JP2009101359A - Cement kiln extraction dust treatment method - Google Patents

Cement kiln extraction dust treatment method Download PDF

Info

Publication number
JP2009101359A
JP2009101359A JP2009022228A JP2009022228A JP2009101359A JP 2009101359 A JP2009101359 A JP 2009101359A JP 2009022228 A JP2009022228 A JP 2009022228A JP 2009022228 A JP2009022228 A JP 2009022228A JP 2009101359 A JP2009101359 A JP 2009101359A
Authority
JP
Japan
Prior art keywords
solid
liquid separation
selenium
dust
salt compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009022228A
Other languages
Japanese (ja)
Other versions
JP5206453B2 (en
Inventor
Sumio Terada
澄夫 寺田
Takeshi Kita
毅 北
Morihisa Yokota
守久 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009022228A priority Critical patent/JP5206453B2/en
Publication of JP2009101359A publication Critical patent/JP2009101359A/en
Application granted granted Critical
Publication of JP5206453B2 publication Critical patent/JP5206453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the content of selenium and heavy metals contained in a dechlorination water-washing solution for cement kiln extraction dust to a level of not higher than 0.1 mg/l which is a fluent standard according to Water Pollution Control Act. <P>SOLUTION: A cement kiln extraction dust treatment method includes the following processes. The method includes (1) the first process of adding water to cement kiln extraction dust to form a slurry before executing solid/liquid separation, (2) the second process of controlling the pH of a liquid phase (raw water) obtained after solid/liquid separation in the first process to 5-10, adding a chelating agent for removing heavy metals, adding a ferric salt compound before controlling the pH of the liquid phase to 5-10 again and adding a polymer flocculating agent to execute solid/liquid separation, (3) the third process of adding a first ferrous salt compound to the liquid phase obtained after solid/liquid separation in the second process and controlling the pH to 8-12 before adding a polymer flocculating agent to execute solid/liquid separation, and (4) the fourth process of adding a ferric salt compound to the liquid phase obtained after solid/liquid separation in the third process and controlling the pH to 8-12 before adding a polymer flocculating agent for executing solid/liquid separation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セメントキルンの塩素、アルカリ、及び硫黄の循環を低減するために、塩素バイパス等の抽気装置を用い焼成ガスの一部を抽気した際に同伴する、セレンを含むダスト(以下、抽気ダストと称す)の処理方法に関するものである。   In order to reduce the circulation of chlorine, alkali, and sulfur in a cement kiln, the present invention is a dust containing selenium (hereinafter, extracted air) that is accompanied when a part of the calcination gas is extracted using an extraction device such as a chlorine bypass. (Referred to as dust).

塩素、アルカリ、硫黄含有物の多いセメント原料を使用した場合、セメントクリンカー中に含まれる塩素、アルカリ、硫黄の量が多くなり、セメントの品質に悪影響を与える。
また、塩素、アルカリ、硫黄は蒸気圧の高い化合物を形成し、セメントキルン内においてガス化して循環する前に、装置内の比較的温度の低い部分で凝縮してコーティングを形成するため、セメント製造上のトラブルの原因ともなっている。
この問題を解決するために、セメントキルンの窯尻部分から焼成ガスの一部を抽気して、セメントキルン内を循環する塩素、アルカリ、硫黄の量を低減することが行われている。
When a cement raw material containing a large amount of chlorine, alkali, and sulfur is used, the amount of chlorine, alkali, and sulfur contained in the cement clinker increases, which adversely affects cement quality.
In addition, chlorine, alkali, and sulfur form a compound with high vapor pressure, and before it is gasified and circulated in the cement kiln, it is condensed at a relatively low temperature in the equipment to form a coating. It is also the cause of the above trouble.
In order to solve this problem, a part of the firing gas is extracted from the kiln bottom portion of the cement kiln to reduce the amount of chlorine, alkali, and sulfur circulating in the cement kiln.

しかし、このような焼成ガスの抽気を行うと、塩素、アルカリ、硫黄の含有量が多い抽気ダストが必然的に同伴し、この抽気ダストの処理方法が新たに問題になってくる。即ち、抽気ダストには塩素、アルカリ、硫黄以外にも鉛、カドミニウム、クロム、マンガン、鉄、セレンなど、水質汚濁防止法で規制された有害物質が含まれており、抽気ダストを未処理のまま埋め立て、廃棄を行えば環境汚染を引き起こすため、適切な方法で処理する必要がある。また、抽気ダストを廃棄するのではなく、セメント原料として再利用する場合にも、抽気ダスト中に含まれるアルカリ、塩素の量を低減した後に原料系に戻す必要がある。   However, when such a calcination gas is extracted, extraction dust having a large content of chlorine, alkali, and sulfur is inevitably accompanied, and the processing method of this extraction dust becomes a new problem. In other words, in addition to chlorine, alkali and sulfur, extracted dust contains lead, cadmium, chromium, manganese, iron, selenium and other harmful substances regulated by the Water Pollution Control Law, and the extracted dust remains untreated. Landfilling and disposal can cause environmental pollution and should be handled in an appropriate manner. Even when the extracted dust is not discarded but reused as a cement raw material, it is necessary to reduce the amount of alkali and chlorine contained in the extracted dust and then return to the raw material system.

抽気ダストに含まれるアルカリ、塩素化合物は水溶性であるから、除去するには水洗処理が最も適しており、既に公知である(例えば特許文献1及び2)。しかしながら、本文献では、水処理の際、アルカリ、塩素化合物と一緒に溶出してくる重金属を含む有害物質の処理方法に関する報告はされてない。
重金属の処理方法としては、特許文献3に、4価セレン及び6価セレン(以下全セレンと称す)の処理方法に関する報告がされている。本文献では、全セレンの含有量が1.6mg/lの排水に、硫酸第一鉄・七水和物を全セレン量の2832倍モル量、塩化第二鉄・六水和物を全セレン量の945倍モル量添加し、pHを9に調整して30分間攪拌し、フィルタープレスでろ別除去した後の残存ろ液の全セレン濃度が0.04mg/lになることが報告されている。しかしながら、本方法では多量の6価セレンが溶存しているセレン含有水の場合、多量の第一鉄と第二鉄が必要で凝集沈殿が困難となり、また、処理費用も高価となり、実用化が困難になる恐れが生じる。
Since alkali and chlorine compounds contained in the bleed dust are water-soluble, washing with water is most suitable for removal, and already known (for example, Patent Documents 1 and 2). However, in this document, there is no report regarding a method for treating harmful substances including heavy metals that are eluted together with alkali and chlorine compounds during water treatment.
As a method for treating heavy metals, Patent Document 3 reports a method for treating tetravalent selenium and hexavalent selenium (hereinafter referred to as all selenium). In this document, wastewater with a total selenium content of 1.6 mg / l is mixed with ferrous sulfate heptahydrate 2832 times the total selenium amount and ferric chloride hexahydrate with total selenium. It has been reported that the total selenium concentration of the remaining filtrate after addition of 945 times the amount, adjusting the pH to 9 and stirring for 30 minutes and filtering off with a filter press is 0.04 mg / l. . However, in this method, in the case of selenium-containing water in which a large amount of hexavalent selenium is dissolved, a large amount of ferrous and ferric iron is required, so that coagulation and precipitation are difficult, and the processing cost is expensive, so that it can be put into practical use. It can be difficult.

特許文献4では、硫酸第一鉄を2価の鉄イオン量換算で溶存セレン量の40から80重量倍量添加し、pHを8.5〜10に調節して20から30分間攪拌して、全セレンが水酸化第一鉄に対して吸着固定されると報告されている。しかしながら、処理水の全セレン含有量は0.2から0.4mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/l以下を達成できていない。   In Patent Document 4, ferrous sulfate is added in an amount of 40 to 80 times the amount of dissolved selenium in terms of the amount of divalent iron ions, the pH is adjusted to 8.5 to 10 and stirred for 20 to 30 minutes, It has been reported that all selenium is adsorbed and immobilized on ferrous hydroxide. However, the total selenium content of the treated water is 0.2 to 0.4 mg / l, and the wastewater standard value of 0.1 mg / l or less according to the Water Pollution Control Law cannot be achieved.

特開昭49−86419号公報JP 49-86419 A 特開昭62−252351号公報JP-A-62-252351 特開2002−273455号公報JP 2002-273455 A 特開平6−79286号公報JP-A-6-79286

本発明は、セメントキルン抽気ダストを水洗処理し、固形分はセメント原料として再利用し、通常の3価の鉄イオンでは処理できないセレンが含有している水洗液を、水質汚濁防止法に係る排水基準値以下に除去して放流廃棄を可能にする処理方法を提供することを目的とする。   The present invention is a waste water treatment method for water pollution treatment, in which cement kiln extraction dust is washed with water, solid content is reused as a cement raw material, and selenium containing selenium that cannot be treated with normal trivalent iron ions is contained. It aims at providing the processing method which makes it possible to discharge and discard by removing below a reference value.

本発明者らは鋭意検討を行った結果、上記目的を達成し得ることを知見した。
すなわち、本発明は、以下の各工程からなることを特徴とするセメントキルン抽気ダストの処理方法に関する。
(1)セメントキルン抽気ダストに水を加えてスラリー化した後、固液分離する第1工程、
(2)第1工程で得られた固液分離後の液相(以下、原水と称す)のpHを5〜10に調節し、重金属除去用キレート剤を添加し、第二鉄塩化合物を添加した後、更に液相のpHを5〜10に再調節し、高分子凝集剤を添加し、固液分離する第2工程、
(3)第2工程で得られた固液分離後の液相に、第一鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う第3工程、
(4)第3工程で得られた固液分離後の液相に、第二鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う第4工程。
As a result of intensive studies, the present inventors have found that the above object can be achieved.
That is, this invention relates to the processing method of the cement kiln extraction dust characterized by including the following processes.
(1) A first step in which water is added to cement kiln extraction dust to form a slurry, followed by solid-liquid separation,
(2) The pH of the liquid phase after solid-liquid separation obtained in the first step (hereinafter referred to as raw water) is adjusted to 5-10, a chelating agent for removing heavy metals is added, and a ferric salt compound is added. After that, the second step of re-adjusting the pH of the liquid phase to 5-10, adding a polymer flocculant, and solid-liquid separation,
(3) The ferrous salt compound is added to the liquid phase after solid-liquid separation obtained in the second step, the pH is adjusted to 8 to 12, and then the polymer flocculant is added to perform solid-liquid separation. A third step to perform,
(4) A ferric salt compound is added to the liquid phase after solid-liquid separation obtained in the third step, the pH is adjusted to 8 to 12, and then a polymer flocculant is added to perform solid-liquid separation. 4th process to perform.

本発明のセメントキルン抽気ダストの処理方法を実施すると、除去が極めて困難な6価セレンを4価に還元し固相として捕集し、固液分離後の液相中の全セレン(4価セレン、6価セレン)を水質汚濁防止法に係る排水基準値を充分クリアする程度まで低減することができ、放流が可能になる。
また、還元剤として用いる第一鉄塩化合物の添加量が少量であるため、少量の高分子凝集剤の添加で沈降分離が短時間で容易になる。その為、固相であるスラッジ量が少なくなりスラッジの脱水処理も容易になる。
さらに、固形分は、セメント原料としての再利用が可能になる。
When the cement kiln extraction dust processing method of the present invention is carried out, hexavalent selenium, which is extremely difficult to remove, is reduced to tetravalent and collected as a solid phase, and all selenium (tetravalent selenium in the liquid phase after solid-liquid separation) is collected. , Hexavalent selenium) can be reduced to a level that sufficiently satisfies the drainage standard value according to the Water Pollution Control Law, and can be discharged.
Moreover, since the addition amount of the ferrous salt compound used as the reducing agent is small, sedimentation separation is facilitated in a short time by adding a small amount of the polymer flocculant. Therefore, the amount of sludge that is a solid phase is reduced and the sludge is easily dewatered.
Furthermore, the solid content can be reused as a cement raw material.

図1は本発明に係るセメントキルン抽気ダストの処理方法を示すフロー図である。FIG. 1 is a flowchart showing a method of treating cement kiln bleed dust according to the present invention.

以下に本発明を詳細に説明する。また、本発明に係るセメントキルン抽気ダストの処理方法のフローを図1に示す。
本発明の第1工程は、セメントキルン抽気ダストに水を加えてスラリー化した後、固液分離する工程である。この工程で、塩化カリウム、塩化ナトリウム、及び塩化カルシウム等のアルカリ金属塩を溶出させ固相として捕集する。抽気ダストの主成分は、アルカリ金属塩であることから、生成スラリーは高pH値を示す。水の添加量は固液分離した液相の塩素濃度が2質量%以下になるように加える。一般に海水の塩素濃度は0.005〜2質量%であり、液相の塩素濃度が2質量%以下であれば、処理排水をそのまま放流可能である。
The present invention is described in detail below. Moreover, the flow of the processing method of the cement kiln extraction dust which concerns on this invention is shown in FIG.
The first step of the present invention is a step of solid-liquid separation after adding water to the cement kiln bleed dust to form a slurry. In this step, alkali metal salts such as potassium chloride, sodium chloride, and calcium chloride are eluted and collected as a solid phase. Since the main component of the extracted dust is an alkali metal salt, the resulting slurry exhibits a high pH value. The amount of water added is such that the concentration of chlorine in the liquid phase after solid-liquid separation is 2% by mass or less. Generally, the chlorine concentration of seawater is 0.005 to 2% by mass, and the treated wastewater can be discharged as it is if the chlorine concentration of the liquid phase is 2% by mass or less.

本発明の第2工程は、第1工程で固液分離した液相(原水)のpHを5〜10に調節し、重金属除去用キレート剤を添加し、第二鉄塩化合物を添加した後、更に液相のpHを5〜10に再調節し、高分子凝集剤を添加し、固液分離する工程である。この工程で、鉛、カドミウム、クロム等の重金属、並びに一部の4価セレンを、水酸化鉄と共沈させ、固相として捕集する。   In the second step of the present invention, after adjusting the pH of the liquid phase (raw water) separated in the first step to 5 to 10, adding a chelating agent for removing heavy metals, and adding a ferric salt compound, Further, the pH of the liquid phase is readjusted to 5 to 10, a polymer flocculant is added, and solid-liquid separation is performed. In this step, heavy metals such as lead, cadmium, and chromium, and some tetravalent selenium are co-precipitated with iron hydroxide and collected as a solid phase.

原水のpH調節剤としては、例えば、塩酸、硫酸、又は硝酸等が挙げられる。pHは5〜10、好ましくは6〜8に調節する。
重金属除去用キレート剤添加後の液相のpH調節剤としては、例えば、水酸化ナトリウム、水酸化カルシウム等が挙げられる。pHは5〜10、好ましくは6〜8に調節する。
Examples of the raw water pH adjuster include hydrochloric acid, sulfuric acid, and nitric acid. The pH is adjusted to 5-10, preferably 6-8.
Examples of the liquid phase pH adjuster after addition of the chelating agent for heavy metal removal include sodium hydroxide and calcium hydroxide. The pH is adjusted to 5-10, preferably 6-8.

重金属除去用キレート剤としては、キレート形成基としてジチオカルバミン酸基(>N−CSX、但しXはH、Li、Na、K、Ca/2、Mg/2を示す)及び/又はチオール基(−SY、但しYはH、Li、Na、Kを示す)を有する高分子化合物を用いることが出来る。例えば、スチレン−ジビニルベンゼン系樹脂、フェノール樹脂等の母体樹脂にジチオカルバミン酸基および/またはチオール基が導入された固体状高分子、ポリアルキレンポリアミンにジチオカルバミン酸基および/またはチオール基が導入された、重金属と結合してフロックを形成する液状の高分子を挙げることが出来る。
中でも、ポリエチレンイミンをベースポリマとし、分子内にジチオカルバミン酸ナトリウム基およびナトリウムメルカプチド基を有する液状の水溶性高分子キレート剤の使用が特に好ましく、この特性を有する市販の高分子キレート剤が原液のまま、または希釈水溶液として使用出来る。
As a chelating agent for removing heavy metals, a dithiocarbamic acid group (> N-CS 2 X, where X represents H, Li, Na, K, Ca / 2, Mg / 2) and / or a thiol group ( -SY, where Y represents H, Li, Na, or K) can be used. For example, a solid polymer in which a dithiocarbamic acid group and / or a thiol group is introduced into a base resin such as a styrene-divinylbenzene-based resin or a phenol resin, and a dithiocarbamic acid group and / or a thiol group is introduced into a polyalkylene polyamine. A liquid polymer that forms a floc by combining with a heavy metal can be used.
In particular, it is particularly preferable to use a liquid water-soluble polymer chelating agent having polyethyleneimine as a base polymer and having a sodium dithiocarbamate group and a sodium mercaptide group in the molecule. It can be used as it is or as a diluted aqueous solution.

重金属除去用キレート剤の添加量は、原水に溶存している鉛イオンに対して0.2〜3当量、好ましくは0.5〜2当量である。
第二鉄塩化合物としては、例えば、塩化第二鉄、塩化第二鉄・六水和物、硫酸第ニ鉄、硫酸第ニ鉄・三水和物、硫酸第ニ鉄・六水和物、硫酸第ニ鉄・七水和物、ポリ硫酸第二鉄等が挙げられる。
第二鉄塩化合物の添加量は、重金属除去用キレート剤に対して5〜15重量倍量、好ましくは7〜13重量倍量である。
The addition amount of the chelating agent for removing heavy metals is 0.2 to 3 equivalents, preferably 0.5 to 2 equivalents with respect to lead ions dissolved in the raw water.
Examples of the ferric salt compound include ferric chloride, ferric chloride and hexahydrate, ferric sulfate, ferric sulfate and trihydrate, ferric sulfate and hexahydrate, Examples thereof include ferric sulfate heptahydrate, polyferric sulfate and the like.
The addition amount of the ferric salt compound is 5 to 15 times by weight, preferably 7 to 13 times by weight, with respect to the heavy metal removing chelating agent.

第3工程は、第2工程で固液分離した液相に、第一鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う工程である。この工程で、第2工程で捕集されなかった6価セレン(セレン酸)を3価の水酸化鉄と共沈し易い4価セレン(亜セレン酸)に還元させる。
第一鉄塩化合物としては、例えば、塩化第一鉄、塩化第一鉄・二水和物、硫酸第一鉄、硫酸第一鉄・四水和物、硫酸第一鉄・五水和物、硫酸第一鉄・七水和物、ポリ硫酸第一鉄等が挙げられる。
第一鉄塩化合物の添加量は、原水に溶存している6価セレン量に対し、鉄イオン量で50〜300倍モル量、好ましくは100〜200倍モル量である。
液相のpH調節剤としては、第2工程同様、例えば、水酸化ナトリウム、水酸化カルシウム等が挙げられる。pHは8〜12、好ましくは9〜11に調節する。
The third step is a step of performing solid-liquid separation by adding a ferrous salt compound to the liquid phase solid-liquid separated in the second step and adjusting the pH to 8 to 12 and then adding a polymer flocculant. It is. In this step, hexavalent selenium (selenic acid) that has not been collected in the second step is reduced to tetravalent selenium (selenite) that is likely to coprecipitate with trivalent iron hydroxide.
Examples of ferrous salt compounds include ferrous chloride, ferrous chloride and dihydrate, ferrous sulfate, ferrous sulfate and tetrahydrate, ferrous sulfate and pentahydrate, Examples thereof include ferrous sulfate and heptahydrate, polyferrous sulfate and the like.
The addition amount of the ferrous salt compound is 50 to 300-fold mol amount, preferably 100 to 200-fold mol amount in terms of iron ion, with respect to the hexavalent selenium amount dissolved in the raw water.
Examples of the liquid phase pH adjuster include sodium hydroxide and calcium hydroxide as in the second step. The pH is adjusted to 8-12, preferably 9-11.

本発明の第4工程では、第3工程で固液分離した液相に、第二鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う工程である。
第二鉄塩化合物としては、例えば、塩化第二鉄、塩化第ニ鉄・六水和物、硫酸第ニ鉄、硫酸第ニ鉄・三水和物、硫酸第ニ鉄・六水和物、硫酸第鉄・七水和物、ポリ硫酸第二鉄等が挙げられる。
第二鉄塩化合物の添加量は、原水に溶存している全セレン量に対し、鉄イオン量で30〜120倍モル量、好ましくは50〜100倍モル量添加する。
液相のpH調節剤としては、第2、第3工程同様、例えば、水酸化ナトリウム、水酸化カルシウム等が挙げられる。pHは8〜12、好ましくは9〜11に調節する。
In the fourth step of the present invention, the ferric salt compound is added to the liquid phase separated in the third step and the pH is adjusted to 8 to 12, followed by the addition of the polymer flocculant and the solid-liquid separation. It is a process of performing.
Examples of the ferric salt compound include ferric chloride, ferric chloride, hexahydrate, ferric sulfate, ferric sulfate, trihydrate, ferric sulfate, hexahydrate, And ferric sulfate heptahydrate and polyferric sulfate.
The ferric salt compound is added in an amount of 30 to 120 times, preferably 50 to 100 times, the molar amount of iron ions with respect to the total amount of selenium dissolved in the raw water.
Examples of the liquid phase pH adjuster include sodium hydroxide and calcium hydroxide as in the second and third steps. The pH is adjusted to 8-12, preferably 9-11.

本発明の第2〜4工程に添加する高分子凝集剤は、水酸化鉄を主成分とする沈殿の凝集を促進して固液分離を容易にする効果を示す。高分子凝集剤としては、ポリアクリルアミド、又はポリアクリル酸ソーダを含む高分子凝集剤であれば良く、ノニオン系、カチオン系、アニオン系を問わずに使用できる。また高分子凝集剤の添加量は、0.2〜4mg/l、好ましくは0.5〜2mg/lである。
本発明の第1〜4工程で行う固液分離する方法は、一般に行われている方法、例えば、ろ過法、遠心分離法、沈降分離法等を利用することができる。
第4工程の固液分離で重金属およびセレンを排水基準値以下に低減させた液相は、そのpHを中性付近にまで低下させた後、放流することができる。また、第1〜4工程で得られた固相は、鉄を含むため、鉄源としてセメント原料に再利用可能である。
The polymer flocculant added to the second to fourth steps of the present invention has an effect of facilitating the aggregation of the precipitate mainly composed of iron hydroxide and facilitating solid-liquid separation. As the polymer flocculant, any polymer flocculant containing polyacrylamide or sodium polyacrylate may be used, regardless of nonionic, cationic or anionic. The addition amount of the polymer flocculant is 0.2 to 4 mg / l, preferably 0.5 to 2 mg / l.
As a method for solid-liquid separation performed in the first to fourth steps of the present invention, a generally used method such as a filtration method, a centrifugal separation method, a sedimentation separation method, or the like can be used.
The liquid phase in which heavy metal and selenium are reduced to below the drainage standard value by solid-liquid separation in the fourth step can be discharged after the pH is lowered to near neutrality. Moreover, since the solid phase obtained in the first to fourth steps contains iron, it can be reused as a raw material for cement as an iron source.

以下に具体例を示し、本発明を詳細に説明する。また、以下の実施例、比較例の結果を表1に示す。
(実施例1)
抽気ダスト250gに水2500gを加え、3時間攪拌しスラリー化した。スラリーは1μmの孔径のメンブランフィルターで固液分離を行った。得られたろ液(以下、原水1と称す)のpHは13.2であった。
The present invention will be described in detail with reference to specific examples. The results of the following examples and comparative examples are shown in Table 1.
Example 1
2500 g of water was added to 250 g of extracted dust and stirred for 3 hours to form a slurry. The slurry was subjected to solid-liquid separation with a membrane filter having a pore size of 1 μm. The pH of the obtained filtrate (hereinafter referred to as raw water 1) was 13.2.

この原水1に含まれる鉛等の重金属類はJIS K 0102に準拠し、水素化合物ICP発光分光分析法により定量した。
また、全セレンは以下の方法で定量した。
即ち、原水1に硫酸及び硝酸を添加し、加熱し硫酸白煙発生後、室温まで放冷し、塩酸を加え、90〜100℃で10分間加熱し、放冷し、試料液とした。この試料液を水素化合物発生原子吸光分析装置にて全セレンの定量を行った。また、4価セレンは原水1を前処理せず、水素化合物発生原子吸光分析装置にて定量を行った。6価セレンは、全セレンから4価セレンを差し引いた値とした。
全セレン(4価セレンと6価セレン)、6価セレンおよび鉛の含有量は夫々13、12、130mg/lであった。
Heavy metals such as lead contained in the raw water 1 were quantified by hydrogen compound ICP emission spectroscopic analysis in accordance with JIS K 0102.
Further, total selenium was quantified by the following method.
That is, sulfuric acid and nitric acid were added to the raw water 1 and heated to generate sulfuric acid white smoke, then allowed to cool to room temperature, hydrochloric acid was added, heated at 90 to 100 ° C. for 10 minutes, allowed to cool, and used as a sample solution. This sample solution was quantified with a hydrogen compound generation atomic absorption spectrometer. Tetravalent selenium was quantified with a hydrogen compound generation atomic absorption spectrometer without pretreatment of raw water 1. Hexavalent selenium was obtained by subtracting tetravalent selenium from all selenium.
The contents of total selenium (tetravalent selenium and hexavalent selenium), hexavalent selenium and lead were 13, 12, and 130 mg / l, respectively.

上記250mlの原水1に硫酸を添加してpHを7.5に調節し、それから重金属除去用キレート剤(ミヨシ油脂製エポフレックスL−1)を51.8mg(鉛に対して1当量)添加して、10分間攪拌混合した。次いで1mol/lの塩化第二鉄・六水和物を1.9ml(重金属除去用キレート剤の10重量倍量)添加して、水酸化ナトリウムでpHを7.5に調節して5分間攪拌混合した。次いで高分子凝集剤(ダイヤトリニックス製ダイヤフロックNP800)を1mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。   Add sulfuric acid to the above 250 ml of raw water 1 to adjust the pH to 7.5, and then add 51.8 mg (1 equivalent to lead) of chelating agent for heavy metal removal (Epoflex L-1 made by Miyoshi Oil & Fats). And stirred for 10 minutes. Next, 1.9 ml of 1 mol / l ferric chloride hexahydrate (10 times the amount of chelating agent for heavy metal removal) was added, the pH was adjusted to 7.5 with sodium hydroxide, and the mixture was stirred for 5 minutes. Mixed. Next, 1 mg / l of a polymer flocculant (Diatrinics Diafloc NP800) was added and stirred and mixed for 10 minutes, and after standing for 10 minutes, the treatment liquid was filtered with 5 types A filter paper.

上記ろ液に硫酸第一鉄・七水和物を1.58g(原水1に溶存している6価セレン12mg/lの150倍モル量)添加して、水酸化ナトリウムを添加しpHを10に調節し、30分間攪拌混合した。次いで上記高分子凝集剤を1mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。   Add 1.58 g of ferrous sulfate heptahydrate to the above filtrate (150 times molar amount of 12 mg / l of hexavalent selenium dissolved in raw water 1), add sodium hydroxide to adjust the pH to 10 And stirred and mixed for 30 minutes. Next, 1 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes, and after standing for 10 minutes, the treatment liquid was filtered with 5 types A filter paper.

上記ろ液に1mol/lの塩化第二鉄・六水和物を2.9ml(原水1の全セレン13mg/lの70倍モル量)添加して、水酸化ナトリウムを添加しpHを10に調節して30分間攪拌混合した。次いで上記高分子凝集剤を1mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。   2.9 ml of 1 mol / l ferric chloride hexahydrate (70 times mol amount of 13 mg / l of total selenium in raw water 1) was added to the filtrate, and sodium hydroxide was added to adjust the pH to 10. The mixture was stirred and mixed for 30 minutes. Next, 1 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes, and after standing for 10 minutes, the treatment liquid was filtered with 5 types A filter paper.

上記ろ液を、原水1の分析方法により定量を行った。全セレンは0.05mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアした。また鉛は0.05mg/l(検出限界)以下であり、これも水質汚濁防止法に係る排水基準値の0.1mg/lをクリアした。   The filtrate was quantified by the raw water 1 analysis method. Total selenium was 0.05 mg / l, which cleared the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law. Lead was 0.05 mg / l (detection limit) or less, which also cleared the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law.

(比較例1)
実施例1で使用した原水1に、硫酸第一鉄・七水和物を2.815g(原水1に溶存している6価セレン12mg/lの267倍モル量)添加して、pHを10に調節して30分間攪拌混合した。次いで実施例1で使用した高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液に1mol/lの塩化第二鉄・六水和物を2.9ml(原水1の全セレン13mg/lの70倍モル量)添加して、pHを10に調整して30分間攪拌混合した。次いで上記高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液を、原水1の分析方法により定量を行った。全セレン量は、0.29mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアできなかった。また鉛は0.05mg/l(検出限界)以下であり、これは水質汚濁防止法に係る排水基準値の0.1mg/lをクリアした。
(Comparative Example 1)
To raw water 1 used in Example 1, 2.815 g of ferrous sulfate heptahydrate (267 times mole amount of 12 mg / l of hexavalent selenium dissolved in raw water 1) was added to adjust the pH to 10 The mixture was stirred and mixed for 30 minutes. Next, 2 mg / l of the polymer flocculant used in Example 1 was added, and the mixture was stirred and mixed for 10 minutes. After standing for 10 minutes, the treatment liquid was filtered with 5 types A filter paper.
2.9 ml of 1 mol / l ferric chloride hexahydrate (70 times molar amount of 13 mg / l of total selenium in raw water 1) was added to the above filtrate, and the pH was adjusted to 10 and stirred for 30 minutes. Mixed. Next, 2 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.
The filtrate was quantified by the raw water 1 analysis method. The total amount of selenium was 0.29 mg / l, and the effluent standard value of 0.1 mg / l according to the Water Pollution Control Law could not be cleared. Moreover, lead is 0.05 mg / l (detection limit) or less, which cleared the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law.

(比較例2)
抽気ダスト250gに水2500gを加え、3時間攪拌しスラリー化した。スラリーは1μmの孔径のメンブランフィルターで固液分離を行った。得られたろ液(以下原水2と称す)のpHは12.2であった。原水2に含まれる全セレンおよび6価セレンの含有量は夫々45、4mg/lであった。
上記250mlの原水2に1mol/lの塩化第二鉄・六水和物を15.5ml(原水2の全セレン45mg/lの109倍モル量)添加して、pHを10に調整して30分間攪拌混合した。次いで実施例1で使用した高分子凝集剤を1mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液を、原水1の分析方法により定量を行った。全セレン量は、1.0mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアできなかった。
(Comparative Example 2)
2500 g of water was added to 250 g of extracted dust and stirred for 3 hours to form a slurry. The slurry was subjected to solid-liquid separation with a membrane filter having a pore size of 1 μm. The pH of the obtained filtrate (hereinafter referred to as raw water 2) was 12.2. The contents of total selenium and hexavalent selenium contained in raw water 2 were 45 and 4 mg / l, respectively.
15.5 ml of 1 mol / l ferric chloride hexahydrate (109 times mole amount of 45 mg / l of total selenium in raw water 2) was added to 250 ml of raw water 2 to adjust the pH to 10 and 30 Stir and mix for a minute. Next, 1 mg / l of the polymer flocculant used in Example 1 was added and mixed with stirring for 10 minutes. After 10 minutes of standing, the treatment liquid was filtered with 5 types A filter paper.
The filtrate was quantified by the raw water 1 analysis method. The total amount of selenium was 1.0 mg / l, and the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law could not be cleared.

Figure 2009101359
Figure 2009101359

1 第1工程
2 第2工程
3 第3工程
4 第4工程
5 抽気ダスト
6 セメント原料
7 放流水
1 First Step 2 Second Step 3 Third Step 4 Fourth Step 5 Extracted Dust 6 Cement Raw Material 7 Effluent Water

Claims (8)

以下の各工程からなることを特徴とする塩素およびセレンを含むダストの処理方法。
(1)塩素およびセレンを含むダストに水を加えてスラリー化した後、固液分離する第1工程、
(2)第1工程で得られた固液分離後の液相(以下、原水と称す)に重金属除去用キレート剤を添加し、第二鉄塩化合物を添加した後、固液分離する第2工程、
(3)第2工程で得られた固液分離後の液相に、第一鉄塩化合物を添加し、固液分離を行う第3工程、
(4)第3工程で得られた固液分離後の液相に、第二鉄塩化合物を添加し、固液分離を行う第4工程。
A method for treating dust containing chlorine and selenium, comprising the following steps.
(1) A first step in which water is added to a dust containing chlorine and selenium to form a slurry, followed by solid-liquid separation,
(2) A second step of adding a chelating agent for heavy metal removal to the liquid phase after solid-liquid separation obtained in the first step (hereinafter referred to as raw water), adding a ferric salt compound, and then performing solid-liquid separation. Process,
(3) A third step of adding a ferrous salt compound to the liquid phase after the solid-liquid separation obtained in the second step and performing solid-liquid separation;
(4) The 4th process which adds a ferric salt compound to the liquid phase after solid-liquid separation obtained at the 3rd process, and performs solid-liquid separation.
前記第2工程において、pHを5〜10に調節し、重金属除去用キレート剤を添加する請求項1記載の塩素およびセレンを含むダストの処理方法。 The method for treating dust containing chlorine and selenium according to claim 1, wherein in the second step, the pH is adjusted to 5 to 10 and a chelating agent for removing heavy metals is added. 前記第2工程において、第二鉄塩化合物を添加した後、更に液相のpHを5〜10に再調節し、固液分離する請求項1または2記載の塩素およびセレンを含むダストの処理方法。 The method for treating dust containing chlorine and selenium according to claim 1 or 2, wherein in the second step, after adding the ferric salt compound, the pH of the liquid phase is readjusted to 5 to 10 and solid-liquid separation is performed. . 前記第3工程において、第一鉄塩化合物を添加し、pHを8〜12に調節した後、固液分離を行う請求項1から3のいずれか1項に記載の塩素およびセレンを含むダストの処理方法。 The dust of chlorine and selenium-containing dust according to any one of claims 1 to 3, wherein in the third step, a ferrous salt compound is added and the pH is adjusted to 8 to 12, followed by solid-liquid separation. Processing method. 前記第4工程において、第二鉄塩化合物を添加し、pHを8〜12に調節した後、固液分離を行う請求項1から4のいずれか1項に記載の塩素およびセレンを含むダストの処理方法。 The dust of chlorine and selenium-containing dust according to any one of claims 1 to 4, wherein in the fourth step, a ferric salt compound is added and the pH is adjusted to 8 to 12, followed by solid-liquid separation. Processing method. 前記塩素およびセレンを含むダストは、セメントキルン抽気ダストである請求項1から5のいずれか1項に記載の塩素およびセレンを含むダストの処理方法。 The method for treating dust containing chlorine and selenium according to any one of claims 1 to 5, wherein the dust containing chlorine and selenium is cement kiln extraction dust. 前記第1工程において、原水の塩素濃度が2質量%以下になるように水を加える請求項1から6のいずれか1項に記載の塩素およびセレンを含むダストの処理方法。 The method for treating dust containing chlorine and selenium according to any one of claims 1 to 6, wherein in the first step, water is added so that the chlorine concentration of the raw water is 2% by mass or less. 前記第1〜4工程のいずれか1工程において得られた固液分離後の固相をセメント原料に再利用する請求項1から7のいずれか1項に記載の塩素およびセレンを含むダストの処理方法。 The treatment of dust containing chlorine and selenium according to any one of claims 1 to 7, wherein the solid phase after solid-liquid separation obtained in any one of the first to fourth steps is reused as a cement raw material. Method.
JP2009022228A 2009-02-03 2009-02-03 Cement kiln extraction dust processing method Expired - Lifetime JP5206453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022228A JP5206453B2 (en) 2009-02-03 2009-02-03 Cement kiln extraction dust processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022228A JP5206453B2 (en) 2009-02-03 2009-02-03 Cement kiln extraction dust processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003342815A Division JP4306394B2 (en) 2003-10-01 2003-10-01 Cement kiln extraction dust processing method

Publications (2)

Publication Number Publication Date
JP2009101359A true JP2009101359A (en) 2009-05-14
JP5206453B2 JP5206453B2 (en) 2013-06-12

Family

ID=40703688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022228A Expired - Lifetime JP5206453B2 (en) 2009-02-03 2009-02-03 Cement kiln extraction dust processing method

Country Status (1)

Country Link
JP (1) JP5206453B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042510A (en) * 2009-08-19 2011-03-03 Taiheiyo Cement Corp Fertilizer and method and apparatus for manufacturing the same
JP2013141641A (en) * 2012-01-11 2013-07-22 Kurita Water Ind Ltd Method for treating heavy metal-containing waste water
JP2013150963A (en) * 2012-01-26 2013-08-08 Taiheiyo Cement Corp Method for removing selenium from chlorine bypass dust flushing wastewater
JP2019171291A (en) * 2018-03-28 2019-10-10 栗田工業株式会社 Method and apparatus for treating selenium-containing water
JP2020006365A (en) * 2018-06-28 2020-01-16 三菱マテリアル株式会社 Processing method of heavy metal-containing dust

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265787A (en) * 1985-09-14 1987-03-25 Naigai Kagaku Seihin Kk Treatment of waste water of concrete
JPH0679286A (en) * 1992-07-17 1994-03-22 Mitsubishi Materials Corp Treatment of selenium-containing waste water
JPH08224585A (en) * 1995-02-20 1996-09-03 Dowa Mining Co Ltd Removal of selenium from spent liquor
JPH0959007A (en) * 1995-08-21 1997-03-04 Miyoshi Oil & Fat Co Ltd Recovery of selenium from selenium-containing solution
JPH09271739A (en) * 1996-02-08 1997-10-21 Mitsubishi Heavy Ind Ltd Treatment of collected ash from selenium containing waste gas
JPH1099817A (en) * 1996-10-01 1998-04-21 Ube Ind Ltd Treatment of extraction dust of cement manufacturing apparatus
JPH1190165A (en) * 1997-09-19 1999-04-06 Mitsubishi Heavy Ind Ltd Treatment of waste water from flue gas desulfurization
JP2002254049A (en) * 2001-02-28 2002-09-10 Ube Ind Ltd Method for treating extraction dust in cement manufacturing equipment
JP2002273455A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Method of treating water containing selenium and boron
JP2003236504A (en) * 2002-02-19 2003-08-26 Taiheiyo Cement Corp Treatment method of waste containing selenium and chlorine component
JP2005103476A (en) * 2003-10-01 2005-04-21 Ube Ind Ltd Method for treating dust extracted from cement kiln

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265787A (en) * 1985-09-14 1987-03-25 Naigai Kagaku Seihin Kk Treatment of waste water of concrete
JPH0679286A (en) * 1992-07-17 1994-03-22 Mitsubishi Materials Corp Treatment of selenium-containing waste water
JPH08224585A (en) * 1995-02-20 1996-09-03 Dowa Mining Co Ltd Removal of selenium from spent liquor
JPH0959007A (en) * 1995-08-21 1997-03-04 Miyoshi Oil & Fat Co Ltd Recovery of selenium from selenium-containing solution
JPH09271739A (en) * 1996-02-08 1997-10-21 Mitsubishi Heavy Ind Ltd Treatment of collected ash from selenium containing waste gas
JPH1099817A (en) * 1996-10-01 1998-04-21 Ube Ind Ltd Treatment of extraction dust of cement manufacturing apparatus
JPH1190165A (en) * 1997-09-19 1999-04-06 Mitsubishi Heavy Ind Ltd Treatment of waste water from flue gas desulfurization
JP2002254049A (en) * 2001-02-28 2002-09-10 Ube Ind Ltd Method for treating extraction dust in cement manufacturing equipment
JP2002273455A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Method of treating water containing selenium and boron
JP2003236504A (en) * 2002-02-19 2003-08-26 Taiheiyo Cement Corp Treatment method of waste containing selenium and chlorine component
JP2005103476A (en) * 2003-10-01 2005-04-21 Ube Ind Ltd Method for treating dust extracted from cement kiln
JP4306394B2 (en) * 2003-10-01 2009-07-29 宇部興産株式会社 Cement kiln extraction dust processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042510A (en) * 2009-08-19 2011-03-03 Taiheiyo Cement Corp Fertilizer and method and apparatus for manufacturing the same
JP2013141641A (en) * 2012-01-11 2013-07-22 Kurita Water Ind Ltd Method for treating heavy metal-containing waste water
JP2013150963A (en) * 2012-01-26 2013-08-08 Taiheiyo Cement Corp Method for removing selenium from chlorine bypass dust flushing wastewater
JP2019171291A (en) * 2018-03-28 2019-10-10 栗田工業株式会社 Method and apparatus for treating selenium-containing water
JP2020006365A (en) * 2018-06-28 2020-01-16 三菱マテリアル株式会社 Processing method of heavy metal-containing dust
JP7275905B2 (en) 2018-06-28 2023-05-18 三菱マテリアル株式会社 Method for treating dust containing heavy metals

Also Published As

Publication number Publication date
JP5206453B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CA2483146C (en) Essentially insoluble heavy metal sulfide slurry for wastewater treatment
JP4306394B2 (en) Cement kiln extraction dust processing method
JP5206453B2 (en) Cement kiln extraction dust processing method
JP4306422B2 (en) Cement kiln extraction dust processing method
JP2016019968A (en) Processing method for incineration ash
CN110240122B (en) Method for one-step detoxification and sulfur recovery of arsenic sulfide slag
CA3087017A1 (en) Method of treating wastewater
JP5451323B2 (en) Water treatment method
JP4306413B2 (en) Cement kiln extraction dust processing method
JP4042169B2 (en) Cement production equipment extraction dust processing method
JP4479116B2 (en) Cement production equipment extraction dust processing method
JP2013075260A (en) Treatment method and treatment apparatus for removing fluorine and harmful substance
JP5206455B2 (en) Cement kiln extraction dust processing method
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP5911100B2 (en) Wastewater treatment method
JP5206454B2 (en) Cement kiln extraction dust processing method
WO2019131827A1 (en) Wastewater treatment method
JP5493903B2 (en) Mercury removal method
JP3901191B2 (en) Cement production equipment bleed dust treatment method
JP2014184370A (en) Method for treating fluorine-containing effluent
JP6901807B1 (en) Treatment method of water containing selenate ion
JP5877588B2 (en) Wastewater treatment method
JP2005349349A (en) Material for disposing of heavy metal
US20210261452A1 (en) Sulfate and trace metal precipitation methods and compositions
JP2004000883A (en) Method for treating solution containing selenium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term