JP2011224464A - Method of treating combustion ash - Google Patents

Method of treating combustion ash Download PDF

Info

Publication number
JP2011224464A
JP2011224464A JP2010096559A JP2010096559A JP2011224464A JP 2011224464 A JP2011224464 A JP 2011224464A JP 2010096559 A JP2010096559 A JP 2010096559A JP 2010096559 A JP2010096559 A JP 2010096559A JP 2011224464 A JP2011224464 A JP 2011224464A
Authority
JP
Japan
Prior art keywords
boron
fluorine
combustion ash
residue
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010096559A
Other languages
Japanese (ja)
Inventor
Kazuya Ikejima
和也 池島
Yukio Tani
幸雄 谷
Takashi Okumura
貴司 奥村
Yoshiori Inoue
佳織 井上
Ayano Kawae
綾乃 河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2010096559A priority Critical patent/JP2011224464A/en
Publication of JP2011224464A publication Critical patent/JP2011224464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the amounts of eluted environmental regulation target substances, e.g., fluorine, boron, lead and hexavalent chromium, below the environmental quality standards for soil contamination of the soil contamination countermeasures act, which substances are eluted simultaneously from combustion ash discharged by a boiler using coal as the main fuel and also burning RPF and wood waste together, and utilize the combustion ash safely in the soil field.SOLUTION: A method of treating combustion ash comprises adding dilute sulfuric acid to the combustion ash to make fluorine, boron, lead and hexavalent chromium eluted, rinsing the solid/liquid-separated residue to remove dilute sulfuric acid, fluorine and boron remaining in the treated residue and subjecting the residue to air drying, or dehydration, so as to reduce the amount of fluorine eluted from the residue to ≤0.8 mg/L and the amount of the eluted boron to ≤1.0 mg/L, measured by the elution test based on the Ministry of Environment notification No.18, 2003, and also control amounts of all other target elements of the soil contamination countermeasures act below the environmental quality standards for soil contamination.

Description

本発明は、フッ素、ホウ素、鉛、六価クロムを含有する燃焼灰から、これらの有害物質を溶出抑制する方法に関する。更に詳しくは、本発明は、これらの有害物質を含有する燃焼灰を土壌分野(路盤材や土壌改良剤など)に利用するため、燃焼灰に対し、硫酸を混合して適正な範囲のpHで混合後、固液分離させ、残渣を水ですすぎ洗浄することによって、平成15年環境省告示第18号に基づく溶出試験による燃焼灰からのフッ素の溶出量を0.8mg/L以下、かつホウ素の溶出量を1.0mg/L以下、鉛の溶出量を0.01mg/L以下、六価クロムの溶出量を0.05mg/L以下にする、燃焼灰の処理方法に関する。   The present invention relates to a method for suppressing elution of these harmful substances from combustion ash containing fluorine, boron, lead and hexavalent chromium. More specifically, the present invention uses combustion ash containing these harmful substances in the field of soil (such as roadbed materials and soil conditioners), so sulfuric acid is mixed with the combustion ash at a pH within an appropriate range. After mixing, solid-liquid separation is performed, and the residue is rinsed with water, so that the amount of fluorine eluted from combustion ash by an elution test based on Notification No. 18 of the Ministry of the Environment in 2003 is 0.8 mg / L or less and boron It is related with the processing method of combustion ash which makes the elution amount of 1.0 mg / L or less, the elution amount of lead 0.01 mg / L or less, and the elution amount of hexavalent chromium 0.05 mg / L or less.

従来から、家庭ごみ焼却灰、火力発電所からの石炭燃焼灰(石炭灰)、下水汚泥焼却灰、各種産業廃棄物などの燃焼灰は、セメント原料や土壌改良剤などとして利用されてきた。しかしながら、平成15年に土壌汚染対策法が施行され、フッ素、ホウ素の溶出基準が追加された結果、前記の燃焼灰は本法に規定された土壌環境基準値を超えている場合がほとんどであり、土壌分野に利用し難い状況となってきている。   Conventionally, combustion ash such as household waste incineration ash, coal combustion ash (coal ash) from a thermal power plant, sewage sludge incineration ash, and various industrial wastes has been used as a raw material for cement and a soil conditioner. However, as a result of the enforcement of the Soil Contamination Countermeasures Law in 2003 and the addition of fluorine and boron elution standards, the combustion ash in most cases exceeds the soil environmental standard values stipulated in this law. It has become difficult to use in the soil field.

燃焼灰からのフッ素、ホウ素の溶出抑制法としては、従来から、それぞれ別個に存在し、フッ素の溶出抑制法については、溶融固化法、セメント固化法、溶液に溶かし出して分離除去させる方法などが知られ、また、ホウ素の溶出抑制法としては、酸性溶液中に抽出させて分離除去させる方法などが知られている。   Conventionally, fluorine and boron elution suppression methods from combustion ash exist separately, and fluorine elution suppression methods include melt solidification method, cement solidification method, and method of dissolving and removing by dissolving in solution. Further, as a method for suppressing the elution of boron, there is known a method in which the boron is extracted into an acidic solution and separated and removed.

溶融固化法は、廃棄物を1,400〜1,600℃の高温になるまで加熱することによって、有害物質を生成するスラグに封じ込み固定化する方法として知られている(特許文献1)。しかしながら、設備費を含めた処理コストが高く、また、スラグの利用先も少ないという問題点があった。   The melt-solidification method is known as a method in which waste is heated up to a high temperature of 1,400 to 1,600 ° C. to be sealed and fixed in slag that generates harmful substances (Patent Document 1). However, there is a problem that the processing cost including the equipment cost is high and the slag is not used much.

セメントによる固化法は、無機薬剤あるいは有機薬剤等から成る処理剤を加えて固化および不溶化させる方法として知られている(特許文献2)。しかしながら、処理に数段の工程が必要となり、処理コストが高い上に、セメント自体に六価クロム、鉛など土壌汚染対策法で規制された有害物質が含有する場合もあり、これらが溶出してくるという問題点があった。   The solidification method using cement is known as a method of solidifying and insolubilizing by adding a treatment agent composed of an inorganic agent or an organic agent (Patent Document 2). However, several steps are required for the treatment, and the treatment cost is high. In addition, the cement itself may contain harmful substances regulated by the Soil Contamination Countermeasures Law, such as hexavalent chromium and lead. There was a problem of coming.

燃焼灰にリン酸化合物とカルシウム化合物を添加して混練し、固化させる方法も知られている(特許文献3)。しかしながら当該方法では、リン酸化合物の添加量が多い上に、リン酸化合物自体のコストが高く、処理コストが莫大になるという問題点があった。   A method is also known in which a phosphoric acid compound and a calcium compound are added to combustion ash, kneaded and solidified (Patent Document 3). However, this method has a problem that the addition amount of the phosphoric acid compound is large and the cost of the phosphoric acid compound itself is high and the processing cost becomes enormous.

また、燃焼灰を水と混合した後、脱水して水溶性塩素を除き、さらに400℃以上の水蒸気中で熱分解することにより、フッ素をフッ化水素酸としてガス化して除去する方法も知られている(特許文献4)。しかしながら、この方法では、400℃以上という高温で加熱する必要があり、特殊な設備を必要とし、処理コストも高いといった問題点があった。   Also known is a method in which combustion ash is mixed with water, dehydrated to remove water-soluble chlorine, and further thermally decomposed in water vapor at 400 ° C. or higher to gasify and remove fluorine as hydrofluoric acid. (Patent Document 4). However, this method has a problem in that it needs to be heated at a high temperature of 400 ° C. or higher, requires special equipment, and has a high processing cost.

