JP6529466B2 - 風速測定装置 - Google Patents

風速測定装置 Download PDF

Info

Publication number
JP6529466B2
JP6529466B2 JP2016140358A JP2016140358A JP6529466B2 JP 6529466 B2 JP6529466 B2 JP 6529466B2 JP 2016140358 A JP2016140358 A JP 2016140358A JP 2016140358 A JP2016140358 A JP 2016140358A JP 6529466 B2 JP6529466 B2 JP 6529466B2
Authority
JP
Japan
Prior art keywords
light
unit
optical fiber
level
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016140358A
Other languages
English (en)
Other versions
JP2017026610A (ja
Inventor
学 松村
学 松村
芳樹 時山
芳樹 時山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JP2017026610A publication Critical patent/JP2017026610A/ja
Application granted granted Critical
Publication of JP6529466B2 publication Critical patent/JP6529466B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、自然風あるいは強制風の風速を測定する風速測定装置及び風速測定方法に関し、特に風速計と装置本体を光ファイバで接続して通信を行う風速測定装置及びその方法に関する。
従来、遠隔地における測定対象物の物理的変化を検出する様々な測定装置が提案されている。これらの装置のうち、センサ部と装置本体を光ファイバで接続し、光ファイバ内を伝搬する光を検出することで測定を行う光学測定装置がある。
図9は、従来の光学測定装置の構成を示すブロック図である。同図に示すように、光学測定装置100は、監視装置120と、センサ部130とを備えており、両者は光ファイバ芯線150により接続されている。具体的には、監視装置120は、制御部122、データ処理部123及びデータ記憶部124等を備える制御装置121と、光源125と、検出部126と、光源125及び検出部126を光ファイバ芯線150に光学的に接続するフォトカプラ127とを備えている。センサ部130は、光ファイバ芯線150からの光信号を内部の光ファイバに接続するフォトカプラ131と、第1の光ファイバ132と、第1の光ファイバ132の先端から回転体136に対して光を射出する光射出部133と、回転体136を透過した透過光を受光する受光部134と、受光部134で受光した光を伝送する第2の光ファイバ135と、光射出部133と受光部134の間に介在し、回転軸137を中心として回転する回転体136と、回転体136の回転停止位置を調整する回転角調整機構138と、一端が回転軸137に巻き付けられたワイヤ139とを備えている。
この光学測定装置100では、ワイヤ139に外力が付与されて回転体136が回転すると、回転体136に設けられた複数のスリット140が光射出部133と受光部134の間を透過する。このとき、射出光が複数のスリット40を透過し、当該透過光が受光部134により受光される。透過光は、第2の光ファイバ135、フォトカプラ131、光ファイバ芯線150を介して、検出部126に伝送される。検出部126は、光パルスカウンタなどで構成されており、光パルス(ON/OFF)の数を計測する。データ処理部122は、計測したパルス数からワイヤ移動量等の変化量を算出する。そして本構成によれば、監視対象領域近くに電源を必要とせず、メンテナンスが容易であること、また、光ファイバを用いて光信号を伝送するので、電気信号と異なり雷サージ等のノイズに強く、厳しい環境下での計測が可能であるとされている(例えば、特許文献1参照)。
特開2007−147395号公報
上記従来の技術では、回転体を透過した光のパルス(ON/OFF)の数を検出し、計測したパルス数に基づいてワイヤ移動量等の変化量を算出する。しかしながら、伝送路である光ファイバが何らかの理由で断線した場合、光が受光部に到達せず、検出部で計測されるパルス数が0となる。このため、計測されたパルス数が0のときに、監視対象物の物理的変化が無い状態であるのか、光ファイバの断線が生じている状態であるのかを判別することができない。特に、天災地変などが生じるおそれのある場所で風速などの物理的変化を検出・計測する場合、上記天災地変の影響によって伝送路の異常が生じる可能性が高くなることから、検出結果の信頼性が低下するという問題がある。
