JP6523593B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP6523593B2
JP6523593B2 JP2019513089A JP2019513089A JP6523593B2 JP 6523593 B2 JP6523593 B2 JP 6523593B2 JP 2019513089 A JP2019513089 A JP 2019513089A JP 2019513089 A JP2019513089 A JP 2019513089A JP 6523593 B2 JP6523593 B2 JP 6523593B2
Authority
JP
Japan
Prior art keywords
power supply
imaging device
supply voltage
fpga
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513089A
Other languages
English (en)
Other versions
JPWO2018220940A1 (ja
Inventor
智仁 山田
智仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Application granted granted Critical
Publication of JP6523593B2 publication Critical patent/JP6523593B2/ja
Publication of JPWO2018220940A1 publication Critical patent/JPWO2018220940A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Studio Devices (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

本発明は、複数の異なる電源が投入される撮像素子を備えた撮像装置に関する。
従来、被検体の内部の被写体を撮像する内視鏡、及び、内視鏡により撮像された被写体の観察画像を生成する画像処理装置等を具備する内視鏡システムが、医療分野及び工業分野等において広く用いられている。
このような内視鏡システムの内視鏡としては、従来、所定のクロック信号により駆動される撮像素子(例えばCMOSイメージセンサ)を採用し、また、この撮像素子から出力される撮像信号を伝送するケーブルを内部に配設する内視鏡が知られている。
撮像素子等の電子デバイスは、一般的に、デジタル電源、I/O(Input/Output)電源、アナログ電源等、複数の異なる電源を必要とする。複数の異なる電源を必要とする電子デバイスは、誤動作及び電気的ストレスによる破壊を回避するために、通常、複数の異なる電源の立ち上がり・立ち下がり順序、及び、電位関係等の電源シーケンスが指定されている。
このような電源シーケンスとしては、電源の立ち上がり時間を予め予測し、前段の電源が確実に立ち上がったと予測される時間が経過した後に、後段の電源を投入する時間制御の制御方法が用いられる。
電源シーケンスの制御を時間制御により実行する場合、前段の電源の温度特性、及び、電子デバイスの素子のばらつき等を含めた大きなマージンを持たせた立ち上がり時間を確保する必要がある。さらに、電源シーケンスの制御を時間制御により実行する場合、前段の電源が設計範囲外の状態(例えば、設計温度外、故障等による遅延・不動状態)になると、前段の電源が立ち上がりきらないまま後段の電源を投入してしまい、電子デバイスを破壊させることがある。
例えば、国際公開第2013/042647号には、複数の異なる電源が投入される撮像素子を備え、撮像素子に投入される複数の異なる電源電圧を検出し、所定の閾値と比較し、異常があった場合、撮像素子への電源の投入を停止する内視鏡が開示されている。このような構成を用いて、電源シーケンスの制御を時間制御で行うのではなく、前段の電源電圧を監視し、前段の電源電圧が推奨動作電圧の範囲内に入ったことを検出してから後段の電源を立ち上げる電源シーケンスも一般的である。
しかしながら、電源電圧を監視して電源の立ち上げを制御する電源シーケンスは、前段の電源電圧のばらつき、及び、前段の電源電圧を検出するAD変換器の精度によっては、前段の電源電圧が規定値まで十分に立ち上がったかを検出することができない虞がある。
