JP6528188B2 - Method of producing functional compost - Google Patents

Method of producing functional compost Download PDF

Info

Publication number
JP6528188B2
JP6528188B2 JP2018534320A JP2018534320A JP6528188B2 JP 6528188 B2 JP6528188 B2 JP 6528188B2 JP 2018534320 A JP2018534320 A JP 2018534320A JP 2018534320 A JP2018534320 A JP 2018534320A JP 6528188 B2 JP6528188 B2 JP 6528188B2
Authority
JP
Japan
Prior art keywords
pellet
sewage sludge
bacteria
sludge residue
fermented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534320A
Other languages
Japanese (ja)
Other versions
JPWO2018034135A1 (en
Inventor
和彦 大場
和彦 大場
篤生 薄田
篤生 薄田
敏彰 下高
敏彰 下高
理博 玖須
理博 玖須
梨那 松永
梨那 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Institute of Applied Science
Original Assignee
Nagasaki Institute of Applied Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Institute of Applied Science filed Critical Nagasaki Institute of Applied Science
Application granted granted Critical
Publication of JP6528188B2 publication Critical patent/JP6528188B2/en
Publication of JPWO2018034135A1 publication Critical patent/JPWO2018034135A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/16Treatment of sludge; Devices therefor by de-watering, drying or thickening using drying or composting beds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Fertilizers (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、下水汚泥残渣ペレットを用いた機能性コンポストの製造方法に関する。特に、下水汚泥残渣を低分子化するプロセスを有する工場または施設において生成された低分子化処理された下水汚泥残渣から、機能性コンポストを製造する方法に関する。   The present invention relates to a method for producing functional compost using sewage sludge residue pellets. In particular, the present invention relates to a method for producing functional compost from depolymerized sewage sludge residue produced in a plant or facility having a process of depolymerizing sewage sludge residue.

国内の下水汚泥の発生量は、下水道の普及拡大に伴い次第に増加しており、環境省の2008年度のデータによると、その量は乾燥重量ベースで221万トン/年となっている。下水汚泥の発生量は、産業廃棄物全体の約20%程度を占めているといわれており、その多くが燃焼後に埋め立て処分されるため、事業者にとっては処分先の確保や汚泥処理費用等のランニングコストの削減が求められている。しかしながら、下水汚泥の発生量は、年々増加傾向にあるため埋め立て場やゴミ処理場の確保も難しくなっているのが現状である。   The amount of sewage sludge produced in Japan is gradually increasing with the spread of sewerage, and according to the data of fiscal 2008 of the Ministry of the Environment, the amount is 2.21 million tons / year on a dry weight basis. The generation amount of sewage sludge is said to account for about 20% of the total industrial waste, and many of them are disposed of in landfills after burning, so it is important for business owners to secure disposal destinations and sludge treatment costs, etc. There is a need to reduce running costs. However, the amount of sewage sludge generated is increasing year by year, so it is difficult to secure landfills and waste disposal sites.

近年、下水汚泥残渣のリサイクルが進められており、脱水処理を行った下水汚泥残渣は、肥料化・燃料化などバイオマス資源として利用されている。
一例として、国土交通省でもB−DASHプロジェクト(下水道革新的技術実証事業)を実施しており、これらの問題の解決に力を入れている。
In recent years, recycling of sewage sludge residue has been promoted, and sewage sludge residue that has been dewatered is used as a biomass resource such as fertilizer conversion and fuel conversion.
As an example, the Ministry of Land, Infrastructure, Transport and Tourism is implementing the B-DASH project (Sewer Innovative Technology Demonstration Project), and is focusing on solving these problems.

下水汚泥残渣のバイオマス資源の特徴としては、(1)人間の生活環境に伴い一定量は必ず発生すること、(2)成分・状態が一定していること、(3)燃料や肥料、セメント原料などに利用することが可能であること、などが分かっている。この特徴を生かし、2012年の国土交通省のB−DASHプロジェクトの一つである三菱長崎機工株式会社が開発した下水汚泥処理システムの実用化に向けた実用化研究が、長崎市東部下水処理場で実施された。このシステムは、水熱反応技術と高速メタン発酵技術を組み合わせた新しい汚泥減量化技術であり、このシステムはメタサウルスと呼ばれている(特許文献1及び2参照)。このシステムでは、排出された汚泥量が既存のシステムに比べて5分の1に減量することに成功し、廃棄処分する際、処分費の大幅削減が可能となった。しかしながら、脱水汚泥発生量を大幅に削減したものの、主として廃棄処分が行われている。   The characteristics of biomass resources of sewage sludge residue are (1) that a certain amount always occurs with human living environment, (2) that components and conditions are constant, (3) fuel, fertilizer, cement raw material It is known that it is possible to use it. Practical application research for practical use of the sewage sludge treatment system developed by Mitsubishi Nagasaki Kiko Co., Ltd., which is one of the B-DASH project of the Ministry of Land, Infrastructure, Transport and Tourism 2012, making use of this feature is the eastern sewage treatment plant in Nagasaki City. Was implemented. This system is a new sludge reduction technology combining hydrothermal reaction technology and high-speed methane fermentation technology, and this system is called metasaurus (see Patent Documents 1 and 2). In this system, the amount of sludge discharged was successfully reduced by a factor of 5 compared to the existing system, and it was possible to reduce the disposal cost significantly when disposing of it. However, although the amount of dewatered sludge generated has been significantly reduced, disposal is mainly performed.

そこで、下水処理場を含む地域のゼロエミッションの観点から低分子化処理された下水汚泥残渣の有効利用方法が検討された。このシステムで発生した低分子化処理された下水汚泥残渣は、植物の成長に必要な要素として窒素・リン・カリウム成分を含んでいることから、この下水汚泥残渣を肥料化もしくは土壌改良剤として利用しようという試みがなされ、現在、この下水汚泥残渣は「東長崎実証1号」として農林水産大臣登録肥料に登録されている。   Then, the effective utilization method of the sewage sludge residue treated with low molecular weight was examined from the viewpoint of the zero emission of the area including the sewage treatment plant. The low molecular weight treated sewage sludge residue generated by this system contains nitrogen, phosphorus and potassium components as elements necessary for the growth of plants, so this sewage sludge residue is used as a fertilizer or soil conditioner Attempts have been made, and this sewage sludge residue is currently registered with the Ministry of Agriculture, Forestry and Fisheries Registered Fertilizer as "East Nagasaki Demonstration No. 1".

しかしながら、この肥料は、含水率が高く雑菌も存在しており、アンモニア臭気も強いという問題があった。また、完全な完熟堆肥でないため、このまま土壌へ使用すると、作物に生育障害などの問題を引き起こす可能性も懸念された。   However, this fertilizer has a high moisture content and the presence of bacteria, and has a problem that the ammonia odor is also strong. In addition, since the compost is not completely matured, there is a concern that if it is used as it is for soil, it may cause problems such as growth problems in crops.

特開2012−200691号公報JP, 2012-200691, A 特開2012−200692号公報JP 2012-200692 A

本発明の課題は、上記のような問題点のないフルボ酸やフミン酸を多く含有する有用な完熟コンポストを短期間で製造することにある。   The object of the present invention is to produce useful mature compost containing a large amount of fulvic acid and humic acid without the above problems in a short period of time.

本発明者は、これら各種問題を解決すべく、上記肥料の改良について研究する中で、バチルス菌及び乳酸菌といった2種類の温度活性領域の異なる菌体を下水汚泥残渣ペレットの内部及び表層部にそれぞれ担持すると共に、当該菌担持下水汚泥残渣ペレットを発酵させることにより、上記のような問題点のない有用な機能性コンポストを、短期間で効率的に製造することができることを見出し、本発明を完成するに至った。また、従来の高速発酵処理技術で用いられているような特殊な装置や、加熱装置を用いることなく、自然発酵により高速に発酵できることを見いだした。   In order to solve these various problems, the inventor of the present invention researches the improvement of the above-mentioned fertilizer, the bacteria having two different temperature active areas, such as Bacillus bacteria and lactic acid bacteria, in the inner and surface portions of sewage sludge residue pellets respectively. By carrying out the fermentation and fermenting the microbe-supporting sewage sludge residue pellet, it is found that useful functional compost having no problems as described above can be efficiently produced in a short period of time, and the present invention is completed. It came to Moreover, it discovered that it could ferment at high speed by natural fermentation, without using a special apparatus and a heating apparatus which are used by the conventional high-speed-fermentation processing technique.

すなわち、本発明は、以下のとおりのものである。
[1]下水汚泥残渣ペレットの内部にバチルス菌を担持させると共に表層部に乳酸菌を担持させた菌担持下水汚泥残渣ペレットを発酵させることを特徴とするコンポストの製造方法。
[2]菌担持下水汚泥残渣ペレットが、下水汚泥残渣ペレットにバチルス菌を添加し、ペレット表層部を乾燥した後、乳酸菌を添加して調製されることを特徴とする上記[1]記載のコンポストの製造方法。
[3]菌担持下水汚泥残渣ペレットを山積みにして発酵させることを特徴とする上記[1]又は[2]記載のコンポストの製造方法。
[4]下水汚泥残渣ペレットを平面状に広げる平面化工程と、平面化工程を経た下水汚泥残渣ペレットに対してバチルス菌を添加するバチルス菌添加工程と、バチルス菌添加工程を経た下水汚泥残渣ペレットの表層部を乾燥するペレット表層部乾燥工程と、ペレット表層部乾燥工程を経た下水汚泥残渣ペレットに対して乳酸菌を添加する乳酸菌添加工程と、乳酸菌添加工程を経た菌担持下水汚泥残渣ペレットを山積みにする山積工程と、山積工程を経た菌担持下水汚泥残渣ペレットを発酵させる発酵工程とを有することを特徴とする上記[1]〜[3]のいずれか記載のコンポストの製造方法。
[5]発酵工程が、菌担持下水汚泥残渣ペレットの切り返しを行う切返工程と、菌担持下水汚泥残渣ペレットの水分調整を行う水分調整工程とを有することを特徴とする上記[4]記載のコンポストの製造方法。
[6]14〜20日発酵させることを特徴とする上記[1]〜[5]のいずれか記載のコンポストの製造方法。
[7]下水汚泥残渣ペレットが、低分子化処理された下水汚泥残渣をペレット加工したものであることを特徴とする上記[1]〜[6]のいずれか記載のコンポストの製造方法。
[8]山積みされた菌担持下水汚泥残渣ペレットの頂部及び下部を除く中央部を被覆材で覆って発酵させることを特徴とする上記[3]〜[7]のいずれか記載のコンポストの製造方法。
[9]ペレットの内部にバチルス菌を担持させると共に表層部に乳酸菌を担持させた菌担持ペレットを山積みにして発酵させることを特徴とするペレットの発酵方法。
That is, the present invention is as follows.
[1] A method for producing a compost comprising: carrying Bacillus bacteria on the inside of a sewage sludge residue pellet and fermenting the bacteria-carrying sewage sludge residue pellet having a lactic acid bacterium on the surface layer.
[2] The compost-carrying compost according to the above-mentioned [1], wherein the bacteria-supporting sewage sludge residue pellet is prepared by adding Bacillus bacteria to the sewage sludge residue pellet, drying the surface layer portion of the pellet, and then adding lactic acid bacteria. Manufacturing method.
[3] A method for producing a compost according to the above [1] or [2], characterized in that the bacteria-supporting sewage sludge residue pellets are piled up and fermented.
[4] A planarizing step of planarizing the sewage sludge residue pellet, a bacillus addition step of adding Bacillus bacteria to the sewage sludge residue pellet that has undergone the planarization step, and a sewage sludge residue pellet that has undergone the Bacillus bacteria addition step The pellet surface layer drying step of drying the surface layer portion, the lactic acid bacteria addition step of adding lactic acid bacteria to the sewage sludge residue pellet that has undergone the pellet surface portion drying step, and piled up the bacteria-supporting sewage sludge residue pellet that has passed the lactic acid bacteria addition step The method for producing a compost according to any one of the above [1] to [3], which comprises a pile-up step and a fermentation step of fermenting the bacteria-supporting sewage sludge residue pellet subjected to the pile-up step.
[5] The process according to the above [4], wherein the fermentation process comprises a turning-back step of turning back the bacteria-supporting sewage sludge residue pellet, and a water adjusting step of adjusting the water content of the bacteria-supporting sewage sludge residue pellet. How to make compost.
[6] The method for producing compost according to any one of the above [1] to [5], which is fermented for 14 to 20 days.
[7] The method for producing compost according to any one of the above [1] to [6], wherein the sewage sludge residue pellet is obtained by pelletizing a low molecular weight treated sewage sludge residue.
[8] The method for producing a compost according to any one of the above [3] to [7], wherein the center part excluding the top and the lower part of piled bacteria-supporting sewage sludge residue pellets is covered with a covering material for fermentation. .
[9] A method for fermenting pellets comprising: carrying Bacillus bacteria in the inside of the pellet and carrying on a pile the bacteria-carrying pellets on which the lactic acid bacteria are carried in the surface layer.