本発明の目的は、風速測定を正確に行うことができると共に、伝送路である光ファイバの異常を検知することができ、検出結果の信頼性を向上することができる風速測定装置及び風速測定方法を提供することにある。
上記目的を達成するために、本発明の風速測定装置は、風を検知する検知部と、光ファイバを介して前記検知部に光を出射する出射部と、前記検知部からの光を光ファイバを介して受光する受光部と、前記受光部で受光した光に基づいて風速を算出する制御部とを備え、前記検知部は、光路上に回転可能に設けられた板状部材を有し、前記板状部材は、前記光の透過率が、透過率α(0<α≦1)である第1透過層と、透過率β(0<β<α)である第2透過層とが、その回転方向に関して交互に配置されてなり、前記制御部は、前記第1透過層を透過した光の第1光レベルと、前記第2透過層を透過した光の第2光レベルとに基づいて風速を算出することを特徴とする。
前記制御部は、前記受光部で光を受光しないときの第3光レベルに基づいて前記光ファイバの異常を判別することを特徴とする。
また、前記風速測定装置は、前記検知部と前記受光部との間に設けられ、前記検知部からの光L1を分岐比a:b(a>b)で光を分岐する分岐部を更に備え、前記受光部は、比率(a/(a+b))で分岐した光に対応する光L1aを受光する第1受光部と、比率(b/(a+b))で分岐した光に対応する光L1aを受光する第2受光部とで構成され、前記第1受光部は、前記第1光レベルに相当する信号と、前記第2光レベルに相当する信号とを前記制御部に送信することを特徴とする。
前記制御部は、前記第2受光部から送信された信号を平均化処理し、該平均化処理された信号に基づいて前記第3光レベルを判別することを特徴とする。
上記目的を達成するために、本発明の風速測定方法は、風を検知する検知部と、前記検知部に光ファイバを介して光を出射する出射部と、前記検知部からの光を光ファイバを介して受光する受光部とを設け、前記受光部で受光した光に基づいて風速を算出する風速測定方法であって、前記光の透過率が、透過率α(0<α≦1)である第1透過層と透過率β(0<β<α)である第2透過層とを回転方向に関して交互に設けた板状部材を、前記検知部における光路上に回転可能に配置し、前記第1透過層を透過した光の第1光レベルと、前記第2透過層を透過した光の第2光レベルとに基づいて風速を算出することを特徴とする。
前記風速制御方法は、前記受光部で光を受光しないときの第3光レベルに基づいて前記光ファイバの異常を判別することを特徴とする。
上記目的を達成するために、本発明の風速測定装置は、風を検知する検知部と、光ファイバを介して前記検知部に光を出射する出射部と、前記検知部からの光を光ファイバを介して受光する受光部と、前記出射部と前記検知部の間、及び前記検知部と前記受光部の間に設けられた2つの光分岐部と、前記2つの光分岐部同士を光学的に接続する光ファイバと、前記受光部で受光した光に基づいて風速を算出する制御部とを備え、前記検知部は、光路上に回転可能に設けられた板状部材を有し、前記板状部材は、前記光の透過率が、透過率α(0<α≦1)である第1透過層と、透過率β’(0≦β’<α)である第2透過層とが、その回転方向に関して交互に配置されてなり、前記制御部は、前記第1透過層を透過した光の第1光レベルと、前記第2透過層を透過した光の第2光レベルと、に基づいて風速を算出し、前記受光部で光を受光しないときの第3光レベルに基づいて前記光ファイバの異常を判別することを特徴とする。
本発明の風速測定装置及び風速測定方法によれば、風速測定を正確に行うことができると共に、伝送路である光ファイバの異常を検知することができ、検出結果の信頼性を向上することができる。
本発明の実施形態に係る風速測定装置の構成を概略的に示すブロック図である。 (a)は、図1における検知部の具体的な構成を示す図であり、(b)は、検知部内に配置されたコリメータの構成を示す図である。 図2(b)における板状部材の構成を示す図であり、(a)は平面図、(b)は線A−Aに沿う断面図、(c)は(b)の状態から所定角度回転したときの断面図である。 制御部が光レベル(dB)を判別する際の閾値と、受光部における受光範囲との関係を説明する概念図である。 (a)は、第1受光部で受光した光の光レベル(dB)と時間の関係を示す模式図であり、(b)は、第2受光部で受光した光の平均化処理後の光レベル(dB)と時間の関係を示す模式図である。 図1おける制御部で実行される風速測定処理を示すフローチャートである。 図1の風速測定装置の変形例を示すブロック図である。 図2(b)のコリメータの構成の変形例を示す図である。 従来の光学測定装置の構成を示すブロック図である。
