JP6503898B2 - Processing method of incineration ash - Google Patents

Processing method of incineration ash Download PDF

Info

Publication number
JP6503898B2
JP6503898B2 JP2015110845A JP2015110845A JP6503898B2 JP 6503898 B2 JP6503898 B2 JP 6503898B2 JP 2015110845 A JP2015110845 A JP 2015110845A JP 2015110845 A JP2015110845 A JP 2015110845A JP 6503898 B2 JP6503898 B2 JP 6503898B2
Authority
JP
Japan
Prior art keywords
mass
ash
content
water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015110845A
Other languages
Japanese (ja)
Other versions
JP2016019968A (en
Inventor
知昭 鷲尾
知昭 鷲尾
英喜 中田
英喜 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2015110845A priority Critical patent/JP6503898B2/en
Publication of JP2016019968A publication Critical patent/JP2016019968A/en
Application granted granted Critical
Publication of JP6503898B2 publication Critical patent/JP6503898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、焼却灰中の塩素を効率的に除去する過程で発生する焼却灰へのダイオキシンの濃縮を抑制し、塩素の除去工程で発生した脱水ケーキをセメント原料化し、同時に発生した上澄み水を排水処理する焼却灰の処理方法に関する。   The present invention suppresses the concentration of dioxins in incineration ash generated in the process of efficiently removing chlorine in incineration ash, makes the dewatered cake generated in the step of removing chlorine into cement raw material, and simultaneously generates the supernatant water generated. The present invention relates to a method of treating incineration ash to be treated with wastewater.

焼却灰を水洗し、焼却灰中の塩素を脱塩して得られた脱水ケーキをセメント原料化する方法が従来から知られている。例えば、特許文献1には、焼却灰に水を添加して懸濁させて塩素を溶出させ、これを脱水機で脱水することにより得られる脱水ケーキをセメント原料として用い、塩素や重金属が溶出した洗浄排水をpH調整に加えてキレートや活性炭を併用することにより重金属および有害成分を除去する方法が開示されている。特許文献2及び特許文献3には、焼却灰に酸や酸性物質を添加して洗浄時のスラリーのpHを6〜10とすることで、焼却灰中の重金属の溶出を抑制しつつ、焼却灰中の塩素を除去する方法が開示されている。特許文献4には、塩素含有廃棄物の洗浄排水に含まれるダイオキシンを精密濾過膜を用いて除去する方法が開示されている。   It is known from the past to use the dewatered cake obtained by washing the incineration ash with water and desalting the chlorine in the incineration ash into a cement raw material. For example, in Patent Document 1, water is added to incineration ash to be suspended to elute chlorine, and dewatered cake obtained by dehydrating this with a dehydrator is used as cement raw material, and chlorine and heavy metal are eluted. There is disclosed a method of removing heavy metals and harmful components by adding washing wastewater to pH adjustment and using chelate and activated carbon in combination. Patent document 2 and patent document 3 add acid and an acidic substance to incineration ash, and by setting the pH of the slurry at the time of washing | cleaning to 6-10, while suppressing elution of heavy metals in incineration ash, incineration ash A method of removing chlorine in the medium is disclosed. Patent Document 4 discloses a method of removing dioxins contained in cleaning wastewater of chlorine-containing wastes using a microfiltration membrane.

特開2002−338312号公報JP 2002-338312 A 特開平11−319769号公報Unexamined-Japanese-Patent No. 11-319729 gazette 特開平10−202226号公報JP 10-202226 A 特開2009−172552号公報JP, 2009-172552, A

しかしながら、特許文献1には、ダイオキシンの処理技術に関しては何ら記載がない。また、特許文献2〜3の方法では、塩素とともにカルシウム等の酸可溶性成分の溶解が促進されるため、ダイオキシンや酸に不溶な有害物質が脱水ケーキに濃縮され、脱水ケーキをセメント原料化する際に問題となる。また、特許文献4は、ダイオキシンの処理に精密濾過膜を用いた方法であり設備費が高価となる。
そこで、本発明は、焼却灰の処理工程で発生する脱水ケーキへのダイオキシンの濃縮を抑制しつつ焼却灰から塩素を除去し、発生した脱水ケーキをセメント原料化するとともに、洗浄排水に含まれるダイオキシンを効率よく処理できる方法を提供することを目的とする。
However, Patent Document 1 does not describe anything regarding the dioxin treatment technology. Further, in the methods of Patent Documents 2 to 3, since dissolution of acid-soluble components such as calcium is promoted along with chlorine, harmful substances insoluble in dioxin and acid are concentrated in the dewatering cake, and the dewatering cake is made into cement raw material Problem. Moreover, patent document 4 is the method of using a precision filtration membrane for the process of dioxin, and installation cost becomes expensive.
Therefore, the present invention removes chlorine from incineration ash while suppressing the concentration of dioxins in the dewatering cake generated in the treatment process of incineration ash, and converts the generated dewatering cake into cement raw material, and dioxins contained in cleaning wastewater Aims to provide a method that can efficiently process

本発明者らは上記目的を達成すべく鋭意検討した結果、ダイオキシンを含有する焼却灰を水洗する際に、少量の酸を添加して洗浄時のスラリーのpHを特定範囲とすることにより、焼却灰の塩素を効率よく除去し、同時に脱水ケーキへのダイオキシンの濃縮を抑制することができ、脱水ケーキをセメント原料化できることを見出し、本発明を完成させるに至った。また、凝集沈殿処理時のpH調整剤として、pH調整速度の速い特定のpH調整剤を使用することにより、ダイオキシン吸着量の大きなフロックを生成させることができ、焼却灰洗浄排水中のダイオキシンを効率よく除去できることを見出し、本発明を完成させるに至った。   As a result of intensive investigations to achieve the above object, the present inventors have found that when washing dioxin-containing incineration ash with water, a small amount of acid is added to make the pH of the slurry at the time of washing a specific range. The inventors have found that it is possible to efficiently remove chlorine in ash and at the same time suppress the concentration of dioxins in the dewatered cake, and make it possible to turn the dewatered cake into a cement raw material, thus completing the present invention. In addition, by using a specific pH adjuster with a high pH adjustment rate as a pH adjuster at the time of flocculation treatment, a large floc of dioxin adsorption amount can be generated, and the dioxin in the incineration ash cleaning wastewater can be efficiently used. It has been found that it can be removed well, and the present invention has been completed.

