JPS6265787A - Treatment of waste water of concrete - Google Patents

Treatment of waste water of concrete

Info

Publication number
JPS6265787A
JPS6265787A JP20379785A JP20379785A JPS6265787A JP S6265787 A JPS6265787 A JP S6265787A JP 20379785 A JP20379785 A JP 20379785A JP 20379785 A JP20379785 A JP 20379785A JP S6265787 A JPS6265787 A JP S6265787A
Authority
JP
Japan
Prior art keywords
hexad
concrete
waste water
treatment
ferrous sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20379785A
Other languages
Japanese (ja)
Inventor
Masateru Akasaki
赤崎 正照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI KAGAKU SEIHIN KK
Original Assignee
NAIGAI KAGAKU SEIHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI KAGAKU SEIHIN KK filed Critical NAIGAI KAGAKU SEIHIN KK
Priority to JP20379785A priority Critical patent/JPS6265787A/en
Publication of JPS6265787A publication Critical patent/JPS6265787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and thoroughly remove hexad Cr by adding and mixing to and with ferrous sulfate to alkaline waste water of concrete in which hexad Cr and slaked lime are dissolved to settle and separate the hexad Cr and neutralizing the separated liquid. CONSTITUTION:The ferrous sulfate is added and mixed to and with the alkaline waste water of concrete in which the hexad Cr and slaked lime are dissolved. The hexad Cr is settled as insoluble Cr hydroxide and is subjected to a solid- liquid sepn. The separated water is neutralized. More specifically, the treating operation is made simple without the need for making many stages of pH adjustments as in the conventional practice; in addition, chemicals are less used and the treatment cost is considerably reduced. The removal of salts by the use of carbon dioxide in the above-mentioned neutralization treatment is possible. This method has, therefore, high applicability as a treatment of waste water with the lower cost burden in a small-scale factory. The method is satisfactorily applicable as well in the case in which a low salt concn. is required as effluent.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コンクリート製造工場等のコンクリート取
扱い部署において装置等の洗浄によって生じる廃水中の
六価クロムを除去するコンクリート廃水の処理方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a concrete wastewater treatment method for removing hexavalent chromium from wastewater generated by cleaning equipment, etc. in a concrete handling department such as a concrete manufacturing factory.

(従来の技術) 一般にコンクリート廃水は、コンクリートより溶出する
消石灰(Ca (OH) 2 )をほぼ飽和状態で含む
ためにPl+12を越える高アルカリ性であり、かつコ
ンクリート原料に付随するクロムがコンクリート製造時
のキルン焙焼にて酸化されて易溶性の六価クロム(Cr
”)として含まれている。従ってこの廃水を放流するに
は、放流基準(全Cr2PPn↓、Cr”0.5PPm
↓、PH5,8〜8.6>に適合させるために、六価ク
ロムの除去および液の中性化を行う処理が必要である。
(Prior art) Concrete wastewater generally contains slaked lime (Ca (OH) 2 ) eluted from concrete in an almost saturated state, so it has a high alkalinity exceeding Pl + 12, and chromium accompanying concrete raw materials is removed during concrete production. Hexavalent chromium (Cr), which is easily soluble when oxidized during kiln roasting,
”). Therefore, in order to discharge this wastewater, the discharge standards (total Cr2PPn↓, Cr”0.5PPm
↓, pH 5.8 to 8.6>, it is necessary to remove hexavalent chromium and neutralize the liquid.