以下、本発明の実施形態を図面を参照しながら詳細に説明する。
図1は、本実施形態に係る風速測定装置の構成を概略的に示す斜視図である。なお、図中の風速測定装置は、その一例を示すものであり、本発明に係る風速測定装置の構成、各構成の形状、寸法等は、図1のものに限られないものとする。
図1に示すように、風速測定装置1は、風を検知する検知部10と、光ファイバケーブル2を介して検知部10と接続された装置本体20とで構成されている。検知部10は、例えば風などの測定対象物が存在する遠隔地に設置されており、所定長さで敷設される光ファイバケーブル2にて装置本体20と光学的に接続されている。検知部10の詳細構成については後述する。
装置本体20は、検知部10に光L’を出射する出射部21と、検知部10からの光L1を光ファイバケーブル2を介して受光する受光部22と、受光部22で受光した光L1に基づいて風速を算出する制御部23とを備えている。
出射部21は、例えば1310nm〜1550nmの領域内(O−Band帯や、C−band帯)の波長を有するレーザ光を出射する。なお本実施形態において上記領域内以外の波長が使用されてもよく、可視光等を用いてもよい。出射部21は、光出力部24を介して光ファイバケーブル2に接続されており、出射部21から出射した光L’が、光出力部24を通って光ファイバケーブル2に導入される。
受光部22は、PD22a(第1受光部)及びPD22b(第2受光部)で構成されており、それぞれ光カプラ25(分岐部)に接続されている。光カプラ25は、光入力部26を介して光ファイバケーブル2に接続されており、検知部10から送出された光L1が、光入力部26を通って光カプラ25に導入される。
光カプラ25は、検知部10と受光部22との間に設けられており、検知部10からの光L1を分岐比a:b(a>b)で光を分岐する。上記分岐比は、例えば90:10(a=90、b=10)であり、この場合、光カプラ25から出力する光パワーのうち、90%に相当する光L1aがPD22aに、10%に相当する光L2bがPD22bにそれぞれ送出される。PD22aは、90%で分岐した光L1aを受光し、PD22bは、10%で分岐した光L1bを受光する。なお、(a+b)の合計は必ずしも100である必要はなく、光パワーのうち一部を減衰させる構成としてもよい。すなわち、光カプラ25で比率(a/(a+b))で分岐した光の一部を減衰し、当該減衰後の光に相当する光L1aをPD22aで受光してもよいし、比率(b/(a+b))で分岐した光の一部を減衰し、当該減衰後の光に相当する光L2bをPD22bで受光してもよい。
光ファイバケーブル2は、中距離〜長距離(例えば15km程度)で敷設された2心光ファイバケーブルであり、出射部21から検知部10に向かう光L’が一方の光ファイバ2a内を伝搬し、検知部10から受光部22に向かう光L1が他方の光ファイバ2b内を伝搬する。光ファイバケーブル2は、2心以外の多心光ファイバケーブルであってもよく2本の単心光ファイバケーブルや、既設の多心光ファイバケーブルの一部を構成するものであってもよい。また、光ファイバケーブルの種類は、シングルモードファイバやマルチモードファイバなど、特に限定されないが、長距離の場合には伝送損失が低いことからシングルモードファイバが好ましい。また、光ファイバケーブル2の長さは、中距離〜長距離に限られず、短距離〜中距離であってもよい。
図2(a)は、図1における検知部10の具体的な構成を示す図であり、(b)は、検知部10内に配置されたコリメータの構成を示す図である。同図(a)に示すように、本実施形態では検知部10が風速計(三杯式風杯ともいう)で構成されている。なお本実施形態では、検知部10が風杯式風速計であるが、これに限らず、ベーン式風速計やプロペラ式の風速計であってもよい。
この検知部10は、回転軸11と、該回転軸を内包し且つ軸支するケーシング12と、回転軸11の上部11aに3回回転対称(120度)で固定された半球型の風杯13a,13b,13cと、回転軸11の下部11bに固定され、回転軸11と同期して回転する回転盤14(板状部材)と、ケーシング12内に固定され、回転盤14を外周側から挟み込むように配置された断面略コの字型のコリメータ15とを備える。各風杯は、凸側面よりも凹側面に風力を受けた時に応力が大きくなり、それ自身が回転軸14を中心として時計回りに移動する(図中のR方向)。この結果、回転軸11が回転し、更に回転盤14が同一の回転数で回転する。