さらに、カルシウムアルミネート(添加率20〜80質量%)と石膏(10〜80質量%)を添加して、製鋼スラグ中のフッ素の溶出を抑制する方法も知られている(特許文献5)。しかしながら、この方法では、製鉄プロセスで使用する蛍石(フッ化カルシウム)由来のフッ素含有量が非常に高く、このため土壌汚染対策法の基準値以下にするための処理剤の添加率が非常に高く、燃焼灰の処理にかかる薬品費のみならず輸送費が増量分上乗せされるといった問題点があった。   Furthermore, a method is known in which calcium aluminate (addition rate: 20 to 80% by mass) and gypsum (10 to 80% by mass) are added to suppress the elution of fluorine in the steelmaking slag (Patent Document 5). However, in this method, the fluorine content derived from fluorite (calcium fluoride) used in the iron making process is very high, so the addition rate of the treatment agent to make it less than the standard value of the Soil Contamination Countermeasures Law is very high. There is a problem that not only the chemical cost for processing the combustion ash but also the transportation cost is increased.

溶液にフッ素を溶かし出しフッ素を分離除去させる方法も知られている。例えば、鉱物もしくは鉱物種を、金属イオンを含む浸出溶液に接触させて、可溶性フッ素複錯体を形成させる方法や(特許文献6)、フッ素含有石膏を、アルミニウムイオンを含む洗浄水により洗浄させることで、石膏中のフッ素を分離除去させる方法もある(特許文献7)。   A method of dissolving fluorine in a solution and separating and removing the fluorine is also known. For example, by contacting a mineral or mineral species with a leaching solution containing metal ions to form a soluble fluorine double complex (Patent Document 6), or washing fluorine-containing gypsum with washing water containing aluminum ions. There is also a method of separating and removing fluorine in gypsum (Patent Document 7).

一方、ホウ素を溶出抑制させる方法としては、石炭を主燃料としたホウ素含有燃焼灰に酸性溶液を添加し、ホウ素を溶出させ、次いで、固液分離し、固形分を水ですすぎ洗浄し、残留する酸性溶液およびホウ素を除去し、次いで、すすぎ洗浄後の固形残渣を脱水処理するホウ素の分離除去法が知られている(特許文献8)。しかしながら、この方法では、ホウ素のみの分離を目的とした方法であり、フッ素の溶出量については記載がなく、ボイラ燃料として、例えば製紙工場で多く見られるような、石炭以外に、RPF、木屑などを混焼しているボイラから排出される燃焼灰からは、ホウ素以外にフッ素も同時に溶出してしまうので、フッ素の溶出抑制対策が別途必要になる。
特開2003−119057号公報 特開平6−15248号公報 特開2002−331272号公報 特開平9−165243号公報 特開2001−259570号公報 特許3665067号 特開2004−299962公報 特開2003−320342公報
On the other hand, as a method of suppressing the dissolution of boron, an acidic solution is added to the boron-containing combustion ash containing coal as the main fuel, boron is eluted, and then solid-liquid separation is performed. A method for separating and removing boron is known in which the acidic solution and boron to be removed are removed, and then the solid residue after rinsing and washing is dehydrated (Patent Document 8). However, this method is intended for the separation of only boron, and there is no description about the amount of elution of fluorine, and as boiler fuel, for example, in many cases in paper mills, in addition to coal, RPF, wood chips, etc. From the combustion ash discharged from the boiler co-fired, fluorine is also eluted at the same time as boron, so a separate measure for suppressing the elution of fluorine is required.
Japanese Patent Laid-Open No. 2003-119057 JP-A-6-15248 JP 2002-331272 A JP-A-9-165243 JP 2001-259570 A Japanese Patent No. 3665067 Japanese Patent Laid-Open No. 2004-299962 JP 2003-320342 A

本発明は、上記のようなセメント固化や溶融などといった煩雑で、手間がかかり、なおかつフッ素、あるいはホウ素の溶出を同時に抑制できない処理方法に代わり、フッ素とホウ素を同時に、簡便でかつ安価に処理でき、かつ鉛と六価クロムの溶出を同時に抑制できる方法を提供し、処理後の燃焼灰を土壌汚染、水質汚染を起こす恐れなく土壌分野(埋め戻し材、盛土、土質改良材、路盤材等)用途に有効利用することを目的とする。   In the present invention, it is possible to treat fluorine and boron at the same time, simply and inexpensively, in place of the complicated and time-consuming process such as cement solidification and melting as described above, and the elution of fluorine or boron cannot be suppressed at the same time. In addition, we provide a method that can suppress the elution of lead and hexavalent chromium at the same time, and the soil field (backfill material, embankment, soil improvement material, roadbed material, etc.) without fear of causing soil contamination and water contamination of the treated combustion ash The purpose is to make effective use for the purpose.

本発明者らは、フッ素、ホウ素、鉛、六価クロムが、土壌汚染対策法で規制された土壌環境基準値以上溶出する燃焼灰から、これらの溶出を同時に抑制するために、簡便でかつ安価に処理できる方法について鋭意研究した結果、燃焼灰に硫酸を添加して充分撹拌し、次いで固液分離した後の残渣を、水ですすぎ洗浄して当該残渣に残る硫酸を充分に洗い流し、さらに残渣を脱水することで、環境省告示18号に基づく溶出試験方法での溶出pHを6〜9にすると共に、フッ素の溶出量を0.8mg/L以下にし、同時にホウ素の溶出量を1.0mg/L以下、鉛の溶出量を0.01mg/L以下、六価クロムの溶出量を0.05mg/L以下にでき、また、土壌汚染対策法で規制された他の全ての元素について、土壌環境基準値以下にできることを見出し、本発明を完成するに至った。   The inventors of the present invention are simple and inexpensive to suppress fluorine, boron, lead, and hexavalent chromium from combustion ash that elutes more than the soil environment standard value regulated by the Soil Contamination Countermeasures Law. As a result of diligent research on methods that can be treated, the sulfuric acid is added to the combustion ash and stirred sufficiently, and then the residue after solid-liquid separation is rinsed with water to thoroughly wash away the sulfuric acid remaining in the residue. The elution pH in the elution test method based on the Ministry of the Environment Notification No. 18 is reduced to 6-9, the fluorine elution amount is 0.8 mg / L or less, and the boron elution amount is 1.0 mg at the same time. / L or less, lead elution amount 0.01 mg / L or less, hexavalent chromium elution amount 0.05 mg / L or less, and all other elements regulated by the Soil Contamination Countermeasures Law Can be below environmental standards Heading the door, which resulted in the completion of the present invention.

本発明では、燃焼灰に硫酸を添加して撹拌し、燃焼灰に含まれるフッ素、ホウ素、鉛等を溶出させ、次いで固液分離させた後の残渣を、水ですすぎ処理を行うことで、燃焼灰に含まれるフッ素とホウ素と鉛と六価クロムの溶出を同時に抑制できる。これにより処理後の燃焼灰を、埋め戻し材、盛土、土質改良材、路盤材などの原料として、環境に悪影響を与えることなく利用することが可能となった。   In the present invention, sulfuric acid is added to the combustion ash and stirred to elute fluorine, boron, lead, etc. contained in the combustion ash, and then the residue after solid-liquid separation is rinsed with water, Elution of fluorine, boron, lead and hexavalent chromium contained in combustion ash can be suppressed at the same time. As a result, the treated combustion ash can be used as a raw material for a backfill material, embankment, soil improvement material, roadbed material and the like without adversely affecting the environment.

本発明のフロー概略図を示す。The flow schematic diagram of the present invention is shown.

本発明における燃焼灰とは、フッ素、ホウ素、鉛、六価クロムが同時に溶出するという点では、ボイラ燃料として石炭以外にもRPFや木屑を混焼した流動層型ボイラより排出されたガスから、バグフィルタなどで捕集された石炭を主燃料とした燃焼灰がより好適である。   The combustion ash in the present invention means that fluorine, boron, lead, and hexavalent chromium are eluted at the same time. Combustion ash using coal collected by a filter or the like as the main fuel is more preferable.

ただし、本発明に用いられる燃焼灰が、必ずしもフッ素、ホウ素、鉛、六価クロムが同時に溶出した燃焼灰に限定されたものではなく、それぞれ別個に溶出した燃焼灰にも適用できる。   However, the combustion ash used in the present invention is not necessarily limited to the combustion ash from which fluorine, boron, lead, and hexavalent chromium are eluted at the same time.

本発明による燃焼灰のフッ素、ホウ素、鉛、六価クロムの同時溶出抑制処理では、必ず硫酸を用いる。pHが酸性になると溶出が進むものもあり酸であれば溶出効果はあるが、硫酸がもっとも溶出効果が高いため好ましい。この時の硫酸の濃度は、0.2規定〜1.0規定のものが用いられる。硫酸の濃度が0.2規定より薄い場合は、燃焼灰に硫酸を添加した時、フッ素、ホウ素、鉛、六価クロムが十分に溶出せず、結果として充分な洗浄効果を得ることができないために適さない。逆に、硫酸の濃度が1.0規定より濃い場合は、燃焼灰に硫酸を添加した時点でフッ素、ホウ素、鉛、六価クロムは十分に溶出するが、洗浄処理後の残渣を、環境省告示18号による溶出試験を行った場合、溶出液のpHが4以下となり、結果としてこれらの元素の溶出量が基準値以下とならず、適さない。   In the simultaneous elution suppression treatment of fluorine, boron, lead and hexavalent chromium of combustion ash according to the present invention, sulfuric acid is always used. Some elution progresses when the pH becomes acidic, and if it is an acid, there is an elution effect, but sulfuric acid is preferred because it has the highest elution effect. The concentration of sulfuric acid at this time is 0.2 N to 1.0 N. If the concentration of sulfuric acid is less than 0.2N, when sulfuric acid is added to the combustion ash, fluorine, boron, lead and hexavalent chromium will not be sufficiently eluted, and as a result, a sufficient cleaning effect cannot be obtained. Not suitable for. Conversely, when the sulfuric acid concentration is higher than 1.0 N, fluorine, boron, lead, and hexavalent chromium are sufficiently eluted when sulfuric acid is added to the combustion ash. When the dissolution test according to Notification No. 18 was performed, the pH of the eluate was 4 or less, and as a result, the elution amount of these elements did not fall below the reference value, which is not suitable.

本発明における前記濃度の硫酸の量は、溶出させることだけに限定すれば、多ければ多いほど良いが、後処理やコストを考えれば、最適量は対燃焼灰質量の10〜15倍量である。0.2規定硫酸使用時の場合10倍量未満では、燃焼灰に硫酸を添加した時、フッ素、ホウ素、鉛、六価クロムが十分に溶出せず、結果として充分な洗浄効果を得ることができないために適さない。また、1.0規定硫酸使用時の場合には15倍を超えると、燃焼灰からこれらの元素を溶出させる点では問題ないが、コストがかかり、また後述する洗浄後の残渣のすすぎ水量も多く必要となるので、適さない。使用する硫酸の規定度により調整して使用する。   The amount of sulfuric acid having the above-mentioned concentration in the present invention is preferably as much as possible if it is limited to elution, but the optimum amount is 10 to 15 times the mass of combustion ash in view of post-treatment and cost. . When 0.2N sulfuric acid is used, if less than 10 times the amount, when sulfuric acid is added to the combustion ash, fluorine, boron, lead and hexavalent chromium are not sufficiently eluted, resulting in a sufficient cleaning effect. Not suitable for not being able to. In addition, when using 1.0 N sulfuric acid, if it exceeds 15 times, there is no problem in eluting these elements from the combustion ash, but it is costly and the amount of rinse water after washing, which will be described later, is large. Because it is necessary, it is not suitable. Adjust and use according to the normality of the sulfuric acid used.

本発明における、硫酸の添加方法は特に限定されるものではないが、燃焼灰と硫酸が十分に混合されることが望ましい。燃焼灰と硫酸を混合して脱水する設備としては、混合機は公知なものを用いることができるが、脱水機については、本発明では後述の残渣のすすぎが同時に必要となるため、ろ布やろ過板が耐酸性であるポリプロピレン製で、脱水後のケーキ洗浄が可能なフィルタープレスの類が好ましい。   The method for adding sulfuric acid in the present invention is not particularly limited, but it is desirable that the combustion ash and sulfuric acid are sufficiently mixed. As the equipment for mixing and dehydrating combustion ash and sulfuric acid, a known mixer can be used. However, since the present invention requires the rinsing of the residue described later, the filter cloth or A filter press made of polypropylene having a filter plate that is acid resistant and capable of washing the cake after dehydration is preferred.

本発明における洗浄残渣のすすぎ用の水の量は、対灰質量比で2倍〜5倍量必要である。
2倍未満ではすすぎ効果が不十分であり、5倍を超えた量を使用しても効果は頭打ちであるため好ましくない。
なお、すすぎを行なう目的は、燃焼灰を硫酸洗浄後、残渣に残った洗浄液を洗い落すことにより、洗浄残渣の環境省告示18号法による溶出試験のpHを6.0〜9.0に調整し、結果として残渣からのフッ素、ホウ素、鉛、六価クロムの溶出量を土壌汚染対策法の土壌環境基準値以下に抑制できる。
The amount of water for rinsing the cleaning residue in the present invention is required to be 2 to 5 times as much as the ash mass ratio.
If the amount is less than 2 times, the rinsing effect is insufficient, and even if an amount exceeding 5 times is used, the effect reaches a peak, which is not preferable.
The purpose of rinsing was to adjust the pH of the elution test according to the Ministry of the Environment Notification No. 18 method to 6.0 to 9.0 by washing off the washing liquid remaining in the residue after washing the combustion ash with sulfuric acid. As a result, the elution amount of fluorine, boron, lead, and hexavalent chromium from the residue can be suppressed below the soil environment standard value of the Soil Contamination Countermeasures Law.

本発明におけるすすぎに用いる水としては、土壌汚染対策法で規定された物質が含有しないのであれば、特に限定するものではない。例えば、純水、イオン交換水、水道水などがあるが、その後の微量分析を行なうことを考慮すれば、純水やイオン交換水が好適に用いられる。しかし、設備が拡大化され、大量のすすぎ水が必要となる場合は、水道水、あるいは工業用水でもかまわない。   The water used for rinsing in the present invention is not particularly limited as long as it does not contain a substance specified by the Soil Contamination Countermeasures Law. For example, pure water, ion-exchanged water, tap water, and the like can be used. In consideration of subsequent trace analysis, pure water or ion-exchanged water is preferably used. However, if the facilities are expanded and a large amount of rinse water is required, tap water or industrial water may be used.

以下に実施例及び比較例を挙げて本発明を具体的に説明するが、もちろん本発明はこれらによってなんら制限されるものではない。なお、特に示さない限り、燃焼灰は請求項1記載の燃焼灰(=石炭灰)で、ロット(ボイラ焼却時の燃料組成)の異なる石炭灰(1)、石炭灰(2)を用いた。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Unless otherwise indicated, the combustion ash is the combustion ash (= coal ash) according to claim 1, and coal ash (1) and coal ash (2) having different lots (fuel composition at the time of boiler incineration) were used.

1.石炭灰(1)の性状
石炭灰(1)の性状はつぎの通りである。
ボイラ燃料組成として、石炭(低品位炭)70%、RPF20%、木屑5%、その他5%である、流動層型ボイラのバグフィルタで捕集された飛灰を用いた。なお、本石炭灰の主組成は、蛍光X線で測定した結果、SiOとして50.62%、Alとして26.54%、CaOとして8.43%、その他、であった。また、平成15年環境省告示18号に基づく溶出試験法に従い、石炭灰からの溶出量を測定した結果、フッ素の溶出量が8.0mg/L、ホウ素の溶出量は検出下限値である0.1mg/L以下、鉛の溶出量は0.02mg/L、六価クロムの溶出量は0.02mg/Lであった。土壌汚染対策法で規定されたその他の元素の溶出量は全て基準値以下であった。なお、溶出液のpHは12.6であった。
1. Properties of coal ash (1) Properties of coal ash (1) are as follows.
As the boiler fuel composition, fly ash collected by a bug filter of a fluidized bed boiler, which is 70% coal (low-grade coal), 20% RPF, 5% wood chips, and 5% others, was used. The main composition of the present coal ash, the result of measurement by X-ray fluorescence, 50.62% as SiO 2, 26.54% in Al 2 O 3, 8.43 percent CaO, was others. Moreover, as a result of measuring the amount of elution from coal ash according to the dissolution test method based on Notification No. 18 of the Ministry of the Environment in 2003, the amount of fluorine eluted was 8.0 mg / L, and the amount of boron eluted was the lower limit of detection. .1 mg / L or less, the elution amount of lead was 0.02 mg / L, and the elution amount of hexavalent chromium was 0.02 mg / L. The amount of elution of other elements stipulated by the Soil Contamination Countermeasures Law was below the standard value. The pH of the eluate was 12.6.

2.石炭灰(2)の性状
石炭灰(2)の性状はつぎの通りである。
ボイラ燃料組成として、石炭(低品位炭)65%、RPF25%、木屑5%、その他5%である、流動層型ボイラのバグフィルタで捕集された飛灰を用いた。なお、本石炭灰の主組成は、蛍光X線で測定した結果、SiOとして46.52%、Alとして25.14%、CaOとして11.37%、その他、であった。また、平成15年環境省告示18号に基づく溶出試験法に従い、石炭灰からの溶出量を測定した結果、フッ素の溶出量が6.7mg/L、ホウ素の溶出量は検出下限値である0.1mg/L以下、鉛の溶出量は0.04mg/L、六価クロムの溶出量は0.02mg/Lであった。土壌汚染対策法で規定されたその他の元素の溶出量は全て基準値以下であった。なお、溶出液のpHは13.0であった。
2. Properties of coal ash (2) Properties of coal ash (2) are as follows.
As boiler fuel composition, fly ash collected with a bug filter of a fluidized bed boiler, which is 65% coal (low-grade coal), 25% RPF, 5% wood chips, and 5% others, was used. The main composition of the present coal ash, the result of measurement by X-ray fluorescence, 46.52% as SiO 2, 25.14% in Al 2 O 3, 11.37 percent CaO, was others. Moreover, as a result of measuring the amount of elution from coal ash according to the dissolution test method based on Notification No. 18 of the Ministry of the Environment in 2003, the amount of fluorine eluted was 6.7 mg / L, and the amount of boron eluted was the lower detection limit. .1 mg / L or less, the elution amount of lead was 0.04 mg / L, and the elution amount of hexavalent chromium was 0.02 mg / L. The amount of elution of other elements stipulated by the Soil Contamination Countermeasures Law was below the standard value. The pH of the eluate was 13.0.

(A)溶出試験方法
平成15年環境省告示第18号に順じて行なった。すなわち、試料を充分風乾後、非金属製である目開き2mmの篩を通過させたもの50gを、1,000mLの蓋つきのポリエチレン容器に取り、純水(pH5.8〜6.3)を500mL加えて試料液を調整した。この試料液を、常温、大気圧下で、産廃溶出振とう機(タイテック社製)を用いて6時間連続振とうした(振とう幅4〜5cm、振動数200回/分)。ついで、振とう後の試料液を、30分間静置した後、毎分約3,000回転で20分間遠心分離した。上澄み液を孔径0.45μmのメンブレンフィルターでろ過し、ろ液を取り、定量に必要な量を正確に計り取り、これを検液とした。
(B)フッ素の測定方法
検液をイオンクロマトグラフ(ICS-2000/(株)日本ダイオネクス社製)で定量した(JIS K 0102の34.2、水質環境基準告示付表6)。
(C)ホウ素の測定方法
検液をICP発光分光分析装置(CIROS-120/(株)リガク社製)で定量した(JIS K 0102の47.3)。
(D)六価クロムの測定方法
検液をジフェニルカルバミド吸光光度計で定量した(JIS K 0102の65.2.1)。
(E)セレンの測定方法
検液を水素化物発生ICP発光分光分析法で定量した(JIS K 0102の67.2)。
(F)ヒ素の測定方法
検液を水素化物発生ICP発光分光分析法で定量した(JIS K 0102の61.3)。
(G)鉛の測定方法
検液をICP発光分光分析法で定量した(JIS K 0102の54.3)。
(H)カドミウムの測定方法
検液をICP発光分光分析法で定量した(JIS K 0102の55.3)。
(I)pHの測定
検液を電極型pHメーター((株)メトラ社製)で測定した(JIS Z 8802−1984)。
(A) Dissolution test method The dissolution test was conducted in accordance with the Ministry of the Environment Notification No. 18 in 2003. That is, after the sample was sufficiently air-dried, 50 g of a non-metallic sieve having a mesh opening of 2 mm was passed through a 1,000 mL polyethylene container with a lid, and 500 mL of pure water (pH 5.8 to 6.3) was added. In addition, a sample solution was prepared. This sample solution was shaken continuously for 6 hours at room temperature and atmospheric pressure using an industrial waste elution shaker (manufactured by Tytec Co., Ltd.) (shaking width: 4 to 5 cm, vibration frequency: 200 times / min). Next, the sample solution after shaking was allowed to stand for 30 minutes, and then centrifuged at about 3,000 rpm for 20 minutes. The supernatant was filtered through a membrane filter having a pore size of 0.45 μm, the filtrate was taken, the amount required for quantification was accurately measured, and this was used as a test solution.
(B) Fluorine measurement method The test solution was quantified with an ion chromatograph (ICS-2000 / manufactured by Nippon Dionex Co., Ltd.) (JIS K 0102 34.2, Table 6 with water quality environmental standard notice).
(C) Boron Measurement Method The test solution was quantified with an ICP emission spectroscopic analyzer (CIROS-120 / manufactured by Rigaku Corporation) (47.3 of JIS K 0102).
(D) Method for measuring hexavalent chromium The test solution was quantified with a diphenylcarbamide absorptiometer (JIS K 0102 65.2.1).
(E) Method for measuring selenium The test solution was quantified by hydride generation ICP emission spectrometry (JIS K 0102 67.2).
(F) Arsenic Measurement Method The test solution was quantified by hydride generation ICP emission spectrometry (JIS K 0102 61.3).
(G) Lead measurement method The test solution was quantified by ICP emission spectroscopic analysis (JIS K 0102 54.3).
(H) Method for measuring cadmium The test solution was quantified by ICP emission spectroscopic analysis (JIS K 0102 55.3).
(I) Measurement of pH The test solution was measured with an electrode-type pH meter (manufactured by Metra Co., Ltd.) (JIS Z 8802-1984).

実施例1
絶乾質量100gの石炭灰(1)に対し、0.2規定の硫酸を1,000mL混合後、マグネティックスターラーで30分間、充分に撹拌した。撹拌後、混合液をブフナー漏斗にNo.2定性用ろ紙を引き、アスピレーターによる吸引ろ過にて固液分離を行った。充分に洗浄液を分離後、アスピレーターで吸引させながら、すすぎ用洗浄水200mLを残渣に注いだ後、すすぎ液も充分に吸引分離させ、残渣を得た。残渣は風乾後、平成15年環境省告示18号に準拠し、残渣の溶出試験を行った。洗浄ろ液のpHは3.8、すすぎ後の残渣の溶出液のpHは8.1、フッ素の溶出量は0.6mg/L、ホウ素の溶出量は0.3mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 1
To coal ash (1) having an absolute dry mass of 100 g, 1,000 mL of 0.2 N sulfuric acid was mixed, and then sufficiently stirred with a magnetic stirrer for 30 minutes. After stirring, the mixture was placed in a Buchner funnel with No. Two qualitative filter papers were drawn, and solid-liquid separation was performed by suction filtration using an aspirator. After sufficiently separating the cleaning solution, 200 mL of rinse water for rinsing was poured into the residue while suctioning with an aspirator, and then the rinsing solution was sufficiently sucked and separated to obtain a residue. After the residue was air-dried, the residue was subjected to a dissolution test in accordance with 2003 Ministry of the Environment Notification No. 18. The pH of the washing filtrate is 3.8, the pH of the eluate of the residue after rinsing is 8.1, the elution amount of fluorine is 0.6 mg / L, the elution amount of boron is 0.3 mg / L, the elution amount of lead Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例2
実施例1の硫酸の量を1,000mLから1,200mLに変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは3.5、すすぎ後の残渣の溶出液のpHは8.1、フッ素の溶出量は0.6mg/L、ホウ素の溶出量は0.2mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 2
The same operation as in Example 1 was performed except that the amount of sulfuric acid in Example 1 was changed from 1,000 mL to 1,200 mL. The pH of the washing filtrate is 3.5, the pH of the residue eluate after rinsing is 8.1, the fluorine elution amount is 0.6 mg / L, the boron elution amount is 0.2 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例3
実施例1の硫酸の濃度を0.2規定から0.3規定に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは2.4、すすぎ後の残渣の溶出液のpHは8.2、フッ素の溶出量は0.7mg/L、ホウ素の溶出量は0.1mg/L以下(検出下限値以下) 鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 3
The same operation as in Example 1 was performed except that the concentration of sulfuric acid in Example 1 was changed from 0.2 N to 0.3 N. The pH of the washing filtrate is 2.4, the pH of the eluate of the residue after rinsing is 8.2, the elution amount of fluorine is 0.7 mg / L, and the elution amount of boron is 0.1 mg / L or less (lower limit of detection) Below) The lead elution amount is 0.01 mg / L or less which is the detection limit, the elution amount of hexavalent chromium is 0.01 mg / L or less which is the detection limit, and other elements are also soil environmental standards of the Soil Contamination Countermeasures Law. It was below the value.

実施例4
実施例1の硫酸の濃度を0.2規定から0.3規定に、硫酸の量を1,000mLから1,200mLに変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは2.1、すすぎ後の残渣の溶出液のpHは7.8、フッ素の溶出量は0.4mg/L、ホウ素の溶出量は0.5mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 4
The same operation as in Example 1 was performed, except that the concentration of sulfuric acid in Example 1 was changed from 0.2 N to 0.3 N and the amount of sulfuric acid was changed from 1,000 mL to 1,200 mL. The pH of the washing filtrate is 2.1, the pH of the eluate of the residue after rinsing is 7.8, the fluorine elution amount is 0.4 mg / L, the boron elution amount is 0.5 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例5
実施例1の硫酸の濃度を0.2規定から0.5規定に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは2.1、すすぎ後の残渣の溶出液のpHは7.5、フッ素の溶出量は0.3mg/L、ホウ素の溶出量は0.6mg/L、 鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 5
The same operation as in Example 1 was performed except that the concentration of sulfuric acid in Example 1 was changed from 0.2 N to 0.5 N. The pH of the washing filtrate is 2.1, the pH of the eluate of the residue after rinsing is 7.5, the elution amount of fluorine is 0.3 mg / L, the elution amount of boron is 0.6 mg / L, the elution amount of lead Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例6
実施例1の硫酸の濃度を0.2規定から0.7規定に、また灰と硫酸混合液の撹拌時間を30分から20分に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは2.0、すすぎ後の残渣の溶出液のpHは7.2、フッ素の溶出量は0.1mg/L、ホウ素の溶出量は0.8mg/L、 鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 6
The same operation as in Example 1 was performed, except that the concentration of sulfuric acid in Example 1 was changed from 0.2 N to 0.7 N, and the stirring time of the ash and sulfuric acid mixed solution was changed from 30 minutes to 20 minutes. The pH of the washing filtrate is 2.0, the pH of the residue eluate after rinsing is 7.2, the fluorine elution amount is 0.1 mg / L, the boron elution amount is 0.8 mg / L, the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例7
実施例1の硫酸濃度を0.2規定から1.0規定に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは0.47、すすぎ後の残渣の溶出液のpHは7.5、フッ素の溶出量は0.6mg/L、ホウ素の溶出量は0.8mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 7
The same operation as in Example 1 was performed, except that the sulfuric acid concentration in Example 1 was changed from 0.2 N to 1.0 N. The pH of the washing filtrate is 0.47, the pH of the eluate of the residue after rinsing is 7.5, the fluorine elution amount is 0.6 mg / L, the boron elution amount is 0.8 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例8
実施例1の硫酸の量を1,000mLから1,500mLに変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは2.4、フッ素の溶出量は0.3mg/L、ホウ素の溶出量は0.7mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 8
The same operation as in Example 1 was performed except that the amount of sulfuric acid in Example 1 was changed from 1,000 mL to 1,500 mL. The pH of the washing filtrate is 2.4, the elution amount of fluorine is 0.3 mg / L, the elution amount of boron is 0.7 mg / L, the elution amount of lead is 0.01 mg / L or less, which is the detection limit, hexavalent The amount of chromium elution was 0.01 mg / L or less, which is the detection limit, and other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例9
実施例3の石炭灰を、石炭灰(1)から石炭灰(2)に変えた以外は、実施例3と同様の操作を行なった。洗浄ろ液のpHは3.1、すすぎ後の残渣の溶出液のpHは7.1、フッ素の溶出量は0.4mg/L、ホウ素の溶出量は0.4mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 9
The same operation as in Example 3 was performed except that the coal ash of Example 3 was changed from coal ash (1) to coal ash (2). The pH of the washing filtrate is 3.1, the pH of the eluate of the residue after rinsing is 7.1, the fluorine elution amount is 0.4 mg / L, the boron elution amount is 0.4 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例10
実施例1の石炭灰を、石炭灰(1)から石炭灰(2)へ、撹拌時間を30分から20分に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは2.9、すすぎ後の残渣の溶出液のpHは8.3、フッ素の溶出量は0.5mg/L、ホウ素の溶出量は0.3mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 10
The same operation as in Example 1 was performed, except that the coal ash of Example 1 was changed from coal ash (1) to coal ash (2) and the stirring time was changed from 30 minutes to 20 minutes. The pH of the washing filtrate is 2.9, the pH of the eluate of the residue after rinsing is 8.3, the elution amount of fluorine is 0.5 mg / L, the elution amount of boron is 0.3 mg / L, and the elution amount of lead Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例11
実施例10の撹拌時間を20分から60分に変えた以外は、実施例10と同様の操作を行なった。洗浄ろ液のpHは3.2、すすぎ後の残渣の溶出液のpHは7.9、フッ素の溶出量は0.3mg/L、ホウ素の溶出量は0.5mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 11
The same operation as in Example 10 was performed except that the stirring time in Example 10 was changed from 20 minutes to 60 minutes. The pH of the washing filtrate is 3.2, the pH of the eluate of the residue after rinsing is 7.9, the fluorine elution amount is 0.3 mg / L, the boron elution amount is 0.5 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例12
実施例3の石炭灰を、石炭灰(1)から石炭灰(2)へ、すすぎ用洗浄水の量を200mLから500mLに変えた以外は、実施例3と同様の操作を行なった。洗浄ろ液のpHは3.9、すすぎ後の残渣の溶出液のpHは8.1、フッ素の溶出量は0.5mg/L、ホウ素の溶出量は0.4mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 12
The same operation as in Example 3 was performed except that the coal ash of Example 3 was changed from coal ash (1) to coal ash (2) and the amount of rinse water for rinsing was changed from 200 mL to 500 mL. The pH of the washing filtrate is 3.9, the pH of the eluate of the residue after rinsing is 8.1, the elution amount of fluorine is 0.5 mg / L, the elution amount of boron is 0.4 mg / L, and the elution amount of lead Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例13
実施例3の石炭灰を、石炭灰(1)から石炭灰(2)へ、硫酸の量を1,000mLから1,500mLへ、すすぎ用洗浄水の量を200mLから500mLに変えた以外は、実施例3と同様の操作を行なった。洗浄ろ液のpHは3.8、すすぎ後の残渣の溶出液のpHは7.9、フッ素の溶出量は0.6mg/L、ホウ素の溶出量は0.4mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 13
Except for changing the coal ash of Example 3 from coal ash (1) to coal ash (2), the amount of sulfuric acid from 1,000 mL to 1,500 mL, and the amount of rinse water for rinsing from 200 mL to 500 mL, The same operation as in Example 3 was performed. The pH of the washing filtrate is 3.8, the pH of the eluate of the residue after rinsing is 7.9, the fluorine elution amount is 0.6 mg / L, the boron elution amount is 0.4 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例14
絶乾質量1kgの石炭灰(2)に対し、0.3規定の硫酸を10L混合後、撹拌装置で30分、充分に撹拌した。撹拌後、混合液をスラリー供給ポンプにて(株)マキノ社製の「圧搾フィルタープレス」を使用し、フィルタープレスろ過板に吸着させ、注水ポンプにてすすぎ水2Lを逆洗方法で圧水した。その後、エアブローにてフィルターマッドを剥ぎ取り、残渣を得た。処理後の残渣について、平成15年環境省告示18号に準拠し、溶出試験を行った。洗浄ろ液のpHは3.6、すすぎ後の残渣の溶出液のpHは7.6、フッ素の溶出量は0.2mg/L、ホウ素の溶出量は0.5mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 14
After 10 L of 0.3 N sulfuric acid was mixed with 1 kg of coal ash (2) having an absolutely dry mass, the mixture was sufficiently stirred for 30 minutes with a stirrer. After stirring, the mixed solution was adsorbed on a filter press filter plate using a “pressing filter press” manufactured by Makino Co., Ltd. with a slurry supply pump, and 2 L of rinsing water was pressurized with a backwash method using a water injection pump. . Thereafter, the filter mud was peeled off by air blow to obtain a residue. About the residue after a process, the elution test was done based on the Ministry of the Environment notification No. 18 in 2003. The pH of the washing filtrate is 3.6, the pH of the residue eluate after rinsing is 7.6, the fluorine elution amount is 0.2 mg / L, the boron elution amount is 0.5 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例15
実施例14の、逆洗によるすすぎ水の量を2Lから5Lに変えた以外は、実施例14と同様の操作を行なった。洗浄ろ液のpHは3.7、すすぎ後の残渣の溶出液のpHは7.5、フッ素の溶出量は0.4mg/L、ホウ素の溶出量は0.4mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 15
The same operation as in Example 14 was performed except that the amount of rinse water by backwashing in Example 14 was changed from 2 L to 5 L. The pH of the washing filtrate is 3.7, the pH of the eluate of the residue after rinsing is 7.5, the fluorine elution amount is 0.4 mg / L, the boron elution amount is 0.4 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

実施例16
実施例14の、0.3規定の硫酸から0.4規定の硫酸に変えた以外は、実施例14と同様の操作を行なった。洗浄ろ液のpHは3.5、すすぎ後の残渣の溶出液のpHは8.1、フッ素の溶出量は0.4mg/L、ホウ素の溶出量は0.3mg/L、鉛の溶出量は検出限界である0.01mg/L以下、六価クロムの溶出量は検出限界である0.01mg/L以下であり、その他の元素も土壌汚染対策法の土壌環境基準値以下であった。
Example 16
The same operation as in Example 14 was performed, except that 0.3 N sulfuric acid in Example 14 was changed to 0.4 N sulfuric acid. The pH of the washing filtrate is 3.5, the pH of the residue eluate after rinsing is 8.1, the fluorine elution amount is 0.4 mg / L, the boron elution amount is 0.3 mg / L, and the lead elution amount Was 0.01 mg / L or less, which was the detection limit, and the elution amount of hexavalent chromium was 0.01 mg / L or less, which was the detection limit. Other elements were also below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例1
実施例1において、硫酸混合・撹拌後、固液分離脱水後、すすぎ処理を行わず、平成15年環境省告示18号に準拠し、残渣の溶出試験を行った。洗浄ろ液のpHは3.8、残渣の溶出液のpHは7.4、フッ素の溶出量は1.4mg/L、ホウ素の溶出量は1.0mg/Lであり、いずれも土壌汚染対策法の環境基準値かそれ以上溶出した。またその他の元素は土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 1
In Example 1, after mixing and stirring with sulfuric acid, after solid-liquid separation and dehydration, no rinsing treatment was performed, and a residue elution test was performed in accordance with Notification No. 18 of the Ministry of the Environment in 2003. The pH of the washing filtrate was 3.8, the pH of the residue eluate was 7.4, the fluorine elution amount was 1.4 mg / L, and the boron elution amount was 1.0 mg / L. Elution was more than the environmental standard value of the law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例2
実施例3において、硫酸混合・撹拌後、固液分離脱水後、すすぎ処理を行わず、平成15年環境省告示18号に準拠し、残渣の溶出試験を行った。洗浄ろ液のpHは1.7、残渣の溶出液のpHは7.7、フッ素の溶出量は2.5mg/L、ホウ素の溶出量は0.9mg/Lであり、フッ素が土壌汚染対策法の環境基準値以上溶出した。またその他の元素は土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 2
In Example 3, after mixing and stirring with sulfuric acid, after solid-liquid separation and dehydration, no rinsing treatment was performed, and a residue elution test was performed in accordance with Notification No. 18 of the Ministry of the Environment in 2003. The pH of the washing filtrate is 1.7, the pH of the residue eluate is 7.7, the fluorine elution amount is 2.5 mg / L, and the boron elution amount is 0.9 mg / L. Elution exceeded the environmental standard value of the law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例3
実施例8において、硫酸混合・撹拌後、固液分離脱水後、すすぎ処理を行わず、平成15年環境省告示18号に準拠し、残渣の溶出試験を行った。洗浄ろ液のpHは3.1、残渣の溶出液のpHは7.7、フッ素の溶出量は1.9mg/L、ホウ素の溶出量は0.9mg/Lであり、フッ素が土壌汚染対策法の環境基準値以上溶出した。またその他の元素は土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 3
In Example 8, after mixing and stirring with sulfuric acid, after solid-liquid separation and dehydration, no rinsing treatment was performed, and a residue elution test was performed in accordance with Notification No. 18 of the Ministry of the Environment in 2003. The pH of the washing filtrate is 3.1, the pH of the residue eluate is 7.7, the fluorine elution amount is 1.9 mg / L, and the boron elution amount is 0.9 mg / L. Elution exceeded the environmental standard value of the law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例4
実施例1において、硫酸の濃度を0.2規定から0.1規定に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは10.9、すすぎ後の残渣の溶出液のpHは9.2、フッ素の溶出量は3.9mg/Lでホウ素の溶出量は0.6mg/Lであり、フッ素が土壌汚染対策法の土壌環境基準値以上溶出した。
Comparative Example 4
In Example 1, the same operation as in Example 1 was performed, except that the concentration of sulfuric acid was changed from 0.2 N to 0.1 N. The pH of the washing filtrate is 10.9, the pH of the eluate of the residue after rinsing is 9.2, the elution amount of fluorine is 3.9 mg / L, and the elution amount of boron is 0.6 mg / L. Elution exceeded the soil environmental standard value of the Soil Contamination Countermeasures Law.

比較例5
実施例1において、硫酸の濃度を0.2規定から1.5規定に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは0.7、すすぎ後の残渣の溶出液のpHは4.0、フッ素の溶出量は7.1mg/Lでホウ素の溶出量は1.0mg/Lであり、フッ素とホウ素ともに土壌汚染対策法の環境基準値以上溶出した。また、その他の元素は土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 5
In Example 1, the same operation as in Example 1 was performed except that the concentration of sulfuric acid was changed from 0.2 N to 1.5 N. The pH of the washing filtrate is 0.7, the pH of the eluate of the residue after rinsing is 4.0, the elution amount of fluorine is 7.1 mg / L, and the elution amount of boron is 1.0 mg / L. Both boron were eluted above the environmental standard value of the Soil Contamination Countermeasures Law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例6
実施例1において、洗浄用の0.2規定硫酸を水(イオン交換水)に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは12.8、すすぎ後の残渣の溶出液のpHは9.3、フッ素の溶出量は4.1mg/Lでホウ素の溶出量は5.2mg/Lであり、フッ素とホウ素ともに土壌汚染対策法の環境基準値以上溶出した。また、その他の元素は土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 6
In Example 1, the same operation as in Example 1 was carried out except that 0.2 N sulfuric acid for washing was changed to water (ion exchange water). The pH of the washing filtrate is 12.8, the pH of the eluate of the residue after rinsing is 9.3, the elution amount of fluorine is 4.1 mg / L, and the elution amount of boron is 5.2 mg / L. Both boron were eluted above the environmental standard value of the Soil Contamination Countermeasures Law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例7
実施例1において、洗浄用の0.2規定硫酸を、0.1規定希塩酸に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは11.7、すすぎ後の残渣の溶出液のpHは9.2、フッ素の溶出量は5.0mg/L、ホウ素の溶出量は2.8mg/Lであり、フッ素とホウ素ともに土壌汚染対策法の環境基準値以上溶出した。また、その他の元素は、土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 7
In Example 1, the same operation as in Example 1 was performed except that 0.2 N sulfuric acid for washing was changed to 0.1 N dilute hydrochloric acid. The pH of the washing filtrate is 11.7, the pH of the eluate of the residue after rinsing is 9.2, the elution amount of fluorine is 5.0 mg / L, and the elution amount of boron is 2.8 mg / L. Both boron were eluted above the environmental standard value of the Soil Contamination Countermeasures Law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例8
実施例1において、洗浄用の0.2規定硫酸を、0.2規定希塩酸に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは11.5、すすぎ後の残渣の溶出液のpHは9.1、フッ素の溶出量は3.9mg/L、ホウ素の溶出量は1.2mg/Lであり、フッ素とホウ素ともに土壌汚染対策法の環境基準値以上溶出した。また、その他の元素は、土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 8
In Example 1, the same operation as in Example 1 was performed except that 0.2 N sulfuric acid for washing was changed to 0.2 N dilute hydrochloric acid. The pH of the washing filtrate is 11.5, the pH of the eluate of the residue after rinsing is 9.1, the fluorine elution amount is 3.9 mg / L, and the boron elution amount is 1.2 mg / L. Both boron were eluted above the environmental standard value of the Soil Contamination Countermeasures Law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例9
実施例1において、洗浄用の0.2規定硫酸を、0.3規定希塩酸に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは8.1、すすぎ後の残渣の溶出液のpHは8.4、フッ素の溶出量は1.7mg/L、ホウ素の溶出量は2.2mg/Lであり、フッ素とホウ素ともに土壌汚染対策法の環境基準値以上溶出した。また、その他の元素は、土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 9
In Example 1, the same operation as in Example 1 was performed except that 0.2 N sulfuric acid for washing was changed to 0.3 N dilute hydrochloric acid. The pH of the washing filtrate is 8.1, the pH of the eluate of the residue after rinsing is 8.4, the elution amount of fluorine is 1.7 mg / L, and the elution amount of boron is 2.2 mg / L. Both boron were eluted above the environmental standard value of the Soil Contamination Countermeasures Law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

比較例10
実施例1において、洗浄用の0.2規定硫酸を、0.5規定希塩酸に変えた以外は、実施例1と同様の操作を行なった。洗浄ろ液のpHは5.1、すすぎ後の残渣の溶出液のpHは8.2、フッ素の溶出量は0.9mg/L、ホウ素の溶出量は2.4mg/Lであり、フッ素とホウ素ともに土壌汚染対策法の環境基準値以上溶出した。また、その他の元素は、土壌汚染対策法の土壌環境基準値以下であった。
Comparative Example 10
In Example 1, the same operation as in Example 1 was performed except that 0.2 N sulfuric acid for washing was changed to 0.5 N dilute hydrochloric acid. The pH of the washing filtrate is 5.1, the pH of the eluate of the residue after rinsing is 8.2, the fluorine elution amount is 0.9 mg / L, and the boron elution amount is 2.4 mg / L. Both boron were eluted above the environmental standard value of the Soil Contamination Countermeasures Law. In addition, other elements were below the soil environment standard value of the Soil Contamination Countermeasures Law.

Figure 2011224464
Figure 2011224464

Figure 2011224464
Figure 2011224464

実施例1〜16と比較例1〜10を比較することから明らかなように、燃料として石炭を主に、RPFや木屑も混焼させているボイラの燃焼灰に、一定濃度の硫酸を加えて混合してフッ素とホウ素、鉛、六価クロムを溶出させ、次いで固液分離させた残渣に一定量の水を注ぐことによるすすぎ洗浄を行い、当該処理残渣内に残留する前記硫酸溶液及びフッ素、ホウ素、鉛、六価クロムを除去し、次いで、すすぎ洗浄後の残渣を脱水処理させることで、平成15年環境省告示第18号に基づく溶出試験による当該残渣からのフッ素の溶出量を0.8mg/L以下、ホウ素の溶出量を1.0mg/L以下、鉛の溶出量を0.01mg/L以下、六価クロムの溶出量を0.05mg/L以下にすることができる(その他の土壌汚染対策法規制元素も、全て土壌環境基準値以下となる)。
これにより、石炭灰からの全ての環境影響元素の溶出量を、土壌汚染対策法の土壌環境基準値以下にでき、安全に土壌分野へ利用することが可能となった。
As is clear from comparing Examples 1 to 16 and Comparative Examples 1 to 10, coal is mainly used as a fuel, and a certain concentration of sulfuric acid is added to and mixed with the combustion ash of a boiler that also co-fires RPF and wood chips. Then, the sulfuric acid solution and the fluorine and boron remaining in the treatment residue are washed by pouring a certain amount of water into the residue obtained by eluting fluorine, boron, lead and hexavalent chromium and then separating the solid and liquid. , Lead and hexavalent chromium are removed, and then the residue after rinsing is dehydrated, so that the amount of fluorine eluted from the residue by the dissolution test based on the Ministry of the Environment Notification No. 18 in 2003 is 0.8 mg. / L or less, boron elution amount 1.0 mg / L or less, lead elution amount 0.01 mg / L or less, hexavalent chromium elution amount 0.05 mg / L or less (other soils) Pollution control law regulatory elements All equal to or less than the soil environment reference value).
As a result, the amount of elution of all environmental impact elements from coal ash could be reduced below the soil environment standard value of the Soil Contamination Countermeasures Law, and it became possible to use it safely in the soil field.

Claims (2)

燃焼灰と0.2規定〜1.0規定濃度の硫酸溶液を、固液比が1:10〜1:15で混合した後、固液分離してフッ素とホウ素を溶出除去した後、固液分離した燃焼灰をすすぎ洗浄し、更に固液分離することによって、平成15年環境省告示第18号の溶出試験法にて測定した場合の、燃焼灰の溶出pHを6〜9とすると共に、フッ素、ホウ素、鉛、六価クロムの溶出量を同時に土壌環境基準値以下とする燃焼灰の処理方法。 Combustion ash and a sulfuric acid solution having a concentration of 0.2 N to 1.0 N are mixed at a solid-liquid ratio of 1:10 to 1:15, and then solid-liquid separation is performed to elute and remove fluorine and boron. By rinsing and washing the separated combustion ash and further solid-liquid separation, the elution pH of combustion ash when measured by the dissolution test method of the Ministry of the Environment Notification No. 18 in 2003 is set to 6-9, Combustion ash treatment method in which the elution amount of fluorine, boron, lead and hexavalent chromium is simultaneously below the soil environmental standard value. 前記燃焼灰が、石炭を主燃料とし、RPF(Refuse Paper & Plastic Fuel )や木屑なども混焼した、流動層型ボイラなどの燃焼設備より排出されたガスから、バグフィルタや電気集塵器などで捕集されたものであることを特徴とする請求項1記載の燃焼灰の処理方法。 The combustion ash is mainly produced from coal, mixed with RPF (Refuse Paper & Plastic Fuel) and wood chips, etc., and discharged from combustion facilities such as fluidized bed boilers, using bag filters and electric dust collectors. The method for treating combustion ash according to claim 1, wherein the combustion ash is collected.
JP2010096559A 2010-04-20 2010-04-20 Method of treating combustion ash Pending JP2011224464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096559A JP2011224464A (en) 2010-04-20 2010-04-20 Method of treating combustion ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096559A JP2011224464A (en) 2010-04-20 2010-04-20 Method of treating combustion ash

Publications (1)

Publication Number Publication Date
JP2011224464A true JP2011224464A (en) 2011-11-10

Family

ID=45040524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096559A Pending JP2011224464A (en) 2010-04-20 2010-04-20 Method of treating combustion ash

Country Status (1)

Country Link
JP (1) JP2011224464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671928A (en) * 2012-05-07 2012-09-19 四川川润环保能源科技有限公司 Method for sorting and comprehensively using urban mixed garbage
CN102744237A (en) * 2012-01-06 2012-10-24 深圳城市诺必达节能环保有限公司 Food waste treatment method and novel food waste comprehensive treatment system
JP2014025848A (en) * 2012-07-27 2014-02-06 Sumitomo Metal Mining Co Ltd Elution test method for slag, and method for measuring elution amount
CN114289477A (en) * 2020-10-06 2022-04-08 台湾地区“炜业中央投资有限公司” Fly ash treatment method, method for obtaining metal hydroxide and method for preparing industrial salt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744237A (en) * 2012-01-06 2012-10-24 深圳城市诺必达节能环保有限公司 Food waste treatment method and novel food waste comprehensive treatment system
CN102671928A (en) * 2012-05-07 2012-09-19 四川川润环保能源科技有限公司 Method for sorting and comprehensively using urban mixed garbage
JP2014025848A (en) * 2012-07-27 2014-02-06 Sumitomo Metal Mining Co Ltd Elution test method for slag, and method for measuring elution amount
CN114289477A (en) * 2020-10-06 2022-04-08 台湾地区“炜业中央投资有限公司” Fly ash treatment method, method for obtaining metal hydroxide and method for preparing industrial salt
JP2022061480A (en) * 2020-10-06 2022-04-18 ▲イ▼業中央投資有限公司 Fly ash processing method, metal hydroxide acquisition method and industrial salt manufacturing method

Similar Documents

Publication Publication Date Title
Li et al. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus
JP4826089B2 (en) Combustion ash treatment method
Sun et al. pH evolution during water washing of incineration bottom ash and its effect on removal of heavy metals
JP5647371B1 (en) Detoxification method for contaminated soil
Liang et al. Phosphorus recovery from incinerated sewage sludge ash (ISSA) and reutilization of residues for sludge pretreated by different conditioners
JP6503898B2 (en) Processing method of incineration ash
JP2009195791A (en) Treatment method of incineration ash
CN101333084A (en) Technological process for preprocessing refuse burning fly-ash to be cement raw materials
CN101337732B (en) Method for reducing dissolution of noxious heavy metal components
JP2011224464A (en) Method of treating combustion ash
CN103693710A (en) Preparation and oil-water separation method of humic acid modified fly ash magnetic material
JP2006198505A (en) Processing method of combustion ash
KR20210080813A (en) Method for MSWI stabilization using alkaline extraction and capture solution
JP5540286B2 (en) Roadbed material and method for manufacturing the same
Li et al. Distribution and speciation of heavy metals in two different sludge composite conditioning and deep dewatering processes
JP2007296414A (en) Detoxification treatment method of coal fly ash and detoxification treatment apparatus
Feng et al. Regeneration of paint sludge and reuse in cement concrete
TWI441797B (en) A flue dust of an aluminum smelting aggregate manufacturing methods
TWI552811B (en) Treatment of Harmful Heavy Metal Incineration Fly Ash
JP6227267B2 (en) Insolubilizing and solidifying material for specific harmful substances containing gypsum and method for improving soil using the same
JP2008188570A (en) Cleaning material and manufacturing method thereof
JP2009240952A (en) Waste treatment method
JP2009280439A (en) Cement molded body, cement composition and method for producing cement molded body
JP2009233646A (en) Method for treating toxic component by solidifying waste
JP4865199B2 (en) Method for treating boron-containing combustion ash