従来、このようなコンクリート廃水の処理に採用されて
いる代表的な方法は、まず廃水に塩酸(11cjりを加
えて中和点を越えてpH3以下の酸性とした後、亜硫酸
ナトリウム(NaH3O3)や硫酸第一鉄(FeSO4
・7H20)等の1元剤を添加混合して六価クロムを三
価クロム(Cr3÷)に還元し、次に水酸化すトリウム
(NaOH)または消石灰を加えてPHを9〜IOとす
ることにより三価クロムを不溶性の水酸化クロム(Cr
 (Oll) 3 )として沈澱させ、これを固液分離
してスラッジとして除去し、更に分離液を中和してPH
5,8〜8.6の中性として放流する方法である。
Conventionally, the typical method used to treat such concrete wastewater is to first add hydrochloric acid (11cj) to the wastewater to make it acidic beyond the neutralization point and below pH 3, and then add sodium sulfite (NaH3O3) or Ferrous sulfate (FeSO4
・Add and mix a single element such as 7H20) to reduce hexavalent chromium to trivalent chromium (Cr3÷), then add thorium hydroxide (NaOH) or slaked lime to adjust the pH to 9-IO. Trivalent chromium is converted into insoluble chromium hydroxide (Cr
(Oll) 3) is precipitated, this is separated into solid and liquid, removed as sludge, and the separated liquid is further neutralized to adjust the pH.
This is a method of discharging the water as neutral with a pH of 5.8 to 8.6.

(発明が解決しようとする問題点) しかしながら、上記従来の処理方法では、PH12以上
の廃水を一旦PH3以下として還元処理後に再びP)1
9〜10に戻し、固液分離後に更にPH5,8〜8.6
とするという多段階のPH調整を行うため、処理燥作が
非常に複雑になると共に、PH調整に使用する薬品量が
多いことから処理コストが極めて高く付くという問題が
あった。また上記処理方法では、第1段のPH凋整にF
酸を使用することから、原庚水中のカルシウム成分とP
H調整に用いたナトリウムまたはカルシウム成分が塩化
カルシウム(CaCe2)またはこれと塩化す1−リウ
ム(NaCρ)として最終的な放流水中に含まれ、この
除塩が不可能であるため低い塩濃度が要求される場合に
該処理方法を通用できないという欠点がある。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional treatment method, wastewater with a pH of 12 or higher is once reduced to a pH of 3 or lower, and then reduced again to P)
Return the pH to 9-10 and further increase the pH to 5.8-8.6 after solid-liquid separation.
Since the multi-step pH adjustment is performed, the processing and drying process becomes extremely complicated, and the processing cost becomes extremely high due to the large amount of chemicals used for pH adjustment. In addition, in the above treatment method, F
Since acid is used, calcium components and P in Genko water are
The sodium or calcium component used for H adjustment is contained in the final effluent as calcium chloride (CaCe2) or 1-lium chloride (NaCρ), and it is impossible to remove this salt, so a low salt concentration is required. There is a drawback that the treatment method cannot be used when

この発明は上記従来の問題点を解決するためになされた
もので、多段階のPH調整を行うことなく極めて簡単に
しかも低コストで六価クロムを完全に除去でき、また除
塩も可能であるコンクリート廃水の処理方法を提供する
ことを目的としている。
This invention was made to solve the above-mentioned conventional problems, and it is possible to completely remove hexavalent chromium very easily and at low cost without performing multi-step pH adjustment, and it is also possible to remove salt. The purpose is to provide a method for treating concrete wastewater.

(問題点を解決するための手段) この発明者らは、上記目的を達成するために鋭tUfr
究を重ねた結果、従来ではコンクリート廃水の処理にお
いて還元剤の作用がP Hが低いほど大きいとされ、こ
のために前述の如く廃水をP]13以下にする処理を行
うことが常識とされていたが、該廃水に直接硫酸第一鉄
を加えても六価クロムが水溶性の水酸化クロムとして完
全に除去できることを究明した。
(Means for Solving the Problems) In order to achieve the above object, the inventors have
As a result of repeated research, it has been found that in the treatment of concrete wastewater, the lower the pH, the greater the effect of the reducing agent, and for this reason, it is common sense to treat wastewater to a level of P13 or less, as mentioned above. However, we have discovered that even if ferrous sulfate is added directly to the wastewater, hexavalent chromium can be completely removed as water-soluble chromium hydroxide.

すなわちこの発明に係るコンクリート廃水の処理方法は
、六価クロムおよび消石灰を溶存するアルカリ性のコン
クリート廃水に硫酸第一鉄を添加混合し、六価クロムを
不溶性の水酸化クロムとして沈澱させて固液分離し、分
離液を中和することを特徴とするものである。
That is, the method for treating concrete wastewater according to the present invention involves adding and mixing ferrous sulfate to alkaline concrete wastewater containing dissolved hexavalent chromium and slaked lime, precipitating hexavalent chromium as insoluble chromium hydroxide, and performing solid-liquid separation. It is characterized by neutralizing the separated liquid.

(発明の構成と作用) 処理対象であるコンクリート廃水は、既述のように消石
灰でほぼ飽和されており、一般にP−アルカリ度がCa
C0+換算で2000PPm以上でPH12以上のアル
カリ性を示し、かつ原料に付随するクロムが全クロムと
して最大5 PPm程度程度れ、そのほとんどがコンク
リート製造時のキルン焙焼で酸化されているために易溶
性の六価クロムとして溶存している。
(Structure and operation of the invention) As mentioned above, the concrete wastewater to be treated is almost saturated with slaked lime, and generally the P-alkalinity is Ca.
It exhibits alkalinity with a pH of 12 or higher at 2000 PPm or more in terms of C0+, and the chromium attached to the raw material contains a maximum of about 5 PPm as total chromium, most of which is oxidized during kiln roasting during concrete production, making it easily soluble. Dissolved as hexavalent chromium.

上記廃水に硫酸第一鉄を加えると、 Ca (Oll) 2 +Cr6+ FeSO4・71120 Ca (Off) 2 +Ca5O< +Cr (OH
) 3↓+Fe (011) 3↓の如く、六価クロム
が三価クロムに還元されて不溶性の水酸化クロムとして
沈澱すると共に鉄成分も水酸化鉄として沈澱する。従っ
てこれを固液分離することにより、クロム成分はスラッ
ジとして除去され、公司した液中には消石灰(’:a 
(0:l) 2 )と硫酸カルシウム(CaSO4)が
溶存するが、硫酸力ルノウムは使用した硫酸第一鉄に対
応した微量である。
When ferrous sulfate is added to the above wastewater, Ca (Oll) 2 +Cr6+ FeSO4・71120 Ca (Off) 2 +Ca5O< +Cr (OH
) 3↓+Fe (011) As shown in 3↓, hexavalent chromium is reduced to trivalent chromium and precipitates as insoluble chromium hydroxide, and the iron component also precipitates as iron hydroxide. Therefore, by solid-liquid separation, the chromium component is removed as sludge, and the slaked lime (': a
(0:l) 2 ) and calcium sulfate (CaSO4) are dissolved, but the amount of calcium sulfate is a trace amount corresponding to the ferrous sulfate used.

ここで、硫酸第一鉄の使用量は、六価クロムに対応する
理論的必要量に廃水中の溶存酸素に対応する理論的必要
量を加えた量ないし、これより若干下まわる量で充分で
あり、特に過剰に使用しなくてもほぼ完全に六価クロム
を水酸化クロムとして沈澱除去できる。すなわち、一般
的に高アルカリ下ではFe2+が溶存酸素により急速に
酸化されてFea+となることが知られており、これが
還元剤としてのFe2+を消賛する競合反応と考えられ
、Fe2”の溶存酸素対応量を余分に加えるが、後述実
施例の結果から明らかなようにCr”−=CrJ+の還
元反応がやや優先的に進行することが判明している。
Here, the amount of ferrous sulfate to be used is the theoretically required amount corresponding to hexavalent chromium plus the theoretically necessary amount corresponding to dissolved oxygen in wastewater, or an amount slightly lower than this is sufficient. Yes, it is possible to almost completely remove hexavalent chromium by precipitation as chromium hydroxide, even if it is not used in excess. In other words, it is generally known that Fe2+ is rapidly oxidized by dissolved oxygen to Fea+ under highly alkaline conditions, and this is considered to be a competitive reaction that favors Fe2+ as a reducing agent, and the dissolved oxygen of Fe2'' is Although a corresponding amount is added in excess, it has been found that the reduction reaction of Cr''-=CrJ+ proceeds somewhat preferentially, as is clear from the results of Examples described later.

上記の硫酸第一鉄の理論的必要量は、 C「6÷+3Fe”  Cr”+3Fe     −(
1)’AO2+2Fe”+5H20− 2Fe (Oll) 3 + 4H−(II)上記(1
)  (II)式より、六価クロムl PPILlの還
元にFc2+として3.22PPm  (FeSO4−
71120として15.97 PPm )、i存酸素I
 PPmに対してFe2+として7.OPrm  (F
eSO47)120 として34.69 PP+w )
である。
The theoretical required amount of ferrous sulfate above is: C"6÷+3Fe"Cr"+3Fe-(
1) 'AO2+2Fe''+5H20- 2Fe (Oll) 3 + 4H-(II) Above (1
) From formula (II), 3.22PPm (FeSO4-
15.97 PPm as 71120), iOxygen I
7 as Fe2+ for PPm. OPrm (F
eSO47) 120 as 34.69 PP+w)
It is.

尚、上記の固液分離に際しては、沈殿の分離を容易にす
るために沈0助剤や凝集剤を使用しても差し支えない。
Incidentally, during the solid-liquid separation described above, a sedimentation aid or a flocculant may be used to facilitate separation of the precipitate.

上述の如くスラッジを除去した分離液は高アルカリ性で
あるため、中和処理を施して放流基準pH5,8〜8.
6に適合するように中性化する。
As the separated liquid from which sludge has been removed as described above is highly alkaline, it is neutralized to a discharge standard pH of 5.8 to 8.
Neutralize to conform to 6.

この中和処理には種々の手段を採用可能であるが、最も
好適な方法として炭酸ガスの吹き込みによる中和方法が
挙げられる。すなわち、上記分離液に炭酸ガスを吹き込
むと、 CaCO3↓+H20+CaSO4 として消石灰が炭酸カルシウムとして沈澱するため、こ
の沈澱を濾過等で分離することにより、放流水の除塩が
可能となる。ただし、過剰の炭酸ガスは重炭酸カルシウ
ム(Ca (HCO3) 2 )を生成してこれが再熔
解するため、全固形物溶存量が最小となる中和点はPH
9付近である。尚、上記の炭酸カルシウムの沈澱分離に
おいても、分離を容易にするために凝集剤や凝集助剤を
使用しても差し支えない。
Although various means can be employed for this neutralization treatment, the most suitable method is a neutralization method by blowing carbon dioxide gas. That is, when carbon dioxide gas is blown into the separated liquid, slaked lime precipitates as calcium carbonate as follows: CaCO3↓+H20+CaSO4. By separating this precipitate by filtration or the like, it becomes possible to remove salt from the effluent water. However, excess carbon dioxide gas produces calcium bicarbonate (Ca (HCO3) 2), which is remelted, so the neutralization point at which the total amount of dissolved solids is the minimum is PH.
It is around 9. In addition, even in the above-mentioned precipitation separation of calcium carbonate, a flocculant or a flocculation aid may be used to facilitate separation.

(実施例) 以下、この発明の実施例として模擬廃水による処理試験
を示す。
(Example) A treatment test using simulated wastewater will be shown below as an example of the present invention.

水道水に消石灰(Ca (Oll) 2 )を飽和状態
となるまで熔解し、次に重クロム酸ナトリウム(Na2
Cr207 )をCrB+として5 PPmとなるよう
に溶解して模擬廃水を作製した。
Dissolve slaked lime (Ca (Oll) 2 ) in tap water until it reaches a saturated state, then add sodium dichromate (Na 2 ).
A simulated wastewater was prepared by dissolving Cr207) as CrB+ to give 5 PPm.

この模擬廃水:!00va 1を容量50(1m It
のビーカーに入れ、ジャーテスターで攪拌下、FeSO
4・71120の2重量%水溶液を下記表1で示す量た
け添加し、5分間攪拌を続けた後、沈澱助剤を加えて沈
澱を完成させ、固液分離した。分離液を分析したところ
、残存クロムと除去率は表1の通りであった。
This simulated wastewater:! 00va 1 to capacity 50 (1m It
of FeSO in a beaker and stirred with a jar tester.
A 2% by weight aqueous solution of 4.71120 was added in an amount shown in Table 1 below, stirring was continued for 5 minutes, a precipitation aid was added to complete precipitation, and solid-liquid separation was performed. When the separated liquid was analyzed, the residual chromium and removal rate were as shown in Table 1.

尚、FeSO4・7■20の理論必要量は、溶存酸素を
10PPa+と仮定して、5 (Cr”) X 15.
97+lO(02)X34.69 425 PPmであ
る。
The theoretically required amount of FeSO4.7*20 is 5 (Cr") x 15.20, assuming dissolved oxygen to be 10PPa+.
97+lO(02)×34.69 425 PPm.

表  1 また上記ジャーテスターによる比較的緩かな攪拌の代わ
りにマグネットスターラーにて急速攪拌を行った以外は
、上記同様にして模擬廃水の還元および固液分離を行っ
たところ、分離液の残存クロムと除去率は表2の通りで
あった。尚、FeSO47H20の理論必要量は、実測
による溶存酸素量が8、70PPmであったため、5 
(Cr”) X 15.97+8.7(02) X 3
4.69−381PPImである。
Table 1 In addition, when the simulated wastewater was reduced and solid-liquid separated in the same manner as above except that rapid stirring was performed using a magnetic stirrer instead of the relatively slow stirring using the jar tester, residual chromium and solid-liquid separation in the separated liquid were confirmed. The removal rate was as shown in Table 2. In addition, the theoretically required amount of FeSO47H20 is 5, since the amount of dissolved oxygen measured was 8.70 PPm.
(Cr”) X 15.97+8.7(02) X 3
4.69-381 PPIm.

表2 上記表1および表2の結果から、コンクリート廃水中に
含まれる六価クロムは、原廃水の高PH域においても硫
酸第一鉄を六価クロムと溶存酸素に対応する理論的必要
量ないしこれよりやや下まわる量だけ直接に添加するこ
とによって、はぼ完全に除去されることが判る。
Table 2 From the results in Tables 1 and 2 above, it can be seen that the amount of hexavalent chromium contained in concrete wastewater is the theoretically necessary amount corresponding to ferrous sulfate, hexavalent chromium, and dissolved oxygen even in the high pH range of raw wastewater. It can be seen that by directly adding an amount slightly less than this, it is almost completely removed.

次に上記固液分離後の液1aをビーカーに入れて攪拌下
で炭酸ガスを吹き込み、表3の各PHで試料を採り、凝
集剤としてPAC(ポリ塩化アルミニウム)をAf2Q
3換算で10PPn+および助剤2 PPmを加えて濾
過し、濾液を分析したところ下記表3の値が得られた。
Next, put liquid 1a after the solid-liquid separation into a beaker, blow carbon dioxide gas into it while stirring, take samples at each PH in Table 3, and add PAC (polyaluminum chloride) as a coagulant to Af2Q.
When 10 PPn+ and auxiliary agent 2 PPm were added and filtered, the filtrate was analyzed, and the values shown in Table 3 below were obtained.

表中のP−アルカリ、m−アルカリ、TH,、CI2−
1SiO2(7)数値はPPm単位である。
P-alkali, m-alkali, TH,, CI2- in the table
1SiO2(7) Values are in PPm.

表  3 −F表から炭酸ガスによる中和処理はPH9付近(濾液
としてIJ 8.3>にて全固形物溶存量が最小となる
ことが利己。
From Table 3-F, neutralization treatment with carbon dioxide gas is advantageous in that the total amount of dissolved solids is minimized at a pH of around 9 (as a filtrate, IJ 8.3).

(発明特有の効果) この発明の処理方法によれば、コンクリート廃水に硫酸
第一鉄を直接に添加混合し、次いで固液分離と中和処理
を施すだけで、六価クロムがほぼ完全に除去されるから
、従来の如く多段階のPHLm整を行う必要がなく処理
操作が極めて簡単となり、また薬品使用量が少なく処理
コス]・が大きく低減され、更に上記中和処理において
炭酸ガス使用による除塩が可能である。従ってこの発明
方法は、小規模工場においてもコスト負担の少ない廃水
処理方法として通用性が大で、かつ放流水として低い塩
濃度が要求される場合でも充分に適用可能である。
(Effects Unique to the Invention) According to the treatment method of the present invention, hexavalent chromium can be almost completely removed by simply adding and mixing ferrous sulfate to concrete wastewater, followed by solid-liquid separation and neutralization. As a result, there is no need to perform multi-stage PHLm adjustment as in the past, making the processing operation extremely simple, reducing the amount of chemicals used and greatly reducing processing costs. Salt is possible. Therefore, the method of the present invention is highly applicable as a low-cost wastewater treatment method even in small-scale factories, and is fully applicable even when a low salt concentration is required in the effluent water.

Claims (1)

【特許請求の範囲】[Claims] 六価クロムおよび消石灰を溶存するアルカリ性のコンク
リート廃水に硫酸第一鉄を添加混合し、六価クロムを不
溶性の水酸化クロムとして沈澱させて固液分離し、分離
液を中和することを特徴とするコンクリート廃水の処理
方法。
The method is characterized by adding ferrous sulfate to alkaline concrete wastewater containing dissolved hexavalent chromium and slaked lime, precipitating hexavalent chromium as insoluble chromium hydroxide, separating solid and liquid, and neutralizing the separated liquid. How to treat concrete wastewater.
JP20379785A 1985-09-14 1985-09-14 Treatment of waste water of concrete Pending JPS6265787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20379785A JPS6265787A (en) 1985-09-14 1985-09-14 Treatment of waste water of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20379785A JPS6265787A (en) 1985-09-14 1985-09-14 Treatment of waste water of concrete

Publications (1)

Publication Number Publication Date
JPS6265787A true JPS6265787A (en) 1987-03-25

Family

ID=16479900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20379785A Pending JPS6265787A (en) 1985-09-14 1985-09-14 Treatment of waste water of concrete

Country Status (1)

Country Link
JP (1) JPS6265787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101359A (en) * 2009-02-03 2009-05-14 Ube Ind Ltd Cement kiln extraction dust treatment method
JP2009136872A (en) * 2009-02-03 2009-06-25 Ube Ind Ltd Treatment method for dust in cement kiln extraction gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508361A (en) * 1973-05-28 1975-01-28
JPS5061854A (en) * 1973-10-04 1975-05-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508361A (en) * 1973-05-28 1975-01-28
JPS5061854A (en) * 1973-10-04 1975-05-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101359A (en) * 2009-02-03 2009-05-14 Ube Ind Ltd Cement kiln extraction dust treatment method
JP2009136872A (en) * 2009-02-03 2009-06-25 Ube Ind Ltd Treatment method for dust in cement kiln extraction gas

Similar Documents

Publication Publication Date Title
US5370800A (en) Method for removing metal compounds from waste water
BG63497B1 (en) Method for arsenic-containing waste water treatment
CA2079627C (en) Separation of heavy metals from waste water of the titanium dioxide industry
WO2018092396A1 (en) Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions
TW412433B (en) Processes for the treatment of flue gas desulfurization waste water
US3694356A (en) Abatement of water pollution
WO2007057521A1 (en) Method for removing substances from aqueous solution
JPS6265787A (en) Treatment of waste water of concrete
JPS61192386A (en) Treatment of waste water containing heavy metal complex
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JP3172728B2 (en) Method for removing divalent manganese ions
KR100469685B1 (en) agglutinating composition for wastewater treating and manufacturing method thereof
JP2001179266A (en) Method for treating selenium-containing water
JPS59199097A (en) Disposal of waste cement slurry
JPS61161191A (en) Treatment of heavy metal ion-containing solution
JPS6283090A (en) Treatment of waste water containing chromium
JPS60248288A (en) Treatment of waste water from mine
US7335309B1 (en) Method for removing metal compounds from waste water
JPH03186393A (en) Treatment of waste water containing fluorine
KR0149599B1 (en) Method for the treatment of industrial waste water
RU2195434C2 (en) Coagulant for cleaning natural and waste water, method of production and use of such coagulant
JP4034218B2 (en) Wastewater treatment method
JP7448129B2 (en) How to treat wastewater
WO2016113946A1 (en) Chromium-containing water treatment method
KR100291899B1 (en) METHOD OF ELIMINATING FLUORINE ION(F¬-) AND HEXAVALENT CHROMIUM ION(Cr¬6+) FROM INDUSTRIAL WASTEWATER