コリメータ15は、図1に示す光ファイバ2aと接続され、該光ファイバ内を伝搬する光L’をコリメータ15内に導入するための入力ポート15aと、入力ポート15aに入力された光L’をコヒーレント光に変換するコリメータレンズ15bと、コリメータレンズ15bに対向配置され、コヒーレント光Lcを元の光に戻すコリメータレンズ15cとを有する。また、コリメータ15は、コリメータレンズ15cから出射する光L1を反射して入力ポート15a側に戻すためのミラー15d−1,15d−2と、ミラー15d−2からの光L1を外部に出力するための出力ポート15eとを有している。
コリメータ15は内部空間Sを有しており、コリメータレンズ15bにより、コヒーレント光Lcの光路が内部空間Sに形成される。コヒーレント光Lcの光路には回転盤14が配置されており、コヒーレント光Lcが回転盤14を介してコリメータレンズ15cに導入される。回転盤14に入射するコヒーレント光Lcは連続光であり、この連続光が回転盤14に連続的に照射され、回転盤14の回転数に応じて、回転盤14を透過する光がパルス光となり、コリメータレンズ15cに入射する。
図3(a)は、図2(b)における回転盤14の構成を示す図であり、(a)は平面図、(b)及び(c)は線A−Aに沿う断面図である。同図に示すように、回転盤14は、透明又は半透明の基板14aと、基板14aの一方の面14a−1に形成された金属層14bとで構成されている。基板14aは、例えば均一厚さで形成された樹脂製あるいはガラス製の円盤であり、回転軸11に固着されている。金属層14bは、例えば円盤の主面にスパッタ或いは蒸着で形成された薄膜であり、回転方向に関して複数の孔14c(例えば60個)が並んで形成されている。孔14cの形状は矩形であるが、円形、扇形、あるいは多角形など、その他の形状であってもよい。コヒーレント光LcのビームスポットSpは、回転盤14の径方向に関して孔14cに対応する位置に配置されており、回転盤14が回転すると、コヒーレント光Lcが複数の孔14cに順次照射される。このため、コヒーレント光Lcは、回転盤14の回転によって、基板14a及び金属層14bに交互に照射される。
上記の様に構成される回転盤14は、光学的には、基板14aのみで構成される部分(孔14cに対応する部分)に相当する第1透過層と、基板14aに金属層14bが積層されてなる部分に相当する第2透過層とを有している。よって、回転盤14は、出射部21が出射するコヒーレント光Lcの波長における光の透過率が、透過率α(0<α≦1)である第1透過層と、透過率β(0<β<α)である第2透過層とを、その回転方向に関して交互に配置して構成されている。本実施形態では、透過率αは、0.9〜1(90〜100%)、透過率βは、0.01〜0.3(1〜30%)である。この回転盤14が回転することにより、第1透過層を透過する光Lαと(図3(b))、第2透過層を透過する光Lβとが生成される(図3(c))。すなわち回転盤14では、光レベル(dB)の異なる光Lα,Lβが生成されることにより、時間的に離散したパルス光L1(以下、光L1ともいう)を得ることができる。コリメータ15で形成されたパルス光L1は、光ファイバ2bを介して装置本体20の光入力部26に入力される。
なお、金属層14bの厚さや材料は、適宜変更することができ、その厚さや材料を変更することにより、透過率βを制御することができる。また、基板14aの厚さや材料を変更することにより、透過率α(或いはβ)を制御することができる。また、ここでは赤外光領域における透過率を用いたが、金属層14bの厚さや材料を適宜変更して、可視光領域等、他の波長領域の透過率を用いてもよい。また、第1透過層は孔とし、第2透過層を半透明材料としてもよい。
また、回転盤14として別の方法で使用する光の透過率を異ならせることにより、透過率α(0<α≦1)である第1透過層と、赤外光領域における透過率β(0<β<α)である第2透過層とを形成してもよい。別の方法としては、たとえば、回転盤14としてND(Neutral Density)フィルタ等を用いることができる。
光入力部26に入力される光L1は、光カプラ25で光L1a,L1b(以下、パルス光L1a,L1bともいう)に分岐し、それぞれPD22a,PD22bで受光される(図1)。このとき光カプラ25では、光Lαが、上記分岐比で光L1a(α),L1b(α)に分岐され、光Lβが、同分岐比で光L1b(β),L1b(β)にそれぞれ分岐されている。PD22aは、光L1a(α),L1a(β)に対応する信号を制御部23に送信し、PD22bは、光L1b(α),L1b(β)に対応する信号を制御部23に送信する。制御部23は、PD22a,PD22bで受光した光L1a,L1bに相当する信号に基づいて、パルス光L1の光レベル(dB)を取得する。