すなわち、本発明は、焼却灰に水(1)を添加し攪拌洗浄してスラリー(1)を調製後、酸(1)を加えpHを10.5〜12.5に調整し、更に高分子凝集剤を添加後、静置し、濃縮スラリー(1)と上澄み水(1)に固液分離する第1工程と、前記濃縮スラリー(1)をろ過し、脱水ケーキ(2)とろ液(2)に固液分離する第2工程と、前記脱水ケーキ(2)に水(3)を添加し攪拌洗浄してスラリー(3)を調製後、高分子凝集剤を添加後、静置し、濃縮スラリー(3)と上澄み水(3)に固液分離する第3工程と、前記濃縮スラリー(3)をろ過し、脱水ケーキ(4)とろ液(4)に固液分離する第4工程と、前記脱水ケーキ(4)をセメント原料とする第5工程とを有するセメント原料化工程、並びに、前記上澄み水(1)に酸(6)を加えて攪拌し、pHを1〜3に調整して還元剤を添加し、更に無機凝集剤を添加後、水酸化ナトリウムを加えて攪拌しpHを8〜11に調整し、静置後、沈殿物と上澄み水(6)に固液分離する第6工程を有する排水処理工程、を含む焼却灰の処理方法に関する。   That is, according to the present invention, water (1) is added to incineration ash and stirred and washed to prepare slurry (1), and then acid (1) is added to adjust pH to 10.5 to 12.5, and further polymer After the addition of the coagulant, the mixture is allowed to stand and solid-liquid separated into concentrated slurry (1) and supernatant water (1), and the concentrated slurry (1) is filtered to obtain dehydrated cake (2) and filtrate (2). A second step of solid-liquid separation into water), adding water (3) to the dehydrated cake (2), stirring and washing to prepare a slurry (3), adding a polymer flocculant, standing still, and concentration A third step of solid-liquid separation into slurry (3) and supernatant water (3), and a fourth step of solid-liquid separation of the concentrated slurry (3) into a dewatered cake (4) and a filtrate (4); Cement raw material forming step having a fifth step of using the dewatered cake (4) as cement raw material, and acid in the supernatant water (1) 6) Add and stir, adjust pH to 1 to 3 and add reducing agent, add inorganic flocculant, add sodium hydroxide and stir to adjust pH to 8 to 11 and leave still The present invention relates to a method of treating incinerated ash including a waste water treatment step having a sixth step of solid-liquid separation into precipitate and supernatant water (6).

本発明の処理方法によれば、焼却灰中の塩素を効率よく除去し、その過程で発生する脱水ケーキへのダイオキシンの濃縮を抑制する処理方法を提供出来る。
また、本発明の前記第1工程は、更に、乾灰に水(7)を添加し前記焼却灰を調製する第7工程を含む、焼却灰の処理方法に関する。
本発明の処理方法によれば、乾灰の場合も焼却灰中の塩素を効率よく除去し、その過程で発生する脱水ケーキへのダイオキシンの濃縮を抑制する処理方法を提供出来る。
According to the treatment method of the present invention, it is possible to provide a treatment method capable of efficiently removing chlorine in incinerated ash and suppressing the concentration of dioxins in the dewatered cake generated in the process.
Further, the first step of the present invention relates to a method of treating incineration ash, further comprising a seventh step of adding water (7) to dry ash to prepare the incineration ash.
According to the treatment method of the present invention, also in the case of dry ash, chlorine in the incineration ash can be efficiently removed, and a treatment method can be provided which suppresses the concentration of dioxins in the dewatered cake generated in the process.

本発明に関わる焼却灰の処理方法によれば、焼却灰中の塩素を効率よく除去し、その過程で発生する脱水ケーキへのダイオキシンの濃縮を抑制する処理方法を提供出来る。   According to the method for treating incineration ash according to the present invention, it is possible to provide a treatment method for efficiently removing chlorine in the incineration ash and suppressing the concentration of dioxins in the dewatered cake generated in the process.

参考例に係る焼却灰の処理フローを示す。The processing flow of the incineration ash which concerns on a reference example is shown. 本発明の実施例1〜3に係る焼却灰の処理フローおよび本発明の第1〜3実施形態に係る焼却灰の処理フローを示す。The processing flow of the incineration ash which concerns on the Examples 1-3 of this invention, and the processing flow of the incineration ash which concerns on 1st-3rd embodiment of this invention are shown.

以下、本発明の好適な実施形態について図1及び図2を元に詳細に説明する。
<焼却灰の処理方法>
Hereinafter, a preferred embodiment of the present invention will be described in detail based on FIGS. 1 and 2. FIG.
<Method of treating incinerated ash>

本実施形態に係る焼却灰の処理方法は、セメント原料化工程、並びに、排水処理工程を含む。
焼却灰はゴミ焼却炉等で発生する焼却灰で、主灰と焼却飛灰の2種に大別される。
主灰は焼却炉の下に貯まる灰で、焼却飛灰とは、焼却炉の集塵機で主に捕集された灰をいう。主灰と焼却飛灰はさらに乾灰と湿灰の2種に大別される。主灰と焼却飛灰のいずれも焼却炉から排出される際は乾燥した灰であり、これを乾灰という。湿灰は発塵防止対策として乾灰に水をかけて加湿した灰をいう。焼却灰の含水率は0質量%を超えて30質量%以下、好ましくは0.1〜28質量%、より好ましくは0.5〜25質量%、さらに好ましくは5〜20質量%である。より詳しく述べると、乾灰の場合の含水率は0質量%を超えて5質量%以下、好ましくは0.1〜4質量%、より好ましくは0.2〜3質量%、さらに好ましくは0.3〜2質量%である。湿灰の場合の含水率は5〜30質量%、好ましくは10〜25質量%、より好ましくは15〜22質量%、さらに好ましくは16〜20質量%である。これらの範囲であれば、焼却灰として処理可能である。
The method for treating incineration ash according to the present embodiment includes a cement raw material forming step and a waste water treatment step.
Incineration ash is incineration ash generated in waste incinerators, etc., and is roughly classified into two types, main ash and incineration fly ash.
The main ash is the ash stored under the incinerator, and the incineration fly ash refers to the ash mainly collected by the dust collector of the incinerator. Main ash and incineration fly ash are further divided into two types, dry ash and wet ash. Both the main ash and the incineration fly ash are dry ash when discharged from the incinerator, which is called dry ash. Wet ash refers to ash that has been moistened with water over dry ash to prevent dust generation. The water content of the incinerated ash is more than 0% by mass and 30% by mass or less, preferably 0.1 to 28% by mass, more preferably 0.5 to 25% by mass, and still more preferably 5 to 20% by mass. More specifically, the water content in the case of dry ash is more than 0% by mass and 5% by mass or less, preferably 0.1 to 4% by mass, more preferably 0.2 to 3% by mass, and still more preferably 0. It is 3 to 2% by mass. The moisture content in the case of wet ash is 5 to 30% by mass, preferably 10 to 25% by mass, more preferably 15 to 22% by mass, and still more preferably 16 to 20% by mass. Within these ranges, it can be treated as incineration ash.