すなわち、電源電圧を監視して電源の立ち上げを制御する電源シーケンスは、前段の電源電圧のばらつき、及び、前段の電源電圧を検出するAD変換器の精度によっては、前段の電源電圧が推奨動作電圧の範囲内に入ったことを検出することができない虞がある。前段の電源電圧が推奨動作電圧の範囲内に入ったことを検出することができない場合、後段の電源電圧が何時までも投入されず、電子デバイスの動作が開始されなくなるという問題が発生する。
そこで、本発明は、複数の異なる電源で立ち上がる電子デバイスに対して、電源電圧のばらつき、AD変換器の精度によらず、各電源の立ち上がりを確実に検出し、適切な電源シーケンスで電源を供給することができる撮像装置を提供することを目的とする。
本発明の一態様の撮像装置は、被写体を撮像する撮像素子と、前記撮像素子に供給する電源電圧をそれぞれ生成する複数の電源生成回路と、前記複数の電源生成回路が前記撮像素子に供給する電源電圧を検出する電圧検出回路と、前記電圧検出回路により検出された前記電源電圧を用いて前記電源電圧の増加量を検出し、検出した前記増加量に基づいて、前記複数の電源生成回路を順次起動させるシーケンスを制御するシーケンス制御回路と、を備える撮像装置であって、前記シーケンス制御回路は、前記電源電圧の増加量に基づいて前記電源電圧の収束を検出した場合、次に起動すべき電源生成回路を起動する
本発明の第1の実施形態の撮像装置(内視鏡)を含む内視鏡システムの構成を示す図である。 第1の実施形態の内視鏡システムの電気的な構成を示すブロック図である。 本実施形態の電源シーケンスの処理の一例を説明するためのフローチャートである。 本実施形態の電源シーケンスの処理の一例を説明するためのフローチャートである。 A/D変換器55で検出されるデジタル電源の電源電圧の変化を説明するための図である。 デジタル電源の過電圧の検出処理の一例を説明するためのフローチャートである。 A/D変換器55で検出されるデジタル電源の電源電圧の変化を説明するための図である。 変形例の内視鏡システムの電気的な構成を示すブロック図である。 電流検出部61及びA/D変換器62で検出される電流値の変化を説明するための図である。
以下、図面を参照して本発明の実施形態を説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態の撮像装置(内視鏡)を含む内視鏡システムの構成を示す図である。なお、本実施形態においては、撮像装置として、固体撮像素子を有し被検体の内部の被写体を撮像する内視鏡を例に挙げて説明する。
図1に示すように、本第1の実施形態の撮像装置(内視鏡)を有する内視鏡システム1は、被検体を観察して撮像信号を出力する内視鏡2と、内視鏡2に接続され、内視鏡2からの撮像信号に対して所定の画像処理を施すビデオプロセッサ3と、被検体を照明するための照明光を供給する光源装置4と、撮像信号に応じた観察画像を表示するモニタ装置5と、を有している。
内視鏡2は、被検体の体腔内等に挿入される細長の挿入部6と、挿入部6の基端側に配設され術者が把持して操作を行う内視鏡操作部10と、内視鏡操作部10の側部から延出するように一方の端部が設けられたユニバーサルコード41と、を有して構成されている。
挿入部6は、先端側に設けられた硬質の先端部7と、先端部7の後端に設けられた湾曲自在の湾曲部8と、湾曲部8の後端に設けられた長尺かつ可撓性を有する可撓管部9と、を有して構成されている。
ユニバーサルコード41の基端側にはコネクタ42が設けられ、コネクタ42は光源装置4に接続されるようになっている。すなわち、コネクタ42の先端から突出する流体管路の接続端部となる口金(図示せず)と、照明光の供給端部となるライトガイド口金(図示せず)とは光源装置4に着脱自在で接続されるようになっている。
さらに、コネクタ42の側面に設けた電気接点部には接続ケーブル43の一端が接続されるようになっている。この接続ケーブル43には、例えば内視鏡2からの撮像信号を伝送する信号線が内設され、また、他端のコネクタ部はビデオプロセッサ3に接続されるようになっている。
なお、コネクタ42には、後述するコネクタ回路50(図2参照)が配設されている。コネクタ回路50の構成については後述する。
以下、本第1の実施形態の内視鏡システム1の電気的構成について、図2を参照して説明する。図2は、第1の実施形態の内視鏡システムの電気的な構成を示すブロック図である。
図2に示すように、先端部7には被写体を撮像する撮像素子21が配設されている。撮像素子21は、本実施形態において、ローリングシャッタ方式、即ち、ライン毎に順次読み出しを行うCMOSイメージセンサにより構成される固体撮像素子である。なお、撮像素子21は、CMOSイメージセンサに限定されることなく、例えば、CCDイメージセンサにより構成される固体撮像素子であってもよい。
撮像素子21には、複数の異なる電源が投入される。この撮像素子21は、複数の異なる電源が所定の順番で投入されることにより立ち上がる電子デバイスである。具体的には、撮像素子21には、1.05Vのデジタル電源、1.8VのI/O電源、2.7Vのアナログ電源が投入される。そして、撮像素子21は、デジタル電源、I/O電源、アナログ電源の順番で電源が投入されることで立ち上がる。
このように、本実施形態では、複数の異なる電源が投入される撮像素子21の電源シーケンスについて説明するが、この電源シーケンスは、複数の異なる電源が投入される電子デバイスであれば、撮像素子21以外にも適用することができる。
コネクタ42には、コネクタ回路50が配設されている。コネクタ回路50は、FPGA51と、第1電源生成回路52と、第2電源生成回路53と、第3電源生成回路54と、A/D変換器55と、を有して構成されている。
FPGA51は、いわゆるFPGA(Field Programmable Gate Array)により構成され、ビデオプロセッサ3からの動作制御を受け、撮像素子21及び31の駆動、および、撮像素子21及び31からの撮像信号の処理等の機能の他、内視鏡2における各種回路を制御する機能を備えている。また、FPGA51は、コネクタ回路50内の各種回路を制御して、撮像素子21に投入する電源の電源シーケンスを制御する機能を備えている。
第1電源生成回路52、第2電源生成回路53、及び、第3電源生成回路54には、ビデオプロセッサ3から電源が供給される。また、第1電源生成回路52、第2電源生成回路53、及び、第3電源生成回路54には、FPGA51からイネーブル信号が供給される。第1電源生成回路52、第2電源生成回路53、及び、第3電源生成回路54は、それぞれFPGA51からのONまたはOFFを示すイネーブル信号に応じて、所定の電源を生成し、撮像素子21に供給する。
具体的には、第1電源生成回路52は、FPGA51からのONを示すイネーブル信号が入力されると、ビデオプロセッサ3から供給された電源から1.05Vの電源を生成し、電源線56を介して撮像素子21に出力する。この1.05Vの電源は、撮像素子21のデジタル電源である。
同様に、第2電源生成回路53は、FPGA51からのONを示すイネーブル信号が入力されると、ビデオプロセッサ3から供給された電源から1.8Vの電源を生成し、電源線57を介して撮像素子21に出力する。この1.8Vの電源は、撮像素子21のI/O電源である。
同様に、第3電源生成回路54は、FPGA51からのONを示すイネーブル信号が入力されると、ビデオプロセッサ3から供給された電源から2.7Vの電源を生成し、電源線56を介して撮像素子21に出力する。この2.7Vの電源は、撮像素子21のアナログ電源である。このように、第1電源生成回路52、第2電源生成回路53及び第3電源生成回路54は、撮像素子21に供給する電源電圧をそれぞれ生成する複数の電源生成回路を構成する。
A/D変換器55は、第1電源生成回路52で生成される電圧値を検出し、検出した電圧値をAD変換し、FPGA51に出力する。また、A/D変換器55は、第2電源生成回路53で生成される電圧値を検出し、検出した電圧値をAD変換し、FPGA51に出力する。さらに、A/D変換器55は、第3電源生成回路54で生成される電圧値を検出し、検出した電圧値をAD変換し、FPGA51に出力する。このように、A/D変換器55は、第1電源生成回路52、第2電源生成回路53及び第3電源生成回路54が撮像素子21に供給する電源電圧を検出する電圧検出回路を構成する。
FPGA51は、A/D変換器55によって検出された電圧値、及び、電圧値の変動(一定時間当たりの電源電圧の増加量)を用いて、第1電源生成回路52、第2電源生成回路53、及び、第3電源生成回路54に出力するイネーブル信号のONまたはOFFを変更し、第1電源生成回路52、第2電源生成回路53、及び、第3電源生成回路54の起動を制御する。すなわち、FPGA51は、A/D変換器55によって検出された電源電圧を用いて電源電圧の増加量を検出し、検出した電源電圧の増加量に基づいて、第1電源生成回路52、第2電源生成回路53及び第3電源生成回路54を順次起動させるシーケンスを制御するシーケンス制御回路を構成する。
次に、このように構成された内視鏡2の電源シーケンスを図3から図5を用いて説明する。
図3及び図4は、本実施形態の電源シーケンスの処理の一例を説明するためのフローチャートであり、図5は、A/D変換器55で検出されるデジタル電源の電源電圧の変化を説明するための図である。
図3及び図4の処理は、内視鏡2がビデオプロセッサ3に接続され、ビデオプロセッサ3から内視鏡2の電源が供給されることで開始される。
まず、FPGA51は、ステップS1において、第1電源生成回路52へのイネーブル信号をONにし、デジタル電源の立ち上げを開始する。第1電源生成回路52は、FPGA51からのONを示すイネーブル信号に応じて、撮像素子21へ供給するデジタル電源、本実施形態の例では、1.05Vの電源を生成し、撮像素子21に出力する。
A/D変換器55は、ステップS2において、第1電源生成回路52から出力される撮像素子21のデジタル電源用の電源電圧を検出し、検出結果をFPGA51に出力する。具体的には、A/D変換器55は、第1電源生成回路52から出力される撮像素子21のデジタル電源用の電源電圧を測定し、AD変換した後、FPGA51に出力する。
次に、FPGA51は、ステップS3において、電源電圧の検出結果が閾値V1以上か否かを判定する。FPGA51は、電源電圧の検出結果が閾値V1以上であると判定した場合、ステップS6に移行し、第2電源生成回路53へのイネーブル信号をONにし、I/O電源の立ち上げを開始する。一方、FPGA51は、電源電圧の検出結果が閾値V1以上でないと判定した場合、ステップS4に移行し、一定時間当たりの電源電圧の増加量(電源電圧の変化量)ΔVを算出する。この一定時間は、例えば1msに設定される。
次に、FPGA51は、ステップS5において、増加量ΔVが閾値v1以下か否かを判定する。FPGA51は、増加量ΔVが閾値v1以下であると判定した場合、ステップS6に移行し、第2電源生成回路53へのイネーブル信号をONにし、I/O電源の立ち上げを開始する。一方、FPGA51は、増加量ΔVが閾値v1以下でないと判定した場合、ステップS2に移行し、同様の処理を繰り返す。
このように、FPGA51は、A/D変換器55により検出された第1電源生成回路52の電源電圧の検出結果が閾値V1以上の場合、撮像素子21のデジタル電源の立ち上がりが完了したと判定し、第2電源生成回路53のイネーブル信号をONにする。
また、FPGA51は、第1電源生成回路52の電源電圧の検出結果が閾値V1でない場合でも、一定時間当たりの電源電圧の増加量ΔVが閾値v1以下の場合、撮像素子21のデジタル電源の立ち上がりが完了したと判定し、第2電源生成回路53のイネーブル信号をONにする。
ここで、閾値V1及び増加量ΔVについて説明する。図5に示すように、撮像素子21に投入されるデジタル電源は、第1電源生成回路52の回路固有の電源電圧ばらつきにより変動する。図5では、電源電圧ばらつきがmax側の例をVmax、min側の例をVminと表示している。閾値V1は、Vmax×X%(例えば80%)+AD変換誤差に設定される。FPGA51は、閾値V1を用いて撮像素子21のデジタル電源の立ち上がりを検出する。
一方、電源電圧ばらつきがmin側の場合、電源電圧ばらつき及びA/D変換器55によるAD変換誤差により、図5に示すように、閾値V1に到達しないことがある。この場合、FPGA51は、撮像素子21のデジタル電源の立ち上がりを何時までも検出することができず、電源シーケンスの制御の設計が破綻することがある。電源シーケンスの制御の設計が破綻しない場合でも、FPGA51は電源電圧が100%近傍になるまで待つ必要があり、電源シーケンスの完了までに長い時間がかかってしまうことになる。
そこで、本実施形態では、FPGA51は、一定時間(例えば1ms)当たりの電源電圧の増加量ΔVを算出し、増加量ΔVが閾値v1以下か否かを判定する。なお、FPGA51の処理を軽減するために、一定時間(例えば1ms)当たりの電源電圧の増加量ΔVを算出せずに、電源電圧の検出結果あるいは増加量ΔVに応じて、増加量ΔVを算出する間隔を変更してもよい。
電源電圧の増加量ΔVは、電源投入直後では大きくなり、時間が経つに従い収束して小さくなる。そのため、FPGA51は、増加量ΔVが閾値v1以下の場合、撮像素子21に投入されるデジタル電源の電源電圧の収束を検出して、デジタル電源の立ち上がりが完了したと判定する。
これにより、FPGA51は、第1電源生成回路52の回路固有の電源ばらつき、及び、A/D変換器55のAD変換誤差によらず、撮像素子21のデジタル電源の立ち上がりの完了を確実に検出することができる。
FPGA51は、撮像素子21のデジタル電源の立ち上がりを検出すると、撮像素子21のI/O電源を立ち上げるために、第2電源生成回路53へのイネーブル信号をONにする。そして、FPGA51は、撮像素子21のI/O電源の立ち上がりを検出すると、撮像素子21のアナログ電源を立ち上げるために、第3電源生成回路54へのイネーブル信号をONにする。
図3に戻り、FPGA51は、ステップS6において、第2電源生成回路53へのイネーブル信号をONにし、I/O電源の立ち上げを開始する。第2電源生成回路53は、FPGA51からのONを示すイネーブル信号に応じて、撮像素子21へ投入するI/O電源、本実施形態の例では、1.8Vの電源を生成し、撮像素子21に出力する。
A/D変換器55は、ステップS7において、第2電源生成回路53から出力される撮像素子21のI/O電源用の電源電圧を検出し、検出結果をFPGA51に出力する。具体的には、A/D変換器55は、第2電源生成回路53から出力される撮像素子21のI/O電源用の電源電圧を測定し、AD変換した後、FPGA51に出力する。
次に、図4に移行し、FPGA51は、ステップS8において、電源電圧の検出結果が閾値V2以上か否かを判定する。なお、ステップS3では閾値V1であったが、撮像素子21のデジタル電源とI/O電源とで投入される電源電圧が異なるため、閾値も異なる。本実施形態では、第2電源生成回路53の回路固有の電源電圧ばらつき、及び、A/D変換器55のAD変換誤差に応じて閾値V2が設定されている。
FPGA51は、電源電圧の検出結果が閾値V2以上であると判定した場合、ステップS11に移行し、第3電源生成回路54へのイネーブル信号をONにし、アナログ電源の立ち上げを開始する。一方、FPGA51は、電源電圧の検出結果が閾値V2以上でないと判定した場合、ステップS9に移行し、一定時間当たりの電源電圧の増加量ΔVを算出する。この一定時間は、例えば1msに設定される。
次に、FPGA51は、ステップS10において、増加量ΔVが閾値v1以下か否かを判定する。FPGA51は、増加量ΔVが閾値v1以下であると判定した場合、ステップS11に移行し、第3電源生成回路54へのイネーブル信号をONにし、アナログ電源の立ち上げを開始する。一方、FPGA51は、増加量ΔVが閾値v1以下でないと判定した場合、ステップS7に移行し、同様の処理を繰り返す。なお、デジタル電源とI/O電源とで投入される電源電圧は異なるが、電源電圧の収束の条件は同じため、ステップS10の閾値v1は、ステップS5の閾値v1と同じ値としている。
FPGA51は、撮像素子21のI/O電源の立ち上がりを検出すると、撮像素子21のアナログ電源の立ち上げを開始する。
FPGA51は、ステップS11において、第3電源生成回路54へのイネーブル信号をONにし、アナログ電源の立ち上げを開始する。第3電源生成回路54は、FPGA51からのONを示すイネーブル信号に応じて、撮像素子21へ投入するアナログ電源、本実施形態の例では、2.7Vの電源を生成し、撮像素子21に出力する。
A/D変換器55は、ステップS12において、第3電源生成回路54から出力される撮像素子21のアナログ電源用の電源電圧を検出し、検出結果をFPGA51に出力する。具体的には、A/D変換器55は、第3電源生成回路54から出力される撮像素子21のアナログ電源用の電源電圧を測定し、AD変換した後、FPGA51に出力する。
次に、FPGA51は、ステップS13において、電源電圧の検出結果が閾値V3以上か否かを判定する。なお、ステップS3では閾値V1であったが、撮像素子21のデジタル電源とアナログ電源とで投入される電源電圧が異なるため、閾値も異なる。本実施形態では、第3電源生成回路54の回路固有の電源電圧ばらつき、及び、A/D変換器55のAD変換誤差に応じて閾値V3が設定されている。
FPGA51は、電源電圧の検出結果が閾値V3以上であると判定した場合、アナログ電源の立ち上がりが完了したと判定し、処理を終了する。一方、FPGA51は、電源電圧の検出結果が閾値V3以上でないと判定した場合、ステップS14に移行し、一定時間当たりの電源電圧の増加量ΔVを算出する。この一定時間は、例えば1msに設定される。
次に、FPGA51は、ステップS15において、増加量ΔVが閾値v1以下か否かを判定する。FPGA51は、増加量ΔVが閾値v1以下であると判定した場合、アナログ電源の立ち上がりが完了したと判定し、処理を終了する。一方、FPGA51は、増加量ΔVが閾値v1以下でないと判定した場合、ステップS12に移行し、同様の処理を繰り返す。なお、デジタル電源とアナログ電源とで投入される電源電圧は異なるが、電源電圧の収束の条件は同じため、ステップS15の閾値v1は、ステップS5の閾値v1と同じ値としている。
以上の処理により、複数の異なる電源で立ち上がる撮像素子21に対して、第1電源生成回路52、第2電源生成回路53、第3電源生成回路54の回路固有の電源ばらつき、及び、A/D変換器55のAD変換誤差に関係なく、デジタル電源、I/O電源及びアナログ電源の立ち上げを行うことができる。
よって、本実施形態の撮像装置(内視鏡2)によれば、複数の異なる電源で立ち上がるデバイスに対して、電源電圧のばらつき、AD変換器の精度によらず、各電源の立ち上がりを確実に検出し、適切な電源シーケンスで電源を供給することができる。
また、本実施形態では、FPGA51は、撮像素子21の電源立ち上げ時に過電圧を検出し、過電圧を検出した際に撮像素子21の電源をシャットダウンする。なお、以下の説明では、撮像素子21のデジタル電源に過電圧が発生した際の処理について説明するが、I/O電源及びアナログ電源に過電圧が発生した場合も同様の処理で撮像素子21の電源をシャットダウンすることができる。
図6は、デジタル電源の過電圧の検出処理の一例を説明するためのフローチャートであり、図7は、A/D変換器55で検出されるデジタル電源の電源電圧の変化を説明するための図である。
なお、図6の処理は、図3のステップS3の処理において、FPGA51が電源電圧の検出結果が閾値V1以上であると判定した場合に実行される。電源電圧の検出結果が閾値V1以上でない場合、過電圧となることはないため、図6の処理を実行する必要がない。
まず、A/D変換器55は、ステップS21において、第1電源生成回路52から出力される撮像素子21のデジタル電源用の電源電圧を検出し、検出結果をFPGA51に出力する。なお、ステップS21の処理は、図3のステップS2の処理で代用してもよい。
FPGA51は、ステップS22において、電源電圧の検出結果が閾値V4以上か否かを判定する。FPGA51は、電源電圧の検出結果が閾値V4以上であると判定した場合、ステップS25に移行し、第1電源生成回路52へのイネーブル信号をOFFにして、処理を終了する。一方、FPGA51は、電源電圧の検出結果が閾値V4以上でないと判定した場合、ステップS23に移行し、一定時間当たりの電源電圧の増加量ΔVを算出する。この一定時間は、例えば1msに設定される。
次に、FPGA51は、ステップS24において、増加量ΔVが閾値v2以上か否かを判定する。FPGA51は、増加量ΔVが閾値v2以上であると判定した場合、ステップS25に移行し第1電源生成回路52へのイネーブル信号をOFFにして、処理を終了する。一方、FPGA51は、増加量ΔVが閾値v2以上でないと判定した場合、ステップS21に移行し、同様の処理を繰り返す。
ステップS22の閾値V4は、図7に示すように、第1電源生成回路52の回路固有のmax側の電源電圧ばらつき(Vmax)に、A/D変換器55のAD変換誤差を考慮して設定される。電源電圧の検出結果を閾値V4と比較するだけでは、撮像素子21のデジタル電源に投入される電源電圧がV5となるまで、シャットダウンを行うことができない。この場合、急峻な電源電圧の増加、あるいは、制御上の遅延等により、撮像素子21のデジタル電源に絶対最大定格を超えた電源電圧が投入され、撮像素子21が破壊される可能性がある。
これに対して、図6の処理では、一定時間当たりの電源電圧の増加量ΔVを閾値v2と比較することで、電源電圧の異常な変化量を検出し、撮像素子21に投入されるデジタル電源をシャットダウンすることが可能となる。すなわち、FPGA51は、撮像素子21のデジタル電源の異常を早期に検出することが可能となり、撮像素子21に投入されるデジタル電源を早期にシャットダウンすることができる。この結果、撮像素子21のデジタル電源に絶対最大定格を超えた電源電圧が投入されることがなくなり、撮像素子21が破壊されることを防ぎ、内視鏡2の安全性を高めることができる。
(変形例)
次に、第1の実施形態の変形例について説明する。
図8は、変形例の内視鏡システムの電気的な構成を示すブロック図である。なお、図8において、図2と同様の構成については、同一の符号を付して説明を省略する。
第1の実施形態の変形例の内視鏡システムの電気的な構成を示すブロック図である。内視鏡システム1の内視鏡2は、図2のコネクタ回路50に代わり、コネクタ回路50aを有して構成されている。
コネクタ回路50aは、図2のコネクタ回路50に対して、電流検出部61及びA/D変換器62が追加されて構成されている。電流検出部61は、ビデオプロセッサ3から内視鏡2に供給される電源電圧の電流値を検出し、A/D変換器62に出力する。電流検出部61は、例えば、センス抵抗と、センス抵抗の両端の電位差から電流値を検出する検出回路とを備えて構成されている。A/D変換器62は、電流検出部61により検出された電流値をAD変換し、FPGA51に出力する。このように、電流検出部61及びA/D変換器62は、第1電源生成回路52、第2電源生成回路53及び第3電源生成回路54に供給される電流値を検出する電流検出回路を構成する。
図9は、電流検出部61及びA/D変換器62で検出される電流値の変化を説明するための図である。FPGA51は、電流検出部61及びA/D変換器62で検出される電流値から過電流を検出し、過電流を検出した場合、撮像素子21の電源をシャットダウンする。
具体的には、図9に示すように、FPGA51は、電流検出部61及びA/D変換器62で検出される電流値が閾値A1以上か否かを判定し、電流値が閾値A1以上と判定した場合、撮像素子21の電源をシャットダウンする。なお、閾値A1は、max側の電流ばらつきAmax及びA/D変換器62のAD変換誤差を考慮して決定される。
また、FPGA51は、電流検出部61及びA/D変換器62で検出される電流値を用いて、一定時間当たりの電流値の増加量ΔAを算出する。そして、FPGA51は、増加量ΔAが例えば閾値a1以上か否かを判定し、増加量ΔAが例えば閾値a1以上と判定した場合、撮像素子21の電源をシャットダウンする。
FPGA51は、閾値A1を用いた過電流の検出では、電流検出部61及びA/D変換器62で検出される電流値がA2となるまで過電流を検出することができない。これに対して、FPGA51は、一定時間当たりの電流の増加量ΔAから異常な電流値の変化量を検出し、撮像素子21への電源の投入を停止することができる。
以上のように、変形例の内視鏡2は、上述した第1の実施形態の過電圧の検出に加え、過電流を検出することで、第1の実施形態よりも更に安全性を高めることができる。
本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
本出願は、2017年5月31日に日本国に出願された特願2017−107541号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (5)

  1. 被写体を撮像する撮像素子と、
    前記撮像素子に供給する電源電圧をそれぞれ生成する複数の電源生成回路と、
    前記複数の電源生成回路が前記撮像素子に供給する電源電圧を検出する電圧検出回路と、
    前記電圧検出回路により検出された前記電源電圧を用いて前記電源電圧の増加量を検出し、検出した前記増加量に基づいて、前記複数の電源生成回路を順次起動させるシーケンスを制御するシーケンス制御回路と、
    を備える撮像装置であって、
    前記シーケンス制御回路は、前記電源電圧の増加量に基づいて前記電源電圧の収束を検出した場合、次に起動すべき電源生成回路を起動することを特徴とする撮像装置。
  2. 前記シーケンス制御回路は、前記複数の電源生成回路のうち、現在起動している電源生成回路で生成されている電源電圧が所定の閾値以上となった場合、次に起動すべき電源生成回路を起動することを特徴とする請求項1に記載の撮像装置。
  3. 前記シーケンス制御回路は、前記電圧検出回路により検出された前記電源電圧の変化量に応じて過電圧を予測し、前記複数の電源生成回路の起動を停止することを特徴とする請求項1に記載の撮像装置。
  4. 前記複数の電源生成回路に供給される電流値を検出する電流検出回路を更に備え、
    前記シーケンス制御回路は、前記電流検出回路により検出された前記電流値の変化量に応じて過電流を検出し、前記複数の電源生成回路の起動を停止することを特徴とする請求項に記載の撮像装置。
  5. 前記複数の電源生成回路が生成する電源電圧の大きさは、互いに異なっていることを特徴とする請求項に記載の撮像装置。
JP2019513089A 2017-05-31 2018-03-13 撮像装置 Active JP6523593B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017107541 2017-05-31
JP2017107541 2017-05-31
PCT/JP2018/009801 WO2018220940A1 (ja) 2017-05-31 2018-03-13 撮像装置

Publications (2)

Publication Number Publication Date
JP6523593B2 true JP6523593B2 (ja) 2019-06-05
JPWO2018220940A1 JPWO2018220940A1 (ja) 2019-07-11

Family

ID=64456192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513089A Active JP6523593B2 (ja) 2017-05-31 2018-03-13 撮像装置

Country Status (2)

Country Link
JP (1) JP6523593B2 (ja)
WO (1) WO2018220940A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171427A1 (ja) * 2020-02-26 2021-09-02 オリンパス株式会社 制御装置、内視鏡および制御方法
WO2022254507A1 (ja) * 2021-05-31 2022-12-08 オリンパスメディカルシステムズ株式会社 撮像システム、内視鏡システム、カメラユニット、および内視鏡スコープ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219305A (ja) * 2008-03-12 2009-09-24 Kyocera Mita Corp 電子装置
JP5228971B2 (ja) * 2009-02-12 2013-07-03 ブラザー工業株式会社 電源回路
JP2012163923A (ja) * 2011-02-09 2012-08-30 Ricoh Co Ltd 測距装置と方法とプログラム並びに撮像装置と方法とプログラム

Also Published As

Publication number Publication date
WO2018220940A1 (ja) 2018-12-06
JPWO2018220940A1 (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
CN103002789B (zh) 内窥镜用温度控制装置
JP2006217317A (ja) Ccdの破損防止システム
JP2010005180A (ja) 内視鏡、及び内視鏡システム、並びにその異常処理方法
JP6523593B2 (ja) 撮像装置
JP5629036B2 (ja) 光源システム
JP6353810B2 (ja) 内視鏡システム
US20190082941A1 (en) Camera control unit for endoscope and endoscope system
JP4648718B2 (ja) Ccdの破損防止システム
JP6265815B2 (ja) 電子内視鏡システム
WO2018020721A1 (ja) 内視鏡システム
CN110891470B (zh) 内窥镜系统、内窥镜以及控制装置
JP6122802B2 (ja) 内視鏡システム及び内視鏡
JP6564536B2 (ja) 撮像装置
JP6169308B1 (ja) 撮像装置
JP2006212247A (ja) Ccdの破損防止システム
JP6883469B2 (ja) 内視鏡
JP6219004B1 (ja) 内視鏡用カメラコントロールユニット
JP6966962B2 (ja) 内視鏡
JP2018121300A (ja) 撮像装置
WO2019176133A1 (ja) 内視鏡及び内視鏡システム
JP2021040756A (ja) 内視鏡及び医療用観察システム
JP5393312B2 (ja) 電子内視鏡のレンズ位置制御装置
JP2019034074A (ja) 内視鏡およびプロセッサ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190307

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R151 Written notification of patent or utility model registration

Ref document number: 6523593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250