制御部23は、CPU27、メモリ28及び記憶部29を有する。CPU27は、装置本体20の演算・制御を司る。メモリ28は、CPU27の主メモリとして、また、プログラムの実行エリア、データエリアとして機能する。記憶部29には、CPU27の動作処理手順であるプログラムや各種データが記憶されており、上記の平均化処理を実行するプログラムや、光レベルの判定処理、風速測定処理等を実行するプログラムが記憶されている。この制御部23は、第1透過層を透過した光Lαの第1光レベルと、第2透過層を透過した光Lβの第2光レベルとに基づいて風速を算出し、また、受光部22で光を受光しないときの第3光レベルに基づいて、光ファイバケーブル2の断線等の異常を判別する。
図4は、制御部23がパルス光L1の光レベル(dB)を判別する際の閾値と、受光部22における受光範囲との関係を説明する概念図である。
同図において、PD22aの受光範囲(ダイナミックレンジ)はΔLaであり、PD22bの受光範囲はΔLbである。また、第1透過層を透過した光L1aの光レベル(第1光レベル)が位置する領域を第1領域、第2透過層を透過した光L1bの光レベル(第2光レベル)が位置する領域を第2領域、光ファイバに断線等の異常が生じた場合の光レベルが位置する領域を第3領域と定義する。また、第1領域の下限をTH(a)HIGH、第2領域の上限をTH(a)LOW、第2領域の下限をTH(b)HIGH、第3領域の上限をTH(b)LOWとする。
ΔLaは、TH(a)HIGHを超える光レベルから下限値TH(a)LOWを下回る光レベルの範囲となるように設定され、ΔLbは、TH(b)HIGHを超える光レベルから下限値TH(b)LOWを下回る光レベルの範囲となるように設定される。
これにより、光L1aの光レベルが所定時間内に第1領域と第2領域の間を移動する場合には、回転盤14の回転によるパルス光と判断することができる。また、光L1aの光レベルが継続的に第1領域或いは第2領域にある場合には、回転盤14が回転していない状態であると判断することができる。更に、光レベルが第3レベルである場合には、PD22aが光L1aを受光していない状態と判断することができる。したがって、回転盤14を透過する透過光の光レベルと、光ファイバに断線等の異常が生じた場合の光レベルとを明確に区別することが可能となる。
図5(a)は、PD22aで受光した光L1aの光レベル(dB)と時間の関係を示す模式図であり、図5(b)は、PD22bで受光した光L1bの平均化処理後の光レベル(dB)と時間の関係を示す模式図である。なお光L1a,L1bは同期したパルス光である。
図5(a)に示すように、PD22aで受光した光L1aは、L1bと比べて光パワーが強く、光L1a(α),L1a(β)をそれぞれ第1,第2光レベルとして判別することができる。ただしPD22aではノイズレベルが高いため、例えばP点で光ファイバの断線が生じた際に、第3光レベルを検知することが難しい。そこで、図5(b)に示すように、光L1aより光パワーが弱い光L1bに相当する光信号を平均化処理する。これによりS/N比が大きくなり、第2光レベルと第3光レベルの間隔を広げることができる。また、平均化処理によってノイズレベルが下がるため、PD22bの受光範囲ΔLbをより低く設定することができる。したがって、PD22bで受光した光L1bを平均化処理し、該平均化処理後の光レベルを用いることにより、第3光レベルを判別することが可能となる。平均化処理の方法は、個々の波形単位あるいは一定の時間間隔で平均化するものなど、特に制限されないが、応答時間が十分に速いものを用いるのが好ましい。また、ノイズレベルが受光範囲ΔLbに影響を与えない程度に小さい場合には、必ずしも平均化処理を行わなくてもよい。
なお、図5(b)では、説明の便宜上、光レベルの波形が台形になるように図示しているが、PD22bの受光範囲ΔLbを超えていることから、実際には第1光レベル及び第2光レベルは、最大値に振りきったレベルとして観測される。しかし、第1,第2光レベルの光が最大値として観測されても、第3光レベルであるか否かの判別に影響は無い。
図6は、図1における制御部23で実行される風速測定処理を示すフローチャートである。先ず、光カプラ25にて所定分岐比で分岐した光L1aをPD22aで、光L1bをPD22bでそれぞれ受光する(ステップS1)。次いで、制御部23は、光L1aの光レベルが所定時間内に第1領域から第2領域へ、或いは第2領域から第1領域へ移動したか否かを判別する(ステップS2)。光L1aが第1領域−第2領域間を移動した場合には、光L1aを通常のパルス光と判定し(ステップS3)、第1領域における光L1aの第1光レベルと第2領域における光L1aの第2光レベルとに基づいて回転軸11の回転数を算出し、該回転数から風速を算出して(ステップS4)、本処理を終了する。一方、光L1aの光レベルが所定時間内に第1領域−第2領域間を移動していないときは(ステップS2でNO)、光L1bの光レベルが所定期間第3領域にあるか否かを判定する(ステップS5)。光L1bの光レベルが所定期間第3領域にある場合には、光ファイバに断線の異常が発生していると判別し(ステップS6)、光L1bの光レベルが第3領域にない場合には、そのまま本処理を終了する。なお、ステップS3、ステップS4とステップS5、ステップS6は、いずれを先に行ってもよく、また、同時に行ってもよい。