本発明の機能性コンポストの製造方法によれば、フルボ酸やフミン酸を多く含有する有用な完熟コンポストを短期間で製造することができる。   According to the method of producing functional compost of the present invention, useful mature compost containing a large amount of fulvic acid and humic acid can be produced in a short period of time.

本発明の機能性コンポストの製造方法の一実施形態のフロー図である。FIG. 5 is a flow diagram of an embodiment of a method of producing a functional compost of the present invention. 本発明の製造方法により製造された機能性コンポスト(発酵ペレット)に植物の根が進入している様子を示す写真である。It is a photograph which shows a mode that the plant root has approached into the functional compost (fermented pellet) manufactured by the manufacturing method of this invention. 本発明の製造方法により製造された機能性コンポスト(発酵ペレット)に植物の根が進入している様子を示す写真である。It is a photograph which shows a mode that the plant root has approached into the functional compost (fermented pellet) manufactured by the manufacturing method of this invention. 実施例1における発酵処理時の下水汚泥残渣ペレットの温度変化を示す図である。It is a figure which shows the temperature change of the sewage sludge residue pellet at the time of the fermentation process in Example 1. FIG. 本発明の機能性コンポストを用いた場合の土壌の硝酸態窒素濃度を示す図である。It is a figure which shows the nitrate nitrogen concentration of soil at the time of using the functional compost of this invention. 実施例7の機能性コンポストの製造において、山積みされた菌担持下水汚泥残渣ペレットの中央部をビニールシート(被覆材)で覆って発酵する状態を説明する概略図である。In manufacture of the functional compost of Example 7, it is the schematic explaining the state which covers and ferments the center part of the piled microbe-supporting sewage sludge residue pellet with a vinyl sheet (coating material). 実施例1(被覆無し)及び実施例7(被覆有り)における発酵処理時の下水汚泥残渣ペレットの温度変化を示す図である。It is a figure which shows the temperature change of the sewage sludge residue pellet at the time of the fermentation process in Example 1 (without a coating | coated) and Example 7 (with a coating | coated).

本発明の機能性コンポストの製造方法としては、下水汚泥残渣ペレットの内部にバチルス菌を担持させると共に表層部に乳酸菌を担持させた菌担持下水汚泥残渣ペレットを発酵させる方法であれば特に制限されるものではなく、本発明の製造方法により製造される機能性コンポストは、完熟堆肥であり、固形状、半固形状、液状で使用することが可能であり、また土壌改良剤として使用することができる。   The method for producing functional compost according to the present invention is not particularly limited as long as it is a method of carrying Bacillus bacteria on the inside of sewage sludge residue pellets and fermenting bacteria-carrying sewage sludge residue pellets on which lactic acid bacteria are carried on the surface part. The functional compost produced by the production method of the present invention is not a mature compost, and can be used in solid, semi-solid, or liquid state, and can be used as a soil conditioner .

本発明の機能性コンポスト製造に用いる下水汚泥残渣ペレット(バチルス菌及び乳酸菌を担持する前のもの)としては、下水汚泥残渣をペレット状にしたものであればよく、例えば、1辺又は直径が5〜15mm、長さが20〜40mm程度の直方体又は円柱体のペレットを挙げることができ、発酵現場までの運搬や発酵処理までの保管等を考慮すると、含水率が20%以下のものが好ましい。かかるペレットは、一般的な下水処理が施された下水汚泥残渣をペレット加工したものであってもよいが、リグニンやセルロースなどの難分解性高分子を低分子化する低分子化処理が施された下水汚泥残渣をペレット加工したものであることが好ましい。低分子化処理に際しては、食品残渣等の各種有機資源を加えてもよい。かかる低分子化処理としては、水熱処理、オゾン処理、生物活性炭処理、超音波処理(例えば、特開2003−144097号公報)等を例示することができ、各種処理を組み合わせてもよい。具体的な水熱処理による低分子化処理としては、例えば、特開2012−200691号公報や特開2012−200692号公報に記載の水熱反応を利用した方法を挙げることができる。   Sewage sludge residue pellets (prior to carrying Bacillus bacteria and lactic acid bacteria) used in the functional compost production of the present invention may be those obtained by pelletizing sewage sludge residue, for example, one side or 5 diameters. The pellet of a rectangular solid or a cylinder of about 15 to 40 mm and a length of about 20 to 40 mm can be mentioned, and in consideration of transportation to the fermentation site, storage up to the fermentation treatment, etc., those having a water content of 20% or less are preferable. Such a pellet may be a pelletized sewage sludge residue to which general sewage treatment has been applied, but it is subjected to a molecular weight reduction treatment to reduce the molecular weight of difficultly degradable polymers such as lignin and cellulose. Preferably, the sewage sludge residue is pelletized. At the time of molecular weight reduction treatment, various organic resources such as food residue may be added. Examples of such molecular weight reduction treatment include hydrothermal treatment, ozone treatment, biological activated carbon treatment, ultrasonic treatment (for example, JP-A No. 2003-144097), and various treatments may be combined. As a specific example of the molecular weight reduction treatment by hydrothermal treatment, there can be mentioned a method using the hydrothermal reaction described in Japanese Patent Application Laid-Open Nos. 2012-200691 and 2012-200692.

菌担持下水汚泥残渣ペレットの調製は、内部にバチルス菌を担持させ、表層部に乳酸菌を担持させることができればその方法は特に制限されるものではなく、菌担持下水汚泥残渣ペレットは、水分調整された下水汚泥残渣ペレットにバチルス菌を添加し、ペレット表層部を乾燥した後、乳酸菌を添加して調製することが好ましく、具体的には、後述する平面化工程(S1)と、原料水分調整工程(S2)と、バチルス菌添加工程(S3)と、ペレット表層部乾燥工程(S4)と、乳酸菌添加工程(S5)とを有する調製方法を例示することができる。   The preparation of the bacteria-supporting sewage sludge residue pellet is not particularly limited as long as Bacillus bacteria can be supported inside and the lactic acid bacteria can be supported on the surface layer portion, and the method is not limited. After adding Bacillus bacteria to the sewage sludge residue pellet and drying the surface layer of the pellet, it is preferable to prepare by adding lactic acid bacteria, specifically, the planarization step (S1) described later, and the raw material water adjustment step The preparation method which has (S2), a Bacillus bacteria addition process (S3), a pellet surface layer part drying process (S4), and a lactic acid bacteria addition process (S5) can be illustrated.

また、本発明の機能性コンポストの製造方法における菌担持下水汚泥残渣ペレットの発酵方法としては、菌担持下水汚泥残渣ペレットの発酵を行うことができる方法であれば特に制限されるものではなく、発酵効率の点から、菌担持下水汚泥残渣ペレットを山積みにして発酵する方法が好ましい。かかる山積みにして発酵させる方法としては、菌担持下水汚泥残渣ペレットを山状に積み上げ発酵する方法であればよく、山積みの形態としては、円錐状、角錐状、載頭円錐状、載頭角錐状や、これらの形状が所定方向に延設された山脈状等を挙げることができる。具体的には、後述する山積工程(S6)及び発酵工程(S7)における方法を例示することができる。   Moreover, as a fermentation method of the bacteria-supporting sewage sludge residue pellet in the method for producing functional compost of the present invention, it is not particularly limited as long as the method can ferment the bacteria-supporting sewage sludge residue pellet. From the viewpoint of efficiency, it is preferable to use a method in which the bacteria-supporting sewage sludge residue pellets are piled up and fermented. As a method of making it piled up and fermenting it, any method may be used as long as it piles up and ferments bacteria-supporting sewage sludge residue pellets, and as a form of piles, it may be conical, pyramidal, truncated conical, or truncated pyramidal. Or, a mountain-like shape in which these shapes are extended in a predetermined direction can be mentioned. Specifically, methods in a pile process (S6) and a fermentation process (S7) described later can be exemplified.

図1に示すように、本発明の機能性コンポストの製造方法は、例えば、下水汚泥残渣ペレットを平面状に広げる平面化工程(S1)と、下水汚泥残渣ペレットの水分調整を行う原料水分調整工程(S2)と、平面化工程(S1)及び原料水分調整工程(S2)を経た下水汚泥残渣ペレットに対してバチルス菌を添加するバチルス菌添加工程(S3)と、バチルス菌添加工程を経た下水汚泥残渣ペレットの表層部を乾燥するペレット表層部乾燥工程(S4)と、ペレット表層部乾燥工程(S4)を経た下水汚泥残渣ペレットに対して乳酸菌を添加する乳酸菌添加工程(S5)と、乳酸菌添加工程(S5)を経た下水汚泥残渣ペレットを山積みにする山積工程(S6)と、山積工程(S6)を経た下水汚泥残渣ペレットを発酵させる発酵工程(S7)とを有しており、これ以外の工程を有していてもよい。また、発酵工程(S7)は、好ましくは、切返工程(S71)及び発酵時水分調整工程(S72)を有する。   As shown in FIG. 1, in the method for producing functional compost according to the present invention, for example, a flattening step (S1) for spreading sewage sludge residue pellets in a planar manner, and a raw material water adjusting step for adjusting moisture of sewage sludge residue pellets (S2), a Bacillus bacteria addition step (S3) of adding Bacillus bacteria to sewage sludge residue pellets that has undergone the planarization step (S1) and the raw material water adjustment step (S2), and sewage sludge that has passed the Bacillus bacteria addition step A pellet surface layer drying step (S4) for drying the surface layer portion of the residue pellet, and a lactic acid bacteria addition step (S5) for adding lactic acid bacteria to the sewage sludge residue pellet subjected to the pellet surface portion drying step (S4) The piled process (S6) which piles up the sewage sludge residue pellet which passed through (S5), and the fermentation process (S6) which ferments the sewage sludge residue pellet which went through the piled process (S6) ) Has a may have other steps. In addition, the fermentation step (S7) preferably includes a turning back step (S71) and a moisture adjustment step during fermentation (S72).

平面化工程(S1)は、下水汚泥残渣ペレットを平面状に広げる工程であり、一様にペレットが広がった状態になっていればよく、一部ペレットが重なった状態であってもよい。この平面化工程により、添加するバチルス菌を全体に付着させることが可能となると共に、バチルス菌の代謝による急激な温度上昇を抑制することが可能となる。   The flattening step (S1) is a step of spreading the sewage sludge residue pellets in a planar manner, as long as the pellets are spread uniformly, and may be partially overlapped. This planarizing step makes it possible to attach the Bacillus bacteria to be added to the whole, and to suppress a rapid temperature rise due to the metabolism of Bacillus bacteria.

原料水分調整工程(S2)は、下水汚泥残渣ペレットの水分調整を行う工程であって、原料ペレットがもともと適切な水分量であれば必ずしも必要はない。本工程では、水の付与及び必要に応じて乾燥することにより、バチルス菌が付与される担体を所定の水分量(含水率)に調整する。本工程は、その処理の全部又は一部がバチルス菌添加工程と同時に行われてもよく、例えば、下水汚泥残渣ペレットに所定量の水を加え、その後に、バチルス菌溶解水を加えて最終的な水分量を調整してもよく、予め下水汚泥残渣ペレットに水を加えることなく、下水汚泥残渣ペレットにバチルス菌溶解水を加えて最終的な水分量を調整してもよい。ここで調整される下水汚泥残渣ペレットの含水率としては、25〜70質量%であることが好ましく、30〜60質量%であることがより好ましく、40〜60質量%であることがさらに好ましい。なお、ここでいう含水率は、バチルス菌添加の際に同時に水が添加される場合は、これを含めた含水率をいい、バチルス菌添加時(直後)の含水率を意味する。本工程により、ペレットを膨潤させ、菌体をペレット内部まで浸透させることができると共に、菌体の活性を高めることができる。   The raw material water adjustment step (S2) is a step of adjusting the water content of the sewage sludge residue pellets, and it is not always necessary if the raw material pellets have an originally appropriate water content. In this step, the carrier to which Bacillus bacteria is applied is adjusted to a predetermined water content (water content) by applying water and drying if necessary. In this step, all or a part of the treatment may be performed simultaneously with the step of adding Bacillus bacteria, for example, a predetermined amount of water is added to sewage sludge residue pellets, and then Bacillus subtilis water is added to finalize the treatment. The amount of water may be adjusted, or the final amount of water may be adjusted by adding Bacillus dissolved water to the sewage sludge residue pellet without adding water to the sewage sludge residue pellet in advance. The moisture content of the sewage sludge residue pellets adjusted here is preferably 25 to 70% by mass, more preferably 30 to 60% by mass, and still more preferably 40 to 60% by mass. The water content referred to herein means the water content including the water when water is simultaneously added at the time of addition of Bacillus bacteria, and means the water content at the time of (immediately after) addition of Bacillus bacteria. By this step, the pellet can be swelled to allow the cells to penetrate to the inside of the pellet, and the activity of the cells can be enhanced.

また、この原料水分調整工程は、その処理の一部又は全部を平面化工程の前に行ってもよい。すなわち、平面状に広げる前に水分調整し、かかる水分調整されたペレットを平面状に広げてもよい。   Moreover, this raw material water | moisture-content adjustment process may perform part or all of the process before the planarization process. That is, it is possible to adjust the water content before spreading it into a flat shape, and spread the water adjusted pellets into a flat shape.

バチルス菌添加工程(S3)は、平面化工程(及び原料水分調整工程)を経た下水汚泥残渣ペレットに対してバチルス菌を添加する工程であり、バチルス菌を所定量の水に溶解した状態で、ペレット全体に一様に添加することが好ましい。上記のように、下水汚泥残渣ペレットが平面状に広げられている場合には、バチルス菌を全体に付着させることが容易となる。   The bacillus addition step (S3) is a step of adding bacilli to the sewage sludge residue pellet that has undergone the planarization step (and the raw material water adjustment step), in a state in which bacillus is dissolved in a predetermined amount of water, It is preferable to add uniformly to the whole pellet. As described above, when the sewage sludge residue pellets are spread in a planar manner, it becomes easy to attach the Bacillus bacteria to the whole.

本発明の方法において添加するバチルス菌としては、例えば、Bacillus subtilis、Bacillus tequilensis、Bacillus vallismortis、Bacillus mojavensis、Bacillus amyloliquefaciens、Bacillus subtilis subsp. subtilis、Bacillus subtilis subsp.spizizenii、Bacillus subtilis subsp. inaquosorum、Bacillus subtilis var. nattoを挙げることができ、これらの中でも、Bacillus subtilis var. natto(納豆菌)が好ましい。これらのバチルス菌は1種単独で又は2種以上を組み合わせて用いることができる。バチルス菌の入手方法としては、特に制限されるものではなく、市販品を用いることができる。また、例えば、納豆等のバチルス菌を含む食品そのものや、これから単離されたバチルス菌を用いてもよい。   Bacillus bacteria to be added in the method of the present invention include, for example, Bacillus subtilis, Bacillus tequilansis, Bacillus vallismortis, Bacillus mojavensis, Bacillus amyloliquefaciens, Bacillus subtilis subsp. Subtilis, Bacillus subtilis subsp. Among these, Bacillus subtilis var. natto (natto bacteria) is preferable. These Bacillus bacteria can be used individually by 1 type or in combination of 2 or more types. The method for obtaining Bacillus bacteria is not particularly limited, and commercially available products can be used. Also, for example, food itself containing Bacillus bacteria such as natto, or Bacillus bacteria isolated therefrom may be used.

続く、ペレット表層部乾燥工程(S4)は、下水汚泥残渣ペレットの表層部を乾燥する工程であり、ペレットの表層部を乾燥させることにより、バチルス菌をペレット内部に担持させる工程である。このペレット表層部乾燥工程では、例えば、バチルス菌添加後12〜48時間自然乾燥を行うが、必要に応じてペレット群を撹拌しながら乾燥してもよい。なお、平面状でそのまま乾燥させた場合、ペレット群の上層部と下層部で均一な乾燥状態とならないが、少なくともペレット群上層部は、ペレット単体の表層部の一部が乾燥した状態となるように乾燥する。   The pellet surface layer portion drying step (S4) is a step of drying the surface layer portion of the sewage sludge residue pellet, and is a step of supporting the Bacillus bacteria inside the pellet by drying the surface layer portion of the pellet. In this pellet surface layer portion drying step, for example, natural drying is performed for 12 to 48 hours after the addition of Bacillus bacteria, but the pellet group may be dried while being stirred if necessary. In the case of planar drying as it is, the upper and lower portions of the pellet group do not have a uniform dried state, but at least the upper portion of the pellet group is in a state where part of the surface layer of the pellet alone is dried. To dry.

乳酸菌添加工程(S5)は、表層部が乾燥された下水汚泥残渣ペレットに対して乳酸菌を添加する工程であり、平面状に広げられたペレットに上方から乳酸菌を添加し、ペレット表層部に乳酸菌を担持させる工程である。添加する乳酸菌としては、例えば、ラクトバチルス属(Lactobacillus)、ビフィドバクテリウム属(Bifidobacterium)、ラクトコッカス属(Lactococcus)、エンテロコッカス属(Enterococcus)、ストレプトコッカス(Streptococcus)、ペディオコッカス属(Pediococcus)、リューコノストック属 (Leuconostoc)の乳酸菌を挙げることができる。これらの乳酸菌は、1種単独で又は2種以上を組み合わせて用いることができる。乳酸菌の入手方法としては、特に制限されるものではなく、市販品を用いることができる。また、例えば、ヨーグルト等の乳酸菌を含む食品そのものや、これから単離された乳酸菌を用いてもよい。   The lactic acid bacteria addition step (S5) is a step of adding the lactic acid bacteria to the sewage sludge residue pellet whose surface layer is dried, and adding the lactic acid bacteria from above to the pellet spread in a planar shape, the lactic acid bacteria in the pellet surface layer. It is a process to carry. As the lactic acid bacteria to be added, for example, Lactobacillus (Lactobacillus), Bifidobacterium (Bifidobacterium), Lactococcus (Lactococcus), Enterococcus (Enterococcus), Streptococcus (Streptococcus), Pediococcus (Pediococcus), Lactic acid bacteria of the genus Leuconostoc can be mentioned. These lactic acid bacteria can be used singly or in combination of two or more. The method for obtaining the lactic acid bacteria is not particularly limited, and commercially available products can be used. Also, for example, food itself containing lactic acid bacteria such as yogurt, or lactic acid bacteria isolated therefrom may be used.

なお、乳酸菌の添加は、少なくとも平面状に広げられた状態の下水汚泥残渣ペレットに対して行うが、次工程において山積み状態とした下水汚泥残渣ペレットに対しても再度行うことにより、より全体のペレットに乳酸菌を付与することが可能となる。   In addition, although addition of lactic acid bacteria is performed on sewage sludge residue pellets in a state of being spread at least in a planar manner, by performing again on sewage sludge residue pellets which are piled up in the next step, more whole pellets It is possible to give lactic acid bacteria to

原料である下水汚泥残渣ペレットに対してバチルス菌を添加し、ペレット表層部を乾燥させた後、乳酸菌を添加することにより、バチルス菌をペレット内部に担持させると共に、表層部に乳酸菌を担持させることができ、ペレットに2種類の菌の2層構造を形成することができる。2種類の温度活性領域の異なる菌体を用いることにより、相互的に各菌体が活性化するため、物理的な加熱装置を必要とせず、自然発酵のみで60℃〜70℃の発酵温度を持続させることができる。   Bacillus bacillus is added to the sewage sludge residue pellet, which is a raw material, and after the surface layer of the pellet is dried, the lactic acid bacteria are added to support the Bacillus bacillus inside the pellet and to carry the lactic acid bacterium in the surface layer. It is possible to form a two-layer structure of two types of bacteria in the pellet. By using cells of two different temperature active regions, each cell is mutually activated, so that a physical heating device is not required, and a fermentation temperature of 60 ° C. to 70 ° C. can be obtained only by natural fermentation. It can be sustained.

山積工程(S6)は、下水汚泥残渣ペレットを山積みにする工程であり、例えば、乳酸菌の添加終了後、1時間以内に行うことが好ましく、30分以内に行うことがより好ましい。この工程は、例えば、平面状のペレット群を外側から包み込むように山を形成することが好ましく、できる限り高い山を形成することが望ましく、安息角度で山積みすることが特に好ましい。また、ペレット群を山脈状(所定方向に延設した状態)に山積みして発酵を行うことが、大量の菌担持下水汚泥残渣ペレットを効率的に発酵できることから好ましい。   The pile-up step (S6) is a step of piling up sewage sludge residue pellets, for example, preferably performed within one hour after the completion of the addition of the lactic acid bacteria, and more preferably within 30 minutes. In this step, for example, it is preferable to form a mountain so as to wrap the planar pellet group from the outside, to form a mountain as high as possible, and to pile up at a repose angle is particularly preferable. Moreover, it is preferable to stack the pellet group in a mountain-like shape (in a state of being extended in a predetermined direction) to perform fermentation, since large amounts of fungus-supporting sewage sludge residue pellets can be efficiently fermented.

発酵工程(S7)は、山積状態の下水汚泥残渣ペレットを発酵させる工程であり、必要に応じて、切り返し(切返し工程:S71)及び水分調整(発酵時水分調整工程:S72)を1回又は2回以上行う。すなわち、ペレット群の発酵温度が低下した際に、切返しを行うと共に、水分量を調節することで、酸素の供給及び菌体分布の平均化を図り、均一な発酵と有用微生物の増殖を持続させることを可能とする。また、この切り返しにより、ペレットの表層部が粉状となってペレット本体から分離され、塊状のペレットと粉の混合体となる。   The fermentation step (S7) is a step of fermenting the piled sewage sludge residue pellets, and if necessary, switching back (switching back: S71) and moisture adjustment (water adjustment during fermentation: S72) once or 2 Do more than once. That is, when the fermentation temperature of the pellet group is lowered, the feed back is performed and the water content is adjusted to achieve the supply of oxygen and the distribution of the cells to be averaged, thereby maintaining the uniform fermentation and the growth of useful microorganisms. Make it possible. In addition, the surface layer portion of the pellet becomes powdery and is separated from the pellet body by this turning back, and becomes a mixture of massive pellet and powder.

本発明においては、山積み状態で発酵を進めることから、山積み状のペレット群の中央部から頂点に向かって微生物により高温域が長時間形成されるため、内部におけるバチルス菌及び乳酸菌を含む有用微生物の活性が上がる。また、外側表層部と深層部に温度差の異なる領域が形成され、温度領域の異なる菌体の活性領域を形成することができる。例えば、表面から深さ5〜10cmの層に、糸状菌類が増殖し、その内側で乳酸菌類及び酸化細菌類が増殖し、深層部でバチルス菌類が増殖する。表層付近の温度は、30〜45℃程度の温度領域に保持され、深層部の温度は、60〜70℃程度の温度領域に保持される。   In the present invention, since the fermentation is carried out in a piled state, a high temperature area is formed for a long time by the microorganism from the central part to the apex of the piled pellet group, and therefore useful microorganisms including Bacillus bacteria and lactic acid bacteria inside. Activity rises. In addition, regions having different temperature differences are formed in the outer surface layer portion and the deep layer portion, and active regions of cells having different temperature regions can be formed. For example, filamentous fungi grow in a layer 5 to 10 cm deep from the surface, and lactic acid bacteria and oxidizing bacteria grow inside the layer, and Bacillus fungi grow in the deep layer. The temperature in the vicinity of the surface layer is kept in a temperature range of about 30 to 45 ° C., and the temperature of the deep layer part is kept in a temperature range of about 60 to 70 ° C.

発酵過程においては、山積み状のペレット群では、次のような作用が生じていると考えられ、これにより、自然発酵のみで高速に有用な機能性コンポストの生産が可能となると考えられる。
まず、下水汚泥残渣ペレットに担持したバチルス菌及び乳酸菌の活動を見た場合、乳酸菌は、その活性温度域がバチルス菌よりも低いため、ペレットの発酵の促進剤となり、バチルス菌の活動温度域まで温度を上昇させる。すなわち、まず、活性温度域15〜42℃である乳酸菌が、ペレット単体表層部で水溶性成分である単糖類を分解し、その分解過程で発生した代謝熱でペレット単体の温度を上昇させる。さらに、乳酸菌は代謝により大量の乳酸や抗生物質を作り出すため、ペレット単体の表面周囲の環境を酸性にし、酸に耐性のない他の微生物を寄せつけなくなり、また抗生物質により雑菌などの微生物を排除する。ペレット単体表層部の乳酸菌が活性することによりペレット単体温度が徐々に上昇し、ペレット単体内部に存在している高温域で活性を行うバチルス菌(活性温度域20〜65℃)が徐々に活動し始める。
In the fermentation process, it is considered that the following action is caused in the pile-like pellet group, and it is considered that high-speed useful functional compost can be produced only by natural fermentation.
First, when we look at the activity of Bacillus bacteria and lactic acid bacteria carried on sewage sludge residue pellets, the activity temperature range of lactic acid bacteria is lower than that of Bacillus bacteria, so it becomes an accelerator for pellet fermentation, up to the activity temperature range of Bacillus bacteria. Raise the temperature. That is, first, the lactic acid bacteria having an active temperature range of 15 to 42 ° C. decompose the monosaccharide which is a water-soluble component in the surface layer portion of the pellet alone, and the temperature of the pellet alone is raised by the metabolic heat generated in the decomposition process. Furthermore, because lactic acid bacteria produce large amounts of lactic acid and antibiotics by metabolism, the environment around the surface of the pellet alone is acidified, so that other microorganisms that are not resistant to acid are not attracted, and antibiotics eliminate microorganisms such as bacteria. . The activity of the lactic acid bacteria in the surface layer of the pellet alone causes the temperature of the pellet alone to rise gradually, and the Bacillus bacteria (activity temperature range 20 to 65 ° C) that perform the activity in the high temperature range existing inside the pellet gradually start.

バチルス菌は、ペレット単体内部の有機物を分解して単糖類へ変換し、その単糖類は、再び表層部の乳酸菌の代謝により利用される。これらの多数の微生物が一斉にペレット単体の有機物を分解することによって発生した代謝熱が、狭い範囲で山積み状のペレット群深層部の温度を60〜70℃まで上昇させる。山積み状のペレット群深層部の温度を60〜70℃まで上昇させることにより、耐熱性の乏しい病原菌や雑菌などを死滅させることが可能となる。さらに、山積み状のペレット群深層部の温度が乳酸菌死滅温度に達した場合、乳酸菌は死滅するが、死滅した乳酸菌はバチルス菌の代謝に利用されるため、バチルス菌を安定して増殖させることが可能となり、さらに乳酸菌の乳酸などの代謝副産物をペレット単体に付加させることが可能となる。ただし、山積み状のペレット群の外側表層部では乳酸菌死滅温度に達しないため、深層部に比べて乳酸菌と酸化細菌を含む多数の微生物が存在している。このように、本発明の発酵過程において乳酸菌とバチルス菌を用いることにより、加熱装置を必要とせず自然発酵を効率よく行うことが可能となる。   The Bacillus bacteria decompose the organic matter inside the pellet alone and convert it to a monosaccharide, and the monosaccharide is used again by metabolism of lactic acid bacteria in the surface layer. The heat of metabolism generated by the decomposition of the organic matter of the pellet itself at the same time by a large number of these microorganisms raises the temperature of the deep part of the pile-like pellet group to 60 to 70 ° C. within a narrow range. By raising the temperature of the pile-like pellet group deep part to 60 to 70 ° C., it becomes possible to kill pathogens, bacteria, etc. having poor heat resistance. Furthermore, when the temperature of the pile-like pellet group deep part reaches the lactic acid bacteria death temperature, the lactic acid bacteria are killed, but since the killed lactic acid bacteria are used for metabolism of Bacillus bacteria, the Bacillus bacteria can be stably grown. It becomes possible to add metabolic byproducts such as lactic acid of lactic acid bacteria to pellet alone. However, since the outer surface portion of the pile-like pellet group does not reach the lactic acid bacteria death temperature, a large number of microorganisms including lactic acid bacteria and oxidizing bacteria are present compared to the deep layer portion. Thus, by using lactic acid bacteria and Bacillus bacteria in the fermentation process of the present invention, natural fermentation can be efficiently performed without the need for a heating device.

他方、山積み状のペレット群全体でみた場合、山積みした初期段階では、糸状菌類が多量に繁殖し、山積み状のペレット群の外側表層部に5〜10cmの厚さで糸状菌類の高密度層が生成された後、全体に糸状菌類が繁殖を始めると同時に、内部温度の上昇とともにバチルス菌の増殖やその他の酸化細菌類の代謝の活性が上がり、深層部では60〜70℃の高温域に、山積み状のペレット群の側面表層部では30〜45℃の低温度域の温度差が生まれる。この温度差の違いにより、山積み状のペレット群の表層部では低温域で活動する糸状菌類の活動が活発となり、その内側では、乳酸菌、酸化細菌類及びバチルス菌の混合の活動域となり、深層部では高温域で活性を行うバチルス菌が活発に活動する。   On the other hand, when viewed as a whole in a pile of pellets, a large amount of filamentous fungi propagates in the early stage of piling up, and a thick layer of filamentous fungi with a thickness of 5 to 10 cm on the outer surface of the pile of pellets. After being produced, the filamentous fungi begin to proliferate throughout, while the growth of bacillus bacteria and the activity of metabolism of other oxidizing bacteria increase with the rise of internal temperature, and in the deep part, in the high temperature range of 60 to 70 ° C, A temperature difference of 30 to 45 ° C. in a low temperature range is generated in the side surface layer portion of the piled pellet group. Due to this difference in temperature difference, the activity of filamentous fungi active in the low temperature region becomes active in the surface layer part of the pile-like pellet group, and on the inside, the mixed activity area of lactic acid bacteria, oxidizing bacteria and bacillus bacteria becomes deep area In this case, Bacillus bacteria that are active in high temperature range are active.

また、山積み状のペレット群の深層部では、有用微生物による好気性発酵が行われ、糖類、タンパク質、ヘミセルロースやセルロースが分解され、水と二酸化炭素、アンモニアに無機化されるが、一部は微生物の代謝産物として残存する。一部の生成された水蒸気などは、頂上部から放出されるが、山積み状のペレット群の表層部の糸状菌類の高密度層により、一部は側面部からは放出されず、頂上部から放出されなかった代謝産物を含む水蒸気は山積みにしたペレット内部で自然対流する。自然対流する過程において代謝産物が重合して難分解性化合物が生成され、ペレットに含まれるリグニンやタンニンなどの難分解性の残存物と代謝産物の重合物が反応し、腐植物質(フルボ酸やフミン酸)を生成する。また、山積み状のペレット群の頂上部から複合された代謝産物の水蒸気の一部が放出されることで、山積みの内部が減圧され、減圧されたことによって側面表層部の隙間から空気を取り込む作用が働き、山積み状のペレット群の内部の有用微生物の好気性発酵が促進され、さらに重合反応が起こる。   Also, in the deep part of the piled pellet group, aerobic fermentation is performed by useful microorganisms, and sugars, proteins, hemicelluloses and celluloses are decomposed and mineralized into water, carbon dioxide and ammonia, but some of them are microorganisms. Remains as a metabolite of Some of the generated water vapor etc. is released from the top, but it is not released from the side but a part from the top due to the high density layer of filamentous fungi on the top of the pile of pellets Water vapor containing metabolites that have not been collected is naturally convected inside the piled pellets. In the process of natural convection, the metabolite polymerizes to form a persistent compound, and the residue of the persistent substance such as lignin and tannin contained in the pellet reacts with the polymer of the metabolite to produce humic substances (fulvic acid and fulvic acid It produces humic acid). In addition, a part of the water vapor of the complexed metabolite is released from the top of the pile-like pellet group, so that the inside of the pile is depressurized, and by being depressurized, air is taken in from the gap of the side surface layer part Functions to promote aerobic fermentation of useful microorganisms inside the piled pellet group, and further causes a polymerization reaction.

本発明のコンポストの製造方法においては、山積みされたペレットの頂部及び下部を除く中央部を被覆材で覆って発酵させることが好ましい。被覆材としては、シート、載頭円錐状の型枠等を挙げることができ、紫外線を遮断する材料からなることが好ましい。   In the method of producing a compost according to the present invention, it is preferable to cover the center of the piled pellets except the top and the bottom with a covering material for fermentation. As the covering material, a sheet, a frusto-conical mold or the like can be mentioned, and it is preferable that the covering material is made of a material that blocks ultraviolet light.

被覆材で覆って発酵させることにより、山積み状のペレット群が保温され、内部の温度が上昇して発酵が促進され、山積み状のペレット群の発酵がより均一に進む。すなわち、この被覆材の保温効果により、発酵が進みにくい山積み状のペレット群の中央下部(深層部)の温度が上昇して発酵が促進され、これにより、発酵により生成したアンモニアを含む水蒸気等が山の頂部から放出されると共に、これに伴って山の底部側面から外気が導入される。さらに、外気の導入により酸化細菌類等の活動が活発となってさらに内部の発酵が促進するという好循環が生まれる。また、被覆材により、発酵により発生したアンモニアを含む水蒸気等の外部への拡散を防止して、製造されるコンポストに含まれるアンモニアを含む水蒸気等の含有量を増加させ、活性した菌によりアンモニアを効率よく消化させて、コンポスト内部に硝酸態窒素の含有量を増加させることができるため、機能性コンポストの肥効を高めることができる。また、被覆材により紫外線を防止して、発酵時に有用な菌(表面に生息する糸状菌等)が死滅することを防ぐことができる。   By covering and fermenting with a covering material, the pile-like pellet group is kept warm, the temperature inside rises, fermentation is promoted, and the fermentation of the pile-like pellet group proceeds more uniformly. That is, due to the heat retaining effect of the covering material, the temperature of the central lower portion (deep layer) of the pile-like pellet group in which the fermentation is difficult to proceed is elevated to promote the fermentation, whereby the water vapor etc. The air is released from the top of the mountain, and along with it, the outside air is introduced from the bottom side of the mountain. Furthermore, the introduction of ambient air activates the activity of oxidizing bacteria and the like to create a virtuous cycle in which internal fermentation is further promoted. In addition, the covering material prevents the diffusion of water vapor and the like generated by fermentation to the outside, thereby increasing the content of water vapor and the like contained in the compost to be produced, and the activated bacteria can be used to The ability to digest efficiently and increase the content of nitrate nitrogen inside the compost can enhance the fertilizing effect of functional compost. Moreover, ultraviolet rays can be prevented by the covering material, and it can prevent that a useful microbe (filamentous fungus etc. which inhabits the surface) at the time of fermentation is killed.

また、本発明のコンポストの製造方法においては、山積み状のペレット群の下方中央から上方に向かって空気を導入してもよい。これにより、発酵の進みにくい山積み状のペレット群の中央下部(深層部)の発酵を促進させることができる。なお、山積み状のペレット群の下方中央からの空気導入量を多くし、その周囲の空気導入量を少なくして、山積み状のペレット群の下方全体から空気を導入してもよい。   In addition, in the method of producing a compost according to the present invention, air may be introduced upward from the lower center of the piled pellet group. Thereby, fermentation of the central lower part (deep layer part) of pile-like pellet groups which fermentation does not advance easily can be promoted. Alternatively, the amount of air introduced from the lower center of the piled pellet group may be increased, and the amount of air introduced around the pile group may be decreased, and air may be introduced from the entire lower part of the piled pellet group.

本発明の機能性コンポストの製造方法においては、発酵開始から14〜20日で完熟堆肥と同等のコンポストとして利用できる。従来の堆肥やボカシ肥料の製造における発酵期間が60〜65℃温域で1〜2か月必要であることと比較すると、本発明の方法による発酵が高速に進むことがわかる。   In the method for producing a functional compost of the present invention, it can be used as compost equivalent to mature compost 14 to 20 days after the start of fermentation. It can be seen that the fermentation according to the method of the present invention proceeds at a high speed, as compared with the fact that the fermentation period in the production of conventional compost and Bokashi fertilizer is required for 1 to 2 months in the 60 to 65 ° C temperature range.

本発明の製造方法により製造された機能性コンポストは、原料の下水汚泥残渣ペレットに比して、2〜3倍以上のフルボ酸やフミン酸を含有する。フルボ酸やフミン酸は、自然界では微量にしか生産されない貴重な資源であり、自然界では1cmの堆積を形成するのに100年程度要するといわれる物質である。本発明の製造方法は、このような生成に時間を要するフルボ酸やフミン酸を極めて短期間で生成させることができるという特徴を有する。   The functional compost produced by the production method of the present invention contains 2-3 times more fulvic acid and humic acid than the raw material sewage sludge residue pellets. Fulvic acid and humic acid are valuable resources that are produced only in very small amounts in nature, and are substances that are said to take about 100 years to form a 1 cm deposit in nature. The production method of the present invention is characterized in that fulvic acid and humic acid which require time for such formation can be produced in an extremely short period of time.

また、本発明の製造方法により製造された機能性コンポストは、有効センチュウや白ダニなどの土壌改良に有効的な小動物を誘引する効果があり、さらに土壌中の放線菌を増殖させる効果がある。また、本発明の製造方法により製造された機能性コンポスト(発酵ペレット)を使用して植物を育てると、植物の根が、発酵ペレット中に進入しているという現象がみられる(図2及び図3参照)。このようなセンチュウなどの誘引や、根の導入は、動植物に、良質な自然の土と認識されているということであり、極めて良質な自然の土に近いものとなっているということの証である。   Further, the functional compost produced by the production method of the present invention has an effect of attracting small animals effective for soil improvement such as effective nematode and white mites, and further has an effect of propagating actinomycetes in the soil. In addition, when plants are grown using the functional compost (fermented pellets) produced according to the production method of the present invention, a phenomenon is observed that roots of the plants enter into the fermented pellets (FIG. 2 and FIG. 2). 3). The attraction of such nematodes and the introduction of roots is that animals and plants are recognized as high-quality natural soil, and it is proof that they are very close to very high-quality natural soil. is there.

本発明の製造方法により製造された機能性コンポストによるこのような生物相の改善により、土壌中の理化学性の特性が大きく改善される。土壌環境の改善は、植物の生育の促進、品質向上や耐病性などにも影響を与えるため、本発明の製造方法により製造された機能性コンポストを有効活用することにより、作物の品質向上、収量の安定性、肥料の1本化による利便性の向上、及び低コスト生産体制の確立などによる経営安定を図ることが可能となる。さらに、循環型農業の確立に繋がり、持続可能な農業が可能となる。   Such improvement of biota by the functional compost produced by the production method of the present invention greatly improves the physicochemical properties in the soil. Since the improvement of the soil environment affects the promotion of plant growth, quality improvement, disease resistance, etc., the quality improvement and yield of crops can be achieved by effectively using the functional compost produced by the production method of the present invention. It is possible to achieve business stability by improving the stability of the plant, improving convenience by integrating a single fertilizer, and establishing a low-cost production system. Furthermore, it will lead to the establishment of recycling agriculture, enabling sustainable agriculture.

また、製造された機能性コンポストは、有用微生物の代謝によって分解された粉状コンポストと、未分解部分を多く含むペレット形状コンポストの2種類によって構成されており、これらは、用途に応じて、混合して用いてもよく、別々に分離して用いてもよい。   Also, the functional compost produced is composed of two types of powdered compost, which is degraded by the metabolism of useful microorganisms, and pellet-shaped compost, which contains a large amount of undegraded parts, which are mixed depending on the application. May be used separately or may be used separately.

本発明の製造方法により製造された粉状とペレット状の混合体である機能性コンポストは、農林業における栽培植物の肥料として使用された際に、土壌微生物により分解されやすく可給態窒素の発現の早い粉状の物質が植物の初期成育に大きく効果を発揮し、その後、土壌微生物により不可給態窒素を多く含むペレット状の物質が分解され可給態窒素が長期にわたり発現するため、安定して植物生育に効果を発揮する。   The functional compost which is a mixture of powdery and pellet-like produced by the production method of the present invention is easily decomposed by soil microorganisms when used as a fertilizer for cultivated plants in agriculture and forestry, and the expression of available nitrogen is Powdery substances of the early stage have a large effect on the initial growth of plants, and then they are stabilized because soil-like microorganisms decompose pellet-like substances containing a large amount of unproved nitrogen and the long-term availability of nitrogen is expressed. Exert an effect on plant growth.

また、もう1つの本発明としては、ペレットの内部にバチルス菌を担持させると共に表層部に乳酸菌を担持させた菌担持ペレットを山積みにして発酵させる発酵方法であり、発酵方法の詳細は上記説明したとおりである。本発明で用いるペレットとしては、上述の下水汚泥残渣ペレットや、その他の有機資材ペレット(家畜の糞尿ペレット、木質ペレット)を挙げることができる。本発明の発酵方法によれば、自然発酵よりも短い期間で発酵させることができる。   Further, another invention of the present invention is a fermentation method in which Bacillus bacteria are supported on the inside of the pellet and the bacteria-supporting pellet on which the lactic acid bacteria are supported on the surface portion is piled up and fermented. That's right. As the pellets used in the present invention, the above-mentioned sewage sludge residue pellets and other organic material pellets (animal excrement pellets, wood pellets) can be mentioned. According to the fermentation method of the present invention, fermentation can be performed in a shorter period than natural fermentation.

以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the scope of the present invention is not limited thereto.

原料となる下水汚泥残渣ペレットとしては、低分子化処理された下水汚泥残渣からなる「東長崎実証1号」(農林水産大臣登録肥料)を、直径10mm、長さ25mm程度の形状にペレット化したものを用いた。   As a raw material for sewage sludge residue pellets, "East Nagasaki Demonstration No. 1" (fertilizer registered by the Minister of Agriculture, Forestry and Fisheries) consisting of sewage sludge residues treated to be low in molecular weight was pelletized into a shape of about 10 mm in diameter and about 25 mm in length The thing was used.

まず、フレキシブルコンテナから原料となる下水汚泥残渣ペレット約1000kgを取り出し、平面状に広げ、1週間放置した。
この際、1週間放置後の下水汚泥残渣ペレットの3箇所において含水率を測定し、平均を算出した。含水率の測定は、適宜選択した3点において、加熱乾燥・質量測定方式の赤外線水分計FD−610(株式会社ケット科学研究所)を使用し、1サンプル5gに対して30分の加熱乾燥を行い含水率の測定を行った。
First, about 1000 kg of sewage sludge residue pellets as a raw material was taken out from the flexible container, spread in a planar shape, and left for 1 week.
Under the present circumstances, the moisture content was measured in three places of the sewage sludge residue pellet after 1 week leaving-to-stand, and the average was computed. The moisture content is measured by using an infrared moisture meter FD-610 (Ket Scientific Research Co., Ltd.) of a heating / drying / mass measuring method at three points appropriately selected, and heating / drying for 30 minutes for 5 g of one sample. The water content was measured.

1週間放置後の平面状に広げた下水汚泥残渣ペレットの上方から水170Lを全体に投入し、加水を行った。その後、市販の納豆から単離したバチルス菌を水に溶解し、30Lに調整したものを、下水汚泥残渣ペレット全体に投入した。当初は、上層部しか湿っていなかったが、約3時間後には下部まで湿っていた。
バチルス菌を投入した直後に、上記と同じ方法で含水率を測定した。
Water was added to the whole from the top of the sewage sludge residue pellets spread flatly after being left for 1 week, and water was added. Thereafter, Bacillus bacteria isolated from commercially available natto was dissolved in water, and the solution adjusted to 30 L was introduced into the entire sewage sludge residue pellet. Initially, only the upper part was wet, but after about 3 hours, it was wet to the lower part.
The water content was measured by the same method as described above immediately after introducing the Bacillus bacteria.

バチルス菌を添加した下水汚泥残渣ペレットを12時間乾燥させた後、乳酸菌(米糠から培養した乳酸菌)200mLを溶解した水10Lを、下水汚泥残渣ペレットの上方から投入し、山積みにした後、再度、乳酸菌200mLを溶解した水10Lを全体に散布し、さらに水10Lを散布した。
この際、山積みの高さ及び幅を測定し、山積みにした下水汚泥残渣ペレットの頂上部から30cmの深さに温度計(株式会社ティアンドデイ社製おんどとり)を設置し、5分毎に温度を発酵処理終了まで継続的に測定した。
After drying the sewage sludge residue pellet to which Bacillus bacteria has been added for 12 hours, 10 L of water in which 200 mL of lactic acid bacteria (lactic acid bacteria cultured from rice bran) is dissolved is added from above the sewage sludge residue pellet to make it piled again. 10 L of water in which 200 mL of lactic acid bacteria were dissolved was sprayed over the whole, and 10 L of water was further sprayed.
At this time, measure the height and width of the pile, and install a thermometer (Don-Dori Co., Ltd. made by T & D Co., Ltd.) at a depth of 30 cm from the top of the piled sewage sludge residue pellets, temperature every 5 minutes Was continuously measured until the end of the fermentation treatment.

1週間発酵させた後、1回目の切り返しを行い、山積み後に、水100Lを添加した。
この際、切り返し前後の下水汚泥残渣ペレットの山の高さ及び幅を測定した。また、切り返し前の含水率、並びに切り返し及び水添加後の含水率を測定した。含水率の測定は、山積み状のペレットの山の高さ半分の側面部深さ20cmから3箇所、それぞれ約5g採取し、加熱乾燥・質量測定方式の赤外線水分計FD−610(株式会社ケット科学研究所)を使用し、1サンプル5gに対して30分の加熱乾燥を行い含水率の測定を行った。
After fermentation for one week, the first round of turning back was performed, and after piling up, 100 L of water was added.
At this time, the height and width of the pile of sewage sludge residue pellets before and after switching were measured. In addition, the water content before turning back and the water content after turning back and addition of water were measured. About 5 g of water is collected from three 20 cm deep areas of half height of piles of pile-like pellets, and the moisture content is measured, and the infrared moisture meter FD-610 (Kett Science Co., Ltd.) Using a laboratory, 5 g of one sample was heated and dried for 30 minutes to measure the moisture content.

さらに5日間発酵させた後、2回目の切り返しを行い、山積み後に、水100Lを添加し、さらに、8日間発酵させて、ペレットにおけるコンポスト処理を完成させた。   After fermenting for another 5 days, a second turn was made, and after piling up, 100 L of water was added, and further fermented for 8 days to complete the compost treatment in the pellet.

フレキシブルコンテナから取り出した下水汚泥残渣ペレットを平面状に広げた状態で、1週間放置することを行わない点以外実施例1と同様の方法で、コンポストを製造した。   The compost was manufactured by the method similar to Example 1 except the point which does not perform leaving for 1 week in the state which extended the sewage sludge residue pellet taken out from the flexible container in planar shape.

実施例1及び2の各測定時におけるペレットの含水率、山積みした際の山の高さ及び幅を、それぞれ表1及び2に示す。   The moisture content of the pellets at the time of each measurement of Example 1 and 2 and the height and width of the pile when piled up are shown in Tables 1 and 2, respectively.

Figure 0006528188
Figure 0006528188

Figure 0006528188
Figure 0006528188

また、実施例1における発酵処理時の下水汚泥残渣ペレットの温度変化を図4に示す。   Moreover, the temperature change of the sewage sludge residue pellet at the time of the fermentation process in Example 1 is shown in FIG.

図4より、発酵開始から数時間後には、温度が上昇し70℃を超えた後、機能性コンポスト完成まで減少傾向を示す。特徴としては、1回目の切返しまでに、発酵期間開始から5日間、60℃以上を維持する。発酵温度が、8日目に50℃以下になった時点で、切返しを実施し、14日目に再度50℃以下になった時点で、切返しを実施する。14日目の切返し処理以降の発酵温度は、それほど上昇していないことから、発酵処理完了の目安となる。また、初期段階や水分調整後は、ペレット群内部の温度が上昇していることがわかる。一般的に、発酵温度が60℃〜70℃が2日続けば、内部の雑菌や病原菌等は死滅するとされている。本技術において、1次発酵(60℃以上)の状態が5日間以上維持されるため、安全な肥料であることは明確である。すなわち、本発明の処理方法においては、加熱装置等を必要とせず自然発酵を効率良く行うことができることが明らかとなった。   From FIG. 4, after several hours from the start of fermentation, the temperature rises and exceeds 70 ° C., and then the tendency to decrease until completion of functional compost is shown. Characteristically, the temperature is maintained at 60 ° C. or more for 5 days from the start of the fermentation period until the first turn back. When the fermentation temperature reaches 50 ° C. or less on the 8th day, turn back is performed, and when the temperature falls below 50 ° C. on the 14th day, turn back is performed. Since the fermentation temperature after the 14th day turning-back process has not risen so much, it becomes an indication of the completion of the fermentation process. In addition, it can be seen that the temperature inside the pellet group is rising after the initial stage and after the water adjustment. Generally, if the fermentation temperature continues at 60 ° C. to 70 ° C. for 2 days, it is considered that the bacteria, pathogens, etc. inside are killed. In the present technology, the state of primary fermentation (60 ° C. or more) is maintained for 5 days or more, so it is clear that it is a safe fertilizer. That is, in the treatment method of the present invention, it has become clear that natural fermentation can be efficiently performed without the need for a heating device or the like.

[実施例1で製造された機能性コンポストの評価]
実施例1で製造した機能性コンポスト、及び原料として使用した下水汚泥残渣ペレット(比較例1)について、第三者機関において、成分分析を行った。なお、フルボ酸及びフミン酸の分析については、国際腐植物質学会法を用いた。陽イオン交換容量の分析については、肥料分析法5.31.2を用いた。硝酸性窒素及び亜硝酸性窒素の分析については、肥料分析法7.6を用いた。炭素窒素比の分析については、肥料分析法を用いた。
その結果を下記表3に示す。
[Evaluation of functional compost manufactured in Example 1]
The functional analysis of the functional compost produced in Example 1 and the sewage sludge residue pellet (Comparative Example 1) used as a raw material were subjected to component analysis in a third party. In addition, for the analysis of fulvic acid and humic acid, the method of the International Society of Humic Substances was used. For analysis of cation exchange capacity, fertilizer analysis method 5.31.2 was used. For analysis of nitrate nitrogen and nitrite nitrogen, fertilizer analysis method 7.6 was used. Fertilizer analysis was used for carbon-nitrogen ratio analysis.
The results are shown in Table 3 below.

Figure 0006528188
Figure 0006528188

表3に示されるように、実施例1の機能性コンポストにおいては、フルボ酸が比較例1に比べて約3倍、フミン酸が約2倍となった。すなわち、本発明の処理法を用いることにより、非常に短い期間で、原料である下水汚泥残渣ペレットを腐植化させることが明らかとなった。   As shown in Table 3, in the functional compost of Example 1, fulvic acid was about 3 times that of Comparative Example 1 and humic acid was about 2 times that of Comparative Example 1. That is, it has become clear that, by using the treatment method of the present invention, the raw material sewage sludge residue pellets are humified in a very short period of time.

なお、李(2009年;牛ふん尿堆肥に含まれる水溶性腐植物質の構造と機能)は、堆積方式と撹拌方式の2種類の方式で9日間の前処理発酵を行った後の堆肥(初期段階)と、60日間の2次発酵を行った処理終了段階にある堆肥(後期段階)のフルボ酸量を調査しているが、フルボ酸量は、堆積方式では発酵期間が長くなると増加するが、撹拌方式では減少すると報告されている。従来の撹拌方式による高速発酵技術では、短期間で処理するため、微生物分解が進まないことで、腐植化が進行せず、腐植物質を増加させることが期待できないことも言及している。本発明は、堆積方式であるが、処理期間が短いにもかかわらず、フルボ酸量が原料に比べて3倍高くなる。すなわち、本発明の処理法を用いることにより、微生物分解による腐植化が速やかに進行したことが明らかとなった。   In addition, Li (2009; structure and function of water-soluble humic substances contained in cow manure compost) is compost after initial pretreatment fermentation for 9 days by 2 types of deposition type and agitation type (early stage And the amount of fulvic acid in the compost (late stage) at the end of the treatment stage of the secondary fermentation for 60 days, the amount of fulvic acid increases with the increase of the fermentation period in the deposition method, It is reported to decrease in the stirring system. In the conventional high-speed fermentation technology by agitation, processing is performed in a short period, and therefore, it is also mentioned that humification does not progress and it can not be expected to increase humic substances because microbial decomposition does not proceed. Although the present invention is a deposition method, the amount of fulvic acid is three times higher than that of the raw material despite the short processing period. That is, it became clear that humification by microbial decomposition progressed rapidly by using the treatment method of the present invention.

また、表3に示されるように、実施例1の陽イオン交換容量(CEC)は、63meq/100gであった。通常、堆肥の完熟の判断として、陽イオン交換容量(CEC)が60meq/100g以上でなければならないとされており、実施例1の機能性コンポストは、完熟の状態であると判断できる。一方で、比較例1のペレット(原料)の陽イオ交換容量(CEC)は、51.8meq/100gであるため、未完熟の状態である。すなわち、実施例1の20日の発酵処理により、未完熟のペレット(原料)を完全に完熟化させることができた。   Further, as shown in Table 3, the cation exchange capacity (CEC) of Example 1 was 63 meq / 100 g. Usually, it is said that the cation exchange capacity (CEC) must be 60 meq / 100 g or more as the judgment of the complete ripeness of the compost, and it can be judged that the functional compost of Example 1 is in a state of full ripeness. On the other hand, since the positive ion exchange capacity (CEC) of the pellet (raw material) of Comparative Example 1 is 51.8 meq / 100 g, it is in an unfinished ripe state. That is, by the 20-day fermentation treatment of Example 1, the unripened pellets (raw material) could be completely ripened.

実施例1と同様の方法で製造した機能性コンポスト(処理済みペレット)を土壌に施用し、ロマネスコを栽培した後に土壌から回収した処理済みペレットについて、第三者機関にて、フルボ酸(国際腐植物質学会法)と陽イオン交換容量(CEC)(肥料分析法 5.31.2)の分析を行った。   Functional compost (treated pellets) produced by the same method as in Example 1 is applied to the soil, and treated pellets recovered from the soil after cultivating romanesco are treated with fulvic acid (international humus) at a third party. Material Society Method) and cation exchange capacity (CEC) (fertilizer analysis method 5.31.2) were analyzed.

分析の結果、土壌から回収した処理済みペレットのフルボ酸量は2.5mg/gであり、陽イオン交換容量(CEC)は、53.6meq/100gであった。土壌から回収した処理済みペレットのフルボ酸量が、土壌施用前の処理済みペレットよりも低くなったのは、ペレットに含まれるフルボ酸が土壌の団粒構造の形成や作物生育などにより使用されたためであると考えられる。すなわち、生成された腐植物質は、ペレットや土壌に含まれる鉄やアルミニウムの架橋結合することによって粘土鉱物と結合して、腐植粘土複合体を形成したと考えられる。   As a result of analysis, the fulvic acid content of the treated pellet recovered from the soil was 2.5 mg / g, and the cation exchange capacity (CEC) was 53.6 meq / 100 g. The amount of fulvic acid of the treated pellet recovered from the soil was lower than that of the treated pellet before soil application because the fulvic acid contained in the pellet was used due to the formation of soil aggregate structure, crop growth, etc. It is considered to be. That is, it is considered that the produced humic substances were combined with the clay mineral by crosslinking iron or aluminum contained in the pellet or the soil to form a humic clay complex.

腐植の役割は、土壌の物理性の変化、すなわち腐植の有機酸が粘着性で土壌粘土などの微細粒子と粗粒子を固めて団粒構造を形成し土壌の物理性を変えることにある。団粒構造を形成することで、排水性、保水性や通気性が良くなる。また、腐植は、土壌の保肥力、pH緩衝作用を高める効果がある。腐植含量が多いと、マイナス電荷が強くなって、陽イオンの吸着量も多くなるため、陽イオン交換容量(CEC)が増加する。また、腐植は、土壌の生物相にも影響を与える。たとえば、多種多様の微生物を増やす効果があり、またミミズなどの小動物を誘引する効果もある。実際に、処理済みペレット施用圃場にはミミズが増え、また有効センチュウや白ダニは処理済みペレットに誘引されていることを確認した。さらに、放線菌が放つ臭気であるジオスミンの発生を圃場において確認した。すなわち、本発明により製造された機能性コンポストは腐植を構成する物質を含むことから、土壌環境を改善する効果があることが明らかとなった。   The role of humus is to change the physical properties of the soil, that is, the organic acid of humus is sticky and solidifies fine particles and coarse particles such as soil clay to form a aggregate structure to change the physical properties of the soil. By forming the aggregate structure, drainage, water retention and air permeability become better. In addition, humus has the effect of enhancing the soil retention ability and pH buffering action of the soil. When the humus content is high, the negative charge becomes strong, and the amount of adsorption of cations also increases, so that the cation exchange capacity (CEC) increases. Humus also affects the soil biota. For example, it has the effect of increasing various kinds of microorganisms, and also has the effect of attracting small animals such as earthworms. In fact, it was confirmed that earthworms increased in the treated pellet application field, and effective nematodes and white mites were attracted to the treated pellets. Furthermore, the generation of geosmin, which is an odor emitted by actinomycetes, was confirmed in the field. That is, since the functional compost manufactured by this invention contains the substance which comprises humus, it became clear that it is effective in improving a soil environment.

実施例1と同様の方法で製造した機能性コンポストを土壌に施用して、白菜及び人参を栽培した。栽培後の土壌硬度を測定した結果を表4に示す。比較として、本発明の機能性コンポストの代わりに化成肥料及び牛ふんを用いて、実施例3と同様の方法で白菜及び人参を栽培した後の土壌硬度を測定した(比較例2)。土壌硬度の測定は、各作物収穫後に、山中式土壌硬度計を用いて、各畝の断面から上下3ヶ所の計6ヶ所の土壌硬度の測定を行った。
その結果を表4に示す。
Functional compost produced by the same method as Example 1 was applied to the soil to grow Chinese cabbage and ginseng. The results of measuring the soil hardness after cultivation are shown in Table 4. As a comparison, soil hardness after cultivating Chinese cabbage and ginseng in the same manner as in Example 3 was measured using a chemical fertilizer and cow dung instead of the functional compost of the present invention (Comparative Example 2). The soil hardness was measured after harvesting each crop using a Yamanaka-type soil hardness tester, measuring the soil hardness at a total of six locations at three locations above and below from the cross section of each ridge.
The results are shown in Table 4.

Figure 0006528188
Figure 0006528188

表4の結果から、実施例4の土壌において硬度が低く、柔らかい土となっている。これは、本発明の機能性コンポストを投入した土壌が、腐植により団粒構造を形成したものと考えられる。   From the results of Table 4, in the soil of Example 4, the hardness is low and the soil is soft. It is considered that the soil into which the functional compost of the present invention has been introduced forms a aggregate structure by humus.

表3の結果では、実施例1の機能性コンポスト(処理済みペレット)は、硝酸性窒素及び亜硝酸性窒素がほとんど検出されず、比較例1の原料ペレットと同等であったが、発明者は、これまでの経験から土壌施用時に硝酸性窒素量(硝酸態窒素)の供給量が増加していると考え、以下の試験を行った。   In the results of Table 3, the functional compost (treated pellet) of Example 1 was hardly detected with nitrate nitrogen and nitrite nitrogen, and was equivalent to the raw material pellet of Comparative Example 1, but the inventor From the experience so far, the following tests were conducted, considering that the supply of nitrate nitrogen (nitrate nitrogen) was increasing at the time of soil application.

22Lプランターに黄色細粒土16kgを充填し、そこへ実施例1と同様の方法で製造した機能性コンポスト625g(窒素量20g/m)を投入し混合した。その後、1Lの加水を行った。加水処理は、3日間隔で行った。毎日土壌を混合した後、土壌100gを採取し、コンパクト硝酸イオンメータ(LAQUAtwin B−741、堀場製作所製)を用いて、硝酸態窒素の分析を行った。比較として、コンポストの原料として使用した下水汚泥残渣ペレット(窒素量20g/m)及び化成肥料200g(窒素量20g/m)を用いて、実施例5と同様にして硝酸態窒素の分析を行った(比較例3及び4)。その結果を図5に示す。A 22 L planter was filled with 16 kg of yellow fine-grained soil, to which 625 g of functional compost produced in the same manner as in Example 1 (nitrogen amount: 20 g / m 2 ) was added and mixed. After that, 1 L of water was added. Hydrolysis was performed at intervals of 3 days. After mixing the soil daily, 100 g of the soil was collected and nitrate nitrogen was analyzed using a compact nitrate ion meter (LAQUAtwin B-741, manufactured by Horiba, Ltd.). As a comparison, using sewage sludge residue pellets (nitrogen amount 20 g / m 2 ) and chemical fertilizer 200 g (nitrogen amount 20 g / m 2 ) used as raw materials for compost, analysis of nitrate nitrogen was carried out in the same manner as Example 5. It carried out (comparative examples 3 and 4). The results are shown in FIG.

図5に示すように、実施例5の処理済みペレット及び比較例3の原料ペレットは、水1L加水後の硝酸態窒素濃度は増加傾向にあるが、時間が経過するにつれて、含水率が減少するとともに硝酸態窒素濃度は減少傾向であった。これに対して、比較例4の化成肥料は、含水率に関わらず、増加傾向を示した。この違いは、実施例5の処理済みペレット及び比較例3の原料ペレットは有機資材であり、化成肥料に比べて、硝酸態窒素になる過程に時間がかかるためである。実施例5の処理済みペレット及び比較例3の原料ペレットの硝酸態窒素濃度を比較すると、処理済みペレットの硝酸態窒素濃度は原料に比べて高いことが明らかとなった。また、実施例5の処理済みペレット及び比較例3の原料ペレットは、土壌が乾燥すると微生物の活性度が低下するため、硝酸態窒素濃度が低下すると考えられる。したがって、実施例5の処理済みペレットは、機能性コンポストの製造過程において有機物成分が有用微生物(バチルス菌、乳酸菌、酸化細菌等)により分解されたことと、製造工程で上記有用微生物が添加されたことで、土壌投入後にもともと土壌に存在していた有用微生物(放線菌類等)と共存し、さらに増殖が円滑に行われ、また土壌中の有機物を粗分解する小動物を誘引するため、土壌施用後の可給態窒素の発現が原料に比べて早いことが明らかとなった。   As shown in FIG. 5, in the treated pellets of Example 5 and the raw material pellets of Comparative Example 3, the nitrate nitrogen concentration after 1 L of water is in a tendency to increase, but the water content decreases as time passes. At the same time, nitrate nitrogen concentration tended to decrease. On the other hand, the chemical conversion fertilizer of Comparative Example 4 showed an increasing tendency regardless of the moisture content. This difference is because the treated pellets of Example 5 and the raw material pellets of Comparative Example 3 are organic materials, and take longer to become nitrate nitrogen compared to chemical fertilizers. When the nitrate nitrogen concentration of the treated pellet of Example 5 and the raw material pellet of Comparative Example 3 were compared, it was revealed that the nitrate nitrogen concentration of the treated pellet was higher than that of the raw material. Further, in the treated pellets of Example 5 and the raw material pellets of Comparative Example 3, when the soil is dried, the activity of the microorganism is reduced, and therefore, it is considered that the nitrate nitrogen concentration is reduced. Therefore, in the treated pellet of Example 5, the organic components were decomposed by useful microorganisms (bacillus bacteria, lactic acid bacteria, oxidizing bacteria, etc.) in the process of producing functional compost, and the above-mentioned useful microorganisms were added in the production process. In order to attract small animals, which coexist with useful microorganisms (actinomycetes etc.) originally present in the soil after being put into the soil, and are able to grow smoothly and to roughly degrade the organic matter in the soil, It became clear that the expression of available nitrogen in the source was faster than that of the raw material.

実施例1と同様の方法で製造した機能性コンポストを用いて、春作ジャガイモを栽培した。比較として、同条件で、原料である下水汚泥残渣ペレットを用いて、春作ジャガイモを栽培した(比較例5)。収穫したジャガイモの一株あたりの個数、上いも数及び上いもの重さの合計を算出した。その結果を表5に示す。   Spring cropped potatoes were grown using functional compost produced in the same manner as in Example 1. As a comparison, spring crop potatoes were grown under the same conditions using sewage sludge residue pellets, which are raw materials (Comparative Example 5). The number of potatoes per harvest, the number of potatoes and the total weight of the potatoes were calculated. The results are shown in Table 5.

Figure 0006528188
Figure 0006528188

表5の結果から、実施例6の機能性コンポストを用いた場合、農林水産大臣登録肥料である原料の下水汚泥残渣ペレットと比較しても、作物の生育が促進されており、実施例6の機能性コンポストは、非常に有用な肥料であることがわかる。   From the results of Table 5, when the functional compost of Example 6 is used, the growth of the crop is promoted even when compared with the sewage sludge residue pellet of the raw material which is the fertilizer registered fertilizer of the Ministry of Agriculture, Forestry and Fisheries, Functional compost proves to be a very useful fertilizer.

実施例1と同様にペレットを山積みした後、頂部から30cm及び地面から30cmを除く中央部をビニールシートで覆い、実施例1と同様にしてペレットの発酵を行い、機能性コンポストを製造した(図6参照)。
実施例7で製造した機能性コンポスト、及び実施例1で製造した機能性コンポストの発酵温度及びアンモニア態窒素含有量を比較した。発酵温度の結果を図7に示し、アンモニア態窒素含有量の結果を表6に示す。
After piled up the pellets in the same manner as in Example 1, the central part excluding 30 cm from the top and 30 cm from the ground was covered with a vinyl sheet, and the pellets were fermented in the same manner as in Example 1 to produce functional compost (Figure 6).
The fermentation temperature and ammonia nitrogen content of the functional compost prepared in Example 7 and the functional compost prepared in Example 1 were compared. The results of fermentation temperature are shown in FIG. 7 and the results of ammonia nitrogen content are shown in Table 6.

Figure 0006528188
Figure 0006528188

図7に示すように、被覆材で覆って発酵させることにより、山積み状のペレット群が保温され、内部の温度が上昇して発酵が促進された結果と考えられる。   As shown in FIG. 7, it is considered that, by covering and fermenting with a coating material, piled-up pellet groups are kept warm and the internal temperature rises to promote fermentation.

また、表6に示すように、実施例7で製造したコンポストの方が、実施例1で製造したものに比べてアンモニア態窒素含有量が多くなっている。これは、ブルーシートで山積みされたペレットの一部を被覆したことにより、ペレットの発酵が促進されたと共に、肥効として有効なアンモニアの外部への流出が防止された結果と考えられる。   In addition, as shown in Table 6, the content of ammoniacal nitrogen in the compost produced in Example 7 is higher than that of the compost produced in Example 1. This is considered to be the result of covering a part of piled up pellets with blue sheet, thereby promoting the fermentation of the pellets and preventing the outflow of ammonia effective as a fertilizer effect.

本発明は、非常に有用な機能性コンポストを製造することができることから、産業上の有用性は高い。

The present invention has high industrial utility because it can produce a very useful functional compost.

Claims (10)

下水汚泥残渣ペレットの内部にバチルス菌を担持させると共に表層部に乳酸菌を担持させた菌担持下水汚泥残渣ペレットを発酵させることを特徴とする発酵ペレットの製造方法。  A method for producing a fermented pellet characterized in that Bacillus subtilis is carried on the inside of a sewage sludge residue pellet and the bacteria-carrying sewage sludge residue pellet having a lactic acid bacterium carried on the surface portion is fermented. 菌担持下水汚泥残渣ペレットが、下水汚泥残渣ペレットにバチルス菌を添加し、ペレット表層部を乾燥した後、乳酸菌を添加して調製されることを特徴とする請求項1記載の発酵ペレットの製造方法。  The method for producing a fermented pellet according to claim 1, wherein the bacteria-supporting sewage sludge residue pellet is prepared by adding Bacillus bacteria to the sewage sludge residue pellet, drying the pellet surface portion, and then adding a lactic acid bacterium. . 菌担持下水汚泥残渣ペレットを山積みにして発酵させることを特徴とする請求項1又は2記載の発酵ペレットの製造方法。  The method for producing a fermented pellet according to claim 1 or 2, wherein the bacteria-supporting sewage sludge residue pellet is piled up and fermented. 下水汚泥残渣ペレットを平面状に広げる平面化工程と、
平面化工程を経た下水汚泥残渣ペレットに対してバチルス菌を添加するバチルス菌添加工程と、
バチルス菌添加工程を経た下水汚泥残渣ペレットの表層部を乾燥するペレット表層部乾燥工程と、
ペレット表層部乾燥工程を経た下水汚泥残渣ペレットに対して乳酸菌を添加する乳酸菌添加工程と、
乳酸菌添加工程を経た菌担持下水汚泥残渣ペレットを山積みにする山積工程と、
山積工程を経た菌担持下水汚泥残渣ペレットを発酵させる発酵工程と、
を有することを特徴とする請求項1〜3のいずれか記載の発酵ペレットの製造方法。
Planarizing the spread of sewage sludge residue pellets
A Bacillus bacteria addition step of adding Bacillus bacteria to sewage sludge residue pellets that have undergone the planarization step;
Pellet surface layer drying step of drying the surface portion of the sewage sludge residue pellet that has undergone the Bacillus bacteria addition step;
The lactic acid bacteria addition process which adds a lactic acid bacteria to the sewage sludge residue pellet which passed through the pellet surface layer part drying process,
A pile process that piles up bacteria-supporting sewage sludge residue pellets that have undergone the lactic acid bacteria addition process,
A fermentation process for fermenting the bacteria-supporting sewage sludge residue pellet that has been subjected to a pile process;
The method for producing a fermented pellet according to any one of claims 1 to 3, which comprises
発酵工程が、
菌担持下水汚泥残渣ペレットの切り返しを行う切返工程と、
菌担持下水汚泥残渣ペレットの水分調整を行う水分調整工程と、
を有することを特徴とする請求項4記載の発酵ペレットの製造方法。
The fermentation process is
A turning back step of turning back the bacteria-supporting sewage sludge residue pellets,
A moisture adjustment step of adjusting moisture of the bacteria-supporting sewage sludge residue pellets,
The method for producing a fermented pellet according to claim 4, characterized in that
14〜20日発酵させることを特徴とする請求項1〜5のいずれか記載の発酵ペレットの製造方法。  The method for producing a fermented pellet according to any one of claims 1 to 5, wherein the fermentation is carried out for 14 to 20 days. 下水汚泥残渣ペレットが、低分子化処理された下水汚泥残渣をペレット加工したものであることを特徴とする請求項1〜6のいずれか記載の発酵ペレットの製造方法。  The method for producing a fermented pellet according to any one of claims 1 to 6, wherein the sewage sludge residue pellet is obtained by pelletizing a low molecular weight treated sewage sludge residue. 山積みされた菌担持下水汚泥残渣ペレットの頂部及び下部を除く中央部を被覆材で覆って発酵させることを特徴とする請求項3〜7のいずれか記載の発酵ペレットの製造方法。  The method for producing a fermented pellet according to any one of claims 3 to 7, wherein the center part excluding the top part and the lower part of the piled bacteria-supporting sewage sludge residue pellet is covered with a covering material and fermented. 製造される発酵ペレットがコンポストであることを特徴とする請求項1〜8のいずれか記載の発酵ペレットの製造方法。  The method for producing a fermented pellet according to any one of claims 1 to 8, wherein the produced fermented pellet is compost. ペレットの内部にバチルス菌を担持させると共に表層部に乳酸菌を担持させた菌担持ペレットを山積みにして発酵させることを特徴とするペレットの発酵方法。  A pellet-fermenting method comprising: carrying Bacillus bacteria on the inside of the pellet and fermenting the bacteria-carrying pellets on which the lactic acid bacteria are carried on the surface layer in piles.
JP2018534320A 2016-08-17 2017-07-31 Method of producing functional compost Active JP6528188B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016159899 2016-08-17
JP2016159899 2016-08-17
PCT/JP2017/027662 WO2018034135A1 (en) 2016-08-17 2017-07-31 Method for manufacturing functional compost

Publications (2)

Publication Number Publication Date
JP6528188B2 true JP6528188B2 (en) 2019-06-12
JPWO2018034135A1 JPWO2018034135A1 (en) 2019-06-27

Family

ID=61196520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534320A Active JP6528188B2 (en) 2016-08-17 2017-07-31 Method of producing functional compost

Country Status (3)

Country Link
JP (1) JP6528188B2 (en)
CN (1) CN109641770B (en)
WO (1) WO2018034135A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026780A1 (en) * 2017-07-31 2019-02-07 学校法人長崎総合科学大学 Biofilter device and sewage sludge residue dehydrated filtrate treatment system using same
JP6925032B2 (en) * 2017-07-31 2021-08-25 学校法人長崎総合科学大学 Bio-filter device and sewage sludge residue dehydration filtrate treatment system using it
JP7144027B2 (en) * 2018-05-25 2022-09-29 学校法人長崎総合科学大学 Method for producing liquid fertilizer
CN110724017A (en) * 2019-12-07 2020-01-24 新晃县污水处理有限责任公司 Method for preparing biomass fertilizer by using sludge compost

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129759A (en) * 1974-08-28 1976-11-11 Ichigorou Sekine Process for converting manure and sludge into fermented fertilizer and feed
JPH09308494A (en) * 1996-05-21 1997-12-02 Kubota Corp Production of lactic acid
JP2002143896A (en) * 2000-11-15 2002-05-21 Kiyomoto Iron & Machinery Works Co Ltd Method for treating organic waste and sewage sludge or animal feces, or sewage sludge and animal feces
JP3981731B2 (en) * 2003-06-06 2007-09-26 独立行政法人産業技術総合研究所 Sludge treatment apparatus and sludge treatment method
CA2598539C (en) * 2005-02-22 2013-04-30 Evl Inc. Lactic acid and bacillaceae fertilizer and method of producing same
JP2009062531A (en) * 2007-08-13 2009-03-26 Hisakazu Ikeda Method for manufacturing dried organic material fuel and its apparatus
CN102660479B (en) * 2012-05-11 2014-05-14 娄底市裕德科技有限公司 Compound microbial inoculant for composting fermentation, solid-state fermentation production method for compound microbial inoculant and application of compound microbial inoculant
CN103467149A (en) * 2013-09-17 2013-12-25 厦门绿标生物科技有限公司 Method for processing sludge by using complex microbial agent
CN104255538B (en) * 2014-09-30 2016-04-06 青岛嘉瑞生物技术有限公司 A kind of recycling feces of livestock and poultry and crops straw prepare the technique of fermenting bed padding
CN104285825B (en) * 2014-09-30 2016-01-20 青岛嘉瑞生物技术有限公司 A kind of recycling cow dung prepares the method for fermenting bed padding
KR101588817B1 (en) * 2015-11-02 2016-01-26 송주희 Manufacturing method of organic fertilizers using food industrial wastewater sludge

Also Published As

Publication number Publication date
WO2018034135A1 (en) 2018-02-22
JPWO2018034135A1 (en) 2019-06-27
CN109641770B (en) 2021-11-30
CN109641770A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6528188B2 (en) Method of producing functional compost
Sarkar et al. Optimization of a vegetable waste composting process with a significant thermophilic phase
CN102531776B (en) Compound microbial fertilizer and method for producing same
RU2322427C1 (en) Method of biologically processing bird dung
AU2008203399B2 (en) Compost Based on Mineral Fertiliser
CN105316249B (en) A kind of bacillus subtilis and microbial bacterial agent and their applications in fermentation maturity
CN105384534B (en) A kind of liquid organic biofertilizer and preparation method thereof
CN102584371A (en) Method for making biological organic fertilizer by using rice straws as main raw material
CN102898189A (en) Method for producing functional biological organic base fertilizer by using poultry excrement
CN106810302A (en) It is a kind of to cultivate the method that excrement dirt recycling produces organic fertilizer
CN108727131A (en) Using the production method of the organic fertilizer of agricultural wastes biologically digesting
CN104387135A (en) Method for producing functional biological organic base fertilizer by using chicken manure
CN102180716B (en) Method for producing organic compound fertilizer by fermenting animal manure
Kapoor et al. Vermicomposting for organic waste management
EP2828225B1 (en) Method for composting spent mushroom compost
JP7011811B2 (en) Fermented pellet manufacturing method
RU2445297C1 (en) Method of producing organic fertiliser from wastewater sludge
JP6925032B2 (en) Bio-filter device and sewage sludge residue dehydration filtrate treatment system using it
RU2612911C1 (en) Method of biotechnological processing of droppings in poultry farming
RU2522523C1 (en) Method of microbiological treatment of poultry droppings
RU2445295C1 (en) Method for biological processing of poultry droppings
JP2012066957A (en) Method of producing fertilizer using earthworm casting soil
CN112552130A (en) Solid-state walnut green seedcase microbial fertilizer and preparation and application thereof
RU2055823C1 (en) Method of avian dung biological processing
RU2786704C1 (en) Method for obtaining organic-mineral fertilizer from biomorphic silicites and agricultural waste

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20190213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6528188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250