セメント原料化工程は、焼却灰に水(1)を添加し攪拌洗浄してスラリー(1)を調製後、酸(1)を加えpHを10.5〜12.5に調整し、更に高分子凝集剤を添加後、静置し、濃縮スラリー(1)と上澄み水(1)に固液分離する第1工程と、前記濃縮スラリー(1)をろ過し、脱水ケーキ(2)とろ液(2)に固液分離する第2工程と、前記脱水ケーキ(2)に水(3)を添加し攪拌洗浄してスラリー(3)を調製後、高分子凝集剤を添加後、静置し、濃縮スラリー(3)と上澄み水(3)に固液分離する第3工程と、前記濃縮スラリー(3)をろ過し、脱水ケーキ(4)とろ液(4)に固液分離する第4工程と、前記脱水ケーキ(4)をセメント原料とする第5工程とを有する。   In the cement raw material production process, water (1) is added to the incinerator ash and stirred and washed to prepare a slurry (1), then the acid (1) is added to adjust the pH to 10.5 to 12.5, and further polymer After the addition of the coagulant, the mixture is allowed to stand and solid-liquid separated into concentrated slurry (1) and supernatant water (1), and the concentrated slurry (1) is filtered to obtain dehydrated cake (2) and filtrate (2). A second step of solid-liquid separation into water), adding water (3) to the dehydrated cake (2), stirring and washing to prepare a slurry (3), adding a polymer flocculant, standing still, and concentration A third step of solid-liquid separation into slurry (3) and supernatant water (3), and a fourth step of solid-liquid separation of the concentrated slurry (3) into a dewatered cake (4) and a filtrate (4); And a fifth step of using the dewatered cake (4) as a cement raw material.

攪拌洗浄とは、ミキサー等を用いて焼却灰と水とを混合することを意味する。
第1工程の酸(1)は、塩酸、硝酸、硫酸及びリン酸からなる群より選ばれる1種以上である。その中でも塩酸は安価かつ安全性が高く、配管等の閉塞原因となるスケールの生成もないのでより好ましい。また、廃酸を使用しても良い。廃酸とは、本焼却灰の処理工程内の配管や脱水機等の洗浄に使用した酸や化学工業、鉄鋼及び電気機械工業等から排出される酸性廃液のことをいう。
Stir washing means mixing incineration ash and water using a mixer or the like.
The acid (1) in the first step is one or more selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. Among them, hydrochloric acid is more preferable because it is inexpensive and highly safe, and there is no generation of scale which causes clogging of piping and the like. Also, waste acid may be used. The waste acid refers to the acid waste liquid used for cleaning pipes, dehydrators, etc. in the treatment process of the incineration ash, acid waste liquid discharged from the chemical industry, steel and electric machinery industry and the like.

第1工程の水(1)の添加量は、焼却灰の質量に対して1〜10倍量であることが好ましく、2〜8倍量であることがより好ましく、3〜6倍量であることがさらに好ましい。これらの範囲であると焼却灰が均一に分散したスラリーを調製できるので焼却灰から塩素を十分に溶出させることが出来る。   The amount of water (1) added in the first step is preferably 1 to 10 times, more preferably 2 to 8 times, and more preferably 3 to 6 times the mass of the incinerated ash. Is more preferred. Within this range, a slurry in which the incineration ash is uniformly dispersed can be prepared, so that chlorine can be sufficiently eluted from the incineration ash.

第3工程の水(3)の添加量は、焼却灰の質量に対して1〜10倍量であることが好ましく、2〜8倍量であることがより好ましく、3〜6倍量であることがさらに好ましい。これらの範囲であると脱水ケーキ(2)が均一に分散したスラリーを調製でき、脱水ケーキ(2)に残存する塩素を効率よく溶出させることができるので、これを固液分離して得られる脱水ケーキ(4)の塩素濃度をセメント原料として利用できる程度まで低減することが出来る。   The amount of water (3) added in the third step is preferably 1 to 10 times, more preferably 2 to 8 times, and more preferably 3 to 6 times the mass of the incinerated ash. Is more preferred. Within these ranges, it is possible to prepare a slurry in which the dewatered cake (2) is uniformly dispersed, and to efficiently elute chlorine remaining in the dewatered cake (2). The chlorine concentration of the cake (4) can be reduced to the extent that it can be used as a cement raw material.

前記第1工程は、更に、乾灰に水(7)を添加し前記焼却灰を調製する第7工程を含んでも良い。主灰や焼却飛灰の乾灰の場合、水を添加し、ミキサー等で混合し水分量を調整することで湿灰にしてから処理することも出来る。水分量は焼却灰中の含有量で5〜30質量%であることが好ましく、10〜20質量%であることがより好ましい。
図2の第1実施形態のように、第4工程で固液分離されたろ液(4)は塩素、重金属及びダイオキシンが除去されているので、第1工程の水(1)として再利用することが可能である。
The first step may further include a seventh step of adding water (7) to dry ash to prepare the incineration ash. In the case of dry ash of main ash or incineration fly ash, water may be added, mixed with a mixer or the like to adjust the water content, and then treated as wet ash. The water content is preferably 5 to 30% by mass, and more preferably 10 to 20% by mass in terms of the content in the incineration ash.
As in the first embodiment of FIG. 2, since the filtrate (4) separated in the solid-liquid separation in the fourth step has chlorine, heavy metals and dioxins removed, it should be reused as water (1) in the first step. Is possible.

排水処理工程は、前記上澄み水(1)に酸(6)を加えて攪拌し、pHを1〜3に調整して還元剤を添加し、更に無機凝集剤を添加後、水酸化ナトリウムを加えて攪拌しpHを8〜11に調整し、静置後、沈殿物と上澄み水(6)に固液分離する第6工程を有する。   In the waste water treatment step, acid (6) is added to the supernatant water (1) and stirred to adjust the pH to 1 to 3 to add a reducing agent, and then an inorganic coagulant is added, and then sodium hydroxide is added. The solution is stirred to adjust the pH to 8 to 11, and after standing, it has a sixth step of solid-liquid separation into a precipitate and supernatant water (6).

第6工程の酸(6)は、塩酸、硝酸、硫酸及びリン酸からなる群より選ばれる1種以上である。これらの酸であれば後段の重金属及びダイオキシンの除去処理を阻害することなくpHを1〜3に調整出来る。その中でも塩酸は安価かつ安全性が高く、配管等の閉塞原因となるスケールの生成もないのでより好ましい。また、廃酸を使用しても良い。廃酸とは、本焼却灰の処理工程内の配管や脱水機等の洗浄に使用した酸や化学工業、鉄鋼及び電気機械工業等から排出される酸性廃液のことをいう。   The acid (6) in the sixth step is one or more selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. With these acids, the pH can be adjusted to 1 to 3 without inhibiting removal of heavy metals and dioxins in the latter stage. Among them, hydrochloric acid is more preferable because it is inexpensive and highly safe, and there is no generation of scale which causes clogging of piping and the like. Also, waste acid may be used. The waste acid refers to the acid waste liquid used for cleaning pipes, dehydrators, etc. in the treatment process of the incineration ash, acid waste liquid discharged from the chemical industry, steel and electric machinery industry and the like.

第6工程の還元剤は、亜硫酸水素ナトリウム、亜硫酸ナトリウム、塩化第一鉄及び硫酸第一鉄からなる群より選ばれる1種以上である。
第6工程の無機凝集剤は、塩化第二鉄、硫酸第二鉄及びポリ硫酸第二鉄からなる群より選ばれる1種以上である。これらの無機凝集剤であればpH8〜11の範囲で重金属及びダイオキシンを吸着したフロックを形成でき、それらの濃度を下水道法施行令の排水基準以下まで低減出来る。その中でもスケールの原因となる硫酸イオンを含まない点から塩化第二鉄が特に好ましい。
第6工程でpH調整剤として使用する水酸化ナトリウムは他のアルカリ類、例えば、水酸化カルシウム(消石灰)、酸化カルシウム(生石灰)等に比べpH調整速度が速く、このため凝集沈殿処理で生成するSSを少なくでき、沈殿物へのダイオキシン吸着量が多くなり、ダイオキシン除去率を高くすることが可能である。
The reducing agent in the sixth step is one or more selected from the group consisting of sodium bisulfite, sodium sulfite, ferrous chloride and ferrous sulfate.
The inorganic coagulant in the sixth step is one or more selected from the group consisting of ferric chloride, ferric sulfate and polyferric sulfate. These inorganic coagulants can form flocs to which heavy metals and dioxins are adsorbed in the range of pH 8 to 11, and the concentration thereof can be reduced to the drainage standard or lower of the sewerage law enforcement order. Among them, ferric chloride is particularly preferable in that it does not contain sulfate ion which causes scale.
Sodium hydroxide used as a pH adjuster in the sixth step has a faster pH adjustment rate than other alkalis, such as calcium hydroxide (slaked lime), calcium oxide (quick lime), etc. It is possible to reduce SS, increase the amount of dioxin adsorption to the precipitate, and increase the dioxin removal rate.

図2の第2実施形態のように、第6工程で固液分離された分離後の固相(沈殿物)はダイオキシンが濃縮されているので、ダイオキシンを瞬時に分解するため仮焼炉に投入したり、他のセメント原料に混ぜて希釈して使用することも可能である。液相(ろ液)は第2工程のろ液(2)や第3工程の上澄み水(3)とともに第6工程の上澄み水(6)と混合して再処理することが可能である。   As in the second embodiment of FIG. 2, since dioxins are concentrated in the solid phase (precipitate) separated in the solid-liquid separation in the sixth step, it is charged in the calciner to decompose dioxins instantaneously. It is also possible to use it by diluting it with other cement raw materials and diluting it. The liquid phase (filtrate) can be mixed with the supernatant water (6) of the sixth step and reprocessed together with the filtrate (2) of the second step and the supernatant water (3) of the third step.

また、図2の第3実施形態のように、第6工程で固液分離された分離後の液相(ろ液)は、重金属やダイオキシンが除去出来ているので、それらの濃度を確認後、pH調整後、放流して良い。重金属やダイオキシンが除去出来ていない場合は、上澄み水(1)に戻し、再処理すれば良い。   Further, as in the third embodiment of FIG. 2, since heavy metals and dioxins can be removed from the separated liquid phase (filtrate) separated in the solid-liquid separation in the sixth step, after confirming their concentrations, After pH adjustment, you may discharge. If heavy metals and dioxins can not be removed, they should be returned to the supernatant water (1) and reprocessed.

乾灰のダイオキシン含有量は、乾灰の乾燥質量を基準として3ng-TEQ/g以下であることが好ましく、0.001〜2.0ng-TEQ/gがより好ましく、0.0001〜1.0ng-TEQ/gがさらに好ましい。これらの範囲であると乾灰の塩素を除去する工程で脱水ケーキ(4)に濃縮されるダイオキシンの含有量をセメント原料として利用できる程度に抑えることが出来る。   The dioxin content of the dry ash is preferably 3 ng-TEQ / g or less based on the dry weight of the dry ash, more preferably 0.001 to 2.0 ng-TEQ / g, 0.0001 to 1.0 ng -TEQ / g is more preferred. Within these ranges, the content of dioxins concentrated in the dewatered cake (4) in the step of removing chlorine in dry ash can be suppressed to a level that can be used as a cement raw material.

前記乾灰の化学成分は、乾灰の乾燥質量を基準として、SiO含有量が1〜10質量%、Al含有量が1〜8質量%、Fe含有量が0.1〜2質量%、CaO含有量が20〜50質量%、MgO含有量が0.5〜3.0質量%、SO含有量が1.0〜5.0質量%、Cl含有量が10〜30質量%、Cr含有量が0.03〜0.1質量%、Pb含有量が0.05〜0.2質量%、Zn含有量が0.2〜0.5質量%及びCd含有量が0.003〜0.01質量%であることが好ましい。
SiO含有量が2〜8質量%、Al含有量が2〜5質量%、Fe含有量が0.3〜1.0質量%、CaO含有量が30〜40質量%、MgO含有量が1.0〜2.0質量%、SO含有量が2.0〜4.0質量%、Cl含有量が15〜25質量%、Cr含有量が0.05〜0.08質量%、Pb含有量が0.07〜0.15質量%、Zn含有量が0.3〜0.4質量%及びCd含有量が0.005〜0.008質量%であることがより好ましい。これらの範囲であると乾灰の塩素をセメント原料として利用できる程度まで低減でき、また上澄み水に含まれる重金属濃度を排水処理により下水道法施行令の排水基準以下まで低減出来る。
The chemical components of the dry ash have an SiO 2 content of 1 to 10 mass%, an Al 2 O 3 content of 1 to 8 mass%, and an Fe 2 O 3 content of 0. 1 based on the dry mass of the dry ash. 1-2 mass%, CaO content 20-50 mass%, MgO content 0.5-3.0 mass%, SO 3 content 1.0-5.0 mass%, Cl content 10 To 30% by mass, Cr content is 0.03 to 0.1% by mass, Pb content is 0.05 to 0.2% by mass, Zn content is 0.2 to 0.5% by mass and Cd content Is preferably 0.003 to 0.01% by mass.
2 to 8 mass% of SiO 2 content, 2 to 5 mass% of Al 2 O 3 content, 0.3 to 1.0 mass% of Fe 2 O 3 content, 30 to 40 mass% of CaO content MgO content is 1.0 to 2.0% by mass, SO 3 content is 2.0 to 4.0% by mass, Cl content is 15 to 25% by mass, and Cr content is 0.05 to 0. 08% by mass, Pb content is 0.07 to 0.15% by mass, Zn content is 0.3 to 0.4% by mass, and Cd content is 0.005 to 0.008% by mass preferable. Within these ranges, chlorine in dry ash can be reduced to the extent that it can be used as a cement raw material, and the heavy metal concentration contained in the supernatant can be reduced by drainage treatment to below the drainage standard of the Sewage Law Enforcement Order.

以下に、実施例及び比較例を挙げ、更に図1及び図2を元に本発明の内容を詳細に説明する。なお、本発明はこれらの例によって限定されるものではない。   Examples and comparative examples are given below, and the contents of the present invention will be described in detail based on FIGS. 1 and 2. The present invention is not limited by these examples.

1.焼却灰
焼却灰としては、都市ゴミ焼却飛灰の乾灰を使用した。試験に供した焼却飛灰の乾灰の特性を表1に示す。表1の化学成分は以下の方法によって測定された値である。
(i)SiO、Al、Fe、MgO、SO、RO含有量の測定
SiO、Al、Fe、MgO、SO、RO含有量は、JIS M 8853「セラミックス用アルミノけい酸塩質原料の化学分析方法」に準拠して測定した。結果を表1に示す。
(ii)CaO、Cl、Cr、Zn、Pb、Cd含有量の測定
CaO、Cl、Cr、Zn、Pb、Cd含有量は、JIS R 5202「セメントの化学分析方法」に準拠して測定した。結果を表1に示す。
(iii)ダイオキシン含有量の測定
ダイオキシン含有量は、厚生省告示第192号「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」に準拠して測定した。
(iv)含水率の測定
含水率は、焼却飛灰の乾灰を乾燥機内にて50℃で16時間乾燥させることにより測定した。
1. Incineration ash As incineration ash, the dry ash of municipal waste incineration fly ash was used. The characteristics of the dry ash of the incinerated fly ash subjected to the test are shown in Table 1. The chemical components in Table 1 are values measured by the following methods.
(I) SiO 2, Al 2 O 3, Fe 2 O 3, MgO, SO 3, measured SiO 2 of R 2 O content, Al 2 O 3, Fe 2 O 3, MgO, SO 3, R 2 O content The amount was measured in accordance with JIS M 8853 “Method of chemical analysis of aluminosilicate material for ceramics”. The results are shown in Table 1.
(Ii) Measurement of CaO, Cl, Cr, Zn, Pb, Cd Content The CaO, Cl, Cr, Zn, Pb, Cd content was measured in accordance with JIS R 5202 "Method of chemical analysis of cement". The results are shown in Table 1.
(Iii) Measurement of dioxin content The dioxin content was measured in accordance with Ministry of Health and Welfare Notification No. 192, “Testing Standard for Specially Controlled General Waste and Specially Controlled Industrial Waste”.
(Iv) Measurement of Water Content The water content was measured by drying the dry ash of incineration fly ash at 50 ° C. for 16 hours in a drier.

Figure 0006503898
Figure 0006503898

2.湿灰の調製
焼却飛灰の乾灰を加湿して湿灰に調製したものを試験例1の水洗脱塩試験に用いた。焼却飛灰の乾灰に湿灰の含水率が18%となるように水道水を添加し,ソイルミキサーで混合して湿灰を調製した。
2. Preparation of wet ash The dry ash of the incinerated fly ash was moistened to prepare wet ash, and used for the water washing desalting test of Test Example 1. Tap water was added to the dry ash of incinerated fly ash so that the moisture content of the wet ash was 18%, and mixed with a soil mixer to prepare wet ash.

3.都市ゴミ焼却灰の水洗脱塩処理
(1)水洗脱塩処理(pH調整なし、参考例1)
湿灰の湿潤質量に対して5倍量の水(1)を添加して攪拌しスラリー(1)を調製後、1時間攪拌洗浄を行った。その後、高分子凝集剤(MTアクアポリマー(株)、アコフロックA−110)を添加して30分静置し、濃縮スラリー(1')と上澄み水(1)に固液分離した。次に、濃縮スラリー(1')を5A濾紙で吸引ろ過して脱水ケーキ(2')とろ液(2')に固液分離した。脱水ケーキ(2')に湿灰の湿潤質量に対して5倍量の水(3)を添加して攪拌しスラリー(3’)を調製後、1時間攪拌洗浄を行った後、高分子凝集剤(MTアクアポリマー(株)、アコフロックA−110)を添加して30分静置し、濃縮スラリー(3’)と上澄み水(3’)に固液分離した。
次に、濃縮スラリー(3’)を5A濾紙で吸引ろ過して脱水ケーキ(4’)とろ液(4’)に固液分離した。脱水ケーキ(4’)は105℃で24時間乾燥後、焼却灰と同様に塩素含有量はJIS R 5202「セメントの化学分析方法」に準拠し、ダイオキシン含有量は厚生省告示第192号「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」に準拠して測定した。結果を表2に示す。
上澄み水(1)は、pH、全クロム、亜鉛、カドミウム濃度はJIS K 0102「工場排水試験方法」に準拠し、SS(浮遊物質量)は環境庁告示第59号に準拠し、ダイオキシン濃度はJIS K 0312「工業用水・工場排水中のダイオキシン類の測定方法」に準拠して測定した。結果を表3に示す。
3. Washing and desalination treatment of municipal waste incineration ash (1) Washing and desalination treatment (without pH adjustment, reference example 1)
The slurry (1) was prepared by adding 5 times the amount of water (1) to the wet mass of wet ash and stirring to prepare a slurry (1), followed by stirring and washing for 1 hour. Thereafter, a polymer flocculant (MT aquapolymer Co., Ltd., Akofloc A-110) was added and allowed to stand for 30 minutes, and solid-liquid separation was performed into a concentrated slurry (1 ') and a supernatant water (1). Next, the concentrated slurry (1 ′) was suction-filtered with 5A filter paper to separate solid and liquid into a dewatered cake (2 ′) and a filtrate (2 ′). After adding 5 times the amount of water (3) to the dehydrated cake (2 ') with respect to the wet mass of the wet ash and stirring to prepare a slurry (3'), stirring for 1 hour is followed by polymer aggregation An agent (MT aquapolymer Co., Ltd., Akofloc A-110) was added and allowed to stand for 30 minutes to perform solid-liquid separation into concentrated slurry (3 ') and supernatant water (3').
Next, the concentrated slurry (3 ′) was suction-filtered through 5 A filter paper, and solid-liquid separation was performed to a dewatered cake (4 ′) and a filtrate (4 ′). After drying the dehydrated cake (4 ') at 105 ° C for 24 hours, the chlorine content is in accordance with JIS R 5202 "Method for chemical analysis of cement" in the same way as incinerated ash, and the dioxin content is Notification No. It was measured in accordance with “Verification method of standards for general waste and special management industrial waste”. The results are shown in Table 2.
The supernatant water (1) has a pH, total chromium, zinc and cadmium concentrations in accordance with JIS K 0102 "Plant drainage test method", SS (mass of suspended solids) is in accordance with Environment Agency Notification No. 59, and dioxin concentration is It measured based on JISK0312 "the measuring method of dioxins in industrial water and factory drainage." The results are shown in Table 3.

(2)水洗脱塩処理(pH調整あり、pH=10.5、11.5、実施例1〜2)
湿灰の湿潤質量に対して5倍量の水(1)を添加して攪拌しスラリー(1)を調製後、塩酸を添加してスラリー(1)のpHを10.5あるいは11.5に維持しながら1時間攪拌洗浄を行った。その後、高分子凝集剤(MTアクアポリマー(株)、アコフロックA−110)を添加して30分静置し、濃縮スラリー(1)と上澄み水(1)に固液分離した。次に、濃縮スラリー(1)を5A濾紙で吸引ろ過して脱水ケーキ(2)とろ液(2)に固液分離した。脱水ケーキ(2)に湿灰の湿潤質量に対して5倍量の水(3)を添加して攪拌しスラリー(3)を調製後、1時間攪拌洗浄を行った後、高分子凝集剤(MTアクアポリマー(株)、アコフロックA−110)を添加して30分静置し、濃縮スラリー(3)と上澄み水(3)に固液分離した。次に、濃縮スラリー(3)を5A濾紙で吸引ろ過して脱水ケーキ(4)とろ液(4)に固液分離した。脱水ケーキ(4)の塩素含有量、ダイオキシン含有量、および上澄み水(1)のpH、全クロム、亜鉛、カドミウム濃度、SS、ダイオキシン濃度を測定した。結果を表2及び表3にそれぞれ示す。
(2) Washing and desalting treatment (pH adjusted, pH = 10.5, 11.5, Examples 1 and 2)
A slurry (1) is prepared by adding 5 times the amount of water (1) to the wet mass of the wet ash and stirring to prepare a slurry (1), then hydrochloric acid is added to adjust the pH of the slurry (1) to 10.5 or 11.5. Stir wash was performed for 1 hour while maintaining. Thereafter, a polymer flocculant (MT aquapolymer Co., Ltd., Akofloc A-110) was added and allowed to stand for 30 minutes, and solid-liquid separation was performed into a concentrated slurry (1) and a supernatant water (1). Next, the concentrated slurry (1) was suction-filtered through 5A filter paper to separate solid and liquid into a dewatered cake (2) and a filtrate (2). After adding 5 times the amount of water (3) to the dehydrated cake (2) with respect to the wet mass of wet ash and stirring to prepare a slurry (3), a polymer flocculating agent MT Aquapolymer Co., Ltd., Akofloc A-110) was added and allowed to stand for 30 minutes, and solid-liquid separation was performed into a concentrated slurry (3) and a supernatant water (3). Next, the concentrated slurry (3) was suction-filtered with 5A filter paper to separate solid-liquid into a dewatered cake (4) and a filtrate (4). The chlorine content, dioxin content, and pH of the supernatant water (1), the total chromium, zinc, cadmium concentration, SS, and dioxin concentration of the dehydrated cake (4) were measured. The results are shown in Table 2 and Table 3, respectively.

(3)水洗脱塩処理(pH調整あり、pH=9、10、比較例1〜2)
比較例1〜2は、スラリー(1)のpHを9あるいは10に維持しながら1時間攪拌洗浄した以外は、実施例1〜2と同様の方法で試験を行った。脱水ケーキ(4)の塩素含有量、ダイオキシン含有量、および上澄み水(1)のpH、全クロム、亜鉛、カドミウム濃度、SS、ダイオキシン濃度を測定した。結果を表2及び表3にそれぞれ示す。
(3) Water-washing desalting treatment (with pH adjustment, pH = 9, 10, Comparative examples 1 to 2)
In Comparative Examples 1 and 2, tests were conducted in the same manner as in Examples 1 and 2 except that washing was carried out with stirring for 1 hour while maintaining the pH of the slurry (1) at 9 or 10. The chlorine content, dioxin content, and pH of the supernatant water (1), the total chromium, zinc, cadmium concentration, SS, and dioxin concentration of the dehydrated cake (4) were measured. The results are shown in Table 2 and Table 3, respectively.

(4)評価
表2より、脱塩率は参考例1、実施例1、実施例2、比較例1及び比較例2のいずれも95%以上と高い値となり、洗浄時のスラリー(1)のpHの影響は小さかった。一方、参考例1、実施例2および比較例2より、pHが低いほど脱水ケーキのダイオキシン濃度は高くなった。したがって、塩酸を添加してpHを下げると脱塩率はそれほど変化がないにも関わらず、酸に不溶なダイオキシンは脱水ケーキに濃縮される傾向であることがわかった。
(4) Evaluation From Table 2, the desalting rate is as high as 95% or more in all of Reference Example 1, Example 1, Example 2, Comparative Example 1 and Comparative Example 2, and the slurry (1) at the time of washing was The influence of pH was small. On the other hand, according to Reference Example 1, Example 2 and Comparative Example 2, the lower the pH, the higher the dioxin concentration in the dehydrated cake. Therefore, it was found that dioxins insoluble in acid tend to be concentrated in the dewatered cake even though the desalting rate does not change so much when the pH is lowered by adding hydrochloric acid.

Figure 0006503898
Figure 0006503898

表3より、参考例1のpH調整なしの場合、上澄み水(1)には1.9pg-TEQ/Lのダイオキシンが含まれていた。また、酸を添加してpHを下げるほどSSが多くなっていた。一般に排水中のダイオキシンはSSに吸着した状態で存在していることから、酸を添加してpHを下げるほど上澄み水(1)中のダイオキシン濃度は高くなると考えられる。   From Table 3, in the case of no pH adjustment in Reference Example 1, the supernatant water (1) contained 1.9 pg-TEQ / L of dioxin. Also, the SS increased as the pH was lowered by adding an acid. In general, dioxins in waste water exist in a state of being adsorbed to SS, so it is considered that the dioxin concentration in the supernatant water (1) becomes higher as the pH is lowered by adding an acid.

Figure 0006503898
Figure 0006503898

4.上澄み水(1)の排水処理
(1)上澄み水(1)の性状
上澄み水(1)は、新たに調製した湿灰を用いて表3の参考例1と同様の操作で水洗脱塩処理を実施し、採取したものを使用した。使用した上澄み水(1)の性状を表4に示す。
4. Waste water treatment of supernatant water (1) (1) Properties of supernatant water (1) The supernatant water (1) is washed with water by the same operation as Reference Example 1 in Table 3 using newly prepared wet ash. Was performed, and used what was collected. The properties of the used supernatant water (1) are shown in Table 4.

Figure 0006503898
Figure 0006503898

(2)排水処理方法
表4に示す性状の上澄み水(1)(pH12.5)に塩酸を添加してpH2に調整し、還元剤として亜硫酸水素ナトリウムを添加して15分攪拌した。次に、無機凝集剤として塩化第二鉄を添加し、pH調整剤として水酸化ナトリウムあるいは消石灰を添加してpH10に調整して15分静置した後、上澄み水(6)を採取した。上澄み水(6)は全クロム、六価クロム、亜鉛、カドミウム濃度はJIS K 0102「工場排水試験方法」に準拠し、SSは環境庁告示第59号に準拠し、ダイオキシン濃度はJIS K 0312「工業用水・工場排水中のダイオキシン類の測定方法」に準拠して測定した。上澄み水(6)を採取後に残った沈殿物は5A濾紙で吸引ろ過した後、105℃で12時間乾燥させて重量を測定した。沈殿物へのダイオキシン吸着量は数式(1)、ダイオキシン除去率は数式(2)により算出した。
(2) Waste water treatment method Hydrochloric acid was added to supernatant water (1) (pH 12.5) having the properties shown in Table 4 to adjust to pH 2, sodium bisulfite was added as a reducing agent, and the mixture was stirred for 15 minutes. Next, ferric chloride was added as an inorganic coagulant, sodium hydroxide or calcium hydroxide was added as a pH adjuster to adjust to pH 10, and the mixture was allowed to stand for 15 minutes, and then supernatant water (6) was collected. The supernatant water (6) is all chromium, hexavalent chromium, zinc, cadmium concentration in accordance with JIS K 0102 "Factory drainage test method", SS is in accordance with Environment Agency Notification No. 59, and the dioxin concentration is JIS K 0312 " It measured according to "the measuring method of dioxins in industrial water and factory drainage". The precipitate remaining after collecting the supernatant water (6) was suction filtered with 5 A filter paper, dried at 105 ° C. for 12 hours, and weighed. The amount of dioxin adsorption to the sediment was calculated by equation (1), and the dioxin removal rate was calculated by equation (2).

Figure 0006503898
Figure 0006503898

Figure 0006503898

ここで、Cは上澄み水(1)のダイオキシン濃度(pg-TEQ/L)、Cは上澄み水(6)のダイオキシン濃度(pg-TEQ/L)、Mは沈殿物量(g/L)である。結果を表5に示す。
Figure 0006503898

Here, C 1 is the dioxin concentration (pg-TEQ / L) of the supernatant water (1), C 2 is the dioxin concentration of the supernatant water (6) (pg-TEQ / L), and M is the amount of precipitate (g / L) It is. The results are shown in Table 5.

Figure 0006503898
Figure 0006503898

表5の実施例3、比較例3より、pH調整剤としてpH調整速度の速い水酸化ナトリウムを用いることで凝集沈殿処理で生成するSSを少なくでき、沈殿物へのダイオキシン吸着量が多くなり、ダイオキシン除去率が高くなった。
従って、本発明の方法によれば、上澄み水(6)を図2のフローの第3実施形態のように、固液分離すれば、分離後の液相は放流して良い程に重金属やダイオキシンが除去出来る。また、固相はダイオキシンが濃縮されているので、ダイオキシンを瞬時に分解するため仮焼炉に投入したり、他のセメント原料に混ぜて希釈して使用することも可能である。
From Example 3 and Comparative Example 3 in Table 5, by using sodium hydroxide having a high pH adjustment rate as a pH adjuster, it is possible to reduce SS generated in the aggregation precipitation process, and the dioxin adsorption amount to the precipitate increases. The dioxin removal rate has increased.
Therefore, according to the method of the present invention, if solid-liquid separation is performed on the supernatant water (6) as in the third embodiment of the flow of FIG. Can be removed. In addition, since dioxins are concentrated in the solid phase, dioxins can be instantaneously decomposed, so that they can be put into a calciner or mixed with other cement materials and used after dilution.

Claims (11)

焼却灰に水(1)を添加し攪拌洗浄してスラリー(1)を調製後、酸(1)を加えpHを10.5〜12.5に調整し、更に高分子凝集剤を添加後、静置し、濃縮スラリー(1)と上澄み水(1)に固液分離する第1工程と、
前記濃縮スラリー(1)をろ過し、脱水ケーキ(2)とろ液(2)に固液分離する第2工程と、
前記脱水ケーキ(2)に水(3)を添加し攪拌洗浄してスラリー(3)を調製後、高分子凝集剤を添加し、静置し、濃縮スラリー(3)と上澄み水(3)に固液分離する第3工程と、
前記濃縮スラリー(3)をろ過し、脱水ケーキ(4)とろ液(4)に固液分離する第4工程と、
前記脱水ケーキ(4)をセメント原料とする第5工程とを有するセメント原料化工程、並びに、
前記上澄み水(1)に酸(6)を加えて攪拌し、pHを1〜3に調整して還元剤を添加し、更に無機凝集剤を添加後、水酸化ナトリウムを加えて攪拌しpHを8〜11に調整し、静置後、沈殿物と上澄み水(6)に固液分離する第6工程を有する排水処理工程、
を含むことを特徴とする焼却灰の処理方法。
Water (1) is added to the incinerator ash and stirred and washed to prepare a slurry (1), and then the acid (1) is added to adjust the pH to 10.5 to 12.5, and after addition of a polymer flocculant, A first step of standing still and solid-liquid separation into concentrated slurry (1) and supernatant water (1);
A second step of filtering the concentrated slurry (1) and separating it into a dewatered cake (2) and a filtrate (2);
Water (3) is added to the above dewatered cake (2) and stirred and washed to prepare a slurry (3), and then a polymer flocculant is added and allowed to stand to form concentrated slurry (3) and supernatant water (3). A third step of solid-liquid separation,
A fourth step of filtering the concentrated slurry (3) and performing solid-liquid separation into a dehydrated cake (4) and a filtrate (4);
A cement raw material forming step including the fifth step of using the dewatered cake (4) as a cement raw material;
Acid (6) is added to the supernatant water (1) and stirred, pH is adjusted to 1 to 3 and a reducing agent is added, and further an inorganic flocculant is added, sodium hydroxide is added and the pH is adjusted The waste water treatment process which has the 6th process of carrying out solid-liquid separation to a sediment and supernatant water (6) after adjusting to 8-11 and leaving still,
A method of treating incineration ash comprising:
前記焼却灰の含水率は0質量%を超えて30質量%以下である、請求項1記載の焼却灰の処理方法。   The method for treating incineration ash according to claim 1, wherein the water content of the incineration ash is more than 0% by mass and not more than 30% by mass. 前記第1工程の酸(1)は、塩酸、硝酸、硫酸及びリン酸からなる群より選ばれる1種以上である、請求項1又は2記載の焼却灰の処理方法。   The method for treating incineration ash according to claim 1 or 2, wherein the acid (1) in the first step is one or more selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. 前記第6工程の酸(6)は、塩酸、硝酸、硫酸及びリン酸からなる群より選ばれる1種以上である、請求項1〜3の何れか1項記載の焼却灰の処理方法。   The method for treating incineration ash according to any one of claims 1 to 3, wherein the acid (6) in the sixth step is one or more selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. 前記第6工程の還元剤は、亜硫酸水素ナトリウム、亜硫酸ナトリウム、塩化第一鉄及び硫酸第一鉄からなる群より選ばれる1種以上である、請求項1〜4の何れか1項記載の焼却灰の処理方法。   The incineration according to any one of claims 1 to 4, wherein the reducing agent in the sixth step is one or more selected from the group consisting of sodium bisulfite, sodium sulfite, ferrous chloride and ferrous sulfate. Ash processing method. 前記第6工程の無機凝集剤は、塩化第二鉄、硫酸第二鉄及びポリ硫酸第二鉄からなる群より選ばれる1種以上である、請求項1〜5の何れか1項記載の焼却灰の処理方法。   The incinerator according to any one of claims 1 to 5, wherein the inorganic coagulant in the sixth step is one or more selected from the group consisting of ferric chloride, ferric sulfate and polyferric sulfate. Ash processing method. 前記第1工程の水(1)の添加量は、焼却灰の質量に対して1〜10倍量である、請求項1〜6の何れか1項記載の焼却灰の処理方法。   The method for treating incineration ash according to any one of claims 1 to 6, wherein the amount of water (1) added in the first step is 1 to 10 times the amount of incineration ash. 前記第3工程の水(3)の添加量は、焼却灰の質量に対して1〜10倍量である、請求項1〜7の何れか1項記載の焼却灰の処理方法。   The method for treating incineration ash according to any one of claims 1 to 7, wherein the amount of water (3) added in the third step is 1 to 10 times the amount of incineration ash. 前記第1工程は、更に、乾灰に水(7)を添加し前記焼却灰を調製する第7工程を含む、請求項1〜8の何れか1項記載の焼却灰の処理方法。   The method according to any one of claims 1 to 8, wherein the first step further comprises a seventh step of adding water (7) to dry ash to prepare the incineration ash. 前記乾灰のダイオキシン含有量は、乾灰の乾燥質量を基準として3ng-TEQ/g以下である、請求項9記載の焼却灰の処理方法。   The method for treating incinerated ash according to claim 9, wherein the dioxin content of the dry ash is 3 ng-TEQ / g or less based on the dry mass of the dry ash. 前記乾灰の化学成分は、乾灰の乾燥質量を基準として、SiO含有量が1〜10質量%、Al含有量が1〜8質量%、Fe含有量が0.1〜2質量%、CaO含有量が20〜50質量%、MgO含有量が0.5〜3.0質量%、SO含有量が1.0〜5.0質量%、Cl含有量が10〜30質量%、Cr含有量が0.03〜0.1質量%、Pb含有量が0.05〜0.2質量%、Zn含有量が0.2〜0.5質量%及びCd含有量が0.003〜0.01質量%である、請求項9又は10記載の焼却灰の処理方法。 The chemical components of the dry ash have an SiO 2 content of 1 to 10 mass%, an Al 2 O 3 content of 1 to 8 mass%, and an Fe 2 O 3 content of 0. 1 based on the dry mass of the dry ash. 1-2 mass%, CaO content 20-50 mass%, MgO content 0.5-3.0 mass%, SO 3 content 1.0-5.0 mass%, Cl content 10 To 30% by mass, Cr content is 0.03 to 0.1% by mass, Pb content is 0.05 to 0.2% by mass, Zn content is 0.2 to 0.5% by mass and Cd content The method for treating incineration ash according to claim 9 or 10, wherein is 0.003 to 0.01% by mass.
JP2015110845A 2014-06-19 2015-05-29 Processing method of incineration ash Active JP6503898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110845A JP6503898B2 (en) 2014-06-19 2015-05-29 Processing method of incineration ash

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014126231 2014-06-19
JP2014126231 2014-06-19
JP2015110845A JP6503898B2 (en) 2014-06-19 2015-05-29 Processing method of incineration ash

Publications (2)

Publication Number Publication Date
JP2016019968A JP2016019968A (en) 2016-02-04
JP6503898B2 true JP6503898B2 (en) 2019-04-24

Family

ID=55265183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110845A Active JP6503898B2 (en) 2014-06-19 2015-05-29 Processing method of incineration ash

Country Status (1)

Country Link
JP (1) JP6503898B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252653B1 (en) * 2016-10-31 2017-12-27 三菱マテリアル株式会社 Method and system for treating chlorine-containing ash
CN109351762B (en) * 2018-12-17 2021-08-24 巩义市相济装配构件有限公司 Harmless treatment system and process for polyaluminium chloride water purifying agent waste residues
CN110092456A (en) * 2019-04-01 2019-08-06 广西大学 The method for preparing solid phosphoric polyferric sulfate flocculant
CN110526364B (en) * 2019-09-25 2021-12-17 仲恺农业工程学院 Method for preparing poly-aluminum ferric silicate flocculant by utilizing waste incineration fly ash
JP7398349B2 (en) * 2020-09-08 2023-12-14 太平洋セメント株式会社 Method for producing cement or cured cement and its production system
CN114733889A (en) * 2022-04-07 2022-07-12 深圳市小荷环保技术有限公司 Waste incineration fly ash washing device and method
CN115213206A (en) * 2022-07-22 2022-10-21 中泰莱(江苏)环境有限公司 Method for recycling hazardous waste incineration fly ash

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042169B2 (en) * 1996-10-01 2008-02-06 宇部興産株式会社 Cement production equipment extraction dust processing method
JP4629851B2 (en) * 2000-10-30 2011-02-09 太平洋セメント株式会社 Wastewater treatment method
JP4979164B2 (en) * 2001-07-26 2012-07-18 株式会社トクヤマ Incineration ash treatment method
JP2003334510A (en) * 2002-05-15 2003-11-25 Unitika Ltd Chlorine removing treatment method for molten fly ash
JP4839653B2 (en) * 2005-03-29 2011-12-21 栗田工業株式会社 Method for treating waste containing chlorine and heavy metals
JP2008290005A (en) * 2007-05-24 2008-12-04 Mhi Environment Engineering Co Ltd Incinerated ash treatment method and system
JP5205197B2 (en) * 2008-09-30 2013-06-05 三菱重工環境・化学エンジニアリング株式会社 Incineration ash treatment method and system
JP5277152B2 (en) * 2009-12-22 2013-08-28 株式会社ティーディーイー High alkali slurry processing method and system
JP5850294B2 (en) * 2011-02-25 2016-02-03 住友大阪セメント株式会社 Waste disposal method

Also Published As

Publication number Publication date
JP2016019968A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6503898B2 (en) Processing method of incineration ash
JP4839653B2 (en) Method for treating waste containing chlorine and heavy metals
JP6935924B2 (en) Wastewater and sludge treatment system containing high concentration of suspended solids
Zaki et al. Removal of some heavy metals by CKD leachate
US20210032132A1 (en) Wastewater treatment system and method for producing sludge for cement manufacturing
JP2012035168A (en) Method and apparatus of treating flyash and dust present in combustion gas extracted from cement kiln
JP2016077976A (en) Desalination method and desalination device of chlorine-containing ash
KR20170031014A (en) Manufacturing method of potassium chloride using cement bypass dust
CN103693710B (en) Preparation and oil-water separation method of humic acid modified fly ash magnetic material
JP2016022406A (en) Method for treating heavy metal-contaminated water
JP5072179B2 (en) Desalination cleaning method for waste
JP4306422B2 (en) Cement kiln extraction dust processing method
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP2010104949A (en) Method for removing chromium from waste and chromium removal device
JP2009101359A (en) Cement kiln extraction dust treatment method
JP2011224464A (en) Method of treating combustion ash
JP5114227B2 (en) Method and apparatus for treating water-soluble chlorine-containing waste
JP5206455B2 (en) Cement kiln extraction dust processing method
JP2007296414A (en) Detoxification treatment method of coal fly ash and detoxification treatment apparatus
CN103351076A (en) Comprehensive industrial wastewater processing method
JP6866726B2 (en) Gypsum manufacturing method and cement composition manufacturing method
JP5493903B2 (en) Mercury removal method
JP2017035646A (en) Method and apparatus of water washing desalination of incineration ash
JP2006297238A (en) Flocculation and sedimentation treatment method for sewage, food waste water or the like by recovered flocculant from service water sludge
Rauckyte-Żak et al. Wastewaters treatment from rail freight car wash. Assessment of physicochemical treated sludges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250