上述したように、本実施形態によれば、パルス光L1aの第1光レベル(L1a(α)及び第2光レベル(L1a(β))に基づいて風速を測定すると共に、パルス光が検出されないときには風の物理的変化が無い状態であると判別することができる。また、光レベルが第3光レベルであるときには、光ファイバ2a,2bの断線等の異常が生じていると判別する。よって、良好な風速測定を行うことができると共に、光ファイバ2a,2bの異常を正確に検知、判別することができ、検出結果の信頼性を向上することができる。
また、PD22aは、第1光レベルに相当する信号と、第2光レベルに相当する信号を制御部23に送信するので、制御部23は、第1受光部から送信された第1,第2光レベルに基づいて良好な風速測定を実現することができる。
更に、制御部23は、PD22bから送信された信号を平均化処理し、該平均化処理された信号に基づいて第3光レベルを判別するので、光ファイバの異常、特に断線等の発生をより正確に判別することが可能となる。
図7は、図1の風速測定装置1の変形例を示すブロック図である。図7の風速測定装置は、図1の風速測定装置1の構成と基本的に同じであり、同一の部分については同一の符号を付してその説明を省略し、異なる部分を以下に説明する。
風速制御装置3は、出射部21と検知部10の間、及び検知部10と受光部22の間に設けられた2つの光分岐部と、該2つの光岐部同士を光学的に接続する光ファイバとを更に備えていてもよい。例えば図7において、風速測定装置3は、検知部10と装置本体20の間の光ファイバケーブル2に取り付けられた光ファイバ接続箱30を更に備えている。光ファイバ接続箱30は、光ファイバ2aに取り付けられた光カプラ31(光分岐部)と、光ファイバ2bに取り付けられた光カプラ32(光分岐部)と、光カプラ31,32を接続する光ファイバ33とを有している。光ファイバ33は、線路異常検知用の短絡経路を構成している。
回転盤14は、出射部21が出射するコヒーレント光Lcの波長における光の透過率が、透過率α(0<α≦1)である第1透過層と、透過率β’(0≦β’<α)である第2透過層とを、その回転方向に関して交互に配置して構成されている。そして、制御部23は、第1透過層を透過した光Lαの第1光レベルと、第2透過層を透過した光Lβ’の第2光レベルとに基づいて風速を算出し、また、受光部22で光を受光しないときの第3光レベルに基づいて、光ファイバケーブル2の断線等の異常を判別する。
このように光ファイバ2a,2b間に短絡経路を設けることにより、光ファイバに断線等の異常が生じた場合には、受光部22で受光する光レベルが低下するので、この光レベルの低下を検出することにより、受光部22で光を受光しないときの第3光レベルに基づいて光ファイバの断線等の異常を判別することができる。また、光ファイバ接続箱30よりも後段(検知部10側)で光ファイバに断線等の異常が生じた場合には、光ファイバ33を経由して戻る光を受光部22で受光することにより、光ファイバ接続箱30までは光が伝搬されていることが分かる。
このように、風速測定装置1の変形例によれば、光ファイバの断線等の異常を判別することができるとともに、異常箇所を推定することができる。
なお、光ファイバ接続箱30を風速測定装置3と検知部10との間に設けず、光カプラ31、光カプラ32及び光ファイバ33を検知部10内に設けてもよい。また、光カプラ31、光カプラ32及び光ファイバ33は、検知部10内等、光カプラ31と光カプラ32の間の光ファイバ33がより短くなるように設けることが好ましい。
この場合、透過率β’=0であっても、回転盤14が回転していない状態であるか、光ファイバの断線が生じている状態であるのかを判別することができる。
具体的には、光ファイバの断線等の異常が生じていない場合は、透過率β’=0であっても光ファイバ33を経由して戻る光を受光部22で受光することにより、光カプラ31、光カプラ32までは光が伝搬されていることが分かる。一方で、光ファイバの断線等の異常が生じている場合は、受光部22では光が受光されない。
なお、透過率β’=0とすることで回転盤14として回転体に複数のスリット(孔)を設けたものを用いることができ、回転盤14のコストを低減できる。
以上、上記実施形態に係る風速測定装置及び風速測定方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形及び変更が可能である。
例えば本実施形態では測定対象物が風であるが、これに限らず、本発明を他の測定対象物の物理的変化を測定する装置に適用することができる。
また、本実施形態では受光部としてPDを2つ設けているが、これに限らず、受光範囲の大きい1つの受光部を設けてもよい。
1 風速測定装置
2 光ファイバケーブル
2a 光ファイバ
2b 光ファイバ
3 風速測定装置
10 検知部
11 回転軸
11a 上部
11b 下部
12 ケーシング
13a,13b,13c 風杯
14 回転盤
14a 基板
14b 金属層
15 コリメータ
15a 入力ポート
15b コリメータレンズ
15c コリメータレンズ
15d−1 ミラー
15d−2 ミラー
15e 出力ポート
15e’ 出力ポート
20 装置本体
21 出射部
22 受光部
22a PD
22b PD
23 制御部
24 光出力部
25 光カプラ
26 光入力部
27 CPU
28 メモリ
29 記憶部
30 光ファイバ接続箱
31 光カプラ
32 光カプラ
33 光ファイバ
40 光ファイバケーブル
40a 光ファイバ
L’ 光
L1 光
Lα 光
Lβ 光
ΔLa 受光範囲
ΔLb 受光範囲
TH(a)HIGH 上限値
TH(a)LOW 下限値
TH(b)HIGH 上限値
TH(b)LOW 下限値

Claims (3)

  1. 風を検知する検知部と、光ファイバを介して前記検知部に光を出射する出射部と、前記検知部からの光を光ファイバを介して受光する受光部と、前記受光部で受光した光に基づいて風速を算出する制御部と、前記検知部と前記受光部との間に設けられ、前記検知部からの光L1を分岐比a:b(a>b)で光を分岐する分岐部とを備え、
    前記検知部は、光路上に回転可能に設けられた板状部材を有し、
    前記板状部材は、前記光の透過率が、透過率α(0<α≦1)である第1透過層と、透過率β(0<β<α)である第2透過層とが、その回転方向に関して交互に配置されてなり、
    前記制御部は、前記第1透過層を透過した光の第1光レベルと、前記第2透過層を透過した光の第2光レベルとに基づいて風速を算出し、
    前記受光部は、比率(a/(a+b))で分岐した光に対応する光L1aを受光する第1受光部と、比率(b/(a+b))で分岐した光に対応する光L1bを受光する第2受光部とで構成され、
    前記第1受光部は、前記第1光レベルに相当する信号と、前記第2光レベルに相当する信号とを前記制御部に送信する
    ことを特徴とする風速測定装置。
  2. 前記制御部は、前記受光部で光を受光しないときの第3光レベルに基づいて前記光ファイバの異常を判別し、
    前記制御部は、前記第2受光部から送信された信号を平均化処理し、該平均化処理された信号に基づいて前記第3光レベルを判別することを特徴とする、請求項1記載の風速測定装置。
  3. 風を検知する検知部と、光ファイバを介して前記検知部に光を出射する出射部と、前記検知部からの光を光ファイバを介して受光する受光部と、前記出射部と前記検知部の間、及び前記検知部と前記受光部の間に設けられた2つの光分岐部と、前記2つの光分岐部同士を光学的に接続する光ファイバと、前記受光部で受光した光に基づいて風速を算出する制御部と、を備え、
    前記検知部は、光路上に回転可能に設けられた板状部材を有し、
    前記板状部材は、前記光の透過率が、透過率α(0<α≦1)である第1透過層と、透過率β’(0≦β’<α)である第2透過層とが、その回転方向に関して交互に配置されてなり、
    前記制御部は、前記第1透過層を透過した光の第1光レベルと、前記第2透過層を透過した光の第2光レベルと、に基づいて風速を算出し、
    前記受光部で光を受光しないときの第3光レベルに基づいて前記光ファイバの異常を判別する、
    ことを特徴とする風速測定装置。
JP2016140358A 2015-07-15 2016-07-15 風速測定装置 Expired - Fee Related JP6529466B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141494 2015-07-15
JP2015141494 2015-07-15

Publications (2)

Publication Number Publication Date
JP2017026610A JP2017026610A (ja) 2017-02-02
JP6529466B2 true JP6529466B2 (ja) 2019-06-12

Family

ID=57950513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016140358A Expired - Fee Related JP6529466B2 (ja) 2015-07-15 2016-07-15 風速測定装置

Country Status (1)

Country Link
JP (1) JP6529466B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354974B (zh) * 2021-12-30 2023-06-16 广东工业大学 一种基于双芯光纤的分布式风速传感器、测量装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871412A (ja) * 1981-10-24 1983-04-28 Sumitomo Electric Ind Ltd 光回転計
JP5058628B2 (ja) * 2007-02-27 2012-10-24 富士通テレコムネットワークス株式会社 風向風速計および風向風速監視装置

Also Published As

Publication number Publication date
JP2017026610A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5315347B2 (ja) 光ファイバセンシングシステム
US10634551B2 (en) Reflectometric vibration measurement system and relative method for monitoring multiphase flows
WO2018136477A1 (en) Distributed fiber sensors and systems employing hybridcore optical fibers
US8734011B2 (en) Distributed optical fiber temperature sensor based on optical fiber delay
WO2014101754A1 (zh) 多芯光纤、采用该多芯光纤的传感装置及其运行方法
AU2015243452A1 (en) System and method for non-contact optical-power measurement
KR102292226B1 (ko) 코히런트 otdr법을 이용한 광섬유 음향센서 시스템 및 모듈 장치
JP2018536162A (ja) マルチコアファイバを使用する分布型ファイバセンサおよびシステム
WO2013121602A1 (ja) 光プローブおよび光学的測定方法
WO2019015454A1 (zh) 一种地埋电缆防误开挖预警装置
JP4562535B2 (ja) 光スプリッタ及び光スプリッタ監視システム
EP3384248B1 (en) Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system
JP6529466B2 (ja) 風速測定装置
WO2019096878A1 (fr) Dispositif et procede d'etalonnage d'un lidar
WO1988004065A1 (en) Optical sensors and optical fibre networks for such sensors
JP6730295B2 (ja) 共有リスクリンクグループを検出する方法及び装置
JP7299584B2 (ja) 3次元曲線形状を測定するための特殊光ファイバ及びその製造方法、並びに特殊光ファイバを用いて3次元曲線形状を測定するシステム
CN102589483A (zh) 反射式差动强度调制光纤角位移传感方法与装置
EP0365371A1 (fr) Système de surveillance de liaisons à fibre optique
JP5483474B2 (ja) 光ファイバコネクタ接続点の接続不良検出器および接続不良検出方法
KR101923391B1 (ko) 하프미러와 반사억제 구조를 적용한 광섬유손실측정기용 광모듈
JP2022051488A (ja) 受信機および火災警報システム
KR20080111234A (ko) 자가 진단기능을 갖는 광섬유센서용 압력 및 절단 감지시스템
JP2008089554A (ja) 光ファイバセンサ
JP3110637U (ja) 光反射素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R151 Written notification of patent or utility model registration

Ref document number: 6529466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees