層31に実装端子のための開口を形成し、必要に応じてこの開口にバリアメタル32を設ける。なお、半田流れ防止層31は実施例4と同様のものとすることもできる。 In the present embodiment, the solder flow prevention layer 31 is provided on the above-described crushing prevention layer 34, and thereafter, the solder flow prevention layer 31 similar to the third embodiment described in FIG. 24 is formed. FIG. 33 is a cross-sectional view taken along the line X-X in FIG. 34 for explaining a SAW device in which the solder flow prevention layer 31 is provided on the anti-crush layer 34. FIG. 34 is a plan view of a SAW device in which a solder flow prevention layer is provided on a crushing prevention layer. As shown in FIGS. 33 and 34, an opening for a mounting terminal is formed in the solder flow prevention layer 31, and a barrier metal 32 is provided in this opening as necessary. The solder flow prevention layer 31 may be the same as that of the fourth embodiment.
本実施例により、天井板材の貼り合せ工程や、実装基板への搭載工程における圧力印加に対して作動空間(IDT部を収容するチャンバー、中空部)が潰れるのをさらに防止できる。そして、この潰れ防止層の上に前記実施例と同様の半田流れ防止層31を設けたことで、半田ボールなどを用いて実装基板8の表面に有する端子パッド9にフェースダウン実装する際の側面配線部分への半田の回り込みに起因する実装端子11(バリアメタル32)と端子パッド9の間に介在する半田量の減少が回避され、半田付不良や実装基板との間の隙間の不安定化が防止される。 According to the present embodiment, it is possible to further prevent crushing of the working space (the chamber accommodating the IDT portion, the hollow portion) due to the pressure application in the bonding process of the ceiling plate material and the mounting process on the mounting substrate. Then, the solder flow prevention layer 31 similar to that of the above embodiment is provided on the anti-crush layer, so that the side surface of the mounting pad 8 is mounted on the surface of the mounting substrate 8 by using a solder ball or the like. A reduction in the amount of solder interposed between the mounting terminal 11 (barrier metal 32) and the terminal pad 9 due to the wraparound of the solder into the wiring portion is avoided, and a defect with soldering or a destabilization of the gap between the mounting substrate Is prevented.
本発明は、上記実施例におけるSAWデバイスに限るものではなく、水晶発振器やMEMS共振器、その他同様の課題を有する電子デバイスにも適用できるものであることは言うまでも無い。 The present invention is not limited to the SAW device in the above embodiment, and needless to say, can be applied to a quartz oscillator, a MEMS resonator, and other electronic devices having similar problems.
1 圧電基板
2 櫛歯電極(IDT電極)
3 引き出し配線
4 電極柱
5 実装端子
6 外囲壁層
7 天井板
8 実装基板
9 端子パッド
10 側面配線
10’ メッキ層
11 実装端子(部品端子)
12 ダイシングブレード
13 ホトマスク
14 紫外線
15 シード層
16 レジスト
20 部品埋蔵基板
21 電子部品
22 部品端子
23 樹脂
24 開口
25 電極柱
26 カットライン
31 半田流れ防止層
32 バリアメタル
32 端子窓
32 潰れ防止層
1 Piezoelectric substrate 2 Comb electrode (IDT electrode)
Reference Signs List 3 lead wiring 4 electrode pillar 5 mounting terminal 6 outer wall layer 7 ceiling plate 8 mounting board 9 terminal pad 10 side wiring 10 ′ plated layer 11 mounting terminal (component terminal)
12 dicing blade 13 photomask 14 ultraviolet ray 15 seed layer 16 resist 20 component embedded substrate 21 electronic component 22 component terminal 23 resin 24 opening 25 electrode column 26 cut line 31 solder flow prevention layer 32 barrier metal 32 terminal window 32 crushing prevention layer
Claims (10)
前記天井板は、無機材料のフィラーを混入して機械的強度を向上させた耐熱性樹脂からなり、
前記引出し配線は、前記外囲壁層の対向する一対の側面側にそれぞれ形成されており、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に絶縁された金属メッキ層が形成されており、
前記金属メッキ層は、前記圧電基板の前記外縁で前記引出し配線と電気的に接続され、
前記金属メッキ層の前記天井板の上面を実装端子とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線とし、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する側面に、前記天井板から前記外囲壁層にかけて漸次なだらかに湾曲する傾斜面を有せしめたことを特徴とする圧電デバイス。 A piezoelectric substrate, a comb-tooth electrode formed on the main surface of the piezoelectric substrate, a lead-out wire connected to the comb-tooth electrode and extended to an outer edge of the piezoelectric substrate, and the piezoelectric substrate including the lead-out wire And an outer wall layer which is installed around the outer circumference to form a hollow portion which becomes an operation space of the comb electrode, and a ceiling plate which bridges the outer wall layer to seal the hollow portion. ,
The ceiling plate is made of a heat-resistant resin whose mechanical strength is improved by mixing an inorganic filler.
The lead-out wires are respectively formed on a pair of opposing side surfaces of the outer wall layer,
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate A metal plating layer insulated in a plurality of sections across the outer edge of the
The metal plating layer is electrically connected to the lead-out line at the outer edge of the piezoelectric substrate,
The upper surface of the ceiling plate of the metal plating layer is a mounting terminal, and the side surface of the outer wall layer of the metal plating layer is a side wiring connecting the lead wiring and the mounting terminal ,
The side surface connected to the pair of opposing side surfaces of the outer wall layer and the pair of opposite side surfaces of the outer wall layer of the ceiling plate has an inclined surface which gradually curves from the ceiling plate to the outer wall layer. A piezoelectric device characterized by
前記天井板は、無機材料のフィラーを混入して機械的強度を向上させた耐熱性樹脂からなり、
前記引出し配線は、前記外囲壁層の対向する一対の側面側にそれぞれ形成されており、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に絶縁された金属メッキ層が形成されており、
前記金属メッキ層は、前記圧電基板の前記外縁で前記引出し配線と電気的に接続され、
前記金属メッキ層の前記天井板の上面を実装端子とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線とし、
前記天井板に設ける実装端子の周囲を含み、前記圧電基板の前記外縁に有する前記金属メッキ層に至る前記側面に半田流れ防止層を有せしめたことを特徴とする圧電デバイス。 A piezoelectric substrate, a comb-tooth electrode formed on the main surface of the piezoelectric substrate, a lead-out wire connected to the comb-tooth electrode and extended to an outer edge of the piezoelectric substrate, and the piezoelectric substrate including the lead-out wire And an outer wall layer which is installed around the outer circumference to form a hollow portion which becomes an operation space of the comb electrode, and a ceiling plate which bridges the outer wall layer to seal the hollow portion. ,
The ceiling plate is made of a heat-resistant resin whose mechanical strength is improved by mixing an inorganic filler.
The lead-out wires are respectively formed on a pair of opposing side surfaces of the outer wall layer,
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate A metal plating layer insulated in a plurality of sections across the outer edge of the
The metal plating layer is electrically connected to the lead-out line at the outer edge of the piezoelectric substrate,
The upper surface of the ceiling plate of the metal plating layer is a mounting terminal, and the side surface of the outer wall layer of the metal plating layer is a side wiring connecting the lead wiring and the mounting terminal ,
A piezoelectric device characterized in that a solder flow prevention layer is provided on the side surface extending to the metal plating layer provided on the outer edge of the piezoelectric substrate including the periphery of the mounting terminal provided on the ceiling plate .
前記半田流れ防止層を、前記実装端子の一部であるバリアメタルもしくは端子窓を除く前記天井板および前記側面の全面に設けたことを特徴とする圧電デバイス。 In claim 2 ,
A piezoelectric device, wherein the solder flow prevention layer is provided on the entire surface of the ceiling plate and the side surface except a barrier metal or a terminal window which is a part of the mounting terminal.
前記半田流れ防止層を、前記実装端子のそれぞれに対して独立に設けたことを特徴とする圧電デバイス。 In claim 2 ,
A piezoelectric device, wherein the solder flow prevention layer is provided independently for each of the mounting terminals.
前記実装端子の上にバリアメタル層を有せしめたことを特徴とする圧電デバイス。 In claim 2 ,
The piezoelectric device is characterized in that allowed have a barrier metal layer over the mounting terminal.
前記引出し配線を含んだ前記圧電基板の外周を周回して、前記櫛歯電極の作動空間となる中空部を形成するための外囲壁層を設置する作動空間形成工程と、
無機フィラーを混入した耐熱樹脂板からなる天井板を前記外囲壁層に周縁を橋絡して前記中空部を封止する天井板設置工程と、
前記天井板を個片のSAWデバイス毎のパターンに分離する天井板パターニング工程と、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に金属メッキ層を形成する金属メッキ層形成工程と、
前記した各工程を経た後に、貼り合わせた前記圧電ウェハと前記天井板を個々のSAWデバイスに分割する個片化工程と、
を含み、
前記金属メッキ層で前記圧電基板の前記外縁で前記引出し配線と電気的に接続されて、前記金属メッキ層の前記天井板の上面を実装端子とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線とし、
前記天井板パターニング工程として、テーパー角の付いたダイシングブレードによるカッテイング法を用いたことを特徴とする圧電デバイスの製造方法。 A comb-tooth electrode is formed on the main surface of a piezoelectric wafer constituting the piezoelectric substrate, and a lead-out wire connected to the comb-tooth electrode and extended to the outer edge of the piezoelectric substrate is formed on the pair of opposing side surfaces of the piezoelectric substrate. An electrode forming step;
An operation space forming step of setting an outer wall layer for forming a hollow portion to be an operation space of the comb electrode, around the outer periphery of the piezoelectric substrate including the lead-out wiring;
A ceiling plate setting step of sealing the hollow portion by bridging the periphery of a ceiling plate made of a heat-resistant resin plate mixed with an inorganic filler to the outer wall layer;
A ceiling plate patterning step of separating the ceiling plate into patterns of individual SAW devices;
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate Forming a metal plating layer in a plurality of sections across the outer edge of
A singulation step of dividing the bonded piezoelectric wafer and the ceiling plate into individual SAW devices after each of the above steps;
Including
The metal plating layer is electrically connected to the lead-out wiring at the outer edge of the piezoelectric substrate, the upper surface of the ceiling plate of the metal plating layer is used as a mounting terminal, and the side surface of the outer wall layer of the metal plating layer is Side wiring connecting the lead-out wiring and the mounting terminal ,
A method of manufacturing a piezoelectric device, wherein a cutting method using a dicing blade with a tapered angle is used as the ceiling plate patterning step .
前記引出し配線を含んだ前記圧電基板の外周を周回して、前記櫛歯電極の作動空間となる中空部を形成するための外囲壁層を設置する作動空間形成工程と、
無機フィラーを混入した耐熱樹脂板からなる天井板を前記外囲壁層に周縁を橋絡して前記中空部を封止する天井板設置工程と、
前記天井板を個片のSAWデバイス毎のパターンに分離する天井板パターニング工程と、
前記外囲壁層の対向する一対の側面と前記天井板の前記外囲壁層の対向する一対の側面に連接する上面と前記圧電基板の前記外囲壁層の対向する一対の側面に連接する前記圧電基板の前記外縁にわたって複数の区画に金属メッキ層を形成する金属メッキ層形成工程と、
前記した各工程を経た後に、貼り合わせた前記圧電ウェハと前記天井板を個々のSAWデバイスに分割する個片化工程と、
を含み、
前記金属メッキ層で前記圧電基板の前記外縁で前記引出し配線と電気的に接続されて、前記金属メッキ層の前記天井板の上面を実装端子とし、前記金属メッキ層の前記外囲壁層の側面を前記引出し配線と前記実装端子を接続する側面配線とし、
前記金属メッキ層を形成する金属メッキ層形成工程の後に、前記実装端子の一部であるバリアメタルもしくは端子窓を避けた前記天井板の上面と前記圧電基板の前記外縁に有する前記金属メッキ層に至る前記側面に半田流れ防止層を形成する半田流れ防止層形成工程を有することを特徴とする圧電デバイスの製造方法。 A comb-tooth electrode is formed on the main surface of a piezoelectric wafer constituting the piezoelectric substrate, and a lead-out wire connected to the comb-tooth electrode and extended to the outer edge of the piezoelectric substrate is formed on the pair of opposing side surfaces of the piezoelectric substrate. An electrode forming step;
An operation space forming step of setting an outer wall layer for forming a hollow portion to be an operation space of the comb electrode, around the outer periphery of the piezoelectric substrate including the lead-out wiring;
A ceiling plate setting step of sealing the hollow portion by bridging the periphery of a ceiling plate made of a heat-resistant resin plate mixed with an inorganic filler to the outer wall layer;
A ceiling plate patterning step of separating the ceiling plate into patterns of individual SAW devices;
The piezoelectric substrate connected to an upper surface connected to a pair of opposite side surfaces of the outer wall layer and a pair of opposite side surfaces of the outer wall layer of the ceiling plate and a pair of opposite side surfaces of the outer wall layer of the piezoelectric substrate Forming a metal plating layer in a plurality of sections across the outer edge of
A singulation step of dividing the bonded piezoelectric wafer and the ceiling plate into individual SAW devices after each of the above steps;
Including
The metal plating layer is electrically connected to the lead-out wiring at the outer edge of the piezoelectric substrate, the upper surface of the ceiling plate of the metal plating layer is used as a mounting terminal, and the side surface of the outer wall layer of the metal plating layer is Side wiring connecting the lead-out wiring and the mounting terminal ,
After the metal plating layer forming step of forming the metal plating layer, on the upper surface of the ceiling plate avoiding the barrier metal or terminal window which is a part of the mounting terminal and the metal plating layer on the outer edge of the piezoelectric substrate A method of manufacturing a piezoelectric device, comprising a solder flow prevention layer forming step of forming a solder flow prevention layer on the side surface .
前記半田流れ防止層を前記実装端子の一部であるバリアメタルもしくは端子窓を除く前記天井板および前記側面の全面に設けたことを特徴とする圧電デバイスの製造方法。 In claim 7 ,
A method of manufacturing a piezoelectric device, wherein the solder flow preventing layer is provided on the entire surface of the ceiling plate and the side surface excluding a barrier metal or a terminal window which is a part of the mounting terminal.
前記半田流れ防止層を前記実装端子のそれぞれに対して独立に設けたことを特徴とする圧電デバイスの製造方法。 In claim 7 ,
A method of manufacturing a piezoelectric device, wherein the solder flow prevention layer is provided independently for each of the mounting terminals.
前記実装端子の上にバリアメタル層を形成するバリアメタル層形成工程を有することを特徴とする圧電デバイスの製造方法。 In claim 7 ,
A method of manufacturing a piezoelectric device, comprising a barrier metal layer forming step of forming a barrier metal layer on the mounting terminal.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/510,697 US20170288123A1 (en) | 2014-09-19 | 2015-07-31 | Piezoelectric device and method for manufacturing the same |
PCT/JP2015/071783 WO2016042928A1 (en) | 2014-09-19 | 2015-07-31 | Piezoelectric device and method for manufacturing same |
CN201580048213.4A CN106688180B (en) | 2014-09-19 | 2015-07-31 | Piezoelectric element and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014190708 | 2014-09-19 | ||
JP2014190708 | 2014-09-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016066989A JP2016066989A (en) | 2016-04-28 |
JP6538379B2 true JP6538379B2 (en) | 2019-07-03 |
Family
ID=55805906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015050253A Active JP6538379B2 (en) | 2014-09-19 | 2015-03-13 | Piezoelectric device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6538379B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018221172A1 (en) * | 2017-06-01 | 2018-12-06 | 株式会社村田製作所 | Filter device |
JP6702438B2 (en) * | 2017-06-30 | 2020-06-03 | 株式会社村田製作所 | Elastic wave device |
JP6996467B2 (en) * | 2017-12-19 | 2022-01-17 | 株式会社村田製作所 | Elastic wave device |
KR102163886B1 (en) | 2017-12-19 | 2020-10-12 | 가부시키가이샤 무라타 세이사쿠쇼 | Elastic wave device |
WO2019130943A1 (en) | 2017-12-26 | 2019-07-04 | 株式会社村田製作所 | Elastic wave device and elastic wave module |
DE102019115971A1 (en) * | 2019-06-12 | 2020-12-17 | RF360 Europe GmbH | Electrical component, apparatus, and method for making a variety of electrical components |
JP2022020084A (en) * | 2020-06-26 | 2022-02-01 | NDK SAW devices株式会社 | Surface acoustic wave device |
JP7443168B2 (en) * | 2020-06-26 | 2024-03-05 | NDK SAW devices株式会社 | surface acoustic wave device |
KR102393573B1 (en) * | 2020-07-06 | 2022-05-03 | (주)와이솔 | Surface acoustic wave wafer level package and manufacturing method thereof |
US20230062981A1 (en) * | 2021-08-27 | 2023-03-02 | Skyworks Solutions, Inc. | Packaged multilayer piezoelectric surface acoustic wave device with conductive pillar |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006324894A (en) * | 2005-05-18 | 2006-11-30 | Hitachi Media Electoronics Co Ltd | Surface acoustic wave device and manufacturing method thereof |
JP4524474B2 (en) * | 2005-11-17 | 2010-08-18 | 富士通メディアデバイス株式会社 | Elastic wave device and manufacturing method thereof |
DE102007058951B4 (en) * | 2007-12-07 | 2020-03-26 | Snaptrack, Inc. | MEMS package |
JP2010118522A (en) * | 2008-11-13 | 2010-05-27 | Renesas Technology Corp | Semiconductor device and method for manufacturing the semiconductor device |
JP5721500B2 (en) * | 2011-03-30 | 2015-05-20 | 京セラ株式会社 | Elastic wave device and manufacturing method thereof |
JP2013046168A (en) * | 2011-08-23 | 2013-03-04 | Seiko Epson Corp | Manufacturing method of vibration device |
US9461235B2 (en) * | 2012-02-28 | 2016-10-04 | Skyworks Filter Solutions Japan Co., Ltd. | Elastic wave device and method of manufacturing the device |
JP2014120966A (en) * | 2012-12-18 | 2014-06-30 | Nippon Dempa Kogyo Co Ltd | Piezoelectric component |
JP2014099781A (en) * | 2012-11-15 | 2014-05-29 | Nippon Dempa Kogyo Co Ltd | Piezoelectric component |
-
2015
- 2015-03-13 JP JP2015050253A patent/JP6538379B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016066989A (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6538379B2 (en) | Piezoelectric device and method of manufacturing the same | |
WO2016042928A1 (en) | Piezoelectric device and method for manufacturing same | |
US10554192B2 (en) | Acoustic wave device and electronic component | |
US7486160B2 (en) | Electronic component and manufacturing method thereof | |
CN103460600B (en) | Electronic unit and acoustic wave device | |
JP5425005B2 (en) | Piezoelectric component and manufacturing method thereof | |
KR100680511B1 (en) | Piezoelectric device | |
JP5424973B2 (en) | Piezoelectric component and manufacturing method thereof | |
US8692440B2 (en) | Piezoelectric device and manufacturing method therefor | |
US9264016B2 (en) | Piezoelectric component having a cover layer including resin that contains translucent filler | |
JP2009010559A (en) | Piezoelectric component and method of manufacturing the same | |
JP2004248243A (en) | Electronic component and method of producing the same | |
JP4795891B2 (en) | Mounting structure having three-dimensional wiring | |
JP2014120966A (en) | Piezoelectric component | |
JP2007081555A (en) | Surface acoustic wave device | |
JP2009141036A (en) | Package structure | |
JP2013118444A (en) | Manufacturing method of surface acoustic wave device and surface acoustic wave device | |
JP2012186761A (en) | Electronic component and manufacturing method thereof | |
JP2006108993A (en) | Surface acoustic wave device and manufacturing method thereof | |
JP2018088512A (en) | Wiring member for semiconductor device | |
JP2008021792A (en) | Device, its manufacturing method, and electronic apparatus | |
JP2004119646A (en) | Semiconductor device and method of manufacturing same | |
JP2006179972A (en) | Surface acoustic wave device | |
JP2018093157A (en) | Wiring member for semiconductor device | |
JP2009088864A (en) | Piezoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6